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ABSTRACT
In themultimodal transport network, due tovariousuncertain factors suchasweather and traffic con-
ditions, the transport time will become uncertain accordingly, besides, railway transport and water
transport are usually limited by timetable. These factors will inevitably affect the path selection. The
purpose of this study is to seek an optimal transport scheme that considers both the uncertainty of
the multimodal transport network and the timetable limit. In view of the uncertainties of the multi-
modal transport network, interval data are used to represent theuncertainty of networkweights, and
robust optimizationmethod is then adopted toprocess the interval data. Anoptimalmodel of robust
shortest path considering timetable limit is established and genetic algorithm (GA) is designed to
solve theproblem. TheGAdesignedprovides anencodingmethod for variable-length chromosomes
applicable to shortest path problem solving in themultimodal transport. And the handlingmethods
for loops and inaccessible paths due to chromosome crossover and mutation are also suggested.
And finally, numerical examples are provided to verify the validity of the model and algorithm.
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1. Introduction

Logistics costs have remained high for a long time, and
choosing a reasonable transport path is of great signif-
icance to reduce logistics costs and improve transport
efficiency. In the path selection of the multimodal trans-
port, due to various uncertain factors such as weather
and traffic conditions, the transport time is not certain,
due to which, the transport scheme given under certain
conditions would be unable to meet the requirements.
In addition, there is timetable limit in railway and water-
way transportation. These factors will inevitably affect
the path selection. However, in the current researches on
the multimodal transport path optimization, there is no
research that considered both the uncertainty of multi-
modal transport network and timetable limit in different
modes of transportation. The path selection in the mul-
timodal transport is essentially a shortest path problem
(SPP) in network optimization. The study of the SPP falls
into two categories: one is the study on SPP in a deter-
ministic network, and the other is the study on SPP in
an uncertainty network. Due to the uncertainties of the
transport network, the study of the SPP in an uncertainty
network is much closer to the actual transport network,
so the practical significance of this research will be a
great insight into different study areas and researchers

CONTACT Yong Peng pengyong@cqjtu.edu.cn

as well. In most existing researches on the change of
transport time caused by uncertainties, the uncertain-
ties are always handledwith stochastic programming and
fuzzy programming, which are influenced by many fac-
tors thatdifficult topredict, suchas traffic conditions, acci-
dents, traffic jams or weather conditions in transporta-
tion. Usually, we are only able to achieve a time interval as
shown in Figure 1. In this network, V = {1, 2, 3, 4, 5, 6, 7},
E= (1,2),(1,3),(2,3),(2,4),(2,5),(3,2),(3,4),(3,6),(4,5),(4,6),(5,6),
(5,7),(6,7). Supposing tm1,2 wehave six samples: 10,14,15,20,
14,17. The referencepoint tm1,2 couldbeeither themean15
or the mode 14 of the sample set. The support set could
use the minimal and maximal values as bounds [10, 20],
depending on user’s confidence level about the data set
and preference of uncertainty. The interval data problem
has received extensive attention from scholars (Monte-
manni, 2006; Montemanni & Gambardella, 2004, 2005).
The processing of interval data always relies on the robust
optimization method. This subject was first proposed in
2001 by Karasan, Pinar, and Yaman (2001). Several exact
techniques were introduced later by Montemanni, Gam-
bardella, and Donati (2004), which extended the deter-
mination of a robust shortest path for general network.
Subsequently, the robust shortest path problem (RSPP)
has been considered by many authors in the context
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Figure 1. Example of a path problem.

of interval data uncertainty (Escoffier, Monnot,& Span-
jaard, 2008; Shahabi, Unnikrishnan, & Boyles, 2013). How-
ever, theyonly focusedon theRSPP inmono-modalmode
of transportation. As the multimodal transport develops,
increasing attention begins to be paid to the charac-
teristics of the multimodal transport, more and more
researches have been focusing on the path optimization
in the multimodal transport (Abbaspour & Samadzade-
gan, 2010; Chen, Hong, & Jia, 2015; Davies & Lingras, 2003;
van der Weijde, Verhoef, & van den Berg, 2013; Xin,
Feng, & Zhang, 2016; Zhang&Wang, 2015; Ziliaskopoulos
& Wardell, 2000).

