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The geospatial sciences face grand information technology (IT) challenges in the
twenty-first century: data intensity, computing intensity, concurrent access
intensity and spatiotemporal intensity. These challenges require the readiness of
a computing infrastructure that can: (1) better support discovery, access and
utilization of data and data processing so as to relieve scientists and engineers of
IT tasks and focus on scientific discoveries; (2) provide real-time IT resources to
enable real-time applications, such as emergency response; (3) deal with access
spikes; and (4) provide more reliable and scalable service for massive numbers of
concurrent users to advance public knowledge. The emergence of cloud
computing provides a potential solution with an elastic, on-demand computing
platform to integrate � observation systems, parameter extracting algorithms,
phenomena simulations, analytical visualization and decision support, and to
provide social impact and user feedback � the essential elements of the geospatial
sciences. We discuss the utilization of cloud computing to support the intensities
of geospatial sciences by reporting from our investigations on how cloud
computing could enable the geospatial sciences and how spatiotemporal principles,
the kernel of the geospatial sciences, could be utilized to ensure the benefits of cloud
computing. Four research examples are presented to analyze how to: (1) search,
access and utilize geospatial data; (2) configure computing infrastructure to
enable the computability of intensive simulation models; (3) disseminate and
utilize research results for massive numbers of concurrent users; and (4) adopt
spatiotemporal principles to support spatiotemporal intensive applications. The
paper concludes with a discussion of opportunities and challenges for spatial
cloud computing (SCC).

Keywords: digital earth; Cyber GIS; geodynamics; space-time; high-performance
computing; geospatial cyberinfrastructure

1. Introduction

‘Everything changes but change itself’ (Kennedy). Understanding changes becomes

increasingly important in the twenty-first century with globalization and geographic
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expansion of human activities (Brenner 1999, NRC 2009b). These changes happen

within relevant spatial scope and range from as small as the individual or

neighborhood to as large as the entire Earth (Brenner 1999). We use space-time

dimensions to better record spatial related changes (Goodchild 1992). To under-

stand, protect and improve our living environment, humans have been accumulating

valuable records about the changes occurring for thousands of years or longer. The

records are obtained through various sensing technologies, including our human

eyes, touch and feel, and more recently, satellites, telescopes, in situ sensors and

sensor webs (Montgomery and Mundt 2010). The advancements of sensing

technologies have dramatically improved the accuracy and spatiotemporal scope of

the records. Collectively, we have accumulated exabytes of records as data, and these

datasets are increasing at a rate of petabytes daily (Hey et al. 2009). Scientists

developed numerous algorithms and models to test our hypotheses about the changes

to improve our capability to understand history and to better predict the future

(Yang et al. 2011a). Starting from the simple understanding and predictions of

geospatial phenomena from our ancestors thousands of years ago, we can now

understand and predict more complex Earth events, such as earthquakes and

tsunamis (NRC 2003, NRC 2011), environmental issues (NRC 2009a), and global

changes (NRC 2009b), with greater accuracy and better time and space coverage.

This process helped generate more geospatial information, processing technologies,

and geospatial knowledge (Su et al. 2010) that form the geospatial sciences. Even

with twenty-first century computing technologies, geospatial sciences still have grand

challenges for information technology (Plaza and Chang 2008, NRC 2010),

especially with regard to data intensity, computing intensity, concurrent intensity

and spatiotemporal intensity (Yang et al. 2011b):

� Data intensity (Hey et al. 2009): Support of massive data storage, processing,

and system expansion is a long-term bottleneck in geospatial sciences (Liu
et al. 2009, Cui et al. 2010). The globalization and advancements of data

sensing technologies helps us increasingly accumulate massive amounts of

data. For example, satellites collect petabytes of geospatial data from space

every day, while in situ sensors and citizen sensing activities are accumulating

data at a comparable or faster pace (Goodchild 2007). These datasets are

collected and archived at various locations and record multiple phenomena of

multiple regions at multiple scales. Besides these characteristics, the datasets

have other heterogeneity problems, including diverse encoding and meaning of
datasets, the time scale of the phenomena and service styles that range from

off-line ordering to real-time, on-demand downloading. Data sharing

practices, which are required to study Earth phenomena, pose grand

challenges in organizing and administering data content, data format, data

service, data structure and algorithms, data dissemination, and data discovery,

access and utilization (Gonzalez et al. 2010).

� Computing intensity: The algorithms and models developed based on our

understanding of the datasets and Earth phenomena are generally complex
and are becoming even more complex with the advancement of improved

understanding of the spatiotemporal principles driving the phenomena. The

execution of these processes is time consuming, and often beyond our

computing capacity (NRC 2010). These computing intensive methods extend
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across a broad spectrum of spatial and temporal scales, and are now gaining

widespread acceptance (Armstrong et al. 2005). The computing speed of the

traditional sequential computing model and single machine cannot keep up

with the increased computing demands. In addition, it is not possible for every
organization or end user to acquire high-performance computing infrastruc-

ture. This resource deficiency has hampered the advancements of geospatial

science and applications. The advancement of computing technology and best

use of the spatiotemporal principles would help us to eliminate the barriers

and better position us to reveal scientific secrets. On the other hand, problem

solutions can be enabled by optimizing the configurations, arrangements and

selections of hardware and software by considering the spatiotemporal

principles of the problems. In order to conduct finer science and better
applications, we need computing technologies that can enable us to revisit and

include more essential details for models that were simplified for enabling

computability.

