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A rapid and flexible parallel approach for viewshed computation on large digital elevation
models is presented. Our work is focused on the implementation of a derivate of the R2
viewshed algorithm. Emphasis has been placed on input/output (IO) efficiency that can be
achieved by memory segmentation and coalesced memory access. An implementation of
the parallel viewshed algorithm on the Compute Unified Device Architecture (CUDA),
which exploits the high parallelism of the graphics processing unit, is presented. This
version is referred to as r.cuda.visibility. The accuracy of our algorithm is compared to the
r.los R3 algorithm (integrated into the open-source Geographic Resources Analysis
Support System geographic information system environment) and other IO-efficient
algorithms. Our results demonstrate that the proposed implementation of the R2 algorithm
is faster andmore IO efficient than previously presented IO-efficient algorithms, and that it
achieves moderate calculation precision compared to the R3 algorithm. Thus, to the best of
our knowledge, the algorithm presented here is the most efficient viewshed approach, in
terms of computational speed, for large data sets.

Keywords: viewshed; line of sight; large terrain maps; CUDA; GPU

1. Introduction

Many interesting applications, such as visibility studies in archeology (Lake et al. 1998,
Lake and Woodman 2003) or siting problems (Franklin and Vogt 2006, Magalhães Salles
et al. 2011), require a viewshed analysis. For example, landscape architects can use a
viewshed analysis to determine the visual impact of new structures (Kvarfordt 2010).
During the geographic planning of modern wireless communication networks, a viewshed
analysis is frequently used (Dodd 2001). Viewshed analyses range from determining the
impact of a new standing structure to calculating signal-propagation conditions. In some
cases, limits must be introduced to the vertical and horizontal angle of view to best represent
the antenna radiation pattern. To increase the accuracy of such a representation, the effective
curvature of the Earth is also considered. In some applications, it is necessary to adjust the
effective curvature of the Earth to best represent the radio signal diffraction effect.
Compared to optical visibility, radio signals are less susceptible to shadowing by obstacles.

For a more accurate analysis, detailed, high-resolution maps are required. Due to the
increased size of such map data sets, viewshed analysis becomes a very time-consuming
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operation. Using well-known algorithms, the computation time of large data sets can
amount to several hours (Lake et al. 1998).

Our daily work involves the use of geographic information systems (GISs) for radio
network planning tools (Hrovat et al. 2010). One of the essential components of radio
network planning tools is the viewshed module, which, in cooperation with other radio
modules, produces the required prediction results.

Several algorithms for viewshed calculations are currently known (Toma 2012). A
straightforward approach to determine the visibility from a given point of interest (POI),
called the R3 algorithm, requires O(n3) time for the entire map. The algorithms R2 and
XDraw are adaptations of R3. Both run on O(n2) time at the expense of accuracy. All the
three algorithms were described in Franklin and Ray (1994).

A different approach, the sweep algorithm, was described in van Kreveld (1996); this
algorithm requires O n

ffiffiffi
n

pð Þ time for calculation. Van Kreveld improved the algorithm to
require only O(n lg n) time for viewshed calculation.

To achieve an acceptable user experience in real-time applications, a faster implemen-
tation of the viewshed algorithm is needed. A significant increase in speed can be
achieved using the Compute Unified Device Architecture (CUDA) to exploit the paralle-
lism of graphics processing units (GPUs). Various effective methods can be applied, as
described in NVIDIA Corporation (2013), and different algorithm implementations can be
used (Xia et al. 2011, Tabik et al. 2013, Zhao et al. 2013). However, not all viewshed
algorithms are equally suitable to be parallelized. We will show that a parallel implemen-
tation of the R2 algorithm can be very efficient. The R2 algorithm has been criticized for
not being input/output (IO) efficient (Toma 2012). We will demonstrate that our parallel
implementation is IO efficient and that it can be used with massive data sets within a very
short computation time. This is, to the best of our knowledge, a novel method for
viewshed computation.

In this article, a parallel approach for a derivative of the viewshed R2 algorithm on digital
elevation model (DEM) maps is presented. The focus of our work is on the performance
attributes of the algorithm, increasing the algorithm’s flexibility regarding the map size and
maintaining the accuracy of the algorithm within practical limits. The proposed implementa-
tion of the R2 parallel algorithm, named r.cuda.visibility, is implemented in a CUDA GPU.
This algorithm is accurate compared to the sequential R3 algorithm (Shapira 1990) imple-
mented in the Geographic Resources Analysis Support System (GRASS) GIS environment
(GRASS GIS 2013). We also implement a derivative of the R2 algorithm in a sequential
version, called r.cpu.visibility. An efficiency comparison was made between the r.cuda.
visibility, r.cpu.visibility, and TiledVS (Ferreira et al. 2012). The source code of our imple-
mentation is available at the following website: http://viewshed.s51mo.net.

The remainder of the article is organized as follows. In Section 2, preliminaries and
background information are provided. In Section 3, a brief CUDA tutorial is provided. In
Section 4, the proposed version of the R2 parallel algorithm is described. The implemen-
tation of the parallel algorithm is described in Section 5. In Section 6, procedures for
optimizing the implementation of the algorithm in regard to the variable type and
occupancy analyses are presented. Memory considerations are described in detail in
Sections 7 and 8. The influence of the number of segments is elaborated in Section 9.
A comparison of several algorithms is presented in Section 10. Related works are
reviewed in Section 11. Conclusions, discussion, and future work are presented in
Section 12.
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2. Background

A viewshed analysis is generally calculated on DEM data sets, which are stored in data
files. In the context of this work, DEMs assembled from regular square grids (RSGs) are
used. Each grid cell of the RSG holds a value indicating the terrain elevation above sea
level. In our case, these values are stored as four-byte signed integers, expressed in meters.