However, most of the existing researches handled
uncertain factors with stochastic programming and fuzzy
programming. That is, few of them dealt these uncertain-
ties as the interval data. Thoughmost of them have taken
the transit time into consideration, they actually ignored
timetable limit which surely exist in themultimodal trans-
port, such as in waterway and railway transports. These
would definitely affect the efficiency of the transport
scheme. In Figure 2, for example, supposing that a batch
of goods requires a transshipment time of t0 to be trans-
ported to the destination port, however, due to the dif-
ferences in transit time, the departure time of the goods
would be differentiated, which are (t0 + t3), (t0 + t2) and
(t0 + t1), respectively. As waterway and other modes of
transport all have fixed departure time, the goods will

not be transported to the next node immediately after
they arrive. If the departure times of the goods are respec-
tively T1,T2, T3 · · · , when the transit time is T3, the actual
departure time will be T2 instead of (t0 + t3) When the
transit time is (t2 or t1), the actual departure time will be
T3 instead of (t0 + t2) or(t0 + t1).

Based on this, from the perspective of multimodal
transport carriers, this paper investigates the practical
problems existing in decision-making of the multimodal
transport path selection. To handle uncertainties in the
arc lengths, the study applies the robust optimization
framework to solve the problem. Data uncertainty is
structured by taking the arc lengths as intervals defined
by known lower and upper bounds and no assumptions
of any probability distribution are considered. The robust
optimization method is used to establish a path selec-
tion model for the multimodal transport considering the
interval data under uncertain circumstances. In light of
the difficulty and uniqueness of the model, a heuristic
algorithm isdesigned to study thepath selectionproblem
in uncertain network concerning the interval data.

2. Problem description

In today’s logistics transport network, it always requires
to pass through several nodes to carry goods to the des-
tination. And among the nodes, there are various trans-
port modes such as highway, railway and waterway to
be chosen. As shown in Figure 3, when the goods are
transported from node 1 to node 10, we can choose dif-
ferent transport modes. For the transport cost and time
may differ from one transport mode to another, and the
transport time is an uncertain interval number due to fac-
tors such as traffic accidents and weather changes, so
different transport modes can be chosen in transporting
goods. Therefore, the transshipment time and cost occur

Figure 2. Schematic description schedule.
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Figure 3. Multimodal transport.

in shipment transfer. In addition, since railway andwater-
way have a fixed dispatching time, the goods still need
to wait at the node after shipments transfer for departure
time.

It is required to figure out a transport plan with the
least transport cost as the goods are transported to the
destination in the allowed time range.

3. Mathematical modelling

3.1. Notations

The followingnotations areused in this paper, seeTable 1.

3.2. Model assumptions

(1) The goods can only be transshipped at the nodes.

(2) After the transshipment at the nodes, the goods is
transported to the next node with the upcoming
scheduled transport mode.

(3) Only the delay due to transshipment is allowed in the
process.

(4) Sites and facilities at the nodes are all available for the
transshipment between different transport modes.

3.3. Problem definition

Formally, we define the problem on a directed graph
G = (V , E,M) where V is the set of nodes, Assume that
nodes s ⊆ V and d ⊆ V denote the origin and destina-
tion, respectively, E is the set of arcs, Let ei,j represent the
arc connecting node i to node j. M is the set of transport

Table 1. Notations.

Symbols Implications

V The set of all the nodes in the multimodal transport networks, i, j ∈ V
M The set of transport modes,m, n ∈ M
E Index pairs (i, j) for all arcs in the network, with node i being the starting node.
s The starting node that the goods departs
d The destination of the goods
tmi,j Transport time of the goods from node i to node j through transport modem
tm,ni Transshipment time of the goods at the node i frommodem to mode n
cmi,j Transport cost from node i to node j by modem
cm,ni Transshipment cost of the goods at node i frommodem to mode n
dmi,j Distance between node i and j by modem
T̄ Maximum total transport time allowed
T Minimum total transport time allowed
to The time that the goods departs from the starting node
� Robust control parameters
Bm,nj The upcoming departure time at the node j after transferring from transport modem to n at the node
tmi,j The minimum time required for transporting the goods from node i to node j through modem

