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ABSTRACT 

Lin, Yu-Hung. Ph.D., Purdue University, December 2015. Probing Cellular Mechano-
Sensitivity Using Biomembrane-Mimicking Cell Substrates of Adjustable Stiffness. Major 
Professor: Christoph Naumann. 
 
 

It is increasingly recognized that mechanical properties of substrates play a 

pivotal role in the regulation of cellular fate and function. However, the underlying 

mechanisms of cellular mechanosensing still remain a topic of open debate. 

Traditionally, advancements in this field have been made using polymeric substrates of 

adjustable stiffness with immobilized linkers. While such substrates are well suited to 

examine cell adhesion and migration in an extracellular matrix environment, they are 

limited in their ability to replicate the rich dynamics found at cell-cell interfaces. To 

address this challenge, we recently introduced a linker-functionalized polymer-tethered 

multi-bilayer stack, in which substrate stiffness can be altered by the degree of bilayer 

stacking, thus allowing the analysis of cellular mechanosensitivity. Here, we apply this 

novel biomembrane-mimicking cell substrate design to explore the mechanosensitivity 

of C2C12 myoblasts in the presence of cell-cell-mimicking N-cadherin linkers. 

Experiments are presented, which demonstrate a relationship between the degree of 

bilayer stacking and mechanoresponse of plated cells, such as morphology, cytoskeletal 

organization, cellular traction forces, and migration speed. Furthermore, we illustrate   



xix 

 

xix 

the dynamic assembly of bilayer-bound N-cadherin linkers underneath cellular adherens 

junctions. In addition, properties of individual and clustered N-cadherins are examined 

in the polymer-tethered bilayer system in the absence of plated cells.  

Alternatively, substrate stiffness can be adjusted by the concentration of 

lipopolymers in a single polymer-tethered lipid bilayer. On the basis of this alternative 

cell substrate concept, we also discuss recent results on a linker-functionalized single 

polymer-tethered bilayer substrate with a lateral gradient in lipopolymer concentration 

(substrate viscoelasticity). Specifically, we show that the lipopolymer gradient has a 

notable impact on spreading, cytoskeletal organization, and motility of 3T3 fibroblasts. 

Two cases are discussed: 1. polymer-tethered bilayers with a sharp boundary between 

low and high lipopolymer concentration regions and 2. polymer-tethered bilayers with a 

gradual gradient in lipopolymer concentration. 
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 INTRODUCTION 

1.1 Rationale and Objective 

For decades, most research related to the physiology of cells and tissue focused on 

molecular structure and biochemical signaling mechanisms that impact cell function and 

pathology1,2. Meanwhile, it has been recognized that mechanical signals may also have a 

profound impact on cellular fate and function. Such mechanical cues may include shear 

stress, osmotic forces, mechanical load and stretch as well as stiffness provided by the 

extra cellular matrix that surrounds most cells3,4. External mechanical forces not only 

affect the morphology and intracellular organization of cells, but also their proliferation 

and migration. Like other critical mediators of the interactions between cells and their 

environments, such as steroids and hormones, mechanical properties of the surroundings 

are considered to be one of the key characteristics necessary for biological functions 

determining the fate of cells and tissues. Failure of the mechanical components of tissue 

and cells can cause various dysfunctions and disease states, including cardiac hypertrophy, 

cancer and so on5,6. Mechanical properties also appear to be relevant to the normal 

development of tissue during embryogenesis and growth. Understanding the nature of 

these mechanical forces and how cells sense and respond appropriately to them is a 

challenging problem that ranges in scale from protein conformation to cell organization 

and tissue function. 
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Cells plated on various substrates, or microenvironments, can sense the 

corresponding external applied force. Artificial cell substrates of adjustable viscoelasticity 

have been instrumental in demonstrating that substrate elasticity significantly impacts 

cellular mechanotransduction5,7,8 (i.e., the ability to transfer mechanical signals into 

biochemical signals) including morphology, cytoskeleton organization and motility. For 

example, myoblasts grown on substrates with a materials compliance comparable to 

mature muscle tissue (~12 kPa) develop actomyosin striations characteristic of proper 

muscle differentiation, whereas those grown on softer or stiffer substrates have been 

shown to have a different mechanoresponse, and in turn different cytoskeleton 

organization. Research of artificial substrate design and fabrication for the investigation 

of mechanoresponse between cell forces related from cytoskeleton, such as F-actin, to 

focal adhesion structure can benefit the understanding of the mechanism in biochemistry, 

biophysical and pathological fields7,9-11. For example, force transduction via adheren 

junctions linked to actin on artificial substrates impact not only the cytoskeleton structure 

but also the cellular mechanoresponse via cadherin linkers. Furthermore, the mechanism 

of cellular differentiation and development is also able to be guided by appropriate 

mechanical signaling via changing physical properties of substrates12-14. 