� Concurrent intensity: Recent developments in distributed geographic informa-

tion processing (Yang et al. 2008, Yang and Raskin 2009) and the

popularization of web and wireless devices enabled massive numbers of end

users to access geospatial systems concurrently (Goodchild 2007). Popular

services, such as Google maps and Bing maps, can receive millions of
concurrent accesses because of the core geospatial functions and popularity of

the geospatial information for making our lives more convenient. Concurrent

user accesses and real-time processing require web-based applications to be

empowered with fast access and the ability to respond to access spikes � the

sudden change in the number of concurrent users (Bodk et al. 2010). A study

shows that if the response time is longer than three seconds, the users will

become frustrated (Nah 2004). With increasing numbers of geospatial systems

online, such as real-time traffic (Cao 2007), emergency response (Goodchild
2007), house listings, and the advancement of geospatial cyberinfrastructure

(Yang et al. 2010b), and other online services based on the framework data, we

expect more popular online services and massive concurrent access to become

a characteristic of twenty-first century geospatial science and applications.

This vision poses great opportunities and grand challenges to relevant

scientific and technological domains, such as broadband and cluster comput-

ing, privacy, security, reliability issues relevant to the information and systems,

and others facing massive numbers of users (Brooks et al. 2004).
� Spatiotemporal intensity: Most geospatial datasets are recorded in space-time

dimensions either with static spatial information at a specific time stamp, or

with changing time and spatial coverage (Terrenghi et al. 2010). For example,

the daily temperature range for a specific place in the past 100 years is

constrained by the location (place) and time (daily data for 100 years). The

advancement of sensing technologies increased our capability to measure more

accurately and to obtain better spatial coverage in a more timely fashion

(Goodchild 2007). For example, temperature is measured every minute for
most cities and towns on Earth. All datasets recorded for geospatial sciences

are spatiotemporal in either explicit (dynamic) or implicit (static) fashion. The

study of geospatial phenomena has been described as space-time or

geodynamics (Hornsby and Yuan 2008). In relevant geoscience studies such
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as atmospheric and oceanic sciences, the space-time and geodynamics have

always been at the core of the research domains. And this core is becoming

critical in almost all domains of human knowledge pursuant (Su et al. 2010).

The spatiotemporal intensity is fundamental for geospatial sciences and
contributes to other intensities.

Recognizing these geospatial capabilities and problems, the global community

realized that it is critical to share Earth observations and relevant resources to

better address global challenges. Over 140 countries collaborated to form the

intergovernmental Group on Earth Observations (GEO) and proposed a system of

systems solution (Figure 1). Within the solution endeavors, GEO organized the

process according to information flow stages to better tackle the complex system

with various elements including Earth observation and model simulation, parameter

extraction, decision support, to social impacts and feedback for improving the

system. These steps have been recognized by GEO and other regional and national

organizations as practical approaches to solve regional, local, and global issues.

Participating organizations in GEO include the geospatial science agencies, such as

National Aeronautics and Space Administration (NASA), U.S. Geological Survey

(USGS), National Oceanic and Atmospheric Administration (NOAA), Japanese

Aerospace Exploration Agency (JAXA), European Space Agency (ESA) of the

European Union and the United Nations. Each component within the system is also

closely related to the four intensities of geospatial sciences as denoted in Table 1.

The intensiveness issues require us to leverage the distributed and heterogeneous

characteristics of both the latest distributed computing and geospatial resources (Yiu

et al. 2010), and to utilize the spatiotemporal principles to optimize distributed

computing to solve relevant problems (Yang et al. 2011b) but without increasing

much of the carbon footprint (Mobilia et al. 2009) and financial budget. This

leveraging process has evolved from mainframe computing, desktop computing,

network computing, distributed computing, grid computing, and other computing,

Figure 1. System of systems solution includes Earth observation, parameter extraction, model

simulations, decision support, social impact and feedback.
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and recently to cloud computing for geospatial processing (Yang et al. 2008, Yang

and Raskin 2009). In each of the pioneering stages of computing technologies,

geospatial sciences have served as both a driver by providing science-based demands
(data volumes, structures, functions and usage) and an enabler by providing

spatiotemporal principles and methodologies (Yang et al. 2011b) for best utilizing

computing resources. Grid computing technology initiated the large-scale deploy-

ment of distributed computing within the science community. The emergence of

cloud computing brings potential solutions to solve the geospatial intensity problems

(Cui et al. 2010, Huang et al. 2010) with elastic and on-demand access to massively

pooled, instantiable and affordable computing resources. The twenty-first century

geospatial sciences could also contribute space-time studies (Goodchild et al. 2007,
Yang et al. 2011a) to optimize cloud computing. To capture the intrinsic relationship

between cloud computing and geospatial sciences, we introduce spatial cloud

computing (SCC) to: (1) enable solving geospatial science problems of the four

intensiveness issues; and (2) facilitate the cloud computing implementation and

ensure the pooled, elastic, on-demand and other cloud computing characteristics.

2. Cloud computing

Cloud computing refers to the recent advancement of distributed computing by

providing ‘computing as a service’ for end users in a ‘pay-as-you-go’ mode; such a

mechanism had been a long-held dream of distributed computing and has now

become a reality (Armbrust et al. 2010). National Institute of Standards and
Technology (NIST) (Mell and Grance 2009) defines cloud computing as ‘. . . a model

for enabling convenient, on-demand network access to a shared pool of configurable

computing resources (e.g. networks, servers, storage, applications and services) that

can be rapidly provisioned and released with minimal management effort or service

provider interaction’. Because cloud computing is proven to have convenience,

budget and energy consumption efficiencies (Lee and Chen 2010), the US

government requires that all agencies over the next several years either migrate to

cloud computing or explain why they did not use cloud computing. Consequently, it
will become the future computing infrastructure for supporting geospatial sciences.