A POI, or viewpoint, is the viewer’s location on the terrain map (Figure 1). The POI
has several parameters: the position coordinates (x,y), the DEM value, and the arbitrary
height above ground level (explained in Section 4.4).

For the purpose of a specific application (e.g., antenna radiation pattern representa-
tion), the POI can include additional parameters: azimuth, elevation, and the horizontal
and vertical view angle ranges.

A ray (calculation path) traversing the grid cells is defined from the POI toward every
edge grid cell on one of the four DEM borders. Our algorithm always takes rays from the
POI to the edge of the map, in contrast to the original R2 algorithm, which takes rays from
the POI to the perimeter of the range. We chose this approach primarily because of its simple
implementation (there is no search procedure for grid cells on the perimeter range). At the
same time, improvements in accuracy were achieved due to the increased density of rays.

The number of rays N used in a viewshed calculation is therefore independent of the
range and is described by the equation N = 2C + 2R–4 ≈ 2C + 2R, where R is the number
of rows and C is the number of columns in the DEM.

3. Introduction of CUDA

Because our parallel implementation of the R2 algorithm is implemented in CUDA, we
will briefly introduce some terms. CUDA uses different memory types (Figure 2a), which
differ according to their speed, reachability, writability, and validity. Registers are the
fastest, and they are accessible only inside a thread. Shared memory is slightly slower.
Threads inside one block can communicate with each other through shared memory. The
number of registers and the amount of shared memory is defined per block. The content of
registers and shared memory are valid inside one thread block.

Global memory is the largest and slowest memory type. The content is retained
through all kernel launches until the memory is freed. Constant memory is optimized
for broadcast, i.e., when the threads in a warp all read the same memory location. Texture
memory has implemented additional hardware functions, such as interpolation. Texture
memory is optimized for 2D spatial locality. When a read is being broadcast to the
threads, constant memory is much faster than texture memory.

A kernel is parallel code executing on different data sets. Threads are organized into blocks
and grids (Figure 2b). During the execution, threads can only communicate with each other

Figure 1. DEM, rays (calculation path), and point of interest.
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inside a single block. Blocks cannot communicate with each other because of the random
order of the execution of the blocks inside a grid. If several kernel launches are sequential
(which is true in our case), grids can communicate with each other through global memory.

In a host, we use pinned memory for map data storage. Pinned memory is memory
guaranteed to be allocated on the main host memory unless there is not enough room.
Pinned memory is memory allocated using the cudaMallocHost function, which prevents
the memory from being swapped out and provides improved transfer speeds.

4. Algorithm implementation

The main focus of our implementation of the R2 algorithm is to calculate visibility on a huge
volume of data that do not fit in the internal memory. At the same time, we want the fastest
possible data processing. We completed two main versions of the implementation: sequential
and parallel. The key point in the simple and effective implementation of both the parallel and
the sequential versions is segmenting the map into bands called segments. In other words, the
map is divided into longitudinal segments in the most natural way, which allows for quick
read, write, and copy operations using well-known standard C and CUDA functions.

Parallel implementations usually require a different approach than sequential ones.
The current implementation of the parallel R2 viewshed algorithm is realized with a
combination of sequential and parallel (CPU and GPU) methods. A sequential method is
used for copying data sets to and from the GPU, whereas a parallel method is imple-
mented in the kernel to accomplish the viewshed calculation. The main advantage of the
parallel version of our implementation is that reading global data inside the kernel is
coalesced to a certain degree (Section 7).

In our algorithm, we use interpolation within the kernel. By using texture memory for
interpolation purposes, the benefit is an approximately 10% faster computation time of the
kernel. The drawbacks are inflexible memory manipulation (segment size is not flexible)
and a limited set of interpolation methods. Therefore, we avoid the use of texture memory.
The interpolation is described in Section 4.5.

Figure 2. CUDA memory hierarchy (a) and logical representation of the CUDA programming
model (b).
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In the following sections, we refer to the desktop computer as the host and to the GPU
as the device, i.e., host memory means the RAM memory on the desktop computer,
whereas device memory means the global memory on the GPU.

4.1. Terrain segmentation

The input data set used in the viewshed analysis is the DEM stored in a file on the host
data storage and is referred to as the input map. The size of the entire input map is R · C,
where R is the number of rows and C is the number of columns. Each grid cell of the input
map contains a value that represents the elevation above sea level. The input map is
schematically shown in Figure 3a.

The output data set is the same size as the input data set and is referred to as the output
map. The output map is schematically shown in Figure 3b. Each grid cell of the output
map contains a value, with information on whether a particular grid cell is visible.

If a large DEM map is used to calculate the viewshed analysis, it cannot be stored on
the host or the device in one part. Our goal is to be able to process much larger maps than
the memory capacity of a host or device. To achieve this goal, larger input maps and
output maps are divided into equally sized strips (segments).

The number of segments (Seg) corresponding to the terrain segmentation can be
calculated using Equation (1), where Mm is the memory size of the input map
(Mm = R · C · Sdtype, where Sdtype is a variable size in bytes, representing the grid-cell
data type; e.g., for the integer type, Sdtype is 4) and Mg is the smaller value of the amount
of global memory available on the device and the free host memory. Other data must also
be stored in global memory (Ma), i.e., the horizon vector (explained in Section 4.3), and
the parameter data for cooperation between blocks of kernel code during ray coordination
and synchronization. The constant 4 in Equation (1) represents the double buffer used for
the input and output maps.

The memory size needed for a segment (Ms) can be calculated using Equation (2).

Seg � 4 �Mm

Mg �Ma

� �
(1)

Figure 3. Input DEM map (a) and output viewshed map (b).
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Ms ¼ Mm

Seg
þ 2 � C � Sdtype (2)

A framework of the flowchart of the proposed implementation of the R2 parallel
algorithm is depicted in Figure 4. The parallel part of the algorithm is carried out in the
element KERNEL. Note that different kernels are executed serially and must not overlap.
Each execution of the kernel calculates data in one segment. All other elements on the
flowchart are based on sequential methods.

