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We developed a global, 30-m resolution dataset of percent tree cover by rescaling
the 250-m MOderate-resolution Imaging Spectroradiometer (MODIS) Vegetation
Continuous Fields (VCF) Tree Cover layer using circa- 2000 and 2005 Landsat
images, incorporating the MODIS Cropland Layer to improve accuracy in
agricultural areas. Resulting Landsat-based estimates maintained consistency
with the MODIS VCF in both epochs (RMSE �8.6% in 2000 and 11.9% in 2005),
but showed improved accuracy in agricultural areas and increased discrimination
of small forest patches. Against lidar measurements, the Landsat-based estimates
exhibited accuracy slightly less than that of the MODIS VCF (RMSE �16.8% for
MODIS-based vs. 17.4% for Landsat-based estimates), but RMSE of Landsat
estimates was 3.3 percentage points lower than that of the MODIS data in an
agricultural region. The Landsat data retained the saturation artifact of the
MODIS VCF at greater than or equal to 80% tree cover but showed greater
potential for removal of errors through calibration to lidar, with post-calibration
RMSE of 9.4% compared to 13.5% in MODIS estimates. Provided for free
download at the Global Land Cover Facility (GLCF) website (www.landcover.
org), the 30-m resolution GLCF tree cover dataset is the highest-resolution multi-
temporal depiction of Earth’s tree cover available to the Earth science community.
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Introduction

Tree cover � defined structurally as the proportional, vertically projected area of

vegetation (including leaves, stems, branches, etc.) of woody plants above a given

height � affects terrestrial energy and water exchanges, photosynthesis and transpira-

tion, net primary production, and carbon and nutrient fluxes (DeFries et al. 1995). Tree

cover also affects habitat quality and movements of wildlife (Conde et al. 2010; Trainor

et al. in press), residential property value for humans (Mansfield, et al. 2005), and

numerous other ecosystem services. Importantly for monitoring, reporting, and

verification (MRV) efforts to reduce carbon dioxide emissions from deforestation

and forest degradation and to foster conservation and sustainable management of
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forests (REDD�), tree cover provides a measurable attribute upon which forest cover

may be defined. Further, changes in tree cover over time can be used to monitor and

retrieve site-specific histories of forest disturbance, succession, and degradation

(Huang et al. 2009).

In geospatial analyses, tree cover is most commonly inferred from categorical

maps, whose schema represent ranges of cover through such classes as ‘woodland’,
‘sparse savanna’, ‘woody savanna’, and ‘forest’ (Bennett 2001). Although it is the

most common scheme used for mapping and change detection, this categorical

approach inadequately represents within-class heterogeneity for many analyses

(DeFries et al. 1995, 1999) and can underestimate forest canopy loss by as much

as 50% (Asner et al. 2005). Alternatively, tree cover may be represented more directly

as a ‘continuous field’, in terms of fractions or proportions of pixel area (DeFries

et al. 1999).

The MODerate-resolution Imaging Spectroradiometer (MODIS) Vegetation

Continuous Fields (VCF) Tree Cover dataset, currently in Version 5, is produced

at 250-m resolution globally from 2000 to 2010 (DiMiceli et al. 2011). In contrast to

methods based on linear mixture models (e.g. DeFries et al. 1999; Asner et al. 2009),

the MODIS VCF is based on a flexible regression tree algorithm, which is more

capable of incorporating empirical information to improve correlation of estimates

to measured tree cover. The MODIS Tree Cover VCF has been used for a wide range

of continental- to global-scale assessments (e.g. DeFries et al. 2005; Miles et al. 2006;
Lawrence and Chase 2007; Hansen et al. 2008; Simard et al. 2011; Harris et al. 2012).

However, many land cover changes occur in patches beneath its 250-m resolution

(Townshend and Justice 1988). Higher-resolution continuous-field datasets have been

generated for limited areas, primarily in the United States from Landsat data (e.g.

Homer et al. 2004; Rollins 2009; Hansen et al. 2011), but there are currently no

global datasets representing tree cover at resolutions finer than that of the MODIS

sensor.

The spatial and thematic scale of the MODIS VCF and other continuous-field

datasets (e.g. Asner et al. 2009) have made reference data difficult to acquire and so

quantitative error estimatesof these datasets are quite limited. Hansen et al. (2002)

provided the first de facto � although not independent � estimates of MODISC VCF

accuracy by comparing an experimental version of the dataset to the Landsat data

used to train the generating model. Later, White et al. (2005) compared the MODIS

VCF Version 1 to independently gathered field data across the arid southwestern

United States, and Montesano et al. (2009) validated the Version 4 MODIS VCF

against independent reference data derived from photo-interpreted high-resolution
images across the boreal-taiga ecotone. Also, Heiskanen (2008) and Song et al.