Cloud computing is provided through at least four types of services: Infra-

structure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service

(SaaS), and Data as a Service (DaaS). The first three are defined by NIST and DaaS

Table 1. The relationship between the elements of geospatial sciences and the issues of data,

computing, spatiotemporal, and concurrent intensities.

Intensiveness\elements Observation

Parameter

extraction Modeling

Information

integration/

visualization

Decision-

making

Social

impact

Data intensive x x x x

Computing intensive x x x

Concurrent access

intensive

x x x

Spatiotemporal

intensive

x x x x x x
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is essential to geospatial sciences. These four services are referred to collectively as

XaaS.

� IaaS is the most popular cloud service, which delivers computer infrastructure,

including physical machines, networks, storage and system software, as

virtualized computing resources over computer networks (Buyya et al.

2009). IaaS enables users to configure, deploy, and run Operating Systems

(OS) and applications based on the OS. IaaS users should have system

administrative knowledge about OS and wish to have full control over the

virtualized machine. The most notable commercial product is the Amazon
Elastic Compute Cloud (EC2, http://aws.amazon.com/ec2/).

� PaaS is a higher level service than IaaS and provides a platform service for

software developers to develop applications. In addition to computing

platforms, PaaS provides a layer of cloud-based software and Application

Programming Interface (API) that can be used to build higher-level services.

Microsoft Azure (http://www.microsoft.com/windowsazure) and Google App

Engine are the most notable examples of PaaS. Users can develop or run

existing applications on such a platform and do not need to consider
maintaining the OS, server hardware, load balancing or computing capacity.

PaaS provides all the facilities required to support the complete lifecycle of

building and deploying web applications and services entirely from the

Internet (Bernstein et al. 2010).

� SaaS is the most used type of cloud computing service and provides various

capabilities of sophisticated applications that are traditionally provided through

the Web browser to end users (Armbrust et al. 2010). Notable examples are

Salesforce.com and Google’s gmail and apps (http://www.google.com/apps/).
The ArcGIS implementation on the cloud is another example of a spatial SaaS.

� Of the four types of cloud services, DaaS is the least well defined. DaaS

supports data discovery, access, and utilization and delivers data and data

processing on demand to end users regardless of geographic or organizational

location of provider and consumer (Olson 2010). Supported by an integrating

layer of middleware that collocates with data and processing and optimizes

cloud operations (Jiang 2011), DaaS is able to facilitate data discoverability,

accessibility and utilizability on the fly to support science on demand. We are
currently developing a DaaS based on several cloud platforms.

Besides the cloud platforms mentioned, Hadoop and MapReduce can also be

leveraged as open source resources for expansion to provide elastic and on demand

support for the cloud services. The cloud services could be used to support the

elements in geospatial sciences according to their respective characteristics:

� Earth observation (EO) data access: DaaS is capable of providing fast,

convenient, secure access and utilization of EO data with storage and

processing needs.
� Parameter extraction: Extracting parameters, such as vegetation index (VI) or

sea surface temperature (SST), from EO data involves a complex series of

geospatial processes, such as reformatting and reprojecting, which can be best

developed and deployed based on PaaS.
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� Model: IaaS provides users with full control of computing instances to

configure and run a model, however, network bottlenecks would be a great

challenge for IaaS to utilize multiple computing instances to support the

model running when massive communication and synchronization is required
(Xie et al. 2010, Yang et al. 2011a). This is where cloud computing

can be complemented by high-end computing to solve computing intensive

problems.

� Knowledge and decision support: Knowledge and decision support are

normally provided and used by domain experts, managers, or the public.

Therefore, SaaS would provide good support.

� Social impact and feedback: Social impacts are normally assessed by

providing effective and simple visual presentation to massive numbers of
users, and feedback can be collected by intuitive and simple applications.

Therefore, SaaS, such as Facebook and email, can be best utilized to

implement and support social impact and feedback.

NIST denotes five characteristics of cloud computing (Mell and Grance 2009,

Yang et al. 2011a, b): (1) on-demand self-service (for customers as needed

automatically); (2) broad network access (for different types of network terminals,

e.g. mobile phones, laptops and personal digital assistants [PDAs]); (3) resource

pooling (for consolidating different types of computing resources); (4) rapid

elasticity (for rapidly and elastically provisioning, allocating, and releasing

computing resources); and (5) measured service (to support pay-as-you-go service).

These five characteristics differentiate cloud computing from other distributed

computing paradigms, such as grid computing. Normally, an end user will use

cloud computing by: (1) applying for an account and logging in; (2) testing the

scientific or application logic on a local server; (3) migrating to the cloud

computing by either customizing a virtual server in a cloud (IaaS), redeveloping

on a cloud supported developing environment, such as Microsoft visual studio, and

deploying to the cloud (PaaS), or accessing software level functions, such as email

process (SaaS). Traditional procedures can take up to months to: (1) identify

requirements; (2) procure hardware; and (3) install OS and set up network and
firewall. By comparison, cloud users can finish the procedure from a few minutes

to a few hours depending on the cloud platform. The deployment modes include

private, public, hybrid and community clouds. The integration or interoperation of

cross cloud platforms is an active research and development area.

These different concepts are applicable to different roles of users in cloud

computing. If we differentiate the user role as: end user, system administrator,

developer, designer, manager, operator and developer, we can map each role to the

four modes of services, and the elements of geospatial sciences can also be matched

to the service modes. Most end users will be using SaaS to relieve them of IT tasks:

Earth observation end users are normally engineers who collect, archive and serve

EO products, such as MODerate-resolution Imaging Spectroradiometer (MODIS)

sensor images, with SaaS and DaaS. Scientists may use the products to extract

parameters and conduct modeling hypothesis testing in a SaaS fashion and will

require configuration or may develop systems in collaboration with system

administrators, designers, and developers using PaaS, DaaS or IaaS. Decision-

makers would normally use popular interfaces and need well mined and prepared
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information or knowledge for decision support; therefore, they would only use SaaS.