�tmi,j Time disturbance value
Ami The time that the goods arrives at node i transported through modem
Tm,ni The time after completing the goods’ transshipment task at node i from transport modem to n
xmi,j = 1 if the goods uses mode m between node i and j, or 0 in other cases
ym,ni = 1 if transshipment occurs for goods frommodem to n at node i, or 0 in other cases
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Figure 4. Solution space tree.

modes (i.e. highway transportation, railway transporta-
tion, waterway transport). An arc ei,j ∈ E which originates
from i and terminates at j by takingmodem can be identi-
fied by a triplet (i, j,m), wherem ∈ M and (i, j) ∈ V are two
adjacent stops of modem. There is cost and timeweights
at the arc, and the transport time is the interval data. A
path P(e1, e2, . . . , ek) is required to be found in the net-
work with the following properties: (1) P must start at s;
(2) the departure time at s must be to; (3) P must end at
d; (4) The minimum total transport time and the maxi-
mum total transport time required by Pmust be between
T and T̄ ; (5) the total transport cost of P is preferred to
be the minimum among all the other paths that have the
properties (1)–(4).

3.4. Robust optimization formulation

Under uncertain circumstances, based on the limited
information that has been learned, the following inter-
val estimations are made for the transport time between
nodes, that istmi,j ∈ (tmi,j , t

m
i,j + �tmi,j ). In an uncertain net-

work, it is of little probability for actual transshipment
time to obtain the interval boundary value. If tmi,j = tmi,j ,

the path selected in this situation may result in a fail-
ure to arrive at the destination on time; if tmi,j = tmi,j +
�tmi,j , the solution obtained in this situation is too con-
servative. To regulate the robustness and optimality of
the solution, the control parameter � therefore is intro-
duced. The disturbance range of transport time is con-
trolled by the value of the control parameter. The robust
optimization method is considered to be applied, that
is (tmi,j − tmi,j )/�tmi,j ≤ �. Through the value of �, the dis-

turbance of transport time in the interval is controlled.
The value of it is reasonably given according to the char-
acteristics of initial performance and impact strength

of uncertainties. And meanwhile, the value of the con-
trol parameter could also reflect the attitude of the
policy makers to avoid uncertainties. The larger the
value is, the more conservative the attitude towards
uncertainties.

Comprehensively considering the impact of the uncer-
tainties of multimodal transport network and timetable
limit on the multimodal transport path selection, this
paper establishes a multimodal robust path optimization
model that takes the total transport cost as the optimiza-
tion goal, which requests the goods to be transported to
the destination within the prescribed time. The model is
shown as follows:

minimize

⎛
⎝∑

m∈M

N∑
i=s

N∑
j=s

cmi,j d
m
i,j x

m
i,j +

∑
m∈M

∑
n∈M

N∑
i=s

cm,n
i ym,n

i

⎞
⎠

(1)
Subject to:

∑
m∈M

N∑
j=s,j �=i

xmi,j −
∑
m∈M

N∑
j=O,j �=i

xmj,i = 1 ∀ i = s (2)

∑
m∈M

N∑
j=s,j �=i

xmi,j −
∑
m∈M

N∑
j=s,j �=i

xmj,i = −1 ∀ i = d (3)

∑
m∈M

N∑
j=s,j �=i

xmi,j −
∑
m∈M

N∑
j=d,j �=i

xmj,i = 0 ∀ i ∈ N \ {s, d} (4)

M∑
m=1

xmi,j = 1 ∀ i, j ∈ N (5)

xmi,j + xnj,k ≥ 2ym,n
j ∀ m, n ∈ M; ∀i, j, k ∈ N (6)

tmi,j − tmi,j

�tmi,j
≤ � ∀ m ∈ M; ∀i, j ∈ N (7)

T ≤
∑
m∈M

∑
i∈N

∑
j∈N

tmi,j d
m
i,j x

m
i,j +

∑
m∈M

∑
n∈A

∑
j∈N

tm,n
j ym,n

j

+
∑
m∈M

∑
n∈M

∑
j∈N

[Bm,n
j − (Amj + Tm,n

j )] ≤ T̄ (8)

∑
m∈M

∑
i∈N

xmi,j =
∑
m∈M

∑
g∈N

xmj,g ∀j ∈ N (9)

xmi,j ∈ {0, 1} ∀m ∈ M; ∀i, j ∈ N (10)

ym,n
i ∈ {0, 1} ∀m, n ∈ M; ∀i ∈ N (11)