(2011) compared the MODIS VCF to other remotely sensed global datasets. Across

all biomes and types of reference data, these independent assessments found that

saturation of the optical signal, phenological noise, and confusion with dense

herbaceous vegetation led to errors in the MODIS VCF between 10�31% Root-

Mean-Square Error (RMSE), over-estimation in areas of low cover, and under-

estimation in areas of high cover.

With increasing coverage worldwide, light detection and ranging (lidar) sensors

now offer an additional and potentially superior means of reference data collection.

Although in situ measurements remain the preferred solution in regions where lidar

acquisition and processing are prohibited by cost, lidar provides highly accurate and
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consistent measurements of vertical and horizontal canopy structure, including cover

(Hopkinson and Chasmer 2009; Hudak et al. 2009; Sexton et al. 2009; Smith et al.

2010). However, no lidar-based evaluations of the MODIS or other continuous-field

tree cover datasets yet exist.
We produced a global, 30-m resolution tree cover dataset for circa-2000 and 2005

epochs by rescaling the 250-m MODIS VCF Tree Cover dataset using Landsat

images and ancillary data. We assessed the new, Landsat-based tree cover dataset’s

accuracy relative to lidar measurements and its consistency with its parent dataset,

the MODIS VCF. To serve as a baseline of comparison and to help fill the dearth of

error assessments of the MODIS VCF, we also performed a parallel accuracy

assessment of the MODIS VCF against lidar measurements. In this paper, we

describe our rescaling method and asses the 30-m, global tree cover product in
comparison to the MODIS estimates and reference lidar measurements.

Methods

Generation of a Landsat-resolution tree cover dataset

Model

Tree cover (C) was estimated as a piecewise linear function of surface reflectance and

temperature:

Ci;t ¼ f Xi;t

� �
þ e; (1)

where X is a vector of surface reflectance and temperature estimates; o is error in the

estimates produced by f() applied to X; subscript i denotes the pixel’s location in

space, indexed by pixel; and t refers to its location in time, indexed by year.

Continuous measurements, such as percent cover and surface reflectance, are robust
to changes in resolution (Hilker et al. 2009; Gao et al. 2010; Feng et al. in press);

although the data (X) were derived from Landsat, the model therefore makes no

specification of scale and thus may be calibrated and applied at arbitrary, even

different, resolutions between those of Landsat (30 m) and MODIS (250 m).

To estimate tree cover at 30-m resolution in 2000 and 2005, MODIS-based, 250-m

tree cover estimates were overlaid on rescaled Landsat surface reflectance layers in

each year, and a joint sample of cover and reflectance variables was drawn to

generate a training dataset for each Landsat scene in each epoch (Figure 1).
(Throughout, we refer to the data used to estimate model parameters as ‘training’

data, and we refer data whose accuracy is assumed as ‘reference’ data.)

The model was thus fit locally to each scene of the Landsat tiling system, the

World Reference System 2 (WRS-2), in each epoch. The model was fit using the

CubistTM regression tree algorithm and applied using CubistSAM, an open-source

parser for Cubist (Quinlan, 1993). Except for an allowance for extrapolation within

the range [0,100], our application of regression trees was standard (i.e. neither sample

boosting or bagging nor ensemble ‘random forests’ or ‘committee models’ were
employed). Cubist � as well as regression trees in general � has been found to provide

accurate estimates of percent-scale land cover attributes in numerous studies (e.g.

Sexton et al. 2006, 2013a). Because regression trees can over-fit the data and there are

often few data points at the extremes of the range of the response variable (e.g. tree

cover), Cubist gives an option for either estimating within the range of the response
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variable at each node (the default) or extrapolating within a specified range. To avoid

over-fitting to the sometimes small samples at terminal nodes with extreme cover

values, we allowed for extrapolation within the range of 0�100% tree cover. The

fitted model was then applied to the original, 30-m Landsat data in order to estimate

tree cover at the Landsat spatial resolution.

Figure 1. Flowchart of tree-cover rescaling algorithm. Arrows represent the directionality of

the process, which flows generally from the top of the figure to the bottom. Shaded regions

delineate distinct modules for preparation of reflectance and tree-cover data.
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Data

Tree cover training data. ‘Training’ tree cover data for model fitting were derived

primarily from the 250-m MODIS VCF Tree Cover layer (DiMiceli et al. 2011) from

2000 to 2005. Random errors (i.e. those which were not systematic, e.g. bias) were

minimized by using the six-year median of cover for each pixel. Land cover changes

between 2000 and 2005 were removed by calculating the standard deviation of

annual tree cover estimates for each pixel over that interval and removing pixels in

the top 10% of the distribution of standard deviations of each Landsat scene.

Because only six years of MODIS VCF data were available, we used the median,

which is a better representation of central tendency than the mean in small samples

such as the six values of cover from 2000 to 2005.

