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ABSTRACT
In this paper, we explore the relation between an agent’s doxastic
attitude and her arguments in support of a given claim. Our main
contribution is the design of a logical setting that allows us reason
about binary arguments which are either in favour or against a
certain claim. This is a setting in which arguments and propositions
are the basic building blocks so that the concept of argument-
based belief emerges in a straightforward way. We work against the
background of Dung’s abstract argumentation framework, extending
it to a new setting in which we can study the formal properties of
binary arguments as well as the larger structures they establish. This
paper introduces a formal ‘two-dimensional’ language to talk about
propositions and arguments, for which a sound and complete axiom
system is provided.
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1. Introduction

The literature on argumentation theory contains a number of different views on what a
single argument is. The proposed definitions range from Toulmin’s six interrelated compo-
nents (claim, data, warrant, backing, rebuttal, qualifier; Toulmin, 2003) to Dung’s abstract
argumentation framework (Dung, 1995)where an argument is simply an abstract undefined
entity, and what matters is the way it interacts with others (i.e. which ones it ‘attacks’
and which ones it ‘defends’). These abstract argumentation frameworks have proved to
be useful for analysing different notions of acceptability of arguments. Intuitively, the
arguments that matter are those that will ‘survive’ the full argumentation process, and
the abstract argumentation frameworks provide different concepts and tools to identify
them.

This process of identifying the ‘acceptable’ sets of arguments, evidence or justifications
has historically played an important role in the definition of epistemic notions such as
knowledge and belief. There is an extensive literature in (formal) epistemology on what
ingredients are needed to provide a solid foundation for rational belief and knowledge. In
terms of arguments, we provide a quote from Dung (1995, p. 323):

[…] a statement is believable if it can be argued successfully against attacking arguments. In
other words, whether or not a rational agent believes in a statement depends on whether
or not [an] argument supporting this statement can be successfully defended against the
counterarguments.
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While Dung talks explicitly about the relationship between beliefs and arguments, it
is surprising that no further details are provided in the referred paper.1 Neither has this
topic received much attention within the literature on argumentation theory with a few
exceptions including Schwarzentruber, Vesic, and Rienstra (2012) and Grossi and van
der Hoek (2014). One of the reasons for this might be that the abstract argumentation
framework abstracts away toomanyelements. Among these elements, twoplay anessential
role when attempting to define the agent’s belief. The first is the content of each argument;
the second is the issue on which an argument attacks another. Without these ingredients,
we lack the details to decide on whether one argument’s attack on another one is actually
relevant to the claim at stake, or whether all the ‘acceptable’ arguments can back up the
given claim.

This paper picks up this thread proposing a formal definition of the notion of beliefs
in terms of the arguments the agent has in support of or against a given claim. In an
argumentation on whether P, we stipulate that all the arguments are in support or against
P. In this sense, we call them binary arguments. We start (Section 2) by recalling the basic
definitions of abstract argumentation theory. Then (Section 3), we extend them with two
elements. With the first we unveil a crucial characteristic of each (so far abstract) argument
by indicating the propositions it supports; with the second we relativise the attack relation
by making explicit the proposition on which a given argument attacks another. Then,
we introduce a formal definition of an agent’s beliefs. The paper continues (Section 4)
introducing a formal language for exploring the properties of this new notion, together
with a sound and complete axiom system to reason about binary arguments. The work
ends (Section 5) with a brief summary and further lines for research. The proofs of most
propositions and theorems are provided in the Appendix A.1.
Related work Our logical setting in this paper ties in with the modal logic analysis of
abstract argumentation notions provided in Grossi (2010b), Grossi (2010) and Grossi (2012).
Following that line, the work by Grossi and van der Hoek (2014) comes closest to this
paper as the authors also present a setting that combines both abstract arguments and
an agent’s beliefs. Yet different from our approach is the fact that their notion of belief is
taken as a basic component which is not defined in terms of the arguments involved. In
a different but related direction, Schwarzentruber et al. (2012) aims at describing not only
the argumentation structure but also the information the agents have about it. Intuitively,
an agent’s belief is based on what she knows/believes about the argumentation structure,
so it is important to make the agent’s informational state explicit. Also related is the work
in Dyrkolbotn (2013), which uses graph theory tools (kernels and local kernels; cf. the
propositional discourse logic of Dyrkolbotn and Walicki (2014)) and modal languages for
dealing with the acceptability of formulas that might ‘argue’ against each other, and also
introduce three-valued models of belief induced by argumentation frameworks.

Other logic-technical approaches that can contribute to the study of argument-based
beliefs includes not only the dialogical logic tradition (Lorenzen, 1958; Lorenz, 1961; Loren-
zen & Lorenz, 1978, whose main motivations can be traced back to ancient Greece when
logic was conceived as the systematic study of dialogues in which two parties exchange
arguments over a central claim), but also the logics for reasoning about the (soft or hard)
evidential basis of different attitudes ranging from knowledge to belief (Baltag, Renne,
& Smets, 2014; Baltag, Renne, & Smets, 2012). The later direction builds further on the
justification logic tradition (Artemov & Nogina, 2005; Artemov, 2008) in which reasons are
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explicitly represented in justification terms and on the work in dynamic epistemic logic
(DEL) on representing different epistemic and doxastic attitudes and their dynamics (van
Benthem, 2007; van Ditmarsch, van Der Hoek, & Kooi, 2007; Baltag & Smets, 2008; van
Benthem, 2011). Thework in Baltag, Fiutek, and Smets (2016) enhances these investigations
by focussing on different types of models that connect evidence and beliefs, relating it to
both the investigations in neighbourhood structures in van Benthem, Fernández-Duque,
and Pacuit (2012) and van Benthem, Fernández-Duque, and Pacuit (2014) where beliefs
are defined in terms of maximally consistent sets of evidence, and the recent work by
Baltag, Bezhanishvili, Özgün, and Smets (2016a) on a topological semantics for evidence,
evidence-based justifications, belief and knowledge.

2. Background on abstract argumentation theory

The argumentation framework of Dung (1995) is known to abstract away from the internal
structure of an argument, focusing instead of the way the arguments interact with one
another. Here is the formal definition of its basic component, the so-called argumentation
graph:

Definition 2.1 (Argumentation Graph Dung (1995)): An argumentation graph is a pair
G = (AR,� ) where AR is a non-empty set of abstract arguments and � ⊆ (AR × AR) is a
binary relation on AR.

The relation � is interpreted as an attack relation, with s � s′ read as ‘argument s′
attacks argument s’. This notion of attack can be extended to sets of arguments: a set
X ⊆ AR attacks an argument s, denoted by s � X , when there is an argument s′ in X that
attacks s, s � s′. We say that an argument s ∈ AR is defended by X ⊆ AR when every
argument attacking s is in turn attacked by an argument in X (i.e. when s � s′ implies
∃s′′ ∈ X such that s′ � s′′).

This level of abstraction gives us insights about the position of each argument with
respect to other arguments in the same structure. For example, in the graph whose
diagram appears below, the arguments in X = {s1, s3} do not attack each other (in Dung’s
terminology, the set is called conflict-free). Also each member of X which is under attack is
defended by X itself (the set is called self-acceptable), as s2 attacks s1 ∈ X , but s3 ∈ X attacks
s2.

The following characteristic functions are useful for defining argumentative-theoretic
notions that allow us to formalise the reasons for ‘accepting’ a given set of arguments.

Definition 2.2 (Defence and neutrality functions Grossi (2012)): Let G = (AR,� ) be
an argumentation graph.

• Given a set X ∈ 2AR , the defence function d : 2AR → 2AR returns the set of arguments
in AR defended by X :

d(X) := {s ∈ AR | ∀s′ ∈ AR : s � s′ implies s′ � X}.
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Figure 1. Some key notions in abstract argumentation theory (Dung, 1995) (Table from Grossi, 2012).

• Given a set X ∈ 2AR , the neutrality function n : 2AR → 2AR returns the set of arguments
in AR which are not attacked by X :

n(X) := {s ∈ AR | � ∃s′ ∈ X : s � s′}.

Figure 1 shows some of the key notions discussed in Dung (1995). Note that a stable
extension is also a preferred extension (Lemma 15 in Dung (1995)) and, by definition,
a preferred extension is also complete, a complete extension is also admissible, and an
admissible set is conflict-free and acceptable, but not vice versa.

In this paper, a special class of argumentation graphs called uncontroversial (Dung, 1995,
Definition 32) will play an important role.

Definition 2.3 (Uncontroversial argumentation graphs): Given an argument s ∈ AR in
an argumentation graph G, let DefG (s) (resp., AttG (s)) be the set of arguments in G such
that s′ ∈ DefG (s) (s ∈ AttG (s)) if and only if there is a sequence of arguments s0, s1, . . . , sn
where s = s0, s′ = sn and si � si+1 for any 0 ≤ i < n and n is even (odd).