∑
m∈M

∑
n∈M

ym,n
j ≤ 1 ∀j ∈ N (12)
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cm(i,j) ≥ 0, cmi ≥ 0, dmi,j ≥ 0 ∀i, j ∈ N; ∀m ∈ M (13)

In the model, the objective function refers to the min-
imization of the total cost, including the transport cost
and transshipment cost. Equations (2)–(4)ensure that a
continuous path starts from a specified starting node
and ends at a specified destination. Equation (5) means
that only one mode of transport can be chosen between
two nodes. Equation (6) is the constraint for ensuring the
consistence of the transport. Equation (7) is the relative
robust control model. Equation (8) is the constraint of the
time requirement, composedof transport time, transship-
ment timeandwaiting time. Equation (9) ensures the flow
balance. Equations (10)–(11) mean that all the decision
variables are binary. Equation (12) means that the goods
canbe transshipped for only once at a node. Equation (13)
is a variable non-negative constraint.

4. Genetic algorithm design

The problem description and models previously demon-
strate that this path optimization problem can be
regarded as the SPPwith the interval data. In otherwords,
it is a problemof searchingoptimizedpathbetween cities
under certain constraints. Aron and Hentenryck (2004),
AverbakhandLebedev (2004, 2005)proved that theprob-
lem is NP-hard. There are many algorithms for solving
such optimization problems, such as accurate algorithm
of dynamic programming method, branch and bound
algorithm. However, these methods can only solve the
problem of smaller scale effectively, and the accurate
algorithm cannot resolve the contradiction between the
time complexity and the quality of the solution. And
it is difficult to determine the globally optimal solution
within an acceptable time. And it also cannot use to
solve our problem with timetable. The genetic algorithm
(GA), however, has its ownadvantages in solving complex
problems, which can reach the globally optimal solution
or satisfactory solution in a relatively shorter time, and
thus it has been widely applied (Rajarathinam, Gomm,
Yu, & Abdelhadi, 2017). Therefore, a genetic algorithm is
designed in this research to solve this problem.

4.1. Encoding scheme and the generation of the
initial population

4.1.1. Encoding scheme
Earlier, some researchers tried to adopt binary encod-
ing to solve the SPP. This encoding method is character-
ized by its simple genetic operators operation and the 2n

spaces. For example, in the network shown in Figure 1,
there are seven vertexes, which enjoy 27 = 128 encod-
ing spaces. However, there are only 18 solutions in the

Figure 5. Example of path and its encoding scheme.

path solution space from point 1 to point 7. As shown
in the figure, there are a large number of infeasible chro-
mosomes in this encoding method and the solution rep-
resented by the chromosome is not unique. As shown
in Figure 1, if the chromosome is {1111011}, it means
that the vertexes 1, 2, 3, 4, 6 and 7 are on the path,
but in this case, there are two paths 1–2–3–4–6–7 and
1–3–2–4–6–7. That is, the mapping between the encod-
ing and the path may be of a one-to-many relationship.
Since the multimodal transport network is large in scale,
the number of the shortest path cannot be known in
advance. For the path may become longer, the length
of the chromosome should not be fixed. In addition,
since loops are not allowed, the number of nodes on
the path will not be more than the number of nodes in
the network. Therefore,to efficiently find out the short-
est path, the algorithm must satisfy at least the follow-
ing two requirements in coding: (1) use serial numbers
of the codes in encoding and (2) use variable-length in
encoding. Based on this, this paper designs a path encod-
ing method of a variable length. For there are multiple
modes of transport in multimodal transport network, the
chromosome is divided into two segments to make it
more convenient for encoding. The first segment repre-
sents the codes of nodes that the paths pass through
and the second segment represents the transport modes
between different nodes. The corresponding transport
scheme of chromosome decoding is shown in Figure 5. In
crossover andmutation, it is necessary to insert the trans-
port modes into the gaps of the first segment. The num-
bers in the chromosome refer to the nodes on the path,
while the letters represent the transport modes between
two nodes.