The input segment is read into the host pinned memory (Pinned Memory 2013) and
then copied to the device global memory. Once the input segment is in the device global
memory, the kernel for the viewshed computation can be started. The kernel executes the
viewshed analysis only on the loaded input segment. For proper algorithm operation over
all the segments, the intermediate segment results (angular elevation) are stored in the
horizon vector. These intermediate results are used as working parameters during the
calculation of the subsequent segment.

The segment results of the viewshed kernel (visibility) are stored in the output
segment in the device global memory, which is the same size as the input segment. The
output segment is then copied from the device global memory to the host pinned memory
and then written to the data-storage temporary segment map.

The described steps are repeated as many times as there are segments. The order of
processing segments is very important, i.e., starting with the segment where the POI
resides, followed by adjacent segments toward the north and continuing until the northern
edge of the map is reached. The same procedure is followed toward the southern edge of
the map. For example, in Figure 3, segment 2 is processed first. Then, this sequence is
followed: segment 1, segment 0, and segment 3.

At the end of the algorithm, all the segments, which are stored in the temporary
segment maps, have to be merged into the output map in the proper order.

4.2. Ray path and ray step

As noted in Section 2, rays always start at a POI and travel toward the horizon edge, thus
traversing several grid cells along their path. A ray path is a straight line traversing from
the POI to the horizon edge. The calculation points are the exact points on the ray where

Figure 4. Framework flowchart of the parallel implementation of the R2 algorithm.
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the calculation of the viewshed is performed (Figure 5). The distance between two
adjacent calculation points on each ray is determined by the ray step. The ray path and
ray step are unique for each ray and are defined before the beginning of the visibility
calculation.

The pair (xpoi, ypoi) represents the POI coordinates, and the pair (xhorizon, yhorizon)
represents the coordinates of the edge point on the horizon for each ray; thus, each ray
path is a line between (xpoi,ypoi) and (xhorizon, yhorizon).

For each ray, two unique ray step parameters must be calculated: xstep and ystep. There
is a similar approach for calculating the ray steps toward the north/south (Equation (3))
and east/west (Equation (4)), where sgn() is the sign function.

xstep ¼ xhorizon � xpoi
yhorizon � ypoi
�� �� ; ystep ¼ sgn yhorizon � ypoi

� �
(3)

xstep ¼ sgn xhorizon � xpoi
� �

; ystep ¼ yhorizon � ypoi
xhorizon � xpoi
�� �� ; (4)

4.3. Horizon vectors

The horizon vectors are stored as four double-precision vectors in the device global
memory. Altogether, the horizon vectors have N elements. Each vector represents one
border edge of the output map, namely, north (Vn), south (Vs), east (Ve) and west (Vw), as
shown in Figure 3b. Vectors Vw and Ve consist of R elements and Vn and Vs of C elements.
At the beginning of the calculation, each element of all four vectors is set to –π/2
(minimum value). This value represents the angle of view directly toward the ground.
The value 0 represents the view straight toward the horizon and the value π/2 represents
the view straight up toward the sky.

At any given moment during the viewshed calculation, the horizon vector holds the
temporary maximum angular elevation (α) for each ray (Section 4.4). These values are
based on the maximum obstacle height on the corresponding ray.

4.4. Visibility calculation

The visibility property is calculated for each ray. Each thread on the device is responsible
for the computation of one ray. At every calculation point on the ray, the distance d from

Figure 5. Ray paths and calculation points.
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the POI is calculated using Equation (5), where (xd, yd) is the coordinate of the current
calculation point.

For every calculation point on the ray, the vertical angle (angular elevation) α is
computed (Equation (6) and Figure 6), where hd is the DEM value at point (xd, yd), hpoi is
the DEM value at point (xpoi, ypoi), hobs is the additional height above ground level, and hc
is the Earth-curvature height correction factor (described in Section 4.7).

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xpoi � xd
� �2 þ ypoi � yd

� �2q
(5)

α ¼ arctan
hd � hcð Þ � hobs þ hpoi

� �
d

� 	
(6)

The value α at a calculation point is compared to the element of the horizon vector V
(the horizon vector V could be Vw, Ve, Vn, or Vs, depending on the direction the ray is
pointing). When a new value α is greater than the existing one in the element of vector V,
the greater value replaces the old value, and the current grid cell in the output segment is
marked as visible if additional conditions are fulfilled (the nearest-ray approach, explained
below in Section 4.5). If, in contrast, a new value α is smaller than the existing value in
the element of vector V, nothing is modified and the visibility status of the current grid cell
in the output segment remains the same.

4.5. Linear interpolation and nearest-ray approach

The elevation of each grid cell is defined at its center. In viewshed analysis, the calcula-
tion points frequently lie outside the grid-cell center, which leads to errors due to the
granularity of the elevation map. The map granularity can be reduced using interpolation
between neighboring grid cells. For proper interpolation, at each calculation point, two
calculation parameters must be determined. The first parameter is the elevation (height)
level of calculation point hcp; the second parameter is the distance between the calculation
point and the center of the nearest grid cell dn.

An interpolation example is shown in Figure 7a. For the linear interpolation, the
interpolated elevation values at calculation point hcp can be calculated using Equation (7),

(xd,yd,hd - hc)

(xpoi,ypoi,hpoi)

distance d

Point of Interest
visible area

POINT
OF

INTEREST

slope angle
α

α

h
o

b
s

Figure 6. Cross-section of terrain (ray) showing the visible area from the POI and slope angle α.
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where h1 and h2 are elevation values of neighbor grid cells, d12 is the distance between the
centers of adjacent grid cells, and d1cp is the distance between the calculation point and the
cell center of the first grid cell.

hcp ¼ h1 þ d1cp
d12

h2 � h1ð Þ (7)

In the north/south direction, two horizontally adjacent grid cells are selected for
interpolation. In the east/west direction, two vertically adjacent grid cells are selected
for interpolation (Figure 7a).