An argument s′ in G is said to be controversial with respect to another argument s if
s′ both attacks and defends s (i.e. s′ ∈ DefG (s) ∩ AttG (s)). An argumentation graph is
uncontroversial if none of its arguments is controversial with respect to any argument.

As an example, consider the argumentation graph below: argument s4 is controversial
with respect to both s1 and s2, as it attacks them (it attacks s1 by attacking one of s1’s
defender, namely s3, and it attacks s2 directly) but also defends them (by attacking one of
their attackers, s2 and s3 respectively).

It has been proved (Dung, 1995, Theorem 33) that every uncontroversial argumentation
graph is not only coherent (each preferred extension is also stable), but also relatively
grounded (the intersection of all preferred extensions is the grounded extension). Here are
two further results about uncontroversial argumentation graphs that will be useful for this
work.

Proposition 2.1: Given an uncontroversial argumentation graph G and an argument s in G,
there is an admissible set of arguments X with s ∈ X if and only if s ∈ GFP .d, with GFP .d the
greatest fixed point of the function d.
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Corollary 2.1: Given any uncontroversial argumentation graph G and any argument s in G,
the union of all the preferred extensions is the greatest fixed point of the defence function d.

3. Making explicit the supported/attacked propositions

The abstract argumentation graphs provides us with tools for defining different notions of
argument acceptability. However, as each argument is itself an abstract undefined entity,
it is not possible to say whether an argument supports a given claim; similarly, it is also not
possible to decide whether an attack between arguments is relevant to the claim at stake.
Thus, there is not enough information to decide whether the argumentation structure as a
whole ‘supports’ a given proposition or its negation.

3.1. Argumentation-support frame

Our new semantic structure extends an argumentation graph by providing the missing
information about the main propositional content of the arguments. Moreover, it also
adds a set of possible worlds to the structure, in order to define not only the propositions
involved, but also the relationship between them. The result, called an argumentation-
support frame, is defined below.

Definition 3.1 (Argumentation-Support Frame (ASF)): An argumentation-support frame
is a structure F = (W ,AR, {�P}P∈2W , f )where

• W is a non-empty set of possible worlds and AR a non-empty set of arguments;
• �P ⊆ AR × AR is an attack relation labelled by propositions P ∈ 2W ;
• f : AR → 2W is a function assigning to each argument s ∈ AR a subset ofW such that,

for any s ∈ AR, f (s) �= ∅.
Intuitively, the set AR in F contains all the arguments available to our implicit agent,

with each argument s supporting those propositions that are true in all worlds in f (s); thus,
the set of propositions supported by s ∈ AR is given by Cs := {P ∈ 2W | f (s) ⊆ P}. The
restriction f (s) �= ∅ simply states that no argument supports a direct contradiction. With
respect to attacks between arguments, there are now several attack relations, each one of
them labelled by propositions P ∈ 2W .2 For the interpretation, s �P s′ indicates that s is
attacked by s′ onwhether P is the case.

In order to model the way a rational agent may reason about binary arguments, we
impose the following conditions on the given frame structure:

(1) s �P s′ if and only if s �P s′; 3
(2) if s �P s′, then

(a) either f (s) ⊆ P or f (s) ⊆ P; and
(b) f (s) ⊆ P implies that f (s′) ⊆ P;

(3) if s �P s′ and f (s) ⊆ Q ⊆ P, then s �Q s′;

The first condition captures the intuition that a ‘discussion’ onwhetherP is the case is also
a ‘discussion’ on whether P is the case. The second is the crucial one for binary arguments:
while (2)(a) asks for any argument attacked on the issue P to take a stance either in support
of P or in support of P, (2)(b) says (together with (1) and (2)(a)) that, when one argument
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Figure 2. ASF for Example 3.1.

attacks another, they should hold opposite stands on the issue at hand. The last condition
states that if s′ attacks s on its claim of P, then s′ should also attack s on any stronger claim
Q. All argumentation-support frames discussed in the rest of this paper will be assumed
to satisfy these (natural, we think) conditions. Still, as a consequence of the second (see
Proposition 3.1 below), the underlying argumentation graph for every proposition P ∈ 2W

will be uncontroversial (Definition 2.3).
Note that the interpretation of the labels on the attack relations indicates that only the

binary argumentative reasoning of an agent is considered in our framework. Of course, we
do not claim that the agent’s argumentative reasoning can only be on binary issues; still,
for simplicity, those more general cases are left outside the range of our framework.

Here is an example of an argumentation-support frame.

Example 3.1: Concerning an issue of ‘what kind of animal is the one in the picture’,
suppose the agent has available the following three arguments (s1, s2, s3), each one of them
supporting a possible answer (bird,mammal, reptile).

• s1: The animal in the picture has wings, so it is a bird.
• s2: The animal looks like a bat, so it is not a bird, it is a mammal.
• s3: The animal looks like a pterosaur, so it is neither a bird nor a mammal, it is a reptile.

We assume that s1 is attacked by both s2 and s3, while s2 and s3 attack each other.4

This attack relationship between these arguments can be represented by the ASF ({b,m, r},
{s1, s2, s3}, {�P}P⊆W , f )with the attack relation given by

�{b} = �{m,r} := {(s1, s2), (s1, s3)}, �{m} = �{b,r} := {(s1, s2), (s3, s2), (s2, s3)}
�∅ = �{b,m,r} := ∅ �{r} = �{b,m} := {(s1, s3), (s3, s2), (s2, s3)}

and the support function as

f (s1) = {b}, f (s2) = {m}, f (s3) = {r}.

Figure 2 shows the ASF, with some labels of the attack relation omitted. The reader can
verify that it indeed satisfies the three conditions listed above.



JOURNAL OF APPLIED NON-CLASSICAL LOGICS 171

3.2. Beliefs supported by arguments

Within an argumentation-support frame, it is possible to define a notion of belief in terms
of the global behaviour of the involved arguments (which may be in conflict with one
another). First, some useful definitions and observations.

3.2.1. Acceptable argument for P
A given ASF F contains a set of argumentation graphs, one for each proposition P ∈ 2W :

CF := {GP = (AR,�P ) | P ⊆ W}.

As advanced, the ‘binary argument’ requirements discussed above (Page 5) have an
important consequence: the set CF contains only uncontroversial argumentation graphs.

Proposition 3.1: Given an ASF F , every GP ∈ CF is an uncontroversial argumentation
graph.

Proof: It follows from the fact that, due to the properties F should satisfy, each attack
relation �P in F (and thus the attack relation of each GP) relates arguments that hold
opposite stands on P’s truth value. Hence, given any argument s inGP , while the set DefG (s)
contains only arguments that agree with s on P’s truth value (they are at an even distance),
the set AttG (s) contains only arguments that have s’s opposite views about P (they are at
an odd distance). As no argument can support both P and P (recall that this is excluded
by our frame condition f (s) �= ∅), no argument can be in the intersection of DefG (s) and
AttG (s), and thus GP is uncontroversial.

Thus, the conditions of the attack relation imply the uncontroversiality of our argumen-
tation framework. The readers can judge whether the conditions and its consequences are
reasonable. For those who take controversiality to be an important feature of arguments,
notice how our setting does not rule it out completely; the phenomena can occur, as long
as it with respect to different issues.

Note how the only difference of the support-argumentation based graphs from the ones
in Definition 2.1 is that each GP ∈ CF specifies what issue the argumentation is about. For
example, the argumentation graph GP represents a discussion on the issue of whether P
is the case. This, together with the function f in F , allows us to define notions that are
similar to those in abstract argumentation theory (see Figure 1), now relative to specific
propositions. Thus, we can provide the following definition.

Definition 3.2 (Acceptable argument for P): Given an ASF F and an argument s in F , s
is an acceptable argument for P if and only if f (s) ⊆ P (i.e. it supports P) and there is an
admissible set of arguments X in GP such that s ∈ X (i.e. s belongs to a set of arguments
that do not attack each other and defend themselves).

This is oneof the keydefinitions of this paper: an argument is acceptable for a proposition
P whenever the argument belongs to an admissible set in the argumentation graph for
P. Then, by Proposition 2.1 and the uncontroversiality of support-argumentation based
graphs, an argument is acceptable for P whenever the argument belongs to the greatest
fixed point of the defence function d, GFP .d.5 This gives us an advantage that Section 4 will
make use of: within a formal language, it is possible to express this notion of acceptable
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argument in terms of truth-conditions involving a greatest fixed point, a concept for which
there are formal tools available in the literature.

The proposition below reveals logical properties of the notion of acceptable argument.

Proposition 3.2: Given any ASFF and any argument s inF ,

(a) s is an acceptable argument for W;
(b) if s is an acceptable argument for P ⊆ W, then for any Q ⊇ P, s is an acceptable

argument for Q;
(c) it does not hold that ‘if the given s is an acceptable argument for P ⊆ W and Q ⊆ W,

then s is an acceptable argument for P ∩ Q’.