4.1.2. The generation of the initial population
In the GA, the initial population may directly affect the
convergence speed and results of the algorithm. This
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research, therefore, based on the characteristics of multi-
modal transport, proposes a heuristic method as follows
to initialize population. This method is high in efficiency
and helpful in avoiding loops. See the steps as follows:

Step 1: make connection matrix according to the
transport network. That is, as long as there is one
mode of transport between two nodes, the nodes
are connected. The weight of the matrix edge takes
the minimum value of the weight of each connected
transport mode.
Step 2: produce the first segment of the chromo-
some with Floyd algorithm and choose the transport
modes between nodes to produce the second seg-
ment of the chromosome, and then, an initial chro-
mosome will be prepared.
Step 3: as the number of populations has reached the
required number, stop it; otherwise, randomly gen-
erate decimals from 1–2 and multiply the weights of
the arcs of the path, and then update themultimodal
network weights, return to step 2.

4.2. Evaluation function and constraints judgement

In theGA, the fitness function is used to indicate the supe-
riority and inferiority of the individual, and the higher
the fitness, the higher the probability that the individ-
ual passes its characteristics to the next generation. The
objective function of the model established in this paper
is to find theminimumvalue. However, in the fitness func-
tion, the fitness is required to be as large as possible. In
this sense, the objective function cannot be directly used
as fitness function F. This paper takes the reciprocal of the
objective function as the fitness function, specifically:

F = 1/

⎛
⎝∑

m∈M

N∑
i=s

N∑
j=s

cmi,j d
m
i,j x

m
i,j +

∑
m∈M

∑
n∈M

N∑
i=s

cm,n
i ym,n

i

⎞
⎠

(14)
In this model, there is a constraint that the total trans-
port time should not be more than the transport time
limit, but in the evolution of the algorithm, the transport
time of some individuals may bemore than the transport
time limit, and the evolution efficiency of the algorithm
would be probably lowered. Therefore, it is necessary to
control and adjust the populations according to follow-
ing steps: (a) Calculate the total transport time of the
scheme represented by the individuals. (b) Determine
whether the total transport timeof the individuals ismore
than the transport time limit, if so, delete the individual
from the population according to a certain probability.

(c) If there are q individuals are deleted in step (b),
then copy q individuals randomly from the remaining
population to keep the population size constant.

4.3. Genetic operator design

4.3.1. Selection
There are several selection methods, including random
pairing, weighted random (roulette wheel) pairing and
tournament selection. The roulette wheel pairing is used
in this study. In this method, the probability assigned to a
chromosome is inversely proportional to its cost.

4.3.2. Crossover
Crossover operation is an important feature of GA that
distinguishes it from other evolutionary algorithms. It
plays a key role in GA and is the main method for gen-
erating new individuals. Since the encoding in this paper
is a path encoding with indefinite length, if a traditional
single-point crossing or multi-point crossing strategy is
adopted, it will possibly and inevitably result in illegal
path P, which would be infeasible.

For there are two cases of chromosomes selected
for cross-operation: first, two parent chromosomes share
the same nodes (except the starting node and the final
node); second, the two parent chromosomes do not
have the same nodes. Therefore, an improved single-
node crossover method is designed to conduct crossover
operation on the first segment of the chromosome. For
the first case, we use the same nodes to conduct cross-
operation. Assuming that P1 = (v1, v2, . . . , vk) and P2 =
(v′

1, v
′
2, . . . , v

′
k) are the path nodes of the 2 chromosomes.

Select a same node from the starting point as the inter-
section point in these two chromosomes, and switch the
parts after the same node. If there are multiple iden-
tical nodes, then randomly select one sharing node as
the intersection point. For example, as vi = v′

i , then the
following two new chromosomes (v1, v2, . . . , v′

i , . . . , v
′
k),

(v′
1, v

′
2, . . . , vi, . . . , vk) can be obtained. Obviously, these

two new chromosomes are also a feasible path from
the starting point 1 to the ending point k. Consider the
network shown in Figure 1 as an example. This type of
crossover operation is shown in Figure 6(a). Since the net-
work in reality is often incomplete, for the second case,
because it is possible to create illegal individuals in cross-
operations, it is necessary to correct the illegal individuals.
Taking the network illustrated in Figure 1 as an exam-
ple, assume that node 1 is the starting node and node
7 is the destination node. Two valid paths 1–3–6–7 and
1–2–4–5–7 are selected as the parental chromosomes. As
shown in Figure 6(b), a gene position {3, 2} is randomly
selected for crossover operation. The child 2 generated
after the crossover operation is an illegal path. There is
no arc segment between node 2 and node 6. For this pur-
pose, find a valid path fromnode 2 to node 6 according to
the method described in 4.1 to make the child 2 chromo-
some a valid path. In addition, it should be noted that in
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Figure 6. Example of the crossover procedure.