The nearest-ray preference approach contributes to a more realistic computational
result of the viewshed algorithm. Many rays can traverse a particular grid cell, especially
if the grid cell is near the POI. The nearest-ray strategy determines the visibility criteria of
the resulting grid. Logical ‘OR’ operations, used to combine adjacent rays, lead to an
optimistic result. If, however, logical ‘AND’ operations are used, a pessimistic result is
achieved.

The nearest-ray approach, using only the ray that traverses nearest to the cell center, is
adopted in the implemented algorithm. The value dn is used for the proximity criterion. If
the ray traverses closer to a grid cell with elevation h2, then dn = d12–d1cp (Figure 7a). If
the ray traverses closer to a grid cell with height h1, then dn becomes equal to d12.

For example, in Figure 7b, rays 3, 7, and 10 are used for the grid-cell visibility
decision. Although the majority of rays do not have any effect on the visibility result, they
are considered for horizon vector update. The presented approach contributes to a more
realistic viewshed analysis (presented in Section 10.2).

d
12

d
nd

1cp

h
cp

h
cp

h
2

h
2

h
1

h
1

4

Figure 7. Linear interpolation (a) and nearest-ray approach (b).
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4.6. Resemblance of viewshed rays and CUDA threads

Each viewshed ray should be calculated by its own CUDA thread. The basic feature of the
R2 algorithm requires that the ray needs information if it is the nearest ray traversing a
particular grid-cell center. When more than one ray traverses the particular grid cell, only
the nearest ray to the grid-cell center determines whether this particular cell is visible.
Clearly, there must be some mechanism to determine which ray is closer to the center of
the grid cell. This mechanism works in the following way: for each ray, the distance is
calculated from the current traversed grid-cell center. Then, one must determine whether
the ray is closer to the grid-cell center than any neighboring ray(s). To achieve this, one
must know the distance of the neighboring ray(s) from the center of the grid cell. If the
distance(s) of the neighboring ray(s) is greater than the distance of the ray of interest, then
the ray of interest is the nearest ray. Only the nearest ray resolves the current cell grid
visibility (Figure 7b).

Different rays (threads) can exchange data with each other only through shared
memory. In CUDA, there is a limitation that threads can use the same shared memory
only within a block, whereas blocks inside one kernel are independent and cannot
exchange data among themselves. The typical maximum number of threads per block
for current CUDA units is 1024. There are also limitations on the size of the shared
memory per block, and for our CUDA device, this size is 49,152 bytes.

In each calculation grid cell, inside a kernel’s for loop, the current offset data (distance
from grid-cell center) are written to shared memory. After that, synchronization among all
threads should be performed with _syncthreads(). As a consequence, all threads are
synchronized, and their offset data are written to the shared memory at this point. The
data from the neighboring threads can now be read from shared memory.

Because blocks cannot exchange data among themselves inside the kernel, we take an
intertwined thread approach (Figure 8). The last two threads from a particular block and
the first two threads from a consecutive block are used for the calculation of the same two
rays. Using this technique, all blocks are intertwined by two threads. The first and last
thread from each block are not directly used to calculate visibility, but only to calculate the
nearest ray. All other threads directly participate in the viewshed analysis.

With this approach, more threads are used than the number of rays. However, no
additional technique for data exchange among the blocks is needed, and all blocks can run
from one kernel. The number of additional threads is twice the number of blocks used. If
we express the additional threads adth as a percentage, this number is adth[%] = 100 · 2/
thbl, where thbl is number of threads in one block (usually 1024 or 512).

Figure 8. Representation of one CUDA block in a viewshed analysis. The red and blue grouped
lines represent unique threads in a block; the green lines represent intertwined threads, which are
calculated in two neighboring blocks. The lifted red and green lines represent one block calculation
in one segment.
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The core of the presented viewshed program is the GPU kernel. An abbreviated listing
for clarity purposes is shown in Figure 9. The kernel consists of an initialization and a
computational part. The objective of the initialization part is to prepare data variables for
later calculation. The objective of the computational part is ray generation (Figure 9, for
loop in line 6), where we read data from the global device memory, calculate the visibility,
and store the results back in the global device memory. Each thread of the kernel is used
to calculate only the rays inside the current segment (Figure 8). On each calculation point
along a ray path, the following values are calculated: distance, interpolation height, slope,
and offset from the current grid-cell center.

4.7. Earth-curvature consideration

When working under realistic geographic conditions, the terrain is not a flat plane, but is
rather slightly curved due to the shape of the Earth. The Earth is known to be an
approximate oblate spheroid. At small distances from the POI, the Earth-curvature effect
is negligible. Farther away, this effect has a substantial influence, and a correction of the
elevation of distant grid cells must be included in the algorithm for realistic results.

hc þ rearthð Þ2 ¼ d2 þ r2earth (8)

hc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r2earth

q
� rearth (9)

The effect of the Earth’s curvature is shown in Figure 10. Its influence can be
estimated using Equations (8) and (9), where rearth is the Earth’s radius (average value
6370.997 km). By default, the Earth-curvature correction is included in the proposed
algorithm. The exact value rearth depends on the macro-location of the user and can be set
arbitrarily.

When dealing with radio propagation profiles, the curved radio rays are replaced with
linear rays for the purpose of geometric simplicity (Kukushkin 2004, p. 6). To account for
the error introduced if drawing radio rays as straight lines, the Earth’s radius has to be
increased. The radius of this virtual sphere is known as the effective Earth’s radius, and it
is approximately equal to four-thirds the true radius of the Earth, i.e., roughly 8500 km.