2D and 3D polymeric gel substrates of adjustable stiffness represent the most 

broadly used substrates in exploring cellular mechanosensitivity5,12-16. Such artificial cell 

substrates mimicking an ECM environment have been a powerful tool with their variable 

stiffness ranging from 100 MPa to 100 Pa, which can mimic microenvironments from 

skeleton muscle to neuron cells. A hallmark of such substrates is that cell spreading 

critically depends on linker density, a parameter, which can be impaired by polymer 
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artifacts. Moreover, the linker immobilization may hinder the lateral assembly of cell 

adhesion proteins at cellular adhesion sites, such as focal adhesions and adherens 

junctions.17-19 Consequently, polymeric cell substrates with immobilized linkers are not 

well suited to replicate the plasticity and rich dynamics found at cell-cell interfaces, which 

includes basal-to-apical movement and treadmilling of adherens junctions in polarized 

cells20,21. 

Herein, an alternative strategy for novel cell surface-mimicking cell substrates was 

employed, which is based on a linker-functionalized biomembrane-mimicking polymer-

tethered lipid bilayer architecture of adjustable substrate stiffness. Unlike in traditional 

polymeric cell substrates, individual cell linkers are laterally mobile and free to assemble 

into largely immobilized linker clusters, thus enabling cell spreading and migration. Two 

types of linkers were employed, N-cadherin linkers forming cell-cell junctions with plated 

cells and ECM-mimicking laminin linkers. Substrate stiffness and lipid fluidity of 

biomembrane-mimicking polymer-tethered lipid bilayer substrates were altered in a 

complementary manner: (i) by varying the number of bilayers in a multi-bilayer stack and 

(ii) by modifying the concentration of lipopolymers in a single polymer-tethered lipid 

bilayer. In addition, polymer-tethered lipid bilayers with micro-patterned mechanical 

properties were built through a novel fabrication process. To examine cellular 

mechanosensitivity, cell spreading, migration, cytoskeletal organization, and cellular 

traction forces were investigated in response to the tunable mechanical properties of 

polymer-tethered lipid bilayer systems. 

The research described within this dissertation focuses on the development of 

artificial biomembrane-mimicking cell substrates specifically designed to investigate the 
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impact of viscoelasicity on cellular mechanoresponse. This work has been divided into 

four main objectives: 

Objective 1: Design and fabrication of two types of novel physisorbed polymer-tethered 

lipid single bilayers (TYPE I substrate) with micropattered lipopolymer concentrations: (i) 

TYPE Ia - Sharp Boundary Pattern; and (ii) TYPE Ib : Gradual Gradient Pattern. 

Objective 2: Analysis of MEF Fibroblast cellular mechanosensitivity on linker-

functionalized biomembrane-mimicking single bilayer systems (TYPE I, Ia, and Ib 

substrates) of different lipopolymer concentration.  

Objective 3: Design, fabrication, and characterization of linker-functionalized polymer-

tethered multi-bilayers (TYPE II) as cell substrates of adjustable viscoelasticity with the 

following linker systems: (i) cell-cell junction-forming N-cadherin linkers and (ii) cell-ECM-

mimicking laminin linkers. 

 Objective 4: Assessment of C2C12 Myoblasts cellular mechanosensitivity on 

biomembrane-mimicking multiple bilayers of different degree of stacking with N-cadherin 

and Laminin linkages. 

 
1.2 Organization 

This dissertation is comprised of five chapters. The first chapter contains the introduction. 

The second chapter provides the scientific background. The third chapter describes the 

materials and methods. The fourth chapter outlines the results and discussions of this 

thesis work. The final chapter contains the conclusion and outlooks.   
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 BACKGROUND 

2.1 Methodology 

Supported lipid bilayers are biomembrane-mimicking models22,23 that can be 

combined with advanced biophysical detection methods to study the biophysical and 

biochemical properties of biological membranes14. Supported lipid bilayers24,25 are also 

important tools for nanobiotechnological applications26-29, such as for the design of a 

patterned biosurface with well-defined functionalities. 

The most widely-used methods to fabricate supported lipid bilayers are by:  

a. Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) deposition.   

b. Fusion of lipid vesicles, such as small unilamellar vesicles or giant unilamellar vesicles. 

c. Langmuir-Blodgett (LB) deposition and vesicle fusion. 