Proof:

(a) No argument can attack another on W , as otherwise one of involved arguments
would support ∅ (conditions (1) and (2)), which is impossible (f (s) �= ∅ for every s).
Hence, by definition of acceptability (i.e. admissibility), s is an acceptable argument
forW .

(b) Since s is an acceptable argument for P, there is an admissible set X in GP such that
s ∈ X . Now take any Q ⊆ W with P ⊆ Q; to show that implies there is an admissible
set Y in GQ such that s ∈ Y , define Y := X ∩ DefQ (s), with DefQ (s) the set of
defenders of s in GQ . We will show that Y is indeed an admissible set in GQ .
For any s′ ∈ Y , if there is x ∈ AR such that s′ �Q x , by condition (3) and f (s) ⊆ P ⊆ Q,
it follows that s′ �P x . Since s′ ∈ Y ⊆ X and X is an admissible set in GP , there is
s′′ ∈ X such that x �P s′′. By conditions (1) and (2) and f (s) ⊆ Q, for any y ∈ DefQ (s),
f (y) ⊆ Q. Since s′ ∈ Y ⊆ DefQ (s), it follows that f (s′) ⊆ Q. By condition (2)(b) and
s′ �Q x , f (x) ⊆ Q ⊆ P. Together with x �P s′′(by condition 1) and f (x) ⊆ Q ⊆ P,
it follows by condition 3 that x �Q s′′ and by condition 1 that x �Q s′′. Hence
s′′ ∈ DefQ (s′). For s′ ∈ DefQ (s), s′′ ∈ DefQ (s)
Therefore, we have proved s′′ ∈ Y , which shows that for any s′ ∈ Y , if there is x ∈ AR
such that s′ �Q x , we can find s′′ ∈ Y such that x �Q s′′, i.e. Y ⊆ dQ(Y), with dQ

the defence function for GQ . Moreover, because GQ is uncontroversial, DefQ (s) ⊆
nQ(DefG

Q
(s)), which implies that Y ⊆ nQ(Y), with nQ the neutrality function for GQ .

Since s ∈ Y , we are done.
(c) Thediagrambelow (with the set ofworlds supportedby each argument listednext to

each node) shows a counterexample, with s1 an acceptable argument for P = {w, u}
(dotted arrow for�P) and forQ = {w, v} (solid arrow for�Q), but not an acceptable
argument for P ∩ Q (dashed arrow for �P∩Q).
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Note that ‘if the given s is an acceptable argument for P ⊆ W and Q ⊆ W , then s is an
acceptable argument for P ∩ Q’ is not the same as the statement ‘if there is an acceptable
argument for P and an acceptable argument for Q, there is an acceptable argument for
P ∩ Q’. The counterexample we give in the proof serves as a counterexample against both
statements, since s1 is the only argument supporting {w}.

3.2.2. Belief
With the notion of acceptable argument for a proposition P already defined, we propose
the following argument-based definition for the notion of belief.

Definition 3.3 (Belief): Given an ASF F , the agent believes P in F if and only if there is an
acceptable argument for P and there is no acceptable argument for P.

Because of its definition, the notion of belief inherits some properties (Proposition 3.2)
from the notion of acceptable argument.

Corollary 3.1: Given any ASFF and any P,Q ⊆ W,

(a) the agent believesW;
(b) if the agent believes P, then she also believes Q, for any Q ⊇ P;
(c) even if the agent believes P and believes Q, shemay not believe P ∩ Q.

Note how, in particular, there might be different reasons for the fact that beliefs in this
setting are not closedunder intersection (i.e. conjunction). A simple one is the fact that there
may not be arguments supporting P ∩ Q, even if there are arguments supporting P and
arguments supporting Q. Moreover, even if there are arguments supporting both P and Q,
the acceptability for arguments for P∩Q is evaluated neither in the argumentation graphGP

nor in GQ , but rather in GP∩Q , a structure that might not contain acceptable arguments (for
P ∩ Q). The counterexample presented for item (c) in the proof of Proposition 3.2 illustrates
this situation and it also shows how there might be argumentation-support frames in
which the agent believes P ∪ Q while also believing both P and Q. In the philosophical
literature a number of discussions can be found on whether beliefs should be closed under
conjunction, and arguments against it are often motivated by paradoxical situations such
as e.g. the famous lottery paradox.

For a systematic way of exploring the properties of the defined notion of belief as well
as other related argumentative theoretic notions, the following section proposes a logic to
describe and reason about argumentation-support frameworks.

4. Argument-based belief logic

In this section, we present the argument-based belief logic. There have been some studies
of abstract argumentation theory from theperspective ofmodal logic (Grossi, 2010b; Grossi,
2010; Grossi, 2012; Grossi, 2013; Grossi & van der Hoek, 2014). Especially in Grossi and van
der Hoek (2014), the relation between belief and argument is studied in a two-dimensional
modal logic. However, in this two-dimensional modal logic, even when the authors study
the interaction between beliefs and arguments, the very notion of belief itself is still defined
by the doxastic relation rather than in terms of arguments. This aspect is different in the
present work where belief emerges as a derivedmodality. Our logic also has a flavor of two-
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dimensional logic which is blendedwith ingredients frommodalμ-calculus and configured
to fit the need of characterising the notion of argument-based belief.

4.1. Syntax

Definition 4.1: Let Prop = {p, q, r, . . . } be a non-empty set of atomic propositions. L is
the language generated by the following grammar:

α ::= � | p | ¬α | α ∧ α | ⊟α | �β β ::= � | �α | ¬β | β ∧ β | [α]β | Gfpα

where p ∈ Prop. Symbols�,�, 〈α〉 and⊥ are abbreviations of¬�¬,¬�¬,¬[α]¬ and¬�,
respectively.

The language is divided into two parts. While α-formulas (the α part of the language)
are used to state facts about possible worlds, β-formulas (the β part) are dedicated to the
description of arguments. When there is no need to make distinction, ϕ is used to denote
formulas in the whole language L.

As it will be seen, ⊟ is a universal operator quantifying over possible worlds; it can be
taken as an S5-knowledge operator. Analogously,� is a universal operator quantifying over
arguments, so�β states that, for all arguments,β is the case.6 Formulas of the form�α state
that the current argument supports α, and those of the form [α]β state that all arguments
which directly attack the current one on α satisfy β . Finally, Gfpα sates that the current
argument is acceptable in the argumentation on α.

Remark 4.1: The language allows interaction between α- and β-formulas. For example,
��p expresses that there is an argument supporting p. However, the interaction between
these two types of formulas is limited. For example, strings as��β ,�[α]β are not formulas
of our language. In the first,�β expresses a fact about possible worlds (it is an α-formula), so
we cannot use it to describe arguments; in the second, [α]β describes a property of certain
arguments (it is a β-formula), and as such it is not a fact about possible worlds that can be
supported by arguments.

4.2. Semantics

By adding a valuation function to the argumentation-support frame, we get the
argumentation-support model, where formulas in L can be evaluated.

Definition 4.2: An argumentation-support model is a tuple M = (F , V) where F is an
argumentation-support frame and V : Prop → 2W is an valuation function which assigns
to each atomic proposition a set of possible worlds (those in which it is true).

LetM be an argumentation-support model, and define �α�M := {w ∈ W | M, (w, s) |=
α for any argument s} (the subscript M will be omitted whenever possible).7 The truth of
ϕ ∈ L is defined as follows:

Definition 4.3: Given an argumentation-claimmodel M = (W ,AR, {�P}P∈2W , f , V),

• M, (w, s) |= �
• M, (w, s) |= p iff w ∈ V(p)
• M, (w, s) |= ¬ϕ iff M, (w, s) �|= ϕ

• M, (w, s) |= ϕ ∧ ϕ′ iff M, (w, s) |= ϕ and M, (w, s) |= ϕ′
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• M, (w, s) |= ⊟α iff for all w′ ∈ W ,M, (w′, s) |= α

• M, (w, s) |= �β iff for all s′ ∈ AR,M, (w, s′) |= β

• M, (w, s) |= �α iff f (s) ⊆ �α�

• M, (w, s) |= [α]β iff for any s′ ∈ AR such that s ��α� s′,M, (w, s′) |= β .
• M, (w, s) |= Gfpα iff s is in an admissible set of arguments relative to �α�.

We say a formula ϕ is satisfied in an argumentation-support model M if there is a pair
(w, s) inM such thatM, (w, s) |= ϕ. A formula ϕ is valid inM (M |= ϕ) if for any pair (w, s)
inMwe haveM, (w, s) |= ϕ. Finally, ϕ is valid in the whole class of argumentation-support
models (|= ϕ) if it is valid in every argumentation-support model.

Note how the L-formula �(�α ∧ Gfpα ) expresses that the agent has an acceptable
argument for a given α. Therefore, the notion of belief can be defined in L as follows:

Bα := �(�α ∧ Gfpα ) ∧ ¬� (�¬α ∧ Gfp¬α ).

As we have shown in Corollary 3.1, our notion of belief satisfies the following properties
in the class of argumentation-support models:

Fact 4.1:

|= B�, |= Bα → B(α ∨ α′), �|= Bα ∧ Bα′ → B(α ∧ α′).