Figure 9. Viewshed kernel.
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5. Implementation of the parallel algorithm on a CUDA GPU

We have implemented two versions of the R2 algorithm. One version is performed by the
CPU (r.cpu.visibility) and the other is performed by the CPU and GPU (r.cuda.visibility).

For the parallel version, the NVIDIA CUDA was chosen for the implementation
because of the wide availability of hardware (graphical devices) and software (drivers
and compilers) for this platform.

The calculations of the algorithm code consist of two main parts: a preparation part
and a calculation part. The preparation part contains functions for reading/writing data
from/to a hard disk and transferring it to the GPU and calculation calls (basic flowchart
from Figure 4). The calculation part implements the viewshed analysis. The CPU code is
written in the C++ language, and the GPU code is written using CUDA SDK V5.0. The
optimization level for the GPU program is –O3.

Determining the type of CUDA device integrated into the host computer is an
important part of the program. This device should support compute capability (CC) 1.3
or higher to provide native support for double-precision floating-point values, i.e., 64-bit
values. Another important parameter is the amount of global memory available in the
GPU device. This value can range from 1 to 4 GB on currently available GPUs. The
amount of free RAM on the host computer should also be determined. Currently, desktop
computers have 16 GB or more of RAM. The program should adapt to the smaller free
memory value of the two before the number of map segments is determined as in
Equation (1).

Memory should be allocated for map segments on both the host and the device. Using
page-locked (or pinned) memory, a higher bandwidth is achieved between the host and the
device, which is made possible by the function cudaHostAlloc. The function cudaMalloc
is used for memory allocation on the device. The size of the memory allocation is equal to
the size of one segment incremented by the size of one row on the map. An additional line
is needed for the proper linear interpolation of the last row in each segment (except the
southern segment).

The input map is read into host memory in segments. The map file is opened, read,
and closed using the well-known functions fopen(), fread(), and fclose(), respectively. To
find the starting point of the required segment, the function fseek() is used. After the
beginning of the segment has been located, it is read in sequential order into the host
pinned memory.
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Figure 10. Height correction due to the curvature of the Earth.
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The scheduler should determine the order of segment computation and launch the
viewshed kernel for each segment.

All tests were performed on a desktop computer with the following component
specifications:

• Processor: six hyper-threading cores, Intel(R) Core(TM) i7–3930K CPU @
3.20 GHz.

• RAM memory: 32 GB
• Hard disk: SSD Corsair Force GT, size: 223 GiB (240 GB)
• CUDA device: NVIDIA GeForce GTX 680.
• Operating system: Linux (UBUNTU 11.04)
• File system: ext4

5.1. Input data preparation

For the input data, two DEMs of the Slovenian territory were used (see the fragment of the
input data in Figure 11). The data are in raw format, each grid cell has a value that
represents height above sea level in meters, which is stored as an integer value (4 bytes).
The first DEM had a grid size of 25 × 25 m2, whereas the second DEM had a
12.5 × 12.5 m2 grid size. The memory sizes of the two maps were 0.48 and 1.89 GB,
respectively. In the absence of larger maps for testing, we used up-sampled versions of the
original map to verify the correct operation of the algorithm. All the test input data sets are
listed in Table 1. We prepared ten data sets, with sizes ranging from 0.48 to 186 GB.

6. Variable types and CUDA GPU occupancy analyses

A CUDA-enabled GPU has its processing capability split into streaming multiprocessors
(SMs), and the number of SMs depends on the actual device. Each SM has a finite
number of 32-bit registers, a shared memory, a maximum number of active blocks, and a
maximum number of active threads. These numbers depend on the CC of the GPU.

Figure 11. Input data set, DEM example.

2316 A. Osterman et al.



CUDA occupancy is defined as the ratio of the number of active warps per multi-
processor to the maximum number of active warps. Register usage, shared memory usage,
or block size can be potential occupancy limiters.

With the first naive implementation, we used double type for all variables (Figure 12),
which led to 37 registers used for each thread. Both variables, x and y, were increased
on each iteration of the loop with the pre-calculated double value xstep and ystep. In
Figure 13a, the impact on occupancy and kernel duration of varying the number of
threads per block is depicted. The theoretical occupancy was calculated using
Occupancy Calculator, provided by the NVIDIA Excel spreadsheet calculator

Table 1. Test data sets.

Data set Size (GB) Grid-cell size Columns (C) Rows (R) Grid cells

1a 0.48 25 × 25 m2 14,081 8961 126,179,841
2a 1.89 12.5 × 12.5 m2 28,161 17,921 504,673,281
3b 2.94 10 × 10 m2 35,200 22,400 788,480,000
4b 7.52 6.25 × 6.25 m2 56,320 35,840 2,018,508,800
5b 11.75 5 × 5 m2 70,400 44,800 3,153,920,000
6b 18.36 4 × 4 m2 88,000 56,000 4,928,000,000
7b 23.98 3.5 × 3.5 m2 100,572 64,000 6,436,608,000
8b 47 2.5 × 2.5 m2 140,805 89,605 12,616,832,025
9b 120 1.5625 × 1.5625 m2 225,288 143,368 32,299,089,984
10b 186 1.25 × 1.25 m2 281,610 179,210 50,467,328,100

Notes: aData sets of the original DEM for a territory of Slovenia.
bData set derived by interpolation from the second data set.

Figure 12. Naive implementation of the main loop in kernel.
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Figure 13. Impact of varying threads per block in a CUDA GPU viewshed kernel for the naive (a)
and optimized (b) kernel loop.
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(Occupancy Calculator 2013). The best theoretical occupancy value for the naive
implementation of the viewshed kernel was 75%; the practically achieved value was
67.8%, with the threads per block set to the value of 768. The fastest duration of kernel
execution was achieved at a value 128 threads per block (see Duration line in Figure
13a), for which we achieved an occupancy value of 65.9%.

