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Integrating global land cover products for improved forest cover
characterization: an application in North America

Xiao-Peng Song*, Chengquan Huang, Min Feng, Joseph O. Sexton, Saurabh Channan
and John R. Townshend

Global Land Cover Facility, Department of Geographical Sciences, University of Maryland,
College Park, MD, USA

(Received 18 June 2013; accepted 8 October 2013)

Six widely used coarse-resolution global land cover data-sets – Global Land Cover
Characterization (GLCC), Global Land Cover 2000 (GLC2000), GlobCover land
cover product (GlobCover), MODIS land cover product (MODIS LC), the University
of Maryland land cover product (UMD LC), and the MODIS Vegetation Continuous
Fields tree cover layer (MODIS VCF) disagree substantially in their estimates of forest
cover. Employing a regression tree model trained on higher-resolution, Landsat-based
data, these multisource multiresolution maps were integrated for an improved
characterization of forest cover over North America. Evaluated using a withheld test
sample, the integrated percent forest cover (IPFC) data-set has a root mean square
error of 11.75% – substantially better than the 17.37% of GLCC, 17.61% of
GLC2000, 17.96% of GlobCover, 15.23% of MODIS LC, 19.25% of MODIS VCF,
and 15.15% of UMD LC, respectively. Although demonstrated for forest, this
approach based on integration of multiple products has potential for improved
characterization of other land cover types as well.

Keywords: land cover; forest; data fusion; regression tree; North America

1. Introduction

Satellite images have been used to characterize global patterns of land cover and land use
since the mid-1990s. Developed using different data-sets and different methodologies, six
global maps are now freely available at 300-m to 1-km resolutions: Global Land Cover
Characterization (GLCC) (Loveland et al. 2000), Global Land Cover 2000 (GLC2000)
(Bartholomé and Belward 2005), GlobCover land cover product (GlobCover) (Bicheron
et al. 2008), the Moderate Resolution Imaging Spectroradiometer land cover product
(MODIS land cover product [MODIS LC]) (Friedl et al. 2002), the University of
Maryland land cover product (UMD LC) (Hansen et al. 2000), and the MODIS
Vegetation Continuous Fields product (MODIS VCF) (Hansen et al. 2003).

A number of finer (e.g. Landsat-class) resolution land cover maps have also been
generated from satellite data at regional to national scales (Hansen and Loveland, 2012),
such as the North America Forest Disturbance product (Masek et al. 2008), the South
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Dakota State University Congo/Indonesia/European Russia forest cover and loss maps
(Broich et al. 2011; Potapov, Turubanova, and Hansen 2011; Potapov et al. 2012); the
United States Department of Agriculture Cropland Data Layer (USDA 2013); the
Brazilian PRODES (Amazon Deforestation Monitoring Project) deforestation maps
(INPE 2013), as well as the United States National Land Cover Dataset (NLCD) (Homer
et al. 2004; Xian, Homer, and Fry 2009). Often derived with greater local expertise than
is possible with a global product, these regional Landsat-resolution data-sets provide a
more accurate representation of the land surface type with greater spatial and thematic
details. Some of these regional products have been well validated with finer-resolution
imagery or field data, e.g. NLCD has an overall accuracy of 85.3% (Wickham et al.
2010). The accuracy of these regional data-sets has enabled their use as reference data for
training or validating coarse-resolution products (Friedl et al. 2002; Hansen et al. 2003;
Strahler et al. 2006).

Previous studies comparing sets of two or three of the existing global products found
general, yet variable agreement among them (e.g. Defries and Townshend 1994; Fritz and
See 2008; Giri, Zhu, and Reed 2005; Hansen and Reed 2000; Herold et al. 2008; Jung
et al. 2006; Pflugmacher et al. 2011; Song et al. 2011). High agreement tends to be
located in relatively homogeneous and spectrally distinctive regions, whereas low
agreement tends to be located in heterogeneous landscapes, land cover transition zones
and in spectrally similar classes. Spatial patterns of agreement and disagreement revealed
by cross-product comparison are useful for applications of these products; but ultimately,
more accurate data-sets are always needed to meet users’ specific research demands. Yet,
few attempts have been made to synthesize these data-sets into a consistent map. Jung
et al. (2006) collected multiple versions of GLC2000, GLCC, and MODIS LC and
merged them into a joint 1-km global land cover map by cross-walking different land
cover legends. Fritz et al. (2011) created a hybrid cropland map for Africa using an
approach modified from Jung et al.’s (2006) synergy method by introducing an expert
ranking step and a calibration step with national cropland statistics. Similarly,
Schepaschenko et al. (2011) produced a hybrid land cover data-set over Russia by
combing satellite-derived land cover maps, a Geographic Information System database
and national statistics based on a set of knowledge rules.