Thus, although the agent’s beliefs are closed upward (the validity of Bα → B(α ∨ α′)),
they are not closed under conjunction introduction (Bα ∧ Bα′ → B(α ∧ α′) is not valid).
Moreover, beliefs are consistent and contain all validities.

Fact 4.2:

|= ¬B⊥, |= α implies |= Bα.

Note that the language allows us to express higher-order beliefs: BBα and B¬Bα are
formulas in L. In fact, for our notion of belief, the following two properties hold:

Fact 4.3:

|= Bα → BBα, |= ¬Bα → B¬Bα.

It is also worthwhile to notice how, by Propositions 2.1 and 3.1, we have an equivalent
truth condition for Gfpα in the argumentation-support models:

M, (w, s) |= Gfpα iff s ∈ GFP .d�α�.

This paves the way for looking for a sound and complete axiom system for our logic, which
will be presented next.

4.3. Axiom system

The following is an axiom system (called AB) for the argument-based belief logic. Axioms
for Gfpα indicate that this operator amounts to the greatest fixed point of d.
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◦ All the propositional tautologies.
◦ Modus ponens
◦ S5 and Necessitation rule for ⊟
◦ For �:

K � �(β → β ′) → ( � β → �β ′)
D � ¬ �⊥
N If � β , then � �β

◦ For �:

K � �(α → α′) → (�α → �α′)
D � ¬�⊥
N If � α, then � �α

◦ For [α]:
K � [α](β → β ′) → ([α]β →

[α]β ′)
N � β implies � [α]β

◦ For Gfpα :

Unfold � Gfpα → [α]〈α〉Gfpα
R � β → [α]〈α〉β , then � β →

Gfpα

◦ Interaction between � and ⊟

�1 � �β → ⊟ � β

�2 � ¬ � β → ⊟¬ � β
◦ Interaction between ⊟, �, � and [α]

I1 � ⊟α ↔ �� ⊟ α
I2 � �β → �[α]β

◦ interaction between � and [α]
1 � [α]β ↔ [¬α]β
2a � 〈α〉� → �α ∨ �¬α
2b � �α → [α]�¬α
3 � �⊟(α → α′)∧�α∧〈α′〉β →

〈α〉β

Note that axioms T, 4 and 5 do not hold for �, as �β → β and � � β are not expressible
in our language. This is also why we need axioms �1, �2, I1 and I2 to characterise the
relationship between � as a universal operator and other operators. Axioms 1, 2a, 2b and
3 correspond to frame conditions 1, 2(a), 2(b) and 3 on argumentation-support models,
respectively. Finally, the axioms for Gfpα are special cases of the general greatest fixed
point operator (Kozen, 1983): the unfold axiom says that Gfpα is a fixed point of [α]〈α〉, and
rule R says that Gfpα is the greatest postfix point.8

Theorem 4.1: The system AB is sound and weakly complete for the argument-based belief
logic.

Soundness follows from the fact that axioms and rules in AD are valid and validity
preserving, respectively. We prove the validity of Axiom 3 as an example.

Proposition 4.1 (Validity of Axiom 3):

|= � ⊟ (α → α′) ∧ �α ∧ 〈α′〉β → 〈α〉β

Proof: Given an argumentation-claim model M, take a pair (w, s) where � ⊟ (α → α′) ∧
�α ∧ 〈α′〉β holds. The first conjunct tells us that �α� ⊆ �α′�, the second implies that
f (s) ⊆ �α�, and the third indicates that there is an argument s′ such that s ��α′� s′ and
f (s′) ⊆ �β�. These three facts, together with condition (3), entail s ��α� s′, which implies
that M, (w, s) |= 〈α〉β

For (weak) completeness, the general strategy is, as usual, to show that every consistent
formula is satisfiable in a model. The outline of the proof is similar to the standard proof of
completeness in the sense of using maximal consistent sets to build the model. However,
the process and details of the whole proof are not fully straightforward, because the model
is two-dimensional and the attack relations are labeled by different subsets of possible
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worlds which satisfy certain conditions. Moreover, the language includes an operator for
the greatest fixed point of the defence function. Therefore, we stress some key points in
our proof here. The full proof can be found in the appendix, but here are some important
details.

First, notice that although the argumentation-support model is two-dimensional, the
syntax restricts the interaction between these two dimensions. For example, strings as
�β → β are not formulas in our language: �β is an α-formula, but β is not. So {�β ,¬β}
is a consistent set in our logic (with consistency defined, in the standard way, as the non-
derivability of the always false ⊥), even though no pair (w, s) in an argumentation-support
model satisfies both�β and¬β . This is a two-edged sword. On the one hand, it gives us the
flexibility to construct maximal consistent sets for α-formulas and β-formulas separately
and put them together in themodel. On the other hand, we have to use some devious ways
to ensure that the constructed model respects satisfiability.

Second, note that we need to construct the attack relations labelled by all subsets of
possible worlds. However, we may not have enough information about them given the
formulas in our hands, which are generated from the subformulas of a given formula φ.
This means we can only construct the model partially. Therefore, we have to prove that any
such kind of partial model (we call them quasi argumentation-supportmodels in the proof as
defined in Definition A) can be extended to a full and real argumentation-support model.
Moreover, the extended model should be modally equivalent to the original model with
respect to all the formulas we care about.

Third, the proof for the case of Gfpα in the truth lemma is worth some attention. It is not
as straightforward as other cases. We have to prove that the information about the greatest
fixed point in the quasi argumentation-support models given by those maximally consistent
sets matches the information given by the quasi argumentation-support models itself. The
readers can find the details of how axiomUnfold and the inference rule R are applied in the
proof.

Fourth, note that the model we build in the proof is finite, both in its set of worlds and in
its set of arguments: thus, our logic has the finite model property. This, together with (i) the
decidability of the ‘being a model’ property (the ‘binary argument’ requirements of Page 5
are decidable on finite models) , (ii) the enumerability of models (�P is a binary relation on
arguments for each subset of worlds P, and f is a function from arguments to sets of worlds),
and (iii) the decidability of the semantic satisfiability conditions (the fixed point condition
is decidable), shows that our logic is decidable.

4.4. Discussion

For space reasons, an extensive discussion on both concrete applications of the presented
framework and, more generally, the idea of argument-based beliefs, are left out. Still, for
applications, one can briefly mention Shi (2016), where the logic is used not only to discuss
the notion of distributed belief, but also to analyse a ‘two-player argumentation game’,
illustrating how a single agent’s belief and the group’s distributed belief are decided by
the corresponding argumentation. For a deeper discussion about using arguments (and,
more generally, using evidence/justifications) for supporting beliefs, the reader is referred
to Baltag et al. (2014), Baltag, Bezhanishvili, Özgün, and Smets (2016b) and Shi, Smets, and
Velázquez-Quesada (2017).
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5. Conclusion

We have provided the first steps in the analysis of beliefs based on binary arguments which
either support a given propositional claim or its negation. We offered a complete axiom
system for this logic and have shown that this logic is decidable. The proposition-labeled
attack relation in our setting does come with a specific interpretation when we apply it
to real argumentation scenarios. In particular the attack relation on wether proposition
P holds, is to be interpreted as a direct attack on the conclusion of the reasoning that
establishes P. If we refine the setting and allow indirect attacks that undermine for instance
a given premise that leads up to a conclusion P, the setting we have presented needs to
be further refined. Another aspect we have not explored in this paper deals with combined
arguments of claims that together provide the support in favor or against their conjunction.
The study of combined arguments ties in nicely with an ongoing project by the authors
on a topological setting that provides a semantics for arguments (Shi et al., 2017), very
much in the spirit of the topological semantics for evidence-based beliefs in Baltag et al.
(2016a). Moreover, amulti-agent extension of some of the ideas presented in this paper has
been provided in Shi (2016), in order to deal with argumentation games and the notion of
distributed belief.

Notes

1. Still, as one reviewer correctly pointed out, Dung (1995) addresses this connection indirectly,
by showing that many of the major approaches to nonmonotonic reasoning in AI and logic
programming, which can be understood as a form of reasoning that creates beliefs, are
different forms of argumentation.

2. The idea ofworkingwith accessibility relations labelled by propositions is used in the literature
on conditional logic and in particular in the context of logics for belief revision (Baltag & Smets,
2008; Baltag & Smets, 2006a; Baltag & Smets, 2006b).

3. The set P denotes, as usual, the complement of P (i.e. P := W \ P).
4. This interpretation can be justified by the fact that, while s1 only states its ‘positive’ conclusion

(‘it is a bird’), s2 and s3 take the time to explicitly reject other alternatives. Of course, changes
in the paraphrasing might produce different interpretations. The point of the example is not
to establish a unique formalisation of the given natural language scenario, but rather to show
how our setting can be used to represent this and other similar situations.