Other techniques of supported lipid bilayer formation were also developed, such 

as the formation of supported lipid bilayer by spin-coating, in which homogeneous lipid 

films are formed on the solid supported material after solvent evaporation and by 

painting. 

2.1.1 Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) Deposition Technique24-26 

In the LB method, a monolayer of lipids is compressed on an aqueous subphase by the 

moveable barriers of a Langmuir trough made of Teflon (See Figure 2.1.1, top). A lipid 
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molecule mixture dissolved within solvents, such as chloroform/methanol or 

hexane/ethanol, are usually spread at the air-water interface. After total evaporation of 

the solvent on the surface, for 20-30 minutes depending on the temperature and 

humidity, the monolayer, also known as Langmuir monolayer, is compressed to the 

desired film pressure. During the compression and decompression of the monolayer, 

isotherms are obtained by plotting the surface pressure, which is acquired by a surface 

pressure detector, as a function of the area. The resulting pressure-area isotherm 

provides information about several monolayer parameters, such as phase state, lipid 

packing, and organization of lipid molecules. During LB deposition, the monolayer of 

amphiphilic molecules will be transferred by a computer‐controlled dipper from the air-

water interface to a solid support material, such as a coverslip of glass or mica thereby 

maintaining a constant surface pressure and constant lifting speed (See Figure 2.1.1 

center). To avoid the dipping artifacts like holes or feature alignments to the deposition 

structures, it is necessary to carefully control surface pressure and dipper speed. The 

deposited monolayer can be stored in air, thereby maintaining its integrity of the film for 

two to three days. 

 To form a supported lipid bilayer by monolayer depositions, the LB deposition 

should be accompanied by a Langmuir-Schaefer (LS) deposition. During LS deposition, the 

LB monolayer-functionalized solid substrate is pressed like a stamp through the second 

Langmuir monolayer into the aqueous subphase (See Figure 2.1.1 bottom) The secondary 

(LS) monolayer can be composed of a different lipid mixture forming an asymmetric 

supported lipid bilayer. Again dipping speed and accurate pressure control are critical for 
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the quality of the resulting bilayer structure. Supported lipid bilayers built using 

subsequent LB and LS depositions can maintain their integrity under water for several 

days. 

 

Figure 2.1. 1 Langmuir film, Langmuir-Blodgett deposition, Langmuir-Schaefer deposition 
and multilayers obtained after repeated deposition. 
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2.1.2 Multilamellar Vesicles and Multiple Bilayer Stacking via Giant Unilamellar Vesicles 

(GUVs) 24 

The most simple and broadly used method for preparing supported lipid bilayer is 

by fusion of small unilamellar vesicles (SUV) and giant unilamellar vesicles (GUV) on solid 

supported substrates. Lipids are first dissolved in an organic solvent for homogeneous 

mixing and dried under nitrogen purging and desiccated under vacuum. Lipid films are 

resuspended in an aqueous buffer yielding multilamellar vesicles. 

For small unilamellar vesicle (SUV) formation30,31, multilamellar vesicle solutions 

are sonicated using a rod sonicator, while keeping the sample container at a moderate 

temperature by a surrounding ice bath. The formation of SUVs is indicated by the 

opalescence of the sample solution. Prior to usage, it is necessary to remove the 

remaining large vesicles via centrifugation of the SUV solution or filtration of the solution 

on a nylon membrane. Next, the resulting SUV solution is added to the solid substrate of 

glass or mica, allowing formation of supported lipid bilayers following an incubation time 

of 45-60 minutes at 30-45 ˚C. Finally, lipid bilayers are rinsed with Milli-Q water to remove 

unfused vesicles. SUV rupture and roll out on a solid substrate is driven by attractive 

bilayer-substrate interactions and high bilayer curvature stress, which is a hallmark of 

these vesicular systems. This method allows formation of a continuous supported lipid 

bilayer. 

To prepare GUVs24,32, a lipid mixture is dissolved in organic solvent. Next the 

organic solvent is evaporated under nitrogen purging leaving a dried lipid film. Next, the 

dried lipid film is resuspended in an aqueous buffer, which can contain divalent cations 
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(particularly calcium), placed in hot water bath (75-90 ˚C) for 60-90 minutes to induce 

vesicle formation. After cooling to room temperature, GUV solutions are poured onto 

solid substrates or bilayer substrates. After rinsing off the unfused vesicles, multiple 

bilayer stacked substrates can be used as a biomembrane-mimicking substrate in 

biophysical and biochemical studies. Such multi-bilayer systems are typically stabilized 

using specific inter-bilayer tethers33,34. 

 

Figure 2.1. 2 Different types of vesicles in use nowadays35 
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Multilamellar vesicle are less suitable for the formation of supported lipid bilayers. 