Here we propose a supervised, harmonization-based method for integrating multi-
resolution, multisource global products to improve land cover characterization. To
demonstrate this approach, we use the six global maps above-mentioned as input and one
Landsat-based map as reference to derive an integrated percent forest cover (IPFC) map
over North America. Our long-term goal is to generate an improved forest cover map at
the global scale to provide better parameterization for simulating land process in Earth
System models (Lawrence and Chase 2007). Although we focus on the representation of
forests in North America where we have sufficient reference data available for assessment
of our results, the approach derived through this study can potentially be applied to any
large area and any other land cover type.

2. Data

We chose six widely used and available global data-sets to integrate. Each of these data-
sets was derived based on moderate-resolution satellite imagery (Table 1). The GLCC and
UMD LC were developed using a global Advanced Very High Resolution Radiometer
(AVHRR) data-set (Townshend et al. 1994). The MODIS LC and MODIS VCF were
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derived using data from MODIS. Data from the Satellite Pour l’Observation de la Terre
(SPOT-4) and Medium Resolution Imaging Spectrometer (MERIS) sensors were used to
produce the GLC2000 and GlobCover, respectively. It should be noted that in some
cases, e.g. MODIS-derived products, multiple versions have been generated following
algorithmic improvements (Friedl et al. 2002, 2010; Hansen et al. 2003, 2005). The
selection of the six global data-sets for this study takes into account several specific
considerations: UMD LC and GLCC were the first 1-km maps generated; both MODIS
LC and MODIS VCF are standard MODIS land products; MODIS VCF is a fractional
land cover map; and GlobCover has the finest spatial resolution at the global scale.
Collectively, these six maps represent land cover data-sets in different legends, derived
from different sensor systems and with diverse classification approaches (Table 1).

We use the Landsat-based National Land Cover Database 2001 (NLCD2001) over the
conterminous United States as a reference for model training and product evaluation
(Homer et al. 2004). Validated against expert-interpreted 1-m Digital Orthophoto Quarter
Quadrangles, the NLCD2001 has 87% user’s accuracy and 88.5% producer’s accuracy for
the forest class (Wickham et al. 2010). Further details of NLCD2001 are provided in
Table 1 and associated references.

3. Method

The data integration method consists of a series of steps (Figure 1) described in each of
the sections below. As a preprocessing step, all products were reprojected to Lambert
Azimuthal Equal Area projection with the WGS84 datum. They were also registered to a
common spatial extent using nearest neighbor resampling.

3.1. Standardization to a common spatial and thematic scale

These various data-sets need to be standardized to a common spatial and thematic scale
prior to integration. We first defined a set of translation rules to convert each categorical

Table 1. Summary of land cover products used in this study.

Product Sensor Date Resolution
Classification
approach Publication

GLCC AVHRR April 1992–
March 1993

1-km Clustering –
Labeling

Loveland
et al. (2000)

GLC2000 SPOT-4 November 1999–
December 2000

1-km Depends on
individual region

Bartholomé and
Belward (2005)

GlobCover MERIS December 2004–
June 2006

300-m Supervised and
unsupervised

Bicheron
et al. (2008)

MODIS
LC

MODIS October 2000–
October 2001

1-km Decision tree Friedl
et al. (2002)

MODIS
VCF

MODIS October 2000–
December 2001

500-m Regression tree Hansen
et al. (2003)

UMD LC AVHRR April 1992–
March 1993

1-km Decision tree Hansen
et al. (2000)

NLCD2001 Landsat
5 & 7

Circa 2001 30-m Decision tree Homer
et al. (2004)
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land cover class into proportional forest and nonforest cover and then spatially coarsened
each product from its native scale to derive fractional coverage of forest and nonforest per
5-km grid. This resolution was chosen for consistency with the Climate Modeling Grid
used for MODIS and AVHRR products (Pedelty et al. 2007). Aggregating categorical
cover maps from 1- to 5-km also reduces spatial misregistration and yields a dynamic
range sufficient for fractional cover.