5. Note how, by Corollary 2.1, GFP .d is equal to the union of all the preferred extensions. This
could suggest an alternative definition of this notion of acceptability, not in terms of the union
of all preferred extensions (the greatest fixed point), but rather in terms of the intersection of
them (which, by Dung, 1995, Theorem 33, is equal to the least fixed point of d). However, such
intersection might be empty, and therefore no argument would be acceptable for P, even in
the presence of preferred extensions containing arguments supporting P. For this reason, this
paper will work with the notion of acceptability as defined above (Definition 3.2).

6. Still, �β expresses facts about possible worlds, as the (non-)existence of arguments with
certain features (what �β expresses) is not a feature of any specific argument.

7. A notational alternative for the worlds in which an α-formula holds, �α�M, would be to use
�·�M to represent a subset ofW ×AR (as formulas are evaluated on pairs (w, s)), and then use
projection functions to extract its W - and AR-components. We stick to the use of �α�M for
denoting directly a subset ofW , as the AR-component of the set or pairs is not used.

8. Thecompletenessproof is not related to thecompletenessproof for theμ-calculus (Walukiewicz,
2000); it is rather close to the completeness proofs for the until/since operators in temporal
logics (Burgess, 1982) and the common knowledge operator in epistemic logics (Fagin, Moses,
Vardi, & Halpern, 1995).
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9. An element x ∈ D is a fixed point of a function f : D → D if and only if f (x) = x . If a partial
order ≤ on D is also provided, x is a postfix point if x ≤ f (x), and it is the greatest fixed point
if it is greater or equal that any other fixed point. When f is defined over the powerset of a
given set D, as the functions d and n above, a fixed point is defined as before, and the subset
order over 2D can be used for defining the greatest fixed point. For more about fixed points,
the reader is referred to Chapter 1 of Arnold and Niwinski (2001).

10. Note that {‖α‖ | [α]� ∈ Cls(φ)} will play the role of the labels of attack relations in the quasi
argumentation-support model.
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Appendix 1.

A.1. Proof of Proposition 2.1

Proof: (⇒) The Knaster-Tarski fixpoint theorem (Knaster, 1928; Tarski, 1955) states that GFP .d is the
union of all d’s postfix points, GFP .d = ⋃{X ⊆ AR | X ⊆ d(X)}.9 Hence, as any admissible set X is, by
definition, a postfix point of d, we have X ⊆ GFP .d and thus s ∈ X implies s ∈ GFP .d.

(⇐) Take any s ∈ GFP .d and define X := Gfp .d ∩ Def (s); it is enough to show that X is an
admissible set containing s, i.e. X ⊆ n(X), X ⊆ d(X) and s ∈ X . For the first, observe that any two
arguments x , y ∈ X are, by definition, also in Def (s). Thus, each one of them is at an even distance
from s, and hence cannot attack each other (as otherwise the attacker would be at an odd distance
from s, which is impossible as G is uncontroversial). Therefore, X ⊆ n(X). For the second, take any
argument x attacking some s′ ∈ X . Since s′ ∈ GFP .d, there must be s′′ ∈ GFP .d such that x � s′′
(recall, GFP .d is a fixedpoint of d, so GFP .d = d(GFP .d)); hence, s′′ ∈ Def (s′). But then, as s′ ∈ Def (s)
(by X ’s definition) and s′′ ∈ Def (s′), it follows that s′′ ∈ Def (s), that is, s′′ ∈ X (by X ’s definition).
Summarising, every argument x attacking some argument (s′) in X is in turn attacked by an argument
(s′′) that belongs to X ; thus, X ⊆ d(X). For the third, since clearly s ∈ Def (s), s ∈ GFP .d implies
s ∈ X .

A.2. Completeness of the AB system

In this sectionwe show that for any ϕ ∈ L, |= ϕ implies � ϕ.Wefirst define the quasi argumentation-
support model and then extend it to an argumentation-support model.

Definition A: [Quasi Argumentation-Support Model] A quasi argumentation-support modelMX is
a structure (W ,AR, {�P}P∈X⊆2W , f , V)whereW ,AR,�P , f andV are defined as in the argumentation-
support model, and X is closed under complement, i.e. if P ∈ X , then P ∈ X . Moreover, it satisfies a
restricted version of the conditions we impose on the argumentation-support model:

1. For any P ∈ X , s1 �P s2 if and only if s1 �P s2.
2. For any P ∈ X , if s1 �P s2,

(a) either f (s1) ⊆ P or f (s1) ⊆ P; and
(b) f (s1) ⊆ P implies f (s2) ⊆ P.

3. For any P,Q ∈ X , if s1 �P s2 and f (s1) ⊆ Q ⊆ P, then s1 �Q s2.

In words, a quasi argumentation-support model MX is simply an argumentation-support model
that only ‘discusses’ propositions in X , and therefore only needs to satisfy the frame conditions relative
elements of X . Clearly, any argumentation-support model is a quasi argumentation-support model;
for the other direction, we have the follow proposition

Lemma A: Any quasi argumentation-support model MX can be extended to an argumentation-
support model.

Proof: We define the relation �P for any P /∈ X as follows:

s �P s′if and only ifthere is a set Q ∈ X such that s �Q s′ and
f (s) ⊆ P ⊆ Q or f (s) ⊆ P ⊆ Q

We claim that themodel generated by adding these attacking relations intoMX is an argumentation-
support model. To prove this claim, we only need to check that it satisfies the four frame conditions.

1: s1 �P s2 if and only if s1 �P s2. We only need to prove that if s1 �P s2, then s1 �P s2.

– If P ∈ X , it follows immediately from the restricted version of condition 2 and the fact
that X is closed under complement.

– If P /∈ X , the definition of s1 �P s2 also implies that s1 �P s2, since the definition is
symmetric.

2(a): if s1 �P s2, either f (s1) ⊆ P or f (s1) ⊆ P. For P ∈ X , by the restricted version of condition 2(a),
�P satisfies condition 2(a). For P /∈ X , the definition of �P implies f (s1) ⊆ P or f (s1) ⊆ P



182 C. SHI ET AL.

2(b): if s1 �P s2 and f (s1) ⊆ P, then f (s2) ⊆ P. For P ∈ X , by the restricted version of condition 2(b),
�P satisfies condition 2(b). For P /∈ X , the definition of �P implies that there is Q ∈ X such
that f (s1) ⊆ P ⊆ Q. By 2(b) for Q ∈ X , f (s2) ⊆ Q ⊆ P.

3: if s1 �P s2 and f (s1) ⊆ Q ⊆ P, then s1 �Q s2.

– If P,Q ∈ X , this condition follows from its restricted version of condition 3.
– If P ∈ X and Q /∈ X , take P as the set required by the definition of �Q , it follows

immediately that s1 �Q s2
– If P /∈ X and Q ∈ X , by definition of �P , there is a set R ∈ X such that s1 �R s2

and f (s1) ⊆ P ⊆ R or f (s1) ⊆ P ⊆ R.(Note that the second case is not possible since
f (s1) ⊆ P by assumption.) By the restricted version of condition 3, since Q ∈ X and
f (s1) ⊆ Q ⊆ P ⊆ R, we have s1 �Q s2.

– If P,Q /∈ X , by the definition of �P , there is a set R ∈ X such that s1 �R s2 and
f (s1) ⊆ P ⊆ R or f (s) ⊆ P ⊆ R. Take the set R, since f (s1) ⊆ Q ⊆ P ⊆ R, it follows that
s1 �Q s2 by the definition of s1 �Q s2.

Hence, for any AB-consistent formula ϕ ∈ L, we first build a quasi argumentation-support model
in which it is satisfied by using maximal consistent sets. When doing so, we take care of the fact there
are twodimensions in an argumentation-supportmodel. Corresponding to these twodimensions, the
languageL is divided into twoparts –α-formulas andβ-formulas. Note that givenanAB-consistent set
ofα-formulasA andanAB-consistent set ofβ-formulasB, their unionA∪B is AB-consistent, for suppose
otherwise; then there must be α1, . . . ,αn ∈ and β1, . . . ,βm such that � ∧n

i=1 αi → ¬ ∧m
i=1 βi .

However, this is impossible since
∧n

i=1 αi → ¬ ∧m
i=1 βi is not a formula in L. This fact gives us the

flexibility to construct the pairs of possible worlds and arguments on which we evaluate formulas.

Given a formula ϕ, we define ∼ in the following formula:

∼ ϕ :=
{
ψ if ϕ is of the form ¬ψ ,
¬ϕ otherwise

A set of formulas X is closed under single negation if and only if∼ ϕ belongs to X whenever ϕ ∈ X .

Definition B: Let X be a set of formulas. The set X is FL-closed if and only if it is closed under
subformulas (e.g. if [α]β ∈ X , then α,β ∈ X ) and it satisfies the following additional constraints:

• �,⊟⊥,�⊥,�⊥ ∈ X
• if [α]β ∈ X , then [∼ α]β ,�α, 〈α〉� ∈ X ;
• if Gfpα ∈ X , then [α]〈α〉Gfpα ∈ X .