Pure (i.e. 0% or 100%) and near-pure pixels are rare in the MODIS data, and tree

cover tends to be over-estimated in areas of low cover, especially agricultural fields.

To ameliorate under-representation of low tree cover in the training sample, we

augmented the MODIS-derived reference data with information from the Training

Data Automation and Support Vector Machines (TDA-SVM) automated classifica-

tion algorithm (Huang et al. 2008) and the MODIS Cropland Probability Layer

(Pittman et al. 2010). Cropland Probability and Tree Cover images were overlaid

within each Landsat scene, and Landsat pixels with crop probability greater than 0.5

and tree cover less than 50% were selected. This selection comprised Landsat pixels

with either crop or sparse vegetation cover. Within the selection, Landsat pixels

identified by TDA-SVM as ‘non-forest’ in both 2000 and 2005 were assumed to be

sparsely vegetated and were labeled as 0% tree cover. The remaining (i.e. crop) pixels

in the selection were ranked by their NDVI values and divided into three sub-strata:

high, medium, and low NDVI. Pixels from each of these sub-strata were randomly

sampled such that the maximum proportion of Landsat ‘crop’ pixels was the

proportion of MODIS pixels within the scene whose crop probability was greater

than 60%. All of the sparsely vegetated pixels and the sample of crop pixels were then

pooled with the MODIS-based reference data to form an ensemble training sample

of tree cover and reflectance.

Landsat reflectance data. Surface reflectance for each epoch was retrieved from the

2000 and 2005 Global Land Survey (GLS) Landsat datasets. The GLS is a selection

of Landsat and other images chosen to provide wall-to-wall, orthorectified,

maximally cloud-free coverage of Earth’s land area at 30-meter resolution in

nominal ‘epochs’ of 1975, 1990, 2000, and 2005, and 2010 (Gutman et al. 2008;

Franks et al. 2009). The GLS 2000 is composed of 8756 Landsat-7 Enhanced

Thematic Mapper Plus (ETM�) images from 1999 to 2002, and the GLS 2005 is

composed of 7284 gap-filled Landsat-7 images and 2424 Landsat-5 TM images

acquired between 2003 and 2008. (We refer to these epochs throughout simply as

their nominal years, ‘2000’ and ‘2005’.)

GLS Landsat images were atmospherically corrected by the Landsat Ecosystem

Disturbance Adaptive Processing System (LEDAPS) (Masek et al. 2006) to estimate

surface reflectance in each pixel. Atmospheric inputs and parameterization of

LEDAPS are described by Feng et al. (in press). Clouds were identified and removed

by optical-thermal detection, and cloud shadows by solar-geometry projection (Huang

and Thomas 2010), surface reflectance pixels free of clouds, and cloud-shadows were
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aggregated from 30-m to 250-m resolution by averaging all 30-m pixels within the

extent of each 250-m pixel.

Error estimation

Uncertainty in every pixel was assessed relative to the training data by 10-fold cross-
validation. Pixel-level uncertainty was quantified at each terminal node of the

regression tree and assigned to pixels identified with that node. Because these pixel-

level uncertainties were assessed relative to the reference data, errors between the

reference data and actual cover are not accounted for at the pixel level. Error

estimation relative to independent reference data derived from lidar is described in a

later section. To assess each set of estimates relative to more direct measurements of

actual cover, we compared each to approximately coincident measurements derived

from small-footprint lidar measurements. (We use the term ‘measurement’ to refer to
lidar-derived values of cover � which are calculated without statistical inference �
and the more general ‘estimate’ to refer to values derived statistically from MODIS

and Landsat images.) All comparisons were made at 250-m resolution, using MODIS

estimates from 2005 and Landsat estimates from the 2005 epoch. Preliminary

analyses comparing Landsat estimates to lidar measurements at 30-m resolution

were not appreciably different than those reported here, although there was a small

reduction of correlation believed to be due to spatial misregistration of Landsat data.

Uncertainty metrics were based on average differences between paired model and
reference (or training) values (Willmott 1982), quantified by Mean Bias Error

(MBE), Mean Absolute Error (MAE), and Root-Mean-Squared Error (RMSE):

MBE ¼
Xn

i¼1

Mi � Ri

n
(2)

MAE ¼
Xn

i¼1

Mi � Rij j
n

(3)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Mi � Rið Þ2

n

s
(4)

where Mi and Ri are estimated and reference tree cover values at a location i in a

sample of size n.

After modeling the relationship between M and R by linear regression, their

(squared) difference was disaggregated into systematic error (MSES) and unsyste-

matic error (MSEU) based on the modeled linear relationship (Willmott 1982):

MSES ¼
Xn

i¼1

bMi � Ri

� �2

n
(5)

MSEU ¼
Xn

i¼1

Mi � bMi

� �2

n
(6)

where bMi is the cover value predicted by the modeled relationship (Willmott 1982).