Figure 7. Sketch map of a loop.

the chromosomes generated after crossover, therewould
be duplicated genes, suggesting that a loop appears in
thepath as shown in Figure 7,which then shouldbe elimi-
nated. The duplicate genes can be deleted. That is, delete
the genes between the duplicate genes. For instance, if
the chromosome generated after crossover operation is
P = {1, 2, 4, 5, 4, 3, 6, 7}, after eliminating the duplicated
gene, it will become P = {1, 2, 4, 3, 6, 7}. After completing
the crossover on the first segmentof the chromosome, for
the gene parts remain unchanged, keep their transport
modes on the second segment of the chromosome. As
for the parts which have been charged, randomly select
transport modes between nodes to generate their corre-
sponding second segment parts.

4.3.3. Mutation
The chromosomewouldbeeasily trapped in local optimal
solutions during selection and crossover operation, while
mutation operators are able to endow GA with the abil-
ities of local random searching, maintaining population

diversity and avoiding premature convergence. Single-
pointmutation is thenadopted in this researchon the first
segment of the chromosome. The specific operation is as
follows: (1) Generate a random number r between 0 and
1, if r is less than the mutation probability pm, the gene
positionof the chromosomeshouldbe randomly selected
with a certain probability vi.(2) Cut the path after vi and
locally optimize the segment of the gene with the Floyd
method. Starting from the gene vi, re-grow the path to
obtain a new chromosome (path) as shown in Figure 8. If
a loop appears aftermutation, process it with themethod
described in the crossover operation. In addition, what
calls for special attention is that there may be no accessi-
ble path from the mutated node to the destination. If so,
find the previous node connected to the mutated node
and adopt the Floyd method to generate a path from
vi−1 to the destination. If there is still no path from vi−1

to the end, continue to find the previous node, and so
on until find the path. Combine the path from the start-
ing node to vi−1 with the path from vi−1 to the destina-
tion to replace variant chromosome. After the mutation
operation on the first segment of the chromosome, for
the gene parts remain unchanged, keep their transport
modes on the second segment of the chromosome. As
for the parts which have been charged, randomly select
transport modes between nodes to generate their corre-
sponding second segment parts. The following formula is
used to adjust the mutation probability so as to enhance
the search ability for the optimal solution of the popula-
tion at the later stage of iteration.

pIm = pI−1
m

I0.5
(15)

In the formula, I represents the iteration times.
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Figure 8. Example for mutation.

4.4. Elitism strategy and stopping conditions

Elitism strategy is also adapted to update the global opti-
mal solutions. And the maximum iteration times is taken
as the ending condition.

4.5. Populationmanagement strategy

In the algorithm, two kinds of population management
strategies are adopted. One is a single-population strat-
egy that satisfies a given population size N. That is, it
is able to conduct selection, crossover and mutation
operations on the whole population. It is called single-
population strategy genetic algorithm (SGA). According
to whether genetic mutation probability adjustment is
adopted, it again can be divided into SGA-1 with fixed
mutation probability and SGA-2 with mutation proba-
bility and adjusted by iteration times as Equation (15).
The other is a multi-population strategy that satisfies a
given population size N. To be specific, N is randomly
divided into n sub-populations. And operations of selec-
tion, crossover and mutation are carried out on each
of the sub-populations. In each evolution, conduct the
crossover operation on optimal solutions of each sub-
population to produce a new individual. And then, the
fitness value is calculated. Select the optimal solution

Figure 9. Transport network.

from the local optimal solutions, the new individual fit-
ness values and the current global optimal solutions to
update theglobal optimal solution. Thismethod is known
as multi-population strategy genetic algorithm (MGA).
Similarly, according to whether genetic mutation proba-
bility adjustment is adopted, it can be divided intoMGA-1
with fixedmutation probability andMGA-2with variation
probability and adjusted by iteration times.