Next, we build the canonical model starting by constructing maximal consistent sets. Given our
two kinds of formulas,α-formulas and β-formulas, an intricate coordination between them is required
during the construction.

Definition C: Let � be a set of formulas. We define Sub(�) as the smallest set containing � which
is FL-closed and closed under single negations. And Sub+(�) is the smallest set containing Sub(�)
which satisfies the following two condition:

• if ⊟α ∈ Sub(�), then �� ⊟ α ∈ Sub+(�) and ��¬ ⊟ α ∈ Sub+(�);
• if �β ∈ Sub(�), then �� � β ∈ Sub+(�) and ��¬ � β ∈ Sub+(�);

The set Cls(�), the closure of �, is the the smallest set containing Sub+(�) which is FL-closed and
closed under single negations.

Definition D: (Atoms) Let� be a set of formulas.

• A set of formulas � is an atom over � if it is a maximal consistent subsets of Cls(�). The set
At(�) contains all the atoms over�.

• A set of formulas A is an α-atom over� if it is a maximal consistent subsets of Cls(�) ∩ Lα . The
set Atα(�) contains all α-atoms over�.
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• A set of formulas B is an β-atom over� if it is a maximal consistent subsets of Cls(�) ∩ Lβ . The
set Atβ(�) contains all β-atoms over�.

Fact A:

• If A is an α-atom over� and B is a β-atom over�, then A ∪ B is an atom over�;
• If � is an atom over�, then � ∩ Lα is an α-atom and � ∩ Lβ is a β-atom.

Proof: For the first, we know thatA∪B ⊆ Cls(�) is AB-consistent; thus, we only need to prove that any
X satisfying A ∪ B ⊂ X ⊆ Cls(�) is inconsistent. This is obvious, since any ψ ∈ Cls(�)with ψ /∈ A ∪ B
is either an α-formula or β-formula. Without loss of generality we can assume it is an α-formula; since
A is an α-atom over�, the set A ∪ {ψ} must be AB-inconsistent. Thus, X is also AB-inconsistent.

For the second, suppose � ∩ Lα = A is not an α-atom. Since A is consistent, there is an α-formula
α′ not in A such that A ∪ {α′} is still consistent, and thus � ∪ {α′} is also consistent. But α′ /∈ A implies
α′ /∈ �, and thus this contradicts the maximality of �. Therefore, � ∩ Lα must be an α-atom. The
argument for � ∩ Lβ is similar.

Lemma B: If	 ⊆ Cls(�) and	 is consistent, then there is a� ∈ At(�) such that	 ⊆ �.

The proof of Lemma B, an analogue of Lindenbaum’s Lemma, follows the same argument as the
proof of Lemma 4.83 of Blackburn, de Rijke, and Venema (2001). Together with the second fact of Fact
A, it implies the following lemmas:

Lemma C:

1. If X ⊆ Cls(�) and α is consistent, then there is a A ∈ Atα(�) such that X ⊆ A.
2. If Y ⊆ Cls(�) and β is consistent, then there is a B ∈ Atβ(�) such that Y ⊆ B.

We can now fix a formula φ ∈ L and construct the canonical model for it, which will be proved to
be a quasi argumentation-support model. Before doing so, here is first some useful notation.

Notation A: Let X and� be sets of formulas.

• If X is finite, define X̂ := ∧
ϕ∈X ϕ.

• For any ◦ ∈ {⊟,�,�, [α]}, define the sets

X◦ := {ϕ ∈ L | ◦ϕ ∈ X}, ◦X◦ := {◦ϕ ∈ L | ◦ϕ ∈ X},

If X is finite, define also

X�◦ := {ϕ ∈ Cls(�) | � X̂◦ → ϕ}
When� is a singleton {σ }, the set X {σ }◦ will be abbreviated as Xσ◦ .

Second, the following proof shows a property required by the definition of our canonical model.

LemmaD: Given a consistent φ, there is� ∈ At(φ) such that φ ∈ � and�φ
�

⊆ �.

Proof: The proof is divided into two cases.
First, if φ is an α-formula then, by Lemma C (a), there is an α-atom A such that φ ∈ A, due to its

consistency. Note that A� is consistent (otherwise, �⊥ ∈ A, contradicting axiom D). Thus, by this and
the fact that A� ⊆ Cls(φ) (Lemma C (b)), there is a β-atom B such that A� ⊆ B, which implies that
Aφ
�

⊆ B. By Fact A, A ∪ B ∈ At(φ).
Second, if φ is a β-formula, suppose that there is no � ∈ At(φ) such that φ ∈ � and �φ

�
⊆ �.

Then there is no α-atom A such that Aφ
�

∪ {φ} is consistent. (Otherwise, Aφ
�

∪ {φ} can be extended to
a β-atom by Lemma C (b), and by Fact A A ∪ B is an atom over φ: a contradiction.)

Now take the α-formula �φ. It can be proved that �φ is consistent. (Otherwise, � ¬ � φ, which
implies that � �φ ↔ �⊥. Since � �(⊥ → ¬φ) and � �(⊥ → ¬φ) ∧ �⊥ → �¬φ, it follows that
� �φ → �¬φ, which implies that φ is inconsistent; a contradiction.) Since �φ is an α-formula, from
the first auxiliary result it follows that there is an atom over�φ, say�, such that��φ

�
⊆ � and�φ ∈ �.

Next, take� := � ∩ Cls(φ). It can be shown that� is an atom over φ (i.e.� ∈ At(φ)). So take the
α-atom � := � ∩ Lα . Our supposition implies the inconsistency of �φ

�
∪ {φ}, as we have shown at
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the beginning. However, this implies that �

∧

(�
φ
�

∪ {φ}) is inconsistent. ��� ∪ {�φ} ⊆ � implies that

� �̂ → �

∧

(�� ∪ {φ}). By the definition of�φ
�
,� �̂� → �̂

φ
�
. Thus,wehave� �̂ → �

∧

(�
φ
�

∪ {φ}). Since

�

∧

(�
φ
�

∪ {φ}) is inconsistent, it follows that � is inconsistent, contradicting the �’s consistency.

Here is, then, the definition of the canonical model for φ.

Definition E: [Canonical Model over φ] Take any� ∈ At(φ) satisfying both φ ∈ � and�φ
�

⊆ � (by
Lemma D, such� exists). The canonical model over φ is the structure

M
{‖α‖|[α]�∈Cls(φ)}
� = (W ,AR, f , {�‖α‖| [α]� ∈ Cls(φ)}, V)10

given by

• W := {A ∈ Atα(φ) | ⊟A⊟ ∩ Sub(�) = ⊟�⊟ ∩ Sub(�) and � A� ∩ Sub(�) = ��� ∩ Sub(�)};
• ‖α‖ := {A ∈ W | α ∈ A};
• AR := {B ∈ Atβ(φ) | �φ

�
⊆ B};

• A ∈ f (B) if and only if B̂ ∧ ♦Â is consistent;
• for any ‖α‖ ∈ {‖α‖ | [α]� ∈ Cls(φ)}, B �‖α‖ B′ if and only if B ∧ 〈α〉B′ is consistent;
• V(p) := {A ∈ Atα(φ) | p ∈ A}
Wefirst prove four existence lemmas for⊟,�,� and [α]. During theproof, wewill use the following

abbreviations:

DY := {⊟α ∈ Sub(φ) | ⊟α ∈ �}, DN := {¬ ⊟ α ∈ Sub(φ) | ¬ ⊟ α ∈ �},
EY := {�β ∈ Sub(φ) | �β ∈ �}, EN := {¬ � β ∈ Sub(φ) | ¬ � β ∈ �},.

YN := DY ∪ DN ∪ EY ∪ EN.

Lemma E: In the canonicalmodel, for any⊟α ∈ Cls(φ),⊟α /∈ A if and only if there is anα-atomA′ ∈ W
such that¬α ∈ A′.

Proof: Assume that ⊟α /∈ A where ⊟α ∈ Cls(φ). We show that {¬α} ∪ YN is consistent. Suppose
not; then � ŶN → α. By applying the necessitation rule, we have � ⊟ŶN → ⊟α. By axiom 4 and
5 for ⊟ and A⊟ = �⊟, we have � Â → ⊟(D̂Y ∧ D̂N). By Axioms �1, �2 and A� = ��, we have
� Â → ⊟(ÊY ∧ ÊN). Together with� ⊟ŶN → ⊟α, it implies⊟α ∈ A, a contradiction. Therefore, we can
extend {¬α} ∪ YN to an α-atom over φ, A′, such that¬α ∈ A′. Moreover, A′⊟ = �⊟ and A′� = ��, so
A′ ∈ W .

For the other direction, assume there is a α-atom A′ ∈ W such that¬α ∈ A′. It follows immediately
that ⊟α /∈ A. (Otherwise, by A⊟ = �⊟ = A′⊟ and axiom T for ⊟, we have α ∈ A′, which contradicts
the assumption ¬α ∈ A′.)