There is, of course, the possibility of using float variables for this naive implementa-
tion and reaching an occupancy of near 100%, but the results in this case are unreliable,
i.e., a Moirre pattern occurs (Figure 14b). The reason for this effect lies in the aggregation
of errors through the loop because float (and also double) values have a limited set of
possible values (float and double are not real numbers). In each iteration through the loop,
we obtain a small error value that accumulates throughout the loop.

In the optimized implementation of the main loop inside the kernel, a new integer
variable, step, was introduced. This variable is increased in each iteration only by a value
of 1. Variables x and y are calculated from scratch at each iteration (Figure 15). With this
procedure, the aggregation of errors through the loop is prevented.

In the optimized implementation, we used the float type for variables (Figure 15),
which led to 28 registers used for each thread. A theoretical occupancy of 100% can be
reached, and a practical occupancy of 90% was achieved (Figure 13b).

The results indicate that a setting of 512 threads per block in the optimized version is
the optimal value for our device. All these parameters were measured using the NVIDIA
profiler, which is part of the NVIDIA Nsight development platform (NVIDIA Profiler
2014).

Figure 14. Optimized float implementation (a) versus naive float implementation (b) of the loop in
the kernel.

Figure 15. Optimized implementation of the main loop in the kernel.
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7. Coalesced global memory access in the main kernel routine

An access to device global memory costs 400–600 clock cycles. GPUs can read 32-bit
(for 8-bit data), 64-bit (for 16-bit data), or 128-bit words (for 32, 64, or 128 bit data,
which is our case) from global memory into registers in a single instruction. Global
memory bandwidth in a GPU is most efficient when simultaneous memory accesses
threads in a half-warp (during the execution of a single read or write instruction), which
can be coalesced into a single memory transaction (coalesced global memory access).

Coalesced global memory access can be strongly utilized for the north and south
triangles from a POI. For the west and east triangles, coalesced memory access is utilized
near the POI, where more threads traverse the same grid cell. The closer we get to the
edge of the map, the less coalesced access is used. In Figure 16a, these effects are
presented in a simplified form. The gray color represents data we intend to transfer
from the GPU global memory to the kernel. For the north and south triangles, we can
get all the data into the kernel with one read. For the east and west triangles, we need four
read operations to get the same amount of data into the kernel.

In Figure 16b, throughput for our GPU, GeForce GTX 680, is measured. The graph
represents coalesced global memory access with different offsets. We can see that the
reading-data offset has very little impact on throughput. However, the stride size has a
huge impact on throughput. This happens in the east/west triangles more often than in the
north/south triangles of the map. Closer to the edge of the map, the throughput is smaller.

We measured the time difference between the computation time for the north/south
triangles and the east/west triangles. On average, a north/south computation took half of
the time of an east/west computation, regardless of the size of the map. However, the
overall kernel computation time was reasonable, which can be seen in Figure 18.

8. Hard disk throughput compared to the cudaMemcpy throughput

We exploited the fact that the read/write (R/W) throughput of hard disks is significantly
lower than the R/W throughput of CUDA memory copy. This fact helped us design the
implementation of the viewshed algorithm, in which the overall computational speed
depends almost exclusively on the R/W hard disk throughput.

Figure 16. Coalesced memory access for north triangle versus uncoalesced memory access for east
triangle (a). Measured throughput for coalesced (offset) and uncoalesced (stride) memory access for
GeForce GTX 680 (b).
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For our PC computer, we made R/W tests for different file sizes and two hard disks.
The file was divided into the segments. Since the segment was relatively large in size
(1 GB), the transfer of the whole file behaved like a stream. The average R/W throughput
of different file sizes is shown in Figure 17a. From the graph, it can be clearly seen that
the disk buffer helped out for file sizes that were less than approximately 100 MB. The
influence of a page cache vanished at file sizes of more than approximately 10 GB. The
page cache is a transparent cache of disk-backed pages kept in main memory (RAM) by
the operating system for quicker access.

The data were transferred between the CUDA device and the CPU RAM with the
cudaMemcpy function. For our PC computer, we made throughput tests for different
segment sizes and for pageable and pinned CPU memory. From the graph in Figure
17b, one can clearly see that pinned memory achieved greater throughput for all segment
sizes.

We are interested in file sizes of 1 GB and more. Figure 18 shows the timeline for
small viewshed calculation (size of file is 1 G, segment size is 4). Since reading and

Segment size (bytes)File size (bytes)

Figure 17. The average stream R/W throughput for two hard disks and different file sizes (a).
cudaMemcpy throughput (Geforce GTX 680) for different segment sizes (b).

Figure 18. The Timeline View from NVIDIA visual profiler for concrete viewshed analysis for
data divided into the four segments. In the Runtime API row are cudaHostAlloc call (left) and
cudaFreeHost call (right). In the Markers and Ranges row are CPU reading from and writing to
HD routines (R-HD and W-HD). In the Stream 8 and the Stream 9 rows are GPU cudaMemCpy
and main viewshed kernel routines.
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writing to hard disk is time consuming and the CPU and GPU can work simultaneously,
we exploited this fact and let the GPU and CPU overlap. For this, we needed to consider a
few rules. The main viewshed kernels cannot overlap due to the segmentation order
computation (see Section 4). MemCpy(H to D), kernel and MemCpy(D to H) can start
after the data have been read to RAM. Writing to hard disk can start after the calculated
data has been copied to RAM.

To successfully perform overlapping, we used a double buffer and two CUDA streams
for all calculation steps (double buffer for input data in the CPU and GPU and also double
buffer for output data for the CPU and GPU were used). The first segment was calculated
in the first buffer set and the first CUDA stream (Stream 8), the second segment was
calculated in the second buffer set and the second CUDA stream (Stream 9), the third
segment was calculated in the first buffer set and the first CUDA stream (Stream 8), and
so on until the last segment.