To produce social impact, information and knowledge should also be disseminated in

web services so that the largest number of users can access them (Durbha and King

2005). The end user’s access to SaaS in a convenient fashion is ensured by support
from and collaborations among system administrators, developers, designers,

managers, and cloud operators and developers.

Typically, only system administrators are granted access to manage underlying

virtual computing resources and other roles that are restricted to direct control over

the computing resources. The system administrators are usually in charge of

hardening virtual machine images, setting up the development environments for

developers, and maintaining the virtual computing resources. PaaS provides a

platform for a software developer to develop and deliver algorithms and applica-
tions. The designer should have an overview of all types of cloud computing models

(XaaS) and determine which model is the best solution for any particular application

or algorithm; therefore, a good designer is an expert across different types of services.

The manager for the whole project can use SaaS, such as an online project

management portal, to control and manage the entire procedure from design and

development to maintenance. The cloud operator grants permissions to operations

for all other roles in all projects. Within the geospatial science element loop from

Earth observation to social impact, the cloud developer does not have to be involved
if the cloud is well designed and no special requirements are added. However, when

organizations want to develop individual cloud platforms with specific requirements

that cannot be satisfied by commercial or open cloud platforms, e.g. the USGS Earth

Resources Observation Systems (EROS) project, the cloud designers and developers

are required to be familiar with XaaS to provide a good solution.

Although cloud computing has been publicized for three years and we have

notable successes with Web services best migrated to cloud computing, its potential

has been only partially achieved. Therefore, research is still needed to achieve the five
characteristics of cloud computing to enable the geospatial sciences in a SCC

fashion. This capability can be as simple as running a GIS on a cloud platform

(Williams 2009) and using cloud computing for GIServices (Yang and Deng 2010) or

as complex as building a well optimized cloud computing environment based upon

sophisticated spatiotemporal principles (Bunze et al. 2010, Yang et al. 2011b).

3. Spatial cloud computing (SCC)

Cloud computing is becoming the next generation computing platform and the

government is promoting its adoption to reduce startup, maintenance and energy

consumption costs (Buyya et al. 2009, Marston et al. 2011). For geospatial sciences,

several pilot projects are being conducted within Federal agencies, such as FGDC,

NOAA and NASA. Commercial entities such as Microsoft, Amazon and Environ-

mental System Research Institution Inc. (ESRI) are investigating how to operate

geospatial applications on cloud computing environments and learning how to best

adapt to this new computing paradigm. Earlier investigations found that cloud
computing not only could help geospatial sciences, but can be optimized with

spatiotemporal principles to best utilize available distributed computing resources

(Yang et al. 2011b). Geospatial science problems have intensive spatiotemporal

constraints and principles and are best enabled by systematically considering the
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general spatiotemporal rules for geospatial domains (Goodchild 1992, De Smith

et al. 2007, Goodchild et al. 2007, Yang et al. 2011b): (1) physical phenomena are

continuous and digital representations are discrete for both space and time; (2)

physical phenomena are heterogeneous in space, time, and space-time scales; (3)

physical phenomena are semi-independent across localized geographic domains and

can, therefore, be divided and conquered; (4) geospatial science and application

problems include the spatiotemporal locations of the data storage, computing/

processing resources, the physical phenomena, and the users; all four locations

interact to complicate the spatial distributions of intensities; and (5) spatiotemporal

phenomena that are closer are more related (Tobler’ first law of geography). Instead

of constraining and reengineering the application architecture (Calstroka and

Watson 2010), a cloud computing platform supporting geospatial sciences should

leverage those spatiotemporal principles and constraints to better optimize

and utilize cloud computing in a spatiotemporal fashion.

Spatial cloud computing refers to the cloud computing paradigm that is driven by
geospatial sciences, and optimized by spatiotemporal principles for enabling geospatial
science discoveries and cloud computing within distributed computing environment.

SCC can be represented with a framework including physical computing infra-

structure, computing resources distributed at multiple locations and a SCC virtual

Figure 2. Framework of SCC: red colored components are fundamental computer system

components. Virtual server virtualizes the fundamental components and support platform,

software, data, and application. IaaS, PaaS, SaaS and DaaS are defined depending on end

users’ involvements in the components. For example, end user of IaaS will have control on the

virtualized OS platform, software, data, and application as illustrated in yellow colour in the

right column. All blue colored components will require spatiotemporal principles to optimize

the arrangement and selection of relevant computing resources for best ensuring cloud benefits.
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server that manages the resources to support cloud services for end users. In Figure 2,

the components highlighted in blue are amenable to optimization with spatiotem-

poral principles to ensure the five characteristics of cloud computing. A virtual server

should: (1) provide the functionality of virtualization and support virtual machines
above the physical machine with the most important enabling technologies of cloud

computing; (2) optimize networking capabilities to best provide and automate

public and private IPs and domain names based on the dynamic usage and

spatiotemporal availability distribution of the computing resources; (3) determine

which physical machine to use when a cloud service is requested, based on scheduling

policies optimized by spatiotemporal principles; (4) maintain the spatiotemporal

availability, locality, and characteristics of memory and computing resources by

communicating, monitoring and managing the physical computing resources
efficiently; (5) automate the scalability and load balance of computing instances

based on optimized user satisfaction criteria and spatiotemporal patterns of

computing resources (Chappell, 2008); and (6) connect to public cloud resources

such as Amazon EC2, to construct hybrid cloud computing to serve multiple cloud

needs to ensure the five cloud computing characteristics.