Lemma F: In the canonical model,�φ
�

= ⋂
AR

Proof: As the⊆ direction is obvious, we focus on the⊇ direction. Assume β ∈ Cls(φ) but β /∈ �φ
�
; we

will show that there is a B ∈ AR such that β /∈ B. This amounts to show that {¬β} ∪�φ
�
is consistent.

Suppose not; then � �̂
φ
�

→ β . Since for any β ∈ �
φ
�
, we have � �̂� → β so � �̂� → �̂

φ
�
. By

� �̂φ
�

→ β , it follows that � �̂� → β , which implies that β ∈ �φ
�
by the definition of�φ

�
. However,

this is contradictory to the assumption that β /∈ �
φ
�
. So there must be a B ∈ AR such that β /∈ B.

Therefore, β /∈ ⋂
AR.
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Lemma G: [Existence Lemma for α-formulas] In the canonical model, for any �α ∈ Cls(φ), �α /∈ B if
and only if there is a α-atom A ∈ W such that there is A ∈ f (B) such that¬α ∈ A.

Proof: Assume�α /∈ B; wewill show that {¬α} can be extended to anα-atomA ∈ W such that B̂∧♦Â
is consistent. For this we follow the argument of Blackburn et al. (2001, Lemma 4.86) and construct
an appropriate α-atom A by forcing choices. So, enumerate the formulas in Cls(φ) as α1, . . . ,αm, and
define A0 as {¬α} ∪ YN, with YN as above.

We first prove that B̂ ∧ ♦Â0 is consistent. Suppose otherwise; then � B̂ → �¬Â0 and ¬Â0 =
α ∨ ¬ŶN. Thus, � B̂ → �(α ∨ ¬ŶN), which implies that � B̂ → �(ŶN → α). It follows that
� B̂ → (¬�α → ¬�ŶN) and, since ¬�α ∈ B, we have � B̂ → ¬�ŶN.

In order to get a contradiction, we nowproceed to prove that we also have� B̂ → �ŶN. The proof
can be divided into four parts specified as follows.

1. By Axiom I1, � D̂Y → ��D̂Y . Together with the construction of DY and�φ
�
, this implies that

{� ⊟ α ∈ Cls(�) | ⊟α ∈ � ∩ Sub(�)} ⊆ �
φ
�

⊆ B. Thus, � B̂ → �D̂Y .
2. By Axiom I1 and axiom 5 for ⊟, � D̂N → ��D̂N. Together with the construction of DN and
�
φ
�
, this implies that {�¬⊟α ∈ Cls(�) | ¬⊟α ∈ �∩ Sub(�)} ⊆ �

φ
�

⊆ B. Thus,� B̂ → �D̂N.
3. By Axiom I1 and Axiom �1, � ÊY → ��ÊY . Together with the construction of EY and �φ

�
,

this implies that {� � β ∈ Cls(�) | �β ∈ � ∩ Sub(�)} ⊆ �
φ
�

⊆ B. Hence, � B̂ → �ÊY .
4. By Axiom I1 and Axiom �2, � ÊN → ��ÊN. Together with the construction of EN and �φ

�
,

this implies that {�¬ � β ∈ Cls(�) | ¬ � β ∈ � ∩ Sub(�)} ⊆ �
φ
�

⊆ B. Hence, � B̂ → �ÊN.

Therefore, � B̂ → �ŶN. This is a contradiction, so B̂ ∧ ♦Â0 must be consistent.

Now, in order to extend the consistent B̂ ∧ ♦Â0, suppose as an inductive hypothesis that An is
defined such that B ∧ ♦An is consistent (1 ≤ n ≤ m). Then

� ♦Ân ↔ ♦((Ân ∧ αn+1) ∨ (Ân∧ ∼ αn+1))

and thus � ♦Ân ↔ (♦(Ân ∧ αn+1) ∨ ♦(Ân∧ ∼ αn+1)). Therefore, either for A′ = An ∪ {αn+1} or for
A′ = An ∪ {∼ αn+1}, we have B∧ ♦A′ is consistent. By choosing An+1 to be the consistent expansion,
and by letting A be Am, we have that B̂ ∧ ♦Â is consistent.

Thus, suppose there is an α-atom A ∈ W such that¬α ∈ A ∈ f (B); then B̂∧♦Â is consistent, which
implies that B̂ ∧ ♦¬α is consistent. Since �α ∈ Cls(φ) and B is β-atom over φ (and hence maximal
consistent in Cls(φ)), we must have ¬�α ∈ B.

Lemma H: [Existence Lemma for β-formulas] In the canonical model, for any [α]β ∈ Cls(φ), [α]β /∈ B
if and only if there is a β-atom B′ ∈ AR such that¬β ∈ B′ and B �‖α‖ B′.

Proof: Assume [α]β /∈ B; we will show that {¬β} can be extended to an β-atom B′ ∈ W such that
B̂ ∧ 〈α〉B̂′ is consistent. We construct an appropriate β-atom B′ by forcing choices. Enumerate the
formulas in Cls(φ) as β1, . . . ,βm; define B0 as {¬β} ∪�φ

�
.

Let λ = �̂
φ
�
. We first prove that B̂ ∧ 〈α〉B̂0 is consistent. Suppose not. By an argument similar to

that in Lemma G, we can get � B̂ → ¬[α]λ. By rule N for �, we have (1) � �̂B → �¬[α]λ. However,
� �̂B → �λ, since �φ

�
⊆ B. By Axiom I2, � �λ → �[α]λ, which implies that (2) � �̂B → �[α]λ. But

(1) and (2) lead to a contradiction, since ¬ �⊥ ∈ B. Therefore, B̂ ∧ 〈α〉B̂0 is consistent.
The induction part to extend B̂ ∧ 〈α〉B̂0 is similar to that in the proof of previous lemma, and so is

this lemma’s other direction.

Now we are ready to prove the truth lemma.

Lemma I: [Truth Lemma] LetM{‖α‖|[α]�∈Cls(φ)}
� be the canonical model over φ. For any ϕ ∈ Cls(φ),

M{‖α‖|[α]�∈Cls(φ)}
� , (A, B) |= ϕ if and only if ϕ ∈ A ∪ B

Proof: We proceed by induction on the degree of ϕ.
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• For �, (A, B) |= � and � ∈ A and � ∈ B, so it is trivially satisfied. For atomic propositions p, we
have (A, B) |= p if and only if A ∈ V(p) if and only if p ∈ A if and only if p ∈ A ∪ B.

• For the Boolean cases, there are two cases: one for α-formula and one for β-formula. In both,
the proof is routine.

• For the four modal operators, the proof uses their respective existence lemmas. Here, as an
example, we only deal with the universal modality on the set of arguments. Assume that
(A, B) |= �β ; by its truth definition, for any B′ ∈ AR, (A, B′) |= β . By induction hypothesis,
β ∈ B′ for any B′ ∈ AR, which implies that β ∈ ⋂

AR ⊆ �
φ
�

= Aφ
�
. (Note that ⊟A⊟ ∩ Sub(�) =

⊟�⊟ ∩ Sub(�) and �A� ∩ Sub(�) = ��� ∩ Sub(�) imply Aφ
�

= �
φ
�
by Axiom I1, Axiom �1

and the constructions of both Cls(�) and �φ
�
, using similar arguments specified in (1)-(4) in

Lemma A.6). Since �β ∈ Cls(φ), we have �β ∈ A. For the other direction, use
⋂

AR ⊇ �
φ
�
.

• For the case of Gfpα , the proof goes as follows. For the first direction, assume that (A, B) |= Gfpα ;
define GFP := {X ∈ AR | (A, X) |= Gfpα} andD := GFP∩Def�α� (B). Let δ denote

∨
X∈D X̂ , and

define E := {X ∈ AR | δ ∧ 〈α〉̂X is consistent }. We will use ε to denote
∨

X∈E X̂ .
Claim one: X ∈ E if and only if there is a Y ∈ D such that Y ��α� X .

X ∈ E ⇔ δ ∧ 〈α〉̂X is consistent
⇔ there is a Y ∈ D such that Ŷ ∧ 〈α〉̂X
⇔ there is a Y ∈ D such that Y �‖α‖ X
⇔ there is a Y ∈ D such that Y ��α� X
(by the induction hypothesis �α� = ‖α‖)

Claim two: for any ar ⊆ AR we have � ∨
X∈ar X̂ → [α]�̂φ

�
. Suppose not. Then

∨
X∈ar X̂ ∧

¬[α]�̂φ
�
is consistent, which implies that

∨
X∈ar X̂∧〈α〉¬�̂φ

�
is consistent. So theremust be one

β ∈ �φ
�
such that

∨
X∈ar X̂ ∧ 〈α〉¬β is consistent. Furthermore, there must be one X ∈ ar such

that X̂ ∧ 〈α〉¬β is consistent. By the existence lemma for [α], there must be one Y ∈ AR such
that X �‖α‖ Y and¬β ∈ Y . However, this is impossible, since β ∈ �φ

�
⊆ Y by the definition of

AR. Therefore, � ∨
X∈ar X̂ → [α]�̂φ

�
.