Accuracy is thus quantified by the difference between the trend of model over
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reference cover, and precision is quantified by the variation surrounding that trend.

MSES and MSEU sum to Mean-Squared Error (MSE), and therefore:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEs þMSEu

p
(7)

(Willmott 1982).To maintain consistency, we report the square roots of MSES and

MSEU, i.e. RMSES and RMSEU, in units of percent cover.

Tree cover reference data

For comparison to the 2005-epoch estimates, we collected small-footprint, discrete-

return lidar measurements at four sites in a range of biomes (Figure 2): (1) La Selva

Biological Station and its vicinity, Costa Rica (CR) in 2006; (2) the Wasatch Front in

central Utah (UT), USA in 2008; (3) the Sierra National Forest in northern

California (CA), USA in 2008; and (4) the Chequamegon-Nicolet National Forest,

Wisconsin (WI), USA in 2005.

The Costa Rica site is dominated by tropical moist broadleaf evergreen forest

surrounded by livestock pastures. The Utah site is an ecotone of temperate evergreen
needle-leaf conifer forest, deciduous broadleaved shrubland, and annual grasses. The

California site is dominated by tall, mixed-species temperate evergreen conifer forests

of varying cover. The Wisconsin site is dominated by a mixture of temperate

deciduous broadleaf hardwood and coniferous needle-leaf tree species with

significant coverage of herbaceous agriculture, including corn. All lidar measure-

ments were acquired during the growing season of each respective site, with mean

point densities greater than 1 return/m2. The Costa Rica dataset, collected in 2006, is

described by Kellner et al. (2009), and the Wisconsin dataset is described by Cook
et al. (2009). Figure 3 shows an example of the 3-dimensional distribution of lidar

measurements in the California site. All sites were assessed visually for obvious

Figure 2. Distribution of lidar-based reference sites, overlaid on global biomes (Olson et al.

2001). Only the major habitat types intersecting reference sites are shown.
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changes in cover between data acquisitions; in the WI dataset, obvious cover changes
due to forest harvesting between Landsat and lidar acquisitions (totaling 21 pixels)

were delineated manually and removed.

Tree cover (C) was calculated from lidar returns by dividing the number of

returns above a criterion height by the total number of returns within a 10-m radius:

C ¼ nh

n
(8)

where n is the number of returns and nh is the number of returns above the specified

height (h) (Korhonen et al. 2011). In accordance with the International Geosphere-

Biosphere definition of forests, we specified the criterion nh� 5 meters. Following

calculation of tree cover at 10-m resolution, rasters were aggregated to 250-m

resolution by averaging the values within the extent of each 250-m pixel. In pixels
with steep underlying terrain (as might be likely especially in CA and UT), the

varying ground elevation in large pixels can cause spurious detection of tree cover as

lidar returns above 5-m height, first computing cover in small, 10-m pixels and then

aggregating to 250-m pixels avoided this possibility. Also note that Relative Height

(i.e. RH100) and other waveform-based metrics (Hyde et al. 2005; Dubayah et al.

2010) were not used; only height of the (discrete-return) lidar posts was used to

calculate canopy height.

Results

Accuracy of the Collection-5 MODIS VCF tree cover estimates

Across the four biomes, MODIS estimates showed a positive, linear correspondence

to lidar measurements of tree cover (Figure 4). Aggregating the sample across the

Figure 3. Three-dimensional distribution of a 250�250-m subset of the lidar measurements

from the California reference site in nadir (left) and oblique (right) perspectives. Data points,

which were sampled with intensity of approximately 13 points/m2, are classified by height into

tree (pink) and non-tree (yellow) classes. The red box in the upper-right corner shows the area

of one 30-m Landsat pixel.
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four sites, RMSE between MODIS estimates and lidar measurements was 16.83%,

with cross-site MAE of 13.16% (Table 1).

RMSE and other metrics at each site followed this overall pattern, although there

was variation among biomes (Table 2).

Some of the disagreement between MODIS estimates and lidar measurements

was due to a slight negative bias (MBE � �6%) of the MODIS relative to lidar

values. However, the difference was better expressed as a linear trend between the

MODIS and lidar data, such that MODIS values exhibited positive bias at low cover

and negative bias at high cover. This linear relationship was fairly strong � with R2 of

0.70 and slope and intercept coefficients significantly different from zero (Table 3) �
and consistent across sites.