For this particular case, we measured the following average throughputs: reading from
hard disk was 2.5 GB/s, copy data to GPU was 5.7 GB/s, kernel throughput was 2.1 GB/s,
copy data from GPU was 6.2 GB/s, and writing to hard disk was 0.9 GB/s. For different
hardware configurations, different throughputs should be measured. Modern CUDA units
can perform memory copy and kernel execution simultaneously. Also, two kernels can be
run simultaneously – what we actually used in our case (simultaneous execution of the run
visibility and reset buffer kernels). Based on these results, the scheduler should provide
the right timing for routines to perform the optimal calculation timeline.

9. Impact of the number of segments on program execution time

In Figure 19, we illustrate the impact of varying the number of segments on the
computation time. The test with a 1.89 GB data size was conducted with different segment
quantities. The minimum number of segments was 3, and the test was conducted for up to
50. For each segment set, we ran the computation 50 times. We recorded the average,
maximum, and minimum duration times for each segmentation. Figure 19a shows the
impact of the number of segments on the calculation time for all kernels. Figure 19b
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Figure 19. Impact of varying the number of segments on the computation time for the kernel
duration time (a) and for the overall duration time (b).
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shows the impact of the number of segments on the overall computation time. We
observed that the number of segments had very little impact on the execution time for
all kernels and almost no impact on the overall computation time. The overall computa-
tion time increased noticeably when the number of segments exceeded 10,000 (in this
case, the overall computation time rises by approximately 10%). The reason for this result
is the increased number of kernels starts.

The number of segments depends on the size of the maps and the amount of free
memory. The minimum number of segments can be calculated using Equation (1). As a
general rule, the appropriate number of segments should be kept as low as possible.
However, care must be taken to leave enough free memory for other applications, which
could run simultaneously with the viewshed calculation.

10. Algorithm comparison

Four different algorithms were tested and compared. The R3 algorithm (Shapira 1990),
implemented in the GRASS GIS package, was chosen as a reference. The proposed
parallel algorithm, r.cuda.visibility, and the sequential version of the proposed algorithm,
r.cpu.visibility, were compared with the reference algorithm. In addition, we conducted
the same tests with the TiledVS viewshed implementation (Ferreira et al. 2012).

The Earth-curvature correction was not integrated in the reference algorithm R3. For
the purposes of comparison, this correction was also disabled in the other algorithms (r.
cpu.visibility, r.cuda.visibility, and TiledVS) during the tests.

10.1. Experimental results

The experimental results for different data sizes and different algorithms are shown in
Table 2. From the test results, it can be observed that the computation time of the R3
algorithm is strongly dependent on the number of visible grid cells. Therefore, the R3
algorithm was tested and compared using two different parameter values (a pit and a peak
POI). In contrast, the computation time of the proposed algorithm is independent of the
number of visible grid cells (independent of the POI position: pit or peak).

Table 2. Comparison of computation time for four implementations of viewshed algorithms.

R3 TiledVS r.cpu.visibility r.cuda.visibility

Data set Size (GB)
all

(pit/peak)a alla alla calc.a alla kernela segmentsb

1 0.48 310/2776 28 13 11 1.8 0.2 1
2 1.89 1426/21,045 115 52 46 7 0.7 3
3 2.94 – 196 84 77 10 1.3 4
4 7.52 – 453 229 216 21 3.5 9
5 11.75 – 670 375 352 31 5.5 13
6 18.36 – 1014 626 588 52 9.5 21
7 23.98 – 1317 892 831 91 13 27
8 47 – 2635 2266 2106 265 29 54
9 120 – 13,498 9645 9252 1051 112 140
10 186 – – 20,474 19,865 1922 235 218

Notes: aAll values of duration are in seconds.
bThe indicated number is the number of segments in the calculation with our hardware.
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For the sequential version of the proposed algorithm (r.cpu.visibility), the total
calculation time (all) and calculation viewshed time (calc.) are presented. For the parallel
version of the proposed algorithm (r.cuda.visibility), two values are presented: the total
computation time (all) and the kernel computation time (kernel). The total time (all)
represents the overall duration of the operation (kernel computation time and all data
transferred from hard disk to GPU and back). The number of segments (for our computer
environment) into which the map has been divided is also presented.

We also conducted tests with the sequential TilesVS package (Ferreira et al. 2012),
which is based on subdividing the terrain into blocks that are stored in a special data
structure managed as a cache memory. Our approach results in a better computation time
than TilesVS, even with the sequential r.cpu.viewshed version.

From the time results of r.cpu.visibility, we can conclude that the calculation part of r.
cpu.visibility took more than 90% of the duration time. Memory reading and writing took
less than 10% of the time (strictly sequential routines). Using Amdahl’s law, we can make
a significant speed improvement if we improve the calculation time with parallelism
(CUDA). The drawback of using CUDA is the additional memory required to copy to
and from the device. The speed-up achieved with r.cuda.visibility improves r.cpu.visibility
by a factor of 10.

10.2. Accuracy comparison of algorithms

A detailed view of the viewshed analysis using the same input data set with the r.los (R3),
the r.cuda.visibility (R2) and the TiledVS implementations is shown in Figure 20. Testing
the accuracy of the r.cpu.visibility was implicitly done, because the r.cpu.visibility
produces exactly the same result as the r.cuda.visibility implementation.

A test with 10 representative POI locations on a 1.89 GB data size (28,161
cols × 17,921 rows, each grid cell is 12.5 × 12.5 m2) was conducted. Five of them are
located on hilltops, from which the view extends to all four sides of the sky; and five of
them are located on hill slopes with a relatively good view. The maximum distance was
set to 25 km. For each test case, we counted the number of grid cells showing different
results from the compared algorithms. In Figure 20, a fragment of 2625 × 1375 m2 is
shown.