3.1.1. Legend translation

A set of translation rules was used to convert each map’s categorical ‘forest’ class into a
‘forest canopy cover’ percentage based on its classification scheme (Table 2). All of the
maps’ vegetation classes are defined based on woody and herbaceous canopy closure as
well as vegetation height. For example, the International Geosphere-Biosphere Pro-
gramme (IGBP) defined closed forest as an area with woody cover >60% and open forest
as woody cover between 30% and 60%, both with tree height >2 m (Belward 1996).
Binning land surface type into categorical groups at coarse spatial resolution unrealist-
ically conceals the continuous nature of land surface properties. Moreover, aside from
misclassification which is inevitable in any practical land cover map, a ‘correctly’
classified pixel of closed forest in the IGBP scheme can still have forest canopy closure
somewhere as low as 60%, with up to 40% of the remaining area being occupied by other
land cover types. Therefore, to approximate the actual forest cover in a coarse grid and
maintain statistical rigor, we assigned a proportional weight to each classified pixel

Global 
land-cover 
products

Regional 
Landsat-based 

products

Legend 
translation

Spatial 
aggregation

Legend 
translation

Spatial 
aggregation

Regression tree
model

Integrated percent 
forest cover product

5-km percentage 
forest/nonforest 

cover

5-km percentage 
forest/nonforest 
cover (reference)

1-km 
categorical 
agreements

5-km 
categorical 
agreements

Standardization to a common spatial and thematic scale

Figure 1. Flowchart for deriving the integrated 5-km percent forest cover product.
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Table 2. Legend translation rules for harmonizing various land cover schemes into a common
representation of forest cover.

Land cover
legend Categorical class

Forest canopy
proportion (%)

IGBP legend
(GLCC,
MODIS LC)

Forest (>60%) (evergreen needleleaf, deciduous needleleaf,
everygreen broadleaf, everygreen needleaf, mixed)

80

Woody savannas (30–60%) 45
Savannas (10–30%) 20
Cropland/natural vegetation mosaic 25
Shrublands (closed, open), grasslands, permanent wetlands,
urban and built-up, snow and ice, barren or sparsely vegetated,
croplands, water bodies

0

UMD LC Forest (>60%) (evergreen needleleaf, deciduous needleleaf,
everygreen broadleaf, everygreen needleaf, mixed)

80

Woodland (40–60%) 50
Wooded grassland (10–40%) 25
Shrubland (closed, open), grassland, bare ground, urban and
built, cropland, water

0

GLC2000 Tree cover, closed (>40%) (evergreen broadleaved, deciduous
broadleaved)

70

Tree cover, open (15–40%) deciduous broadleaved 27.5
Tree cover (>15%) (everygreen needleleaf, deciduous
needleleaf, mixed leaf type, regularly flooded fresh or saline)

57.5

Mosaic: tree cover / other natural vegetation 50
Mosaic: cropland/tree cover/other natural vegetation 25
Burnt, shrub cover (evergreen, deciduous), herbaceous cover,
sparse herbaceous or sparse shrub cover, regularly flooded shrub
and or herbaceous cover, bare areas, artificial surfaces and
associated areas, cultivated and managed areas, mosaic:
cropland/shrub and/or herbaceous cover

0

GlobCover Closed forest (>40%) (broadleaved deciduous, needleleaved
evergreen)

70

Closed to open forest (>15%) (broadleaved evergreen or semi-
deciduous forest, mixed broadleaved and needleleaved,
broadleaved forest regularly flooded)

57.5

Open (15–40%) broadleaved deciduous forest/woodland, open
(15–40%) needleleaved deciduous or evergreen forest

27.5

Mosaic forest or shrubland (50–70%)/grassland (20–50%) 30
Mosaic grassland (50–70%)/forest or shrubland (20–50%) 17.5
Mosaic vegetation (grassland/shrubland/forest) (50–70%)/
cropland (20–50%)