Figure 4. Scatterplots of estimated vs. reference and training tree-cover data: MODIS-based

estimates vs. lidar-based measurements (top), Landsat-based vs. MODIS-based estimates

(middle), and Landsat-based estimates vs. lidar-based measurements (bottom). Points and

(dashed) regression lines are identified with sites by color, the overall (across-site) regression is

in black, and the 1:1 line is solid black.
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The strength of the trend resulted in an approximately equal partition of

uncertainty between systematic and random components, with RMSES of 10.10%

and RMSEU of 13.46% cover. Spatially, MODIS estimates replicated the pattern of

lidar estimates with reasonable fidelity in the Costa Rica and Wisconsin sites, where

patches of forest cover were large and discrete (Figure 5), although saturation of the

MODIS values was clear in the Costa Rica site. However, the spatial correspondence

was less clear in the California site and visibly poor in the Utah site, where tree cover
is distributed as smooth, continuously varying gradients with shorter shrubs.

Although the pattern was blurred greatly in the CA and UT ecotones, the loss of

spatial pattern was slight in the CR and WI sites.

Consistency of Landsat- and MODIS-based (VCF) tree cover estimates

The relationship between Landsat estimates of tree cover and the MODIS data on

which they were based was very strongly linear, near parity, and consistent among

biomes (Figure 4). Relative to the MODIS estimates, Landsat estimates exhibited

MBE of �6%, MAE of 8%, and RMSE of 10% cover (Table 1) in the biome samples

of 2005 data. The modeled linear relationship explained 88% of the variation

between the two datasets, and RMSE was equally partitioned between systematic

and random components, with both RMSES and RMSEU equaling approximately
7% cover (Table 3). Although significantly different from zero, the intercept of the

linear relationship was relatively small (4.5%).

The global Landsat-MODIS VCF comparison for 2000 and 2005 epochs

corroborated the aggregated site-specific results, with little difference between epochs

(Figure 6). Paired Landsat- and MODIS-based estimates were distributed predomi-

nantly along the 1:1 line, with a slight under-estimation of Landsat- relative to

Table 2. Site-specific comparisons of tree-cover estimates from MODIS, Landsat, and lidar.

CR Landsat �8.37 �11.71 CA Landsat �2.16 1.31

11.50 (10.13) MODIS �3.34 7.30 (5.90) MODIS 3.48

17.47 (16.33) 15.43 (12.06) Lidar 8.38 (5.82) 10.55 (8.00) Lidar

UT Landsat �3.85 �12.29 WI Landsat 0.36 �13.247

5.62 (4.47) MODIS �8.44 9.74 (6.79) MODIS �14.95

17.64 (13.02) 14.63 (10.86) Lidar 19.81 (17.39) 23.15 (20.13) Lidar

Note: Values in the upper-right triangle of each sub-matrix are Mean Bias Error (MBE). Values in the
lower-left triangle are Root-Mean-Square Error (RMSE), with Mean Absolute Error (MAE) in
parentheses. Mean bias (MBE) between pixel-level canopy cover estimates (e.g. Landsat vs. lidar) is
reported as the difference of the first element of the pair along the diagonal over the second � e.g. the
MBE (Landsat, lidar) is reported as cover (Landsat) � cover (lidar).

Table 1. Across-site comparison of tree-cover estimates from MODIS, Landsat, and lidar.

Landsat �5.57 �10.97

10.28 (8.42) MODIS �5.68

17.40 (15.23) 16.83 (13.16) Lidar

Note: Values in the upper-right triangle of the matrix are Mean Bias Error (MBE). Values in the lower-left
triangle are Root-Mean-Square Error (RMSE), with Mean Absolute Error (MAE) in parentheses. Biases
between pairs of measurements (e.g. Landsat vs. lidar) are reported as the difference of the first element of
the pair along the diagonal over the second � e.g. cover (Landsat) � cover (lidar).
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MODIS-derived values of cover. Errors were slightly greater in the 2005 data than in

the 2000 data (RMSE �8.9% in 2000; RMSE �11.9% in 2005), and the greatest

differenceswere confined largely to the humid tropics, suggesting their origin might

lie in the effects of remnant clouds in the Landsat images. The 2000 GLS ‘epoch’ of
image collection was before the 2003 failure of the Scan-Line Corrector (SLC) of the

ETM� instrument, and so the quality of the GLS 2000 dataset likely benefitted

from a greater selection of high-quality images from which to choose cloud-free data.

Error estimation of Landsat-based tree cover estimates

Across the four sampled biomes, the correspondence of Landsat estimates of tree

cover to reference lidar measurements was similar to the relationship between MODIS

and lidar data (Figure 4). Across the biomes, RMSE of Landsat estimates relative

to lidar-measured cover was 17%, with MAE of 15% and MBE of �11% cover

(Table 1). However, the overall linear relationship between Landsat estimates and
lidar measurements was stronger (R2�0.81) than that of MODIS estimates relative

to lidar measurements (R2�0.71). This strong linear trend resulted in a greater

dominance of systematic (RMSEs�15%), over unsystematic, or random noise

(RMSEU �9%) in the Landsat estimates compared to MODIS, suggesting a greater

Table 3. Linear regression summaries for pixel-level canopy cover estimates in four study

areas.