While fabrication of supported lipid bilayers by vesicle fusion is rather straightforward, it 

is limited to the formation of bilayers of symmetric bilayer composition. In contrast, the 

layer-by-layer assembly of the LB/LS technique enables the design of biologically more 

relevant asymmetric bilayer compositions. Lipid packing and the lipid lateral mobility in a 

single supported lipid bilayers formed by vesicles (SUV, GUV) fusion and LB/LS transfers 

are comparable, resulting in similar lipid diffusivity24. 

2.1.3 Optical Microscopy Techniques 

2.1.3.1 Epifluorescence Microscopy (EPI) 

One of the most powerful tools for investigation of biological processes, as well as 

physical, mechanical or chemical mechanisms is fluorescence microscopy that detects the 

universal luminescence family of processes in which susceptible molecules emit light from 

electronically excited states. Excitation of a molecule by ultraviolet or visible light photons 

produce luminescent light that can be formally categorized as fluorescence and 

phosphorescence, depending upon the pathway of the light emission from excited state 

falling back to steady state. Fluorescence is a property of some atoms and molecules to 

absorb light at a particular wavelength and to subsequently emit light of longer 

wavelength after a brief interval, termed the fluorescence lifetime. On the other hand, 

phosphorescence has much longer excited state lifetime compared to fluorescence with 

similar relaxation process as fluorescence. 
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Advanced fluorescence microscopy combines the power of high performance 

optical components with computerized control of the instrument and digital image 

acquisition to achieve a high level of sophistication that far exceeds that of simple 

observation by the human eye. Microscopy now relies significantly on electronic imaging 

to quickly obtain information at low light levels or at wavelengths outside the visible 

spectrum. These technical improvements are not mere window dressing, but are essential 

components of the light microscope as a system. Nowadays, obtaining the optical image 

of a specimen is just the beginning toward data analysis. Microscopes help to achieve this 

first step in conjunction with electronic detectors, image processors, and displaying 

devices that can be viewed as extensions of the imaging system. With more 

improvements of the image detail analysis and quantitative exploration, EPI microscopy 

can help researchers and scholars in their investigation of various fields ranging from the 

characterization of polymeric molecule to imaging of tissue samples. 

2.1.3.2 Differential Interference Contrast Microscopy (DIC) 

Brightfield microscopy, which simply requires a basic light microscope, relies on 

differences in light absorption to produce contrast. In the 1930s, Dr. Zernike established 

phase contrast microscopy, which is often employed to image challenging specimens, 

which show a weak contrast in brightfield microscopy. However, the DIC technique has 

several disadvantages which includes halo artifacts, the restriction to ultrathin samples, 

and the inability of taking advantage of the full condenser and objective apertures. Living 

cells and other transparent, unstained specimens are often difficult to observe under 
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traditional bright field illumination using the full aperture and resolution of the 

microscope objective and condenser system. 

Differential Interference Contrast (DIC) microscopy is a complementary technique 

applied to enhance contrast to cellular images, allowing organelles and other cellular 

components to be observed. DIC microscopy is a light-diffracting interference method in 

which the reference beam is filtered by a minuscule amount. Here, changes in light phase 

are accomplished by inserting a phase annulus (or phase ring) with a matched objective 

containing a phase plate into the light path. This optical technique establishes the image 

with a monochromatic shadow-cast that displays continuous optical paths from high to 

low spatial frequencies present in the specimen. The phase plate contains a centered, 

ring-shaped area, which matches the annulus and retards light exactly by a quarter-

wavelength. A gradient pattern in the linear path length or refractive index of the 

specimen, which results in elliptical polarization for the recombined beam that exits the 

objective Wollaston prism, produces phase difference as the two orthogonal wave-fronts 

combine. Thus, optimum contrast, field brightness, and sensitivity can be adjusted though 

the light pathway and heights of the sample stages. In this method, the optical beam is 

directed through the annulus, the sample, and then the objective before hitting the phase 

plate.   

Major imaging advantages of DIC microscopy include: (i) the ability to acquire an 

image of smaller specimen features which could be disregarded in the contiguous area 

with large optical gradients and (ii) the ability of DIC microscopy to enhance the image 

sensitivity of small specimens next to larger objects (a problem in traditional phase 
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contrast techniques). However, the disadvantage of DIC microscopy, depending on its 

application, is the formation of “phase halos” or glowing edges along the boundaries of 

specimen and background.  These halos are a consequence of the phase-retarding ring of 

the phase plate also transmitting small amounts of the light diffracted from the specimen. 