20

Mosaic cropland (50–70%)/vegetation (grassland/shrubland/
forest) (20–50%)

11.7

Closed to open shrubland, closed to open herbaceous vegetation,
sparse vegetation, closed broadleaved forest or shrubland
permanently flooded, closed to open grassland orwoody vegetation
on regularly flooded or waterlogged soil, artificial surfaces and
associated areas, bare areas, permanent snow and ice, post-flooding
or irrigated croplands, rainfed croplands, water bodies

0

Note: Nonforest proportion = 100% – Forest canopy proportion. Land cover classes in each legend are grouped
in the table according to forest canopy proportion in each respective class.
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corresponding to the mean value of its woody canopy closure as defined in its original
legend, e.g. 80% to closed forest and 45% to open forest for the IGBP legend (Table 2).
Classes such as closed and open shrublands, croplands, grasslands, permanent wetlands,
urban and built-up, snow and ice, bare, and water bodies do not contain any forest cover.
Thus, they were assigned a 0% forest cover and 100% nonforest cover. The mosaic classes
in different land cover legends raise challenges in any legend harmonization work (Jung
et al. 2006). The cropland/natural vegetation mosaic class in the IGBP legend contains a
mixture of four classes including croplands, forests, shrublands, and grasslands (Belward
1996), so it was split into 25% forest cover and 75% nonforest cover. The complete legend
translation rule set is given in Table 2. With these rules, each land cover product was
converted to a percent forest cover map at its native resolution. MODIS VCF directly
gives percent canopy cover for each pixel and hence no further translation is needed.

3.1.2. Spatial aggregation

Each percent forest cover map was overlaid on the 5-km grid to calculate percent cover
within each 5-km grid cell. For example, for the 1-km categorical GLCC, the aggregation
was carried out by employing a 5×5 pixel window moving across the map. Within the
local window, each classified pixel was first multiplied by its class-specific proportional
weight defined by the legend translation rule, and then averaged to derive the
proportional forest and nonforest cover within the 5-km grid. Other categorical maps
were aggregated in the same way as GLCC. As MODIS VCF directly measures the
percentage of forest canopy, we simply aggregated it from 500-m to 5-km with a 10×10
local moving window by averaging the 100 pixel values within the window.

3.1.3. Deriving forest agreement metrics

At the pixel level, it is reasonable to believe that a given land pixel is more likely to be
forest if all six products independently classify the pixel as forest than if only one product
identifies it as forest and the other five products label it as nonforest. Thus, different
levels of agreement reflect varying degrees of certainty regarding the true forest cover in
one pixel. In order to directly incorporate this agreement information into data
integration, we calculated the pixel-based agreement metrics for the forest class. This
analysis is based on categorical maps in parallel with the above legend translation and
spatial aggregation process. As four of the six input products (i.e. GLCC, GLC2000,
MODIS LC, and UMD LC) have an original resolution of 1-km, we first align all the six
products at 1-km resolution to calculate a 1-km forest ‘vote’ map and then derive the
5-km agreement metrics based upon the 1-km vote map. The 300-m GlobCover was
resampled to 1-km resolution and the 500-m fractional MODIS VCF was spatially
averaged to 1-km first and converted to binary forest and nonforest by applying a 30%
threshold according to the IGBP definition.

To assess the degree of correspondence between the six products at 1-km, we
evaluated each pixel as the number of times it was labeled as forest by the six maps,
resulting in a value between 0 and 6: the higher the value, the higher the agreement
between the products for the forest class. The 5-km agreement metrics were derived by
grouping the 1-km metrics using a 5×5 pixel moving window. Within the local window,
the 1-km agreement pixels with values between 0 and 6 were noted and each 5-km grid
was characterized by the frequencies of each of those values. Each 5-km grid then
corresponds to the frequency histogram of 0–6 for forest agreement at 1-km resolution.
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3.2. Supervized training and prediction