Regression Intercept (SE) Slope (SE) R2 RMSES RMSEU

All sites

MODIS�lidar 12.429 (0.549) 0.714 (0.008) 0.705 10.097 13.462

Landsat�MODIS 4.530 (0.323) 0.825 (0.005) 0.882 7.063 7.473

Landsat�lidar 10.016 (0.384) 0.668 (0.006) 0.811 14.637 9.406

Costa Rica (n�2044)

MODIS�lidar 29.621 (0.756) 0.561 (0.010) 0.628 11.242 10.573

Landsat�MODIS 12.477 (0.572) 0.710 (0.008) 0.804 9.765 6.066

Landsat�lidar 24.593 (0.380) 0.517 (0.004) 0.850 16.640 5.312

California (n�289)

MODIS�lidar 23.963 (1.835) 0.517 (0.042) 0.348 6.610 8.226

Landsat�MODIS 16.031 (1.548) 0.603 (0.033) 0.539 4.583 5.687

Landsat�lidar 22.248 (1.328) 0.506 (0.030) 0.494 5.893 5.955

Utah (n�425)

MODIS�lidar 6.069 (0.453) 0.365 (0.016) 0.552 13.556 5.500

Landsat�MODIS �1.066 (0.372) 0.807 (0.022) 0.755 4.160 3.784

Landsat�lidar 3.316 (0.453) 0.318 (0.016) 0.483 16.766 5.492

Wisconsin (n�655)

MODIS�lidar 22.759 (0.888) 0.390 (0.013) 0.561 21.456 8.708

Landsat�MODIS 3.128 (1.384)a 0.941 (0.028) 0.619 0.856 9.699

Landsat�lidar 17.119 (0.809) 0.508 (0.012) 0.728 18.185 7.849

Note: RMSEU is mean ‘unsystematic’, or ‘residual’ error between original and calibrated measurements,
and RMSES is the ‘systematic’ error remaining between calibrated and reference measurements (see text
for full explanation). Unless otherwise noted, all coefficients are significant at Pr(�jtj) B0.01.
aPr(�jtj) �0.024.
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potential for empirical calibration of Landsat estimates than is possible for the

MODIS dataset. Although still present, saturation of Landsat estimates relative to

lidar measurements was reduced slightly compared to the saturation seen in MODIS

estimates.

Landsat estimates reproduced the spatial pattern of tree cover in most sites with

greater fidelity than did MODIS estimates (Figure 5). The exception to this was the

UT site, where there was no clear correspondence between either Landsat or MODIS

estimates and the lidar measurements. Another shared artifact � i.e. recorded

phenomenon caused by the algorithm but not reality � in both the Landsat and

MODIS data was the slight compression of the actual frequency distribution of

values, such that there were more intermediate values and correspondingly fewer

values near the extremes of cover (i.e. 0% and 100%). It should be stressed, however,

Figure 5. Spatial representation of tree cover by lidar measurements and Landsat and

MODIS estimates in four sites. Imagery in top row was obtained from high-resolution, true

color images provided by Microsoft Bing Maps.
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that even considering the minor artifacts, Landsat estimates resolved greater spatial

variation in tree cover than did the relatively coarse MODIS estimates.

Discussion

Figure 7 shows the first global, multi-temporal mapping of Earth’s tree cover from

Landsat-class data. Homer et al. (2004), Rollins (2009), and Hansen et al. (2011)

describe continuous-field, Landsat-based datasets covering the United States, but

there has been noconsistent, continuous-scale mapping of Earth’s tree cover at

Landsat (i.e. 30-m resolution and global extent) prior to this effort, nor has such a

dataset been produced for multiple time periods. The greater than 8-fold increase in

resolution from MODIS- to Landsat-class data � i.e. from 250-m to 30-m pixel side-

length, or from 6.25-ha to 0.09-ha pixel area � greatly enhances discrimination of

spatial patterns of forest cover, especially in highly fragmented landscapes (Figure 8).

In agricultural regions, the increased accuracy of the Landsat-based estimates at the

low end of tree cover relative to the parent MODIS data results in improved

discrimination between forests and densely vegetated herbaceous crops (Figure 9).

Further, as a longer-term consideration, the shifting of uncertainty from approxi-

mately equal distribution between systematic and unsystematic errors in the MODIS

data toward dominance by systematic errors in the Landsat product will result in

Figure 6. Joint distribution of a global sample of Landsat-based vs. MODIS-based (VCF)

estimates of forest cover in 2000 (top) and 2005 (bottom).
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Figure 7. Global mosaic of Landsat-based estimates of tree cover. Map represents 2000 data. Gaps due to clouds and/or snow in each scene were filled

first with Landsat-based data from overlapping paths, and the gaps still remaining were filled with data from the MODIS VCF Tree Cover layer in 2000.
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greater potential for calibration to high-accuracy datasets such as lidar as they

become available.