Figure 20. Panel (a) shows the comparison between the r.los (R3) and the r.cuda.visibility (R2)
algorithms. Panel (b) shows the comparison between the r.los (R3) and the TiledVS. The black grid
cells represent the area of visibility for both algorithms. The green grid cells represent those visible
only for the r.cuda.visibility (a) or the TiledVS (b). The red grid cells represent those visible only for
the r.los.

International Journal of Geographical Information Science 2323



From Figure 20a, we can see that the r.los and the r.cuda.visibility achieved almost the
same result. Both algorithms agreed on the visibility of 99.89% of grid cells in the best
case and of 99.52% in the worst case. This is expected because R2 is an approximate
algorithm, whereas R3 is an exact one. Similar accuracy differences between R2 and R3
were reported by Franklin and Ray (1994). We exploited this minimal accuracy difference
to achieve the remarkable execution-time speed-ups presented in the previous section.

In Figure 20b, we show the results of the comparison between r.los and TiledVS. After
testing with the same 10 representative POIs, the algorithms agreed on the visibility of
97.52% of grid cells in the best case and of 93.22% in the worst case.

11. Related work

Several approaches have been proposed for a parallel implementation of the viewshed
calculation. In Xia et al. (2011), the simulation results of two algorithms were presented:
Matrix Traversal and Ray Traversal. Both algorithms were implemented in sequential and
parallel modes, resulting in four different implementation types. If the grid cell is
traversed by multiple rays, the logical ‘OR’ function was used between the rays to
determine the visibility criteria, which generates overly optimistic results. The presented
results are calculated on a map size of 4996 × 3088 grid cells, which is smaller than our
first data set (see Table 1).

In Zhao et al. (2013), two parallel algorithms for the viewshed analysis of grid-based
terrains were introduced. These algorithms, namely, the GPU-fine and GPU-coarse, were
based on the well-known R3 sequential algorithm (Shapira 1990). The computational
efficiency of these algorithms has been demonstrated on various DEM sizes, from 1.49 to
20.54 GB, and compared to the original R3. The computation time of these algorithms
depends on the number of visible points. However, the approach taken by these research-
ers is fundamentally different from our approach because they worked with the R3
algorithm.

In Gao et al. (2011), a linear-interpolation approach between neighboring grid cells
was described. The authors present two DEM processing optimization solutions on a
GPU. The first solution assigned data to different memory locations on the GPU. The
second solution used instruction optimization for SM. The GPU texture memory was used
for the input map data set, resulting in an increased processing speed and hardware
interpolation between the grid-cell values (limited interpolation methods by the device
hardware). The maximum size of the map was restricted to the amount of 2D texture
memory available. The presented report was only for two map sizes, 366 × 372 and
2847 × 3717 grid cells. In contrast to our approach, the authors did not provide a solution
for large data maps.

In Strnad (2011), the Earth-curvature consideration was presented. For the input map
data set, texture memory was used, leading to limitations in map size and interpolation.
The computation time of relatively small maps was reported (maximum of 8192 × 8192
grid cells, which is smaller than our first data set; Table 1).

In the research report Osterman (2012), a basic approach was presented, suggesting
further investigation and leading to the optimizations presented in the present article. With
the additional improvements in memory-handling efficiency (Section 4.1), near-cell
interpolation, the nearest-ray strategy (Section 4.5), and optimization (NVIDIA
Corporation 2013), a reduction in computation time and improved accuracy and flexibility
of the algorithm were achieved.
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In Amanatides et al. (1987), the authors proposed a fast voxel traversal algorithm for
ray tracing, which searches objects in voxels. If the object is not present in the voxel, the
computation for that voxel can be abandoned and the computation time is faster. In R3,
the longest line-of-sight (LOS) functions are calculated first. Along LOS, traversing the
voxels, obstacles are searched. If no obstacles are found in the voxels, those voxels are
skipped from further LOS computation and computation speed is accelerated. In R2, when
the LOS functions are calculated, the computation of viewshed is finished. Therefore, the
fast voxel traversal algorithm does not bring any benefit to R2 computation.

In Izraelevitz (2003), the authors proposed a bridge between the direct method based
on LOS analysis and the fast, but less accurate, XDraw method. Their implementation was
sequential. The best method for implementing their algorithm in a parallel manner is an
open challenge.

12. Conclusion, discussion, and future work

In this article, we introduced a modification of the well-known R2 algorithm in a parallel
implementation, with the possibility of processing large maps in a computer with a
relatively small memory size. The focus is on flexibility, IO efficiency, and the best
possible computation time. The essential reason for the improved computation times of
our algorithm, as compared to other approaches, is the use of coalesced memory access to
global memory on the device (Davidson and Jinturkar 1994) during terrain segmentation.
Therefore, IO efficiency involves a single reading and writing of the map in and out of
memory, coalesced global memory access, and double buffering, with overlapping of
CPU and GPU routines.

The type of interpolation (e.g., linear) can have a major effect on visibility. In addition,
the influence of the type of the interpolation depends on the type of terrain. In this work,
we used only linear interpolation. We leave experimentation with other methods for future
work.

In the mobile telecommunications industry, as a starting point, our research allows for
real-time terrain analysis for the complex task of mobile network planning. It is possible
to increase the network planning efficiency at lower costs by using real-time analysis
tools. This algorithm allows for the optimization of the locations of mobile network base
stations, with computations of numerous scenarios and effective planning of long-haul
microwave links, replacing less accurate, traditional methods (floating balloons or mirror
targeting).

A variety of analysis algorithms could be based on the computationally efficient kernel
that forms the core of the presented algorithm. The presented algorithm, r.cuda.visibility,
is currently part of the GRASS-RaPlaT project (Hrovat et al. 2010, Benedičič et al. 2014).
RaPlaT is an open-source radio planning tool for GSM, UMTS, and LTE mobile systems.
With the increasing demand placed on the analysis capabilities of modern mobile net-
works, our parallelization approach can be used to further improve RAPlaT tools.
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