A supervized regression tree algorithm was used to model the relationship between
reference cover values from NLCD2001 and forest cover values as well as agreement
metrics from the coarse data-sets. Tree-based classification and regression methods are
well established in land cover characterization studies (e.g. Friedl et al. 2002; Hansen
et al. 2003, 2000; Homer et al. 2004; Sexton et al. 2013a, 2013b; Xian and Crane 2005).
Regression trees have the theoretical advantage of handling nonlinear relationships by
recursively splitting the sample into binary partitions until criteria of accuracy or purity
are met (Breiman et al. 1984). This algorithm produces a hierarchical set of decision
rules, each of which terminates in a linear regression model. Predictor variables feeding
into the regression tree model consist of the proportional forest and nonforest cover layers
derived through legend translation and spatial aggregation. The seven agreement metrics
layers are used in the conditional statements of the regression rules to parameterize the
tree model. Reference data were derived by aggregating NLCD2001 from 30-m to
5-km resolution to calculate the percentage of forest pixels per 5-km grid. A total of
40,713 pixels (∼12% of land pixels) were systematically selected from the aggregated
NLCD2001, from which half were randomly selected for model training and half for data
validation.

3.3. Product evaluation

Accuracies of the six input data-sets and the output IPFC data-set were evaluated against
the aggregated NLCD2001 values using mean bias error (MBE), root mean square error
(RMSE) and r2:

MBE ¼
Pn

i¼1 ðPi � RiÞ
n

ð1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðPi � RiÞ
n

2
s

ð2Þ

r2 ¼ 1�
Pn

i¼1 Pi � Rið Þ2Pn
i¼1 Ri � R

� �2 , ð3Þ

where i is the sample index; Pi is the value of IPFC or forest cover of each input product;
Ri is the reference forest cover per sample; R is the mean of reference; and n is the sample
size (Willmott 1982). The test sample was further divided according to reference values
into three subsets representing low, moderate, and high forest cover (i.e. 0–30%, 31–60%,
61–100%), respectively. Accuracy metrics were calculated using the entire test sample as
well as these three subsets to report the disaggregate error by categories of percent forest
cover.

4. Results

4.1. Model fitting and performance assessment

Evaluation of the regression tree model using 20,357 training cases yielded an average
error of 6.46% with a correlation coefficient between reference and predicted cover of
0.94. Internal 10-fold cross-validation on training data estimated a slightly higher average
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error of 6.78% and an identical correlation coefficient. Independent evaluation of the
model using a withheld sample of 20,356 test cases estimated a further slightly higher
average error of 6.91% and an identical correlation coefficient as using the training data,
suggesting negligible model over-fitting with the training sample. The most important
predictor variable in the model was forest cover derived from MODIS VCF, which was
used in 65% of the conditional statements and in 69% of the terminal-node regression
models (Table 3). All six products were heavily used in the terminal multivariate
regressions, with forest cover from GLCC as the most frequently used variable and forest
cover from MODIS LC as the least frequently used one. Relative to forest/nonforest
cover variables, agreement metrics had moderate to low usage rates in the conditional
statements. Agreement metric at level 0 was used in 32% of the conditional statements,
while other agreement metrics had usage rates less than 10%. The low usage of
agreement metrics at level 1–6 in the conditional statements is probably due to high
usages of forest cover variables from MODIS VCF, MODIS LC, UMD LC, GlobCover as
well as agreement metric at level 0, which, collectively, provide adequate information for
splitting the regression tree.

4.2 The IPFC map

The integrated product depicts well-known patterns of forest cover over North America,
including contiguous expanses of forest in the eastern and Pacific north-western United
States and boreal Canada (Figure 2). The IPFC also shows the climatological
fragmentation of forests in the southern Rocky Mountains as well as the longitudinal
gradients in ecotones between boreal forests and tundra. Tropical and subtropical dry
forests in Southern Mexico are represented by moderate to high forest cover. Agricultural
fields in the Great Plains are depicted with very low forest cover.

Table 3. Usage of predictor variables in regression tree model.