The core component of a SCC environment seeks to optimize the computing

resources through the middleware with the spatiotemporal principles to support

geospatial sciences. Based on the capabilities of the generic cloud computing
platform, core GIS functions, such as on-the-fly reprojection and spatial analysis,

can be implemented. Local users and system administrators can directly access the

private cloud servers through the middleware management interface and cloud users

can access the cloud services through spatial cloud portals. Further research is

needed in alignment with the IaaS, PaaS, SaaS and DaaS to implement the

bidirectional enablement between cloud computing and geospatial sciences (Yang

et al. 2011b).

4. SCC scenarios

To illustrate how cloud computing could potentially solve the four intensity

problems, we select four scientific and application scenarios to analyze the intrinsic
links between the problems, spatiotemporal principles and potential SCC solutions.

4.1 Data intensity scenario

Data intensity issues in geospatial sciences are characterized by at least three aspects:

(1) multi-dimensional � most geospatial data reside in more than two dimensions

with specific projections and geographic coordinate systems. For example, air quality

data are collected in four dimensions with 3D space and time series on a daily,

weekly, monthly or yearly basis. (2) Massiveness � large volumes of multi-

dimensional data are collected or produced from multiple sources, such as satellite

observations, camera photo taking, or model simulations, with volumes exceeding

terabytes or petabytes. Geospatial science data volume has increased six orders of
magnitude in the past 20 years, and continues to grow with finer-resolution data

accumulation (Kumar 2007). (3) Globally distributed-organizations with data

holdings are distributed over the entire Earth (Li et al. 2010b). Many data-intensive

applications access and integrate data across multiple locations. Therefore, large
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Figure 3. The data services, computing resources, and end users are globally distributed and dynamic. SCC should consider maintaining and utilizing

the information of the locality, capacity, volume, and quality of data, services, computing, and end users to optimize cloud computing and geospatial

science and applications using spatiotemporal principles.
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volumes of data may be transferred over fast computer networks, or be collocated

with processing to minimize transmitting (Figure 3).

To address these data intensity problems, we are developing a DaaS, a distributed

inventory and portal based on SCC to enable discoverability, accessibility and
utilizability of geospatial data and processing to enable geospatial sciences and

application. The DaaS is designed to maintain millions to billions of metadata

entries (Cary et al. 2010) with data locations and performance awareness to better

support data-intensive applications (Li et al. 2010a). Spatiotemporal principles of the

applications that need the data will play a large role in optimizing the data and

processing to support geospatial sciences while minimizing the computing resource

consumption (e.g. central processing unit [CPU], network and storage) to address

how to (Jiang 2011, Nicolae et al. 2011): (1) best collocate data and processing units;
(2) minimize data transmitting across sites; (3) schedule best sites for data processing

and computing optimized by mapping computing resource capacity to demands of

geospatial sciences; and (4) determine optimized approaches to disseminate results.

The DaaS is being developed and tested based on Microsoft Azure, Amazon EC2

and NASA Cloud Services for the geospatial community.

4.2 Computing intensity scenario

Computing intensity is another issue that needs to be addressed in geospatial

sciences. In the elements of geospatial science, computing-intensive issues are

normally raised by data mining for information/knowledge, parameter extraction,

and phenomena simulation. These issues include: (1) geospatial science phenomena

are intrinsically computing-expensive to model and analyze because our planet is a

large complex dynamical system composed of many individual subsystems, including

the biosphere, atmosphere, lithosphere and social and economic systems. Interac-

tions among each other within spatiotemporal dimensions are intrinsically complex
(Donner et al. 2009) and are needed for designing data mining, parameter extraction

and phenomena simulation. Many data-mining technologies (Wang and Liu 2008)

have been investigated to better understand whether observed time series and spatial

patterns within the subsystems are interrelated such as to understand the global

carbon cycle and climate system (Cox et al. 2000), El Niño and climate system

(Zhang et al. 2003), and land use and land cover changes (DeFries and Townshend

1994); (2) parameter extraction is required to execute complex geophysical

algorithms to obtain phenomena values from massive observational data, the
complex algorithmic processes make the parameter extraction extremely computa-

tional intensive. For example, the computational and storage requirements for

deriving regional and global water, energy and carbon conditions from multi-sensor

and multi-temporal datasets far exceed what is currently possible with a single

workstation (Kumar et al. 2006); (3) simulating geospatial phenomena is especially

complex when considering the full dynamics of Earth system phenomena, for

example, modeling and predicting cyclic processes (Donner et al. 2009), including

ocean tides (Cartwright 2000), earthquakes (Scholz et al. 1973), and dust storms (Xie
et al. 2010). Such periodic phenomena simulation requires the iteration of the same

set of intensive computations for a long time and high-performance computing is

usually adopted to speed up the computing process. More importantly, spatiotem-

poral principles of the phenomena progressions should be utilized to optimize the
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organization of distributed computing units to enable the geospatial scientific

simulation and prediction (Govett et al. 2010, Yang et al. 2011b). These principles

are also of significance to cloud computing for optimizing computing resources to

enable the data mining, parameter extracting and phenomena simulations (Ramak-
rishnan et al. 2011, Zhang et al. 2011) by: (1) selecting best matched computing units

for computing jobs with dynamic requirements and capacity; (2) parallelizing

processing units to reduce the entire processing time or improve overall system

performance; and (3) optimizing overall cloud performance with better matched

jobs, computing usage, storage and network status. Because of the diversity and

dynamics of scientific algorithms, the best implementing platforms are PaaS and

IaaS.

Figure 4 illustrates an example of dust storm simulations, which utilize massive
data inputs from both static and dynamic data sources in real-time; the simulation

itself is decomposed to leverage multiple CPU cores connected with a computer

network and supported by large memory capacity (Chu et al. 2009, Xie et al. 2010).