5. Experiments

This study generated a directed lattice graph with nom-
inal travel time and cost of each arc independent. The
generated graph is a 5 × 5 lattice graph, as shown in
Figure 9. Vertex 1 (upper left corner) is the departure
point, and Vertex 25 (lower right corner) is the destination
point. There are three transport modes, highway, railway
and waterway available between two nodes. H, R and
W, respectively, represent highway, railway and water-
way. Because the RSPP for the multimodal transporta-
tion considering timetable with the interval data is a rel-
atively new issue, there is no standard case library for
testing. Thus, the study needs to construct test data by
its own. The most generally used two methods for con-
structing data: one is random generation, and the other
is modification based on existing instances. Due to the
lack of authoritativeness and representativeness of the
data that is generated randomly, the examples used in
this research are modified based on the Solomon stan-
dard examples (Solomon, 1987). In Solomon’s case, the
data are divided into three types: C-type, R-type and
RC-type. This research selects the first 25 nodes in
Solomon’s R101 to map the nodes in Figure 9. The
Euclideandistance/90 (km/h)betweennodes inSolomon’s
nodes indicate the average transport time by highway,

Table 2. Parameters about the transport operation.

Modes Road Rail Water

Transport speed at different modes (km/h) 90 60 40
Transport cost at different modes (Dollar/km) 4 1 0.60

8:00 9:00
10:30 12:00

Timetables ∼ 12:00 13:30
14:30 15:00
17:30 18:00
20:00

Table 3. Parameters of the transshipment operation.

Transshipment time between
different modes (h)

Transshipment cost between
different modes (Dollar)

Modes Road Rail Water Road Rail Water

Road 0 0.12 0.14 0 3 3
Rail 0.12 0 0.16 3 0 5
Water 0.14 0.16 0 3 5 0
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Euclideandistance/60 (km/h) represents theaverage trans-
port time by railway and Euclidean distance/40 (km/h)
demonstrates the average transport time by waterway.
The disturbance time is equal to the average transport
time. Supplementary data: the transport speed, trans-
port cost and timetables for transport mode are shown in
Table 2. The transshipment time and cost between differ-
ent modes of transport are shown in Table 3. Supposing
that we now need to transport a batch of goods from
starting node 1 to the destination 25 at 8:00, and the
goods is required to carry to the destination 25 in 2000
to 4000min. So how can we arrange the transport so that
the transport cost will be the lowest.

Set the population size N=100, the maximum iter-
ation times Maxgen=50, B represents the best fitness
value, A refers to the average fitness value, C is the itera-
tion times to find the best fitness value, t is the calculation
time while T represents the total transport time. Then
it was calculated with software on a computer with a
CPU of Intel Core (I5), and a memory of 4.0 GB. When
� = 0.1, after constant adjustment of the crossover as
well as mutation probability, use SGA-1, SGA-2, MGA-1
and MGA-2 to conduct the calculation. Table 4 shows
that the minimum cost learned from the four calculating
methods is 1282. The continuous varying of fitness cal-
culated by each algorithm indicates that the algorithm
has a strong ability in maintaining population diversi-
ties and avoiding inferior solutions, which is able to
prevent the solutions from being trapped in local opti-
mal solutions. In addition, the table also shows that the
four calculating methods and objective function values
will get stable in a short period, demonstrating that the
algorithm is of satisfying efficiency. In MGA-2, with dif-
ferent crossover and mutation probabilities, the objec-
tive function becomes stable after less than 20 iterations.
And the population then becomes homogeneous pop-
ulation. All the time taken is less than 6 s. Therefore, we
say the MGA-2 is the most stable and efficient calculation
method.

When the crossover probability is set to 0.8, the muta-
tion probability is 0.1, � = 0.1 and the iteration times is
50, adjust the size of the population and then conduct
calculation with the four calculationmethods. The results
are shown in Table 5. From the table, it also can be seen
that in the four calculation methods, the objective func-
tion values all could become stable within a short time,
which further shows that the initial population genera-
tion method designed in this research is satisfying. Addi-
tionally, MGA-2 still uses less than 20 iterations to make
the objective function values stable. The calculation time
is still less than 9 s.