Predictor variable Conditional use rate Terminal-node regression use rate

MODIS VCF forest cover 0.65 0.69
MODIS LC forest cover 0.48 0.22
UMD LC forest cover 0.36 0.56
GLC2000 forest cover 0.36 0.83
Agreement level 0 0.32 0.00
GlobCover forest cover 0.24 0.49
MODIS LC nonforest cover 0.13 0.42
GLCC forest cover 0.10 0.90
GlobCover nonforest cover 0.07 0.30
Agreement level 6 0.05 0.00
Agreement level 1 0.05 0.00
UMD nonforest cover 0.04 0.26
Agreement level 5 0.03 0.00
Agreement level 2 0.03 0.00
Agreement level 4 0.03 0.00
Agreement level 3 0.02 0.00
GLCC nonforest cover 0.01 0.85
GLC2000 nonforest cover 0.00 0.49
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A comparison of the six input data-sets and IPFC over the Chesapeake Bay region in
Eastern United States highlights differences between the products in fragmented areas
(Figure 3). This region is covered by a complex landscape including forested national
parks, high-density urban lands of the Washington DC-Baltimore metropolitan area,
suburban low-density residential lands, as well as agriculture fields in Maryland,
Delaware, and Virginia. The fragmented and heterogeneous landscape raises great
difficulties in land cover classifications with coarse-resolution satellite data and can
lead to substantial disagreement between the existing products (Figure 3a). Each of the
six products shows a varying degree of over or underestimation of forest cover as
compared with NLCD2001, while the integrated product shows the closest visual
similarity with the reference.

4.3. Comparison of integrated and original products

Figure 4 compares forest cover derived from the six input data-sets as well as the newly
integrated product against reference forest cover derived from NLCD2001. Combining
the six products and calibrated by NLCD2001, the newly integrated product has
substantially improved forest cover estimate as reflected by the scatter plots – a highest
value of 100% forest cover and a concentrated and nearly symmetric 1:1 line. General

Figure 2. The IPFC map over North America.
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(a) Forest agreement (b) NLCD2001 (c) IPFC

(d) GLCC (e) GLC2000 (f) GlobCover 

(g) MODIS LC (h) MODIS VCF (i) UMD LC

Figure 3. Subsets of forest cover maps in the Chesapeake Bay region in eastern USA. (a) Forest agreement of the six input products at 1-km spatial resolution.
(b) NLCD2001 reference at 5-km spatial resolution. (c) The integrated product at 5-km spatial resolution. (d–i) Forest cover derived from the six existing
products at 5-km resolution.
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patterns of agreement between coarse-resolution products and reference were revealed
across the conterminous United States. The highest values of fractional forest cover
derived from categorical maps (i.e. GLCC, GLC2000, GlobCover, MODIS LC and UMD
LC) all saturated at around 80% cover due to semantic uncertainty in hard classifications.
Since the actual forest cover within a coarse pixel grid was unknown, a mean 80% cover
value was assigned to the closed forest class (more details in Section 3.1.1, Table 2).
MODIS VCF also saturated at 80% – a consistent conclusion with previous VCF validation
studies (Montesano et al. 2009; Sexton et al. 2013a; White, Shaw, and Ramsey 2005).

Statistically, the IPFC estimates showed greater consistency with the reference data
than all of the input data-sets, which varied in their accuracy relative to NLCD2001
(Table 4). All six input data-sets showed fairly high r2 globally (between 0.7 and 0.8)
against the reference data, but IPFC achieved a considerably higher r2 of 0.87. MODIS
VCF consistently underestimates forest cover in every stratum, whereas GLCC,
GLC2000, GlobCover, MODIS LC, and UMD LC consistently overestimate forest cover
in the lowest stratum but underestimate in moderate and high strata. IPFC has a slightly
greater bias than MODIS LC and UMD LC in the lowest stratum but has the lowest bias

Figure 4. Scatter plots of forest cover (%) at 5-km resolution derived from global land cover
products against reference percent forest cover (n = 20,356). The x axis in each plot represents
reference forest cover derived from NLCD2001 and the y axis represents each global product as
well as the integrated product.
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among all the products in moderate and high strata. The RMSE was twice as great in the
moderate (31–60%) and high (61–100%) ranges than in the low (0–30%) stratum for
every product, implying great uncertainties in characterizing medium- to high-density
forests using coarse-resolution satellite data. At the low end of forest cover, the integrated
data-set was slightly less accurate than MODIS VCF, but at moderate to high cover range,
IPFC was considerably more accurate than any of the six input data-sets. The overall
RMSE of the integrated product against reference was 11.75%, significantly lower than a
17.37% of GLCC, 17.61% of GLC2000, 17.96% of GlobCover, 15.23% of MODIS LC,
19.25% of MODIS VCF, and 15.15% of UMD LC, respectively.