Accuracy of the MODIS VCF

Independent quantifications of the accuracy of the MODIS VCF (Hansen et al.

2003; DiMiceli et al. 2011) and other continuous-field datasets (e.g. Homer et al.

2004; Asner et al. 2009; Rollins 2009; Hansen et al. 2011) have been scarce. However,

a global picture of the MODIS product’s accuracy is beginning to emerge across this

and previous studies. Our results corroborate those of earlier studies showing that

the MODIS VCF dataset over-estimates tree cover in sparsely treed areas and under-

estimates cover in dense forests. The latter is likely due to the saturation of the

MODIS VCF tree cover estimates at approximately 80% cover, and the former is

likely due to poor discrimination between trees and dense herbaceous vegetation.

Figure 8. Resolution differences between MODIS-based and Landsat-based tree cover

estimates in a highly fragmented landscape. Site shown is in Paraná, Brazil (Landsat WRS2

Path 224, Row 78; MODIS tile H13v11). Landsat and MODIS data are from images acquired

in 2000.

Figure 9. Comparison of accuracy between MODIS-based and Landsat-based tree cover

estimates in an agricultural region. All data shown are from images acquired in 2000. Site

shown is in the Buenos Aires Province, Argentina (Landsat WRS2 Path 225, Row 86; MODIS

tile H13, V12) where tree cover is sufficiently low that any estimate greater than 10% is likely

erroneous, the result of confusion between tree and crop cover.
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Across the biomes studied, we found accuracies ranging between those of earlier

studies (White et al. 2005; Montesano et al. 2009), and our results show that a large

portion of the uncertainty of the MODIS VCF is systematic and thus can be

removed by linear calibration to accurate reference data. There appears to be a limit
to the precision with which tree-cover estimates can be inferred from passive-optical

measurements. The accuracies we found for MODIS-based estimates relative to

lidar-based ‘truth’ data were only slightly poorer than the 13% precision achieved

among multiple observers visually interpreting tree cover from sub-meter-resolution

imagery (Montesano et al. 2009).

Consistency of Landsat-based tree cover estimates with the MODIS VCF

Rescaling tree cover estimates from MODIS (250-m) to Landsat (30-m) resolution
retained consistency with the original MODIS product and greatly improved

resolution of spatial detail of surface features. Our 10% RMSE between Landsat

and MODIS estimates was approximately double the 5% RMSE reported by Hansen

et al. (2002) between MODIS estimates and the Landsat data on which they were

based in western Zambia (a dry forest biome). However, the correspondence between

our Landsat-derived and MODIS-derived estimates was greater than that of

MODIS-based to lidar-based measurements, whether quantified as the coefficient

of determination (R2), uncertainty (RMSE), or either of the components of RMSE �
inaccuracy (RMSES) or imprecision (RMSEU). Landsat-based estimates also

showed a strong potential for linear calibration to MODIS, although direct

calibration to lidar � where available � would provide more accurate estimates of

actual tree cover than calibration to MODIS estimates.

Accuracy of Landsat-based tree cover estimates

Although this initial assessment was based on a sample confined to North and

Central America, where the density of the Landsat archive allows for optimal image
selection, some general statements may be made concerning the accuracy of the

product. Rescaling of MODIS estimates to Landsat resolution resulted in little loss

of thematic information relative to actual cover when compared to the MODIS VCF

overall (from RMSE �16.8% for MODIS VCF to RMSE �17.4% for Landsat-

based estimates) and resulted in marked improvements in some cover types. Landsat

estimates inherited uncertainties from their parent MODIS training data: all

regression intercepts were greater than zero and all regression slopes were less than

unity, reflecting the inability of current, uncalibrated MODIS and Landsat estimates
to accurately resolve tree cover greater than 80%. However, incorporation of

ancillary information (i.e. crop probability and non-forest masks) did reduce over-

estimation of tree cover in agricultural regions (Figure 9). The relationship of errors

among estimates from lidar, MODIS, and Landsat fit a general root-sum-of-squares

error relationship: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� zð Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� yð Þ2þ y� zð Þ2

q
(9)

Where z denotes an absolute, or ‘truth’ measurement, y denotes an estimate of z, and

x denotes an estimate of y. Although overall errors relative to lidar were slightly
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greater in the Landsat estimates, there was a stronger linear relationship between

Landsat and lidar data (R2�0.811) than between MODIS and lidar data (R2�
0.705), suggesting an improvement in the potential for calibration of Landsat-based

estimates over that of the MODIS VCF. This general pattern held in all sites
individually except UT (R2�0.552 for MODIS, 0.483 for Landsat), which was

characterized by steep topography and a complex ecotone of trees, shrubs, and

grasses. Over all sites, RMSE after linear calibration (RMSEU) could be expected to

be 10% in Landsat, compared to 13% in MODIS, and when calibrated on a site-by-

site basis, remnant uncertainty was less than 11% in MODIS-derived estimates and

less than 6% in Landsat-derived estimates in each site.