As population size N=100, the max iteration times
Maxgen=50, crossover probability is set to be 0.8 and

Table 4. Results of the four calculating methods under different
crossover and mutation probabilities.

pc 0.8 0.8 0.8 0.6 0.7

pm 0.1 0.2 0.05 0.1 0.1

SGA-1 B 1306 1527 1354 1511 1282
A 3787 4738 4372 4285 4125
C 15 16 21 24 19
T 6.57 7.517 5.668 6.288 7.04

MGA-1 B 1282 1306 1306 1282 1282
A 4915 4684 5394 5227 5308
C 42 13 3 46 42
T 6.34 7.894 5.555 6.119 6.323

SGA-2 B 1282 1282 1306 1306 1282
A 4626 4804 4480 4636 4892
C 21 22 23 21 33
T 5.334 5.126 4.944 4.894 4.925

MGA-2 B 1282 1282 1282 1282 1282
A 4980 4139 5005 4716 4278
C 7 10 13 13 16
T 5.505 5.450 5.153 4.927 5.322

Table 5. Results of the four calculating methods under different
crossover and mutation probabilities.

Maxgen 50 50 50

N 100 80 160

SGA-1 B 1306 1511 1282
A 3787 4448 4239
C 15 30 38
T 6.565 4.991 10.223

MGA-1 B 1282 1354 1282
A 4915 5294 4891
C 42 30 152
T 6.344 5.11 9.561

SGA-2 B 1282 1527 1282
A 4626 4186 3934
C 21 34 40
T 5.334 2.22 4.328

MGA-2 B 1282 1282 1282
A 4980 4923 4478
C 7 19 14
T 5.505 4.206 8.065

mutation probability 0.1, � is 0, 0.5, 0.75, 1. Adopt MGA-2
to conduct the calculation. The convergence of objective
function values at different control levels then obtained
is shown in Figure 10.

The figure indicates that with the increase of the
parameter � with uncertain level, the total cost increases
as well. In the robust optimization model, the uncer-
tainty level parameter, to some extent, is able to mea-
sure decision-maker’s conservativeness and risk aversion.
Therefore, the decision-maker can choose appropriate
� according to their risk aversion level, and then deter-
mine the transport scheme in the uncertain environment.
When the control parameter is 0, the transport cost of
the path is the smallest, but it is, at the same time, the
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Figure 10. Convergence of objective function values at different control levels.

most unstable. When the control parameter is 1, that
means the decision-maker intends to avoid risks, and
the value of the total cost reaches the maximum. At the
time, the robustness of the decision-making scheme is
the strongest, while the optimality is the worst. When
the control parameter is 0.5, the decision-maker holds
mutual attitude towards risks, and the value of the total
cost ismoderate. In addition, as the robust control param-
eters increase, the required transportation costs increase
accordingly. The transport schemes and required trans-
port costs at different control levels are shown in Table 6.
It shows that when the robust control parameter is 0,
without considering uncertainties, the smallest value of
objective function is 1166. And as the parameter goes up
to 0.5, the smallest value obtained is 3519. Since the fea-
sible region becomes smaller at the time, the minimum
cost of the path suggested is obviously greater than that
in the situation when the robust control parameter is 0.
Similarly,when the robust control parameter is 1, themin-
imum cost of the path suggested is also more than the
minimum cost in other situations, indicating that it is bet-
ter in robustness. The fewer the paths satisfying the time
limit, the more the cost required.

Table 6. Multimodal transport solutions under different control
parameters.

� B T C Transportation scheme

0 1166 4860 24 1
−→
W 6

−→
R 7

−→
W 8

−→
W 9

−→
W 14

−→
W 19

−→
W 20

−→
W 25

0.5 3519 3223 22 1
−→
W 6

−→
W 11

−→
H 12

−→
R 17

−→
R 18

−→
R 23

−→
H 24

−→
H 25

0.75 3832 2640 24 1
−→
H 6

−→
W 7

−→
H 8

−→
R 13

−→
H 14

−→
H 19

−→
W 20

−→
W 25

1 4157 2340 41 1
−→
H 6

−→
W 7

−→
H 8

−→
R 13

−→
H 14

−→
H 19

−→
W 20

−→
W 25

6. Conclusion

An RSPP for multimodal transportation considering time
table with the interval data has been given in this paper.
And then, based on the characteristics of the model, a
GA has been designed to find the solution. The example
shows that the model and algorithm have good robust-
ness and are able to solve this path selection problem.
Therefore, it is able to provide a scientific quantitative
support to the path scheme selection in the multimodal
transport under various uncertainties.
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