Claim three: � ε → 〈α〉δ. Suppose not. Then ε ∧ ¬〈α〉δ is consistent. Thus there must be an
X ∈ E such that X̂ ∧ ¬〈α〉δ is consistent, which implies that there is no Y ∈ D such that X̂ ∧ 〈α〉̂Y
is consistent. Hence, there is no Y ∈ D such that X �‖α‖ Y . However, by Claim one and X ∈ E ,
there is a Z ∈ D such that Z ��α� X . Since Z ∈ D ⊆ GFP, for any X ∈ AR such that Z ��α� X ,
there is Y ∈ GFP such that X ��α� Y . Because X ∈ Att�α� (B), Y ∈ Def�α� (B). Hence Y ∈ D and
X �‖α‖ Y , which implies that X̂ ∧ 〈α〉̂Y is consistent by �α� = ‖α‖. Contradiction!
Claim four: � δ → [α]ε. Suppose not. Then δ ∧ 〈α〉¬ε is consistent, which implies that there

is X ∈ D such that X̂ ∧ 〈α〉¬ε is consistent. By Claim two, � X̂ → [α]�̂φ
�
. By � [α]β ∧ 〈α〉β ′ →

〈α〉(β∧β ′), the consistency of X̂ ∧〈α〉¬ε implies that X̂ ∧〈α〉(�̂φ
�

∧¬ε) is consistent. Thus there
must be a Y ∈ AR \ E such that X̂ ∧ 〈α〉̂Y is consistent. However, this means that X �‖α‖ Y .
Since X ∈ D, by Claim one, it follow that Y ∈ E , contradictory to the fact that Y ∈ AR \ E .
Therefore, � δ → [α]ε.
Claim five: � δ → [α]〈α〉δ. By rule N for [α] on Claim three, we have � [α]ε → [α]〈α〉δ.
Together with Claim four, it implies that� δ → [α]〈α〉δ. By rule R onGfpα we have� δ → Gfpα .
Since B ∈ Def�α� (B) by the definition of Def and B ∈ GFP by the definition of GFP and the
assumption that (A, B) |= Gfpα , we have B ∈ D = Def�α� (B)∩GFP. Recall that δ := ∨

X∈D X̂ . By
B ∈ D, we have � B̂ → δ. Together with � δ → Gfpα , it follows that � B̂ → Gfpα , which gives
us that Gfpα ∈ B.
For the other direction, assume Gfpα ∈ A ∪ B and take G := {X ∈ AR | Gfpα ∈ X}. We first
show that G is a postfix point for d‖α‖, with d‖α‖(G) = {X ∈ AR | for any Y such that X �‖α‖
Y , there is Z ∈ G such that Y �‖α‖ Z}.
Take any X ∈ G. Since Gfpα ∈ X , by Unfold we get [α]〈α〉Gfpα ∈ X . If there is no Y such
that X �‖α‖ Y , then X ∈ d‖α‖(G). If there is Y such that X �‖α‖ Y , take any of them. Since
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[α]〈α〉Gfpα ∈ X ,¬〈α〉Gfpα /∈ Y . By maximality and 〈α〉Gfpα ∈ Cls(φ)we have 〈α〉Gfpα ∈ Y so,
by the existence lemma for [α], there must be a set Z such that Y �‖α‖ Z and Gfpα ∈ Z . Thus,
X ∈ d‖α‖(G), and therefore G ⊆ d‖α‖(G).
By the definition of GFP .d‖α‖, G ⊆ GFP .d‖α‖. By the inductive hypothesis, GFP .d‖α‖ =
GFP .d�α�. Thus, G ⊆ GFP .d�α�, which means that B ∈ GFP .d�α�. Therefore, by the truth
condition of Gfpα , (A, B) |= Gfpα .

The next step is to prove that the canonical model over φ is indeed a quasi argumentation-support
model.

Lemma J: For any B ∈ AR inM
{‖α‖|[α]�∈Cls(φ)}
� , we have f (B) �= ∅.

Proof: For any B ∈ AR we have �⊥ /∈ B. By the existence lemma for �, there is a α-atom A ∈ W
such that � ∈ A ∈ f (B). Therefore, for any B ∈ AR, f (B) �= ∅.
Lemma K: For any ‖α‖ ∈ {‖α‖ | [α]� ∈ Cls(φ)} and B1, B2 ∈ AR, we have B1 �‖α‖ B2 if and only if
B1 �‖α‖ B2.

Proof: This follows directly from axiom 1 and the fact that {‖α‖ | [α]� ∈ Cls(φ)} is closed under
complement.

Lemma L: For any ‖α‖ ∈ {‖α‖ | [α]� ∈ Cls(φ)} and B1, B2 ∈ AR, if B1 �‖α‖ B2 then either
f (B1) ⊆ ‖α‖ or else f (B1) ⊆ ‖α‖
Proof: From B1 �‖α‖ B2 it follows that B̂1 ∧ 〈α〉B̂2 is consistent. Thus, B̂1 ∧ 〈α〉� is consistent, which
implies that 〈α〉� ∈ B1 and hence � B̂1 → 〈α〉�. Together with axiom 2a, � 〈α〉� → �α ∨ �¬α, it
implies that � B̂1 → (�α ∨ �¬α).

Now take any A ∈ f (B1), we will show that A ∈ ‖α‖ implies f (B1) ⊆ ‖α‖. Assume both A ∈ f (B1)
and A ∈ ‖α‖; from A ∈ f (B1) it follows that B̂1∧♦Â is consistent, so B̂1∧♦α is consistent by� Â → α.
By �α ∈ Cls(φ) and � B̂1 → (�α ∨ �¬α), we have �α ∈ B1, and therefore, f (B1) ⊆ ‖α‖.

It can be shown by similar argument that if A /∈ ‖α‖ then f (B1) ⊆ ‖¬α‖.
LemmaM: For any ‖α‖ ∈ {‖α‖ | [α]� ∈ Cls(φ)} and B1, B2 ∈ AR, if B1 �P B2 and f (B1) ⊆ ‖α‖,
then f (B2) ⊆ ‖α‖.
Proof: Assume both B1 �‖α‖ B2 and f (B1) ⊆ ‖α‖. It follows that �α ∈ B1. Thus, by axiom 2b we
have � B̂1 → [α]�¬α and hence, for any B′ such that B1 �‖α‖ B′, we have � B̂′ → ¬�¬α. Since
�¬α ∈ Cls(φ), we also have �¬α ∈ B2. This implies that, for any A ∈ f (B2), � Â → α. Thus, for any
A ∈ f (B2), ¬α ∈ A and therefore f (B2) ⊆ ‖¬α‖.
Lemma N: For any P,Q ∈ {‖α‖ | [α]� ∈ Cls(φ)} and B1, B2 ∈ AR, if B1 �‖α‖ B2 and f (B1) ⊆ Q ⊆
P, then B1 �Q B2.

Proof: Take P = ‖α′‖ and Q = ‖α‖. We claim that for any A ∈ W , � Â → ⊟(α → α′). Suppose
not. Then Â ∧ �(α ∧ ¬α′) is consistent, and thus {α,¬α′} can be extended to an α-atom Y over φ
belonging to W . However. this contradicts Q ⊆ P. Hence for any A ∈ W , � Â → ⊟(α → α′). This
implies that � B̂1 → � ⊟ (α → α′).

Now, B1 �P B2 implies that B̂1 ∧ 〈α′〉B̂2 is consistent, and f (B1) ⊆ Q implies that � B̂1 → �α.
Together with� B̂1 → �⊟ (α → α′) and Axiom 3, they imply that B̂1∧〈α〉B̂2 is consistent. Therefore,
B1 �Q B2.

We have proved that the canonical model over φ, M{‖α‖|[α]�∈Cls(φ)}
� , is indeed a quasi

argumentation-support model. By Lemma A, this structure can be extended to an argumentation-
support model. It is only left to prove that this extension, denoted by MF

�, indeed preserves the
behaviour of the formulas we are interested in.
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LemmaO: For any ϕ ∈ Cls(φ),

MF
�, (A, B) |= ϕ if and only if M{‖α‖|[α]�∈Cls(φ)}

� , (A, B) |= ϕ

Proof: Theproof proceedsby inductionon thedegreeofϕ. Thebasic case is trivial, since theextension
does not change V . The proof for other cases is also routine, as neither the support functions f nor the
attack relations ��α� for [α]� ∈ Cls(φ) are changed when building the extension.

Thus,

Theorem 1.1: For any ϕ ∈ L, |= ϕ implies � ϕ.
Since by construction the set Cls(φ) is finite for any φ ∈ L, it follows that both W and AR

in M{‖α‖|[α]�∈Cls(φ)}
� are finite. Therefore, our completeness proof also gives us the finite model

property, which implies that our logic is decidable.
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