5. Discussion

Differences in the existing global land cover products stem from multiple sources,
including different legends, satellite sensor systems, acquisition dates, classification
algorithms, as well as image misregistration (e.g. Defries and Townshend 1994; Fritz and
See 2008; Giri, Zhu, and Reed 2005; Hansen and Reed 2000; Herold et al. 2008; Jung
et al. 2006; Pflugmacher et al. 2011; Song et al. 2011; Townshend et al. 1992; Townshend
et al. 1994). While this variation contributes uncertainty to inferences based on any
individual map, the central tendency of multiple data-sets reduces the impacts on an
integrated product. Major semantic differences in forest definition can be minimized by
weighting categorical classes to approximate the actual forest canopy cover in coarse
pixels. Also, spatial aggregation has a positive impact on both positional and thematic
accuracy, as the ratio of pixel’s positional error to pixel size declines through aggregation,
and random misclassification errors between neighboring pixels cancel one another when
products are coarsened spatially (Marceau, Howarth, and Gratton 1994; Moody and
Woodcock 1995). Thus, spatial aggregation is a key precursor to increase comparability
between different land cover products. Third, conditioning the integration of multiple
data-sets on their agreement enhances information convergence, since there is a greater
probability that the maps represent the actual land surface type in places where all
independently generated products agree than where they disagree. Lastly, supervised
training and classification approach rely heavily on the quality of reference data. Thus,

Table 4. Evaluation of the IPFC product and the six global land cover products for forest cover
characterization.

MBE (%) RMSE (%)
r2

Product 0–30 31–60 61–100 0–100 0–30 31–60 61–100 0–100 0–100

GLCC 3.56 −2.92 −9.64 −0.59 13.45 24.28 20.34 17.37 0.72
GLC2000 1.74 −5.98 −14.75 −3.38 14.41 23.57 20.10 17.61 0.72
GlobCover 3.95 −8.51 −23.13 −4.42 11.81 18.98 27.70 17.96 0.72
MODIS LC 0.32 −8.92 −12.59 −4.20 10.28 21.00 20.32 15.23 0.79
MODIS VCF −1.76 −16.88 −27.88 −10.33 7.55 22.82 32.77 19.25 0.77
UMD LC 0.55 −6.73 −13.92 −4.02 8.97 20.22 22.12 15.15 0.79
IPFC 1.26 −0.73 −5.53 −0.66 8.78 16.10 14.53 11.75 0.87

Note: The test sample was stratified into three subsets representing low moderate and high forest cover (i.e.
0–30%, 31–60%, 61–100%), respectively. Whereas r2 was calculated using the entire test sample (0–100%),
MBE and RMSE were calculated using these subsets as well as the entire sample.
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collecting accurate and representative training data is critically important in generating a
land cover product. Future high-quality Landsat-resolution data-sets such as Food and
Agriculture Organization’s remote sensing survey Landsat sampling blocks (Potapov
et al. 2011) would be candidate reference sources to the integration approach
proposed here.

6. Summary

Global land cover products show substantial discrepancies in their representation of land
surface type, including forests. We present a data fusion method to integrate existing
multiresolution (e.g. 300-m to 1-km) multisource global land cover maps to derive a new
hybrid product for the forest class, and we demonstrate the approach over North America.
Different from previous data fusion methodologies by Jung et al. (2006) and Fritz et al.
(2011), which mainly rely on agreement between different land cover products, our
approach also uses a large sample of higher-resolution land cover data as reference to
integrate coarser data-sets in a supervised modeling framework. Compatible with
previous work, land cover characterization is greatly improved by combing various
sources of existing data-sets. Assessment of errors relative to a withheld test sample
suggests that the integrated forest map has an overestimation in low forest cover stratum
(i.e. 0–30%) and a slight underestimation in moderate (i.e. 31–60%) to high forest cover
strata (i.e. 61–100%). Compared to the existing individual global maps of forest cover, a
considerable improvement is achieved through data integration with an overall RMSE of
11.75% against Landsat reference and, the greatest improvements are achieved in
moderate to high forest cover regions. This data-set is freely available for download at the
Global Land Cover Facility (www.landcover.org).
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