A novel approach to global tree cover mapping

Challenges to global land cover mapping at coarse resolution have been summarized

by a number of review papers (e.g. Townshend et al. 1994; Cihlar 2000; Fritz et al

2011), and issues surrounding global land cover monitoring at Landsat-class

resolution are reviewed by Townshend et al. (2012). Much progress has been made

in overcoming many challenges � e.g. automation and corrections for atmospheric,

terrain, and phenological noise (Kim et al. 2011; Townshend et al. 2012; Sexton et al.

2013b). Nevertheless, generating continuous-field land cover datasets at sub-hectare
resolution and global extent still faces one major obstacle: the difficulty of acquiring

representative samples of reference data.

The traditional approach to continuous-field mapping has been to spatially

aggregate sparse samples of high-resolution, categorical data to train models for

estimating cover at spatially coarse, thematically continuous scales (e.g. Hansen et al.

2003; Homer et al. 2004; Hansen et al. 2011). Assuming that data quality is inversely

proportional to spatial resolution, this general methodology gains its strength from

large volumes of human-interpreted reference data. Although this approach has
successfully produced the most widely adopted continuous-field datasets, generating

continuous fields of land cover at Landsat-class resolution forlarge parts of the world

� especially where reference data or human effort are limiting � requires a different

strategy.

We have demonstrated an alternative approach for estimating tree cover at

Landsat (30-m) resolution. Inverting the traditional methodology, our approach

assumes the central tendency of coarse-scale, global data and uses this information to

model a locally consistent, scale-insensitive relationship between reflectance and
cover. The mathematical properties of continuous data have been known for some

time (Stevens 1946), and recent studies have demonstrated consistent scaling

behavior of remotely sensed continuous fields (Gao et al. 2006, 2010; Hilker et al.

2009; Feng et al. in press). Known errors in the training data � e.g. over-estimation of

tree cover by the MODIS VCF in dense herbaceous cover � are ameliorated by

augmenting the training sample with ancillary data � e.g. MODIS Crop Probability.

Thus a coarse, global, continuous-field dataset is used to infer cover at finer

resolution, and the highest-quality reference data are reserved for model accuracy
assessment.

The rarity of high-quality reference data is likely responsible in large part for the

lack of published studies validating the MODIS VCF. However, this need

is increasingly being served by a piecemeal, but growing global patchwork of
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small-footprint lidar datasets from which vegetation structural attributes can be

measured or calculated with high reliability. Insofar as errors in land cover data

transmit to all downstream products and analyses, these quality assessments provide

the critical foundation for tracking uncertainty from Earth observation to modeling
and prediction. We are optimistic that the increasing availability of intensive, local

lidar datasets will result in improved accuracy of mapping and monitoring tree cover

at global scales.

Conclusions

The MODIS VCF tree layer, now in version 5, is among the most useful and reliable
global datasets representing Earth’s woody vegetation. However, it suffers from a

coarse spatial scale relative to many land cover patterns and changes, and there have

been extremely few attempts to validate the MODIS VCF against independent

reference data. In this study, we rescaled the 250-m MODIS estimates to 30-m

resolution using the 2000 and 2005 Global Land Survey Landsat dataset and

validated both this new Landsat-based global tree cover dataset as well as its parent

MODIS data against measurements derived from lidar. The MODIS VCF exhibits

uncertainty of approximately 17 percentage points RMSE across all biomes studied
and between 11 and 23 points in each biome individually. Much of this uncertainty is

systematic, due to over-estimation in sparsely treed (e.g. agricultural) regions and

under-estimation in dense forests. The Landsat-based tree cover dataset exhibited

high thematic fidelity to the MODIS VCF � including saturation at approximately

80% tree cover and uncertainty where woody cover is a gradient of trees and shrubs �
but showed improved accuracy in agricultural regions. At 30-m resolution, the

Landsat-based dataset also greatly improved resolution of spatial patterns of tree

cover in highly fragmented landscapes. Both the MODIS- based and Landsat-based
tree cover datasets show strong potential for empirical calibration to lidar

measurements, but the potential for improved accuracy through calibration is

slightly greater in the Landsat dataset. Calibration coefficients for Landsat-based

and MODIS-based tree cover datasets are provided, both globally and for sites

representing each biome. The Landsat-based tree cover dataset � global estimates of

percent tree cover at 30-m resolution in 2000 and 2005 epochs � is available to the

Earth observation, modeling, and analysis community for free download at the

Global Land Cover Facility (www.landcover.org).
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