In this process, the network bandwidth, the CPU speed, and the storage (especially

random-access memory [RAM]) play significant roles. The test uses the Nonhydro-

static Mesoscale Model (NMM) dust model (Xie et al. 2010) for the southeast

United States (US) to find how cloud computing infrastructure parameters, such as

network speed, CPU speed and numbers and storage impact the predictability of a
dust storm. The experiments are conducted with 14 nodes with 24 CPU cores, 2.8

GHz CPU speed and 96 Gbytes memory per node from one data center, and one

node with eight CPU cores, 2.3 GHz CPU speed and 24 Gbytes memory from

another data center located at a different place. A better connection, faster CPU

speed, more memory, and local storage will speed up the simulation and enable

prediction. However, compared to CPU and memory factors, network connection is

more important as the performance of two nodes each located at a different data

center has much worse performance than that of two nodes located at the same data
center. During the simulation, every process will produce temporary files for its

subdomain to integrate after simulation. The experiment results show that much

better performance can be obtained by using a local file system to store the

temporary files than by using a Network File System (NFS) share-file system, where

all processes will access the same remote storage and transfer data to the storage in

real-time. The relationship between these parameters and the predictability across

geographic scope, time coverage, and spatiotemporal resolutions (Yang et al. 2011b)

is critical in providing elastic computing resources for on-demand dust storm
forecasting using IaaS or PaaS. It is also apparent that generic cloud computing itself

is not enough to solve the problem, but could be complemented by well-scheduled

high-performance computing to solve the computing-intensive problem. Also,

different job sizes will demand different types of computing environment (Kecske-

meti et al. 2011).

4.3 Concurrent-access-intensity scenario

The growth of the Internet and the notion to ‘provide the right information to any

people, anytime and anywhere’ makes geospatial services popular to provide

location-based services (Jensen 2009) and enable thousands to millions of users to

access the system concurrently (Blower 2010). For example, Google Earth supports
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millions of concurrent accesses internationally through its SaaS. These concurrent-

intensive accesses may be very intensive at one time (such as the earthquake and

tsunami of Japan in March 2011) and very light at other times. To better serve these

concurrent use cases, SCC needs to elastically invoke more service instances from

multiple locations to respond to the spikes.

In contrast to a constant number of instances, Figure 5 illustrates how the cloud

responds to massive concurrent user requests by spinning off new IaaS instances and

by balancing server instances using the load balancer (http://aws.amazon.com/

elasticloadbalancing/) and auto scalar (http://aws.amazon.com/autoscaling/) of Ama-

zon EC2 to handle intensive concurrent user requests. The example illustrates varying

numbers of requests to the Global Observation System of Systems (GEOSS)

clearinghouse. The Amazon EC2 load balancer automatically distributes incoming

Figure 4. Scalability experiment as a function of CPUs employed, network bandwidth, and

storage models to run the NMM dust storm model over a domain of 5.5�9.1 degree in the

southwest US at 3 km resolution � a resolution that is acceptable to public health applications

for three-hour simulations.

Figure 5. GEOSS clearinghouse GetRecords performance comparison by single, two and five

load balancing instances and five autoscaling instances.
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application traffic across multiple Amazon EC2 instances. Every instance includes two

virtual CPU cores and 7.5 G memory. The load balancer is set up to integrate the

computing instances to respond to incoming application traffic and then to perform

the same series of tests. Figure 4 shows the response time in seconds as a function of

concurrent request numbers when there are one instance, two service instances, five

service instances and autoscaling five instances. All instances are run from the

beginning except the autoscaling case, which has one instance running at the beginning

and elastically adds instances when needed from concurrent requests. It is observed

that when more computing instances are utilized, higher gains in performance can be

obtained. The elastic automated provision and releasing of computing resources

allowed us to respond to concurrent access spikes while sharing computing resources

for other applications when there were no concurrent access spikes.

4.4 Spatiotemporal intensive scenario

To better understand the past and predict the future, lots of geospatial data collected

are time series and efforts have been made to rebuild time series data from existing

observations, such as climate change records (NRC 2010). The importance of

spatiotemporal intensity is reflected by and poses challenges to spatiotemporal

indexing (Theodoridis and Nascimento 2000, Wang et al. 2009), spatiotemporal data

modeling methods (Monmonier 1990, Stroud et al. 2001), Earth science phenomena

correlation analyses (Kumar 2007), hurricane simulation (Theodoridis et al. 1999),

and the computer network itself that is fast changing in transmitting loads and

topological complexities (Donner et al. 2009). One popular relevant application is

real-time traffic routing (Cao 2007), where massive amounts of geospatial data are

collected and preprocessed, route status is predicted, and routing is executed in real-

time. The real-time processing requires an infrastructure that can ingest real-time

data flow and simulate potential link travel times, as well as conduct real-time traffic

routing according to predicted link travel time.

For data collection, different route sensors, cameras and citizen sensing

technologies are used to obtain real-time traffic conditions (Goodchild 2007).

Existing route links and route nodes are also added as base data. Model simulations

are conducted with high-performance computing. Unlike static routing that can be

solved by the Dijkstra algorithm, near real-time routing (Cao 2007) have to be

conducted routing for every routing request in near real-time. This complexity poses

grand challenges to computing and geospatial sciences. Because of the dynamics of

routing requests, we cannot maintain the largest capacity needed for responding to

the largest number of users because we typically will not need the full computing

capacity. The elasticity and on-demand characteristics provided by cloud computing

can be used to address this problem and PaaS would be most proper to support this

application. The computing power can be shared across metropolitan regions to best

optimize the computing process because: (1) traffic peak periods will vary with time

zones; (2) collecting, simulating, and routing are data and computing intensive, but

the results include only limited information, producing volumes that can be easily

transferred across regions; (3) routing tasks are related to dynamic traffic network

topology and can be data intensive; and (4) routing requests have significant spikes

with dynamic, changing number of requests.
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A real-time traffic network with rapid flow, large volume, and multidimensional

data for each edge, is generated by location-aware devices and traffic simulation

models (Cao 2007). For a metropolitan region such as D.C., when considering static

routing only, there will be about 90k nodes, 200k links, 90k*90k potential origin and
destination (OD) requests and several optimized routes for each OD request pair,

and all of the solutions can be stored with less than 1 Gbyte of storage. But when

considering dynamic real-time routing, a routing condition will change for every

minute and for each link and node. The volume increases by about (24�60) 1TB for

a daily basis, about (24�60�7) 10TB for a weekly basis, or about (24�60�365)

1PB for a yearly basis to retain historical records.

5. Opportunities and challenges

This paper laid out the grand challenges that geospatial science faces in the twenty-

first century: the intensiveness of data, computing, concurrent access and spatio-

temporal. We argue that the latest advancements of cloud computing provide a

potential solution to address these grand challenges in a SCC fashion. Further, the

spatiotemporal principles that we encounter in geospatial sciences could be used

both to enable the computability of geospatial science problems and to optimize

distributed computing to enable the five characteristics of cloud computing. Through
four examples, we illustrate that spatiotemporal principles are critical in their abilities

to: (1) enable the discoverability, accessibility and utilizability of the distributed,

heterogeneous and massive data; (2) optimize cloud computing infrastructure by

helping arrange, select and utilize high end computing for computing intensive

problems; (3) enable the timely response to world-wide distributed and locally

clustered users through geospatial optimization; and (4) assist the design of

spatiotemporal data structure, algorithms, to optimize the information workflow

to solve complex problems (Herath and Plale 2010). Although these examples are
geospatial-centric, spatiotemporal principles can also be utilized to enable the

characteristics of cloud computing to support other science discoveries, such as

biological and physical sciences where spatiotemporal principles provide driving

forces at scales ranging from molecular to the universe.

The success of SCC depends on many factors, such as the outreach of SCC to

geospatial scientists who can employ the cloud solutions and to computing scientists

and engineers to adapt spatiotemporal principles in designing, constructing, and

deploying cloud platforms. We enumerate several aspects including: (1) spatiotem-
poral principle mining and their mathematical representations for utilization in

computing processes with both application-specific forms and generalized forms that

can be easily specified and implemented for specific problems; (2) bigger context

investigations for considering global challenges, such as the construction of digital

earth and responding to tsunami; (3) applications in important complex environ-

ments, such as real-time and predicted traffic routing; (4) monitoring of the internal

structure and operational status of cloud computing (Yang and Wu 2010) for the

utilization of the spatiotemporal principles to optimize the scheduling of cloud
computing resources for geospatial and other science demands. Mapping mechan-

isms and algorithms needs to be researched to help link spatiotemporal character-

istics of computing resources in computing capacity and domain problems in

computing demands; (5) security and trustworthy issues that emerge in the
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virtualized world and are magnified in the cloud computing arena; and (6) ethical

and social issues includes privacy and other aspects (Song and Wang 2010).

5.1 Spatiotemporal principle mining and extracting

Geospatial phenomena are ever-changing in time and space and it is possible to use

four or more dimensions to represent or describe their evolution. We have established

Euclidean and other spaces to describe the phenomena. Due to the complexity of the

phenomena and the massiveness of the four-plus dimensions, we have tried to

simplify the dimensions and introduce the characteristics or patterns of the

phenomena to help better represent the phenomena in both theory and a computing

environment to make them computable. For example, we use solid physics and
mechanics to describe the Earth’s internal structure, fluid dynamics to describe the

atmospheric environment, and road networks and topology to describe traffic

conditions. These science domains are defined by the principles that govern the

evolution of the phenomena.

In geospatial sciences, some of the representation needs revisiting because of

the globalization and expansion of human activities. For example, we need to

integrate the domains of land, ocean, and atmosphere processes to better understand

how the climate is changing. On the other hand, we need to better describe how the

geospatial phenomena are impacting our lives, for example, how snow and rainfall

impact driving habits and traffic, how earthquakes trigger tsunamis, and how Earth

phenomena anomalies indicate a potential earthquake. These spatiotemporal

relationships will help us to form better spatiotemporal principles and develop

better spatiotemporal examples within multiple dimensions. The crosscutting

applications will require scientists from multiple domains with diverse backgrounds

to collaborate. Socially, the blending of scientists across domains and geographically

dispersed teams is a grand challenge, as has been observed by various geospatial

cyberinfrastructure projects, such as Linked Environments for Atmospheric Dis-

covery (LEAD) (https://portal.leadproject.org). Theoretical, experimental, develop-

mental and applied research is needed to: (1) understand the body of knowledge of

spatiotemporal principles; (2) formalize the knowledge accordingly to computing
capability and domain principles; (3) integrate and interoperate scientific domains

with spatiotemporal principles; and (4) evolve cross-cutting computing solutions for

integrated domain discoveries.

5.2 Important digital earth and complex geospatial science and applications

Digital earth calls for the integration of digital information about our home planet

and the development of solutions for geospatial problems. Some of these problems

are of significance to massive numbers of people spanning local, regional, to global

geographic scopes, for example, tsunami and earthquake response and real-time

traffic routing. Many users will access the system at different times with access spikes,

which are mostly predictable, but with frequent anomalies. It is of essential

importance to understand the predictable patterns and provide best solutions under

specific circumstances. Timely information should also be available to respond to

real-time or emergency events (Cui et al. 2010). Solving these problems not only
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provides convenience to people in need but contributes to the process of improving

the quality of life in the long-term.

To address these issues, research is needed to: (1) identify applications of massive

impact, of fundamental importance and needed computing support; (2) analyze the
four intensiveness problems of the application by mapping to the computing capacity

that can be provided by distributed computing; (3) expand or specify the

mathematical and conceptual models to computer models to enable the comput-

ability of applications by considering both cloud computing capacity and spatio-

temporal principles; (4) implement or address the problem with decision-makers and

other end users; (5) improve the applications by improving sensor technologies, data

processing algorithms, data structures, and model simulations; and (6) summarize

the lessons learned and experience that can be leveraged to optimize generic cloud
computing that enable generic geospatial sciences or other science domains.

5.3 Supporting the SCC characteristics

The Amazon EC2 Service Level Agreement (SLA) guarantees 99.95% availability for

all Amazon EC2 regions, including US Standard, EU (Ireland), US West (Northern

California) and Asia Pacific (Singapore). However, Amazon Simple Storage (S3)

suffered an outage lasting about two hours in 2008 (http://www.informationweek.

com/news/services/storage/showArticle.jhtml?articleID�209400122) and a major

outage in April 2011. The breakdowns caused outages of web services and

applications and Amazon EC2 instances relying on S3 for file storage. There is

trust that the cloud provider will provide their services for perpetuity. However,
Coghead, a cloud vendor closed its business in February 2009 and customers needed

to rewrite their applications with other vendor services. The online storage service

‘The Linkup’ closed July 2008, causing 20,000 paying subscribers to lose their data.

SCC relies heavily on the dynamics of a computing infrastructure, including the

network bandwidth, storage volume and reliability, CPU speed and other computing

resources. It is hard to ensure all of these characteristics within a reasonable budget.

Besides engineering research and assurance of the characteristics of the computing

infrastructure, dynamic information is important on the usage/status of network,
CPU, RAM, hard drive, software license and other resources to provide a basis for

optimizing cloud computing using spatiotemporal principles.

In investigating the characteristics of cloud computing for the four intensive

geospatial issues, extensive research is needed to better understand the spatiotem-

poral behavior of the computing infrastructure and applications, and the optimized

scheduling of applications and computing resources will be critical (Rafique et al.

2011). Cloud computing platforms can facilitate the sharing, reusing and commu-

nicating of knowledge of the scientist and framework of applications from multiple
domains (Huang et al. 2010). Across-cloud tools and middleware will be available in

the future to enable interoperability and portability across clouds, organizations,

data, and models.

5.4 Security

Security has always been the biggest concern in migrating to cloud computing in

that the entire computing infrastructure is maintained and controlled by third
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parties (Subashini and Kavitha 2011, Zissis and Lekkas 2011) rather than by

providers and users. Not knowing where our data, applications and users are

located, can scare away some potential cloud computing adopters. While cloud

computing companies usually utilize authentication and authorization techniques to

protect client privacy, it is essential for cloud service providers to ensure that their

infrastructure is secure and has proper solutions to protect client data and

applications.

Usually, the security requirement baseline can be summarized as (Brodkin 2008):

� Privileged users at cloud computing companies should have separating duties

to prevent data leaks or access by other third parties. For instance, computing

resource maintainers that have control over computing infrastructure cannot

access user accounts, while user account staff should not be able to access the

physical machine.
� Cloud computing providers should ensure the functionality and availability of

the cloud services.

� Cloud computing providers should provide possible solutions to protect data

loss because of failure of cloud services, and have back-up strategies when the

cloud service fails to enable data transfers securely from one location to

another.

� Each end user should have its own level-based identity management system to

control access to cloud data and resources. Users can only access and control
their own jobs.

The US Federal Chief Information Officers Council (CIO) is trying to consolidate

security assessment and authorization into one function with three steps (CIO 2010):

(1) security requirement baseline; (2) continuous monitoring; and (3) potential

assessment and authorization. Further research is needed to compare, analyze, test

and form security solutions for cloud computing in comparison with other

computing platforms (Subashini and Kavitha 2011, Zissis and Lekkas 2011).

5.5 Citizen and social science

SCC is targeting the geospatial sciences and applications with the four intensity

problems. When massive users access the data and applications through location-

based services, and also contribute to the data and applications, it becomes a

paradigm shift in providing convenient electronic media for citizens to both provide

and receive information, opinions, data, and knowledge, and therefore democratize

the information channels. This shift brings in significant social and ethical concerns

in several dimensions:

� Trustworthy: if the data and information are provided officially, it would be
easy for users to track the data quality and information accuracy. If any citizen

can collect and contribute information, it is hard to guarantee its authority.

Sometimes, it becomes a balance of trusting the information or waiting for

official information but losing valuable time, e.g. in emergency response where

any information may be taken to save human lives.
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� Privacy: with data and services deployed over the Internet and on cloud

services, protecting provider infrastructure, user privacy and security would be

a great challenge (Hayes 2008). One excellent feature of cloud computing is

location and device independent access to cloud data and services, which in
turn results in a privacy issue when everyone is in an open environment to

provide or receive services. And anyone can have access or track the behavior

of other individuals.

� Ethical: The advancement of location technologies, such as global positioning

system (GPS) and location-based services (Blunck et al. 2010) will bring up

numerous privacy and ethical issues when sharing information across religious

groups, jurisdiction boundaries, and age groups. These and other differences

may cause confusion, interference, and side effects for the data & information
providers and end-users (e.g. for decision support).

Citizen and social sciences should be investigated in a virtualized cloud computing

fashion to analyze the problems, form solutions, and produce best social impacts for

human kind.
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