DIC microscopy is broadly used for the observation of biological related specimens, 

ranging from big living tissue cultures, to polymer samples. Furthermore, DIC microscopy 

is usually combined with EPI-fluorescence microscopy to investigate the cellular 

morphology with fluorescent immunostaining methods. When coupled to enhanced 

video techniques, DIC can be utilized to produce images of structures having dimensions 

below the optical resolution of the microscope. 

2.1.3.3 Laser Scanning Confocal Microscopy 36,37 

Laser scanning confocal microscopy represents another widely used optical 

microscopy method in the biological, physical, chemical and physiological fields. A 

modern laser scanning confocal microscope can be considered as a sophisticated imaging 

system that integrates basic microscopy stand, a complex laser excitation system typically 

made of multiple lasers with wavelength selection devices, a beam scanning assembly, 

and a computer for image display, processing, output, and storage that the entire 

confocal microscope. Unlike an EPI fluorescence microscope, confocal imaging is 

accomplished using a combination of a monochromatic excitation source and a confocal 

aperture to aid in eliminating out of plane fluorescence. Here, coherent light emitted by 

the laser system passes via a pinhole aperture that is situated in a conjugate x-y plane 
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(confocal). It results in smaller excitation volumes which help to eliminate background 

noise by exciting only a thin plane at a specific scanning point of the specimen and by 

placing a second pinhole aperture positioned in front of the detector. A confocal image 

of high signal/noise is acquired by scanning point-by-point using a scanning stage. The 

resulting fluorescent image can be observed directly though the eyepieces of the 

microscope or via a CCD monitor or electronic array detector. 

The primary advantage of laser scanning confocal microscopy lies in the ability to 

serially produce thin optical sections through fluorescent specimens that have a thickness 

ranging up to 50 mm or more. The ability to image optical sections with reduced 

background fluorescence results in clearer fluorescent images throughout a sample and 

allows for 3D rendering. Moreover, optical capability allows the acquisition of three-

dimensional images (e.g. for the analysis of a cell) by building a stack of multiple 

fluorescent images. Modern laser scanning confocal microscopes also allow parallel 

image acquisition through different fluorescent channels, thus enabling analysis of 

multiple types of fluorescent probe molecules, while eliminating fluorophore interference 

much more efficiently than EPI microscopy. Confocal microscopes are used for various 

applications. They are utilized extensively in the biomedical sciences to study the 

structure of thick biological samples and in the engineering disciplines to analyze complex 

structures such as microelectronic circuits. 

However, laser scanning confocal microscopy also has some limitations, such as 

the range of laser excitation wavelengths and laser induced sample damage. For example, 

narrow bands of UV excitation with a short lifetime are rather expensive to produce on a 
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confocal microscope system. In contrast, mercury or xenon lamp excitation on EPI 

fluorescence microscopes result in a broad range of excitation wavelengths from UV-

visible to IR spectral regions. Furthermore the relatively high-intensity laser irradiation 

might damage the various specimens such as living cells and tissues. 

In conclusion, confocal microscopy has several advantages over traditional EPI 

fluorescence microscopy, such as the abilities to reduce the background from the focal 

plane and capability to acquire 3D images of thick specimens. A further advantage of the 

confocal approach is that spatial filtering techniques can be employed to reduce out-of-

focus light or glare in ultra-thick specimens. Not surprisingly, there has been a 

tremendous explosion in the popularity of confocal microscopy in recent years, due in 

part to the relative ease with which high-quality fluorescent micrographs can be acquired 

from specimens prepared for traditional fluorescence microscopy, and the growing 

number of applications in cell biology requiring images of cell and tissue samples. The 

field recently experienced a substantial boost with the emergence of super-resolution 

microscopy, which allows acquisition of fluorescence images with sub-diffraction limit 

resolution. 

2.1.3.4 Fluorescence Recovery after Photobleaching (FRAP) 38 

Fluorescence recovery after photobleaching (FRAP) is well suited for the analysis 

of dynamic movement of biological samples  For investigation of laterally mobile 

substrates, such as solid supported bilayers or vesicles, photobleaching techniques are 

broadly used to measure the transport of a molecule on the surface of and within living 
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cells and biomembrane-mimicking substrate systems. FRAP methods are based on the 

photobleaching of defined regions of the substrate to destroy the fluorescence emitted 

from the region; sequentially, the recovery of fluorescence into that region reflects the 

type of transport processes occurring. There are many factors to impact the recovery 

curve, such as the fluorescent molecule diffusion and the mechanism of the fluorescent 

molecule transport from unbleached area. In sum, the steeper the curve, the faster the 

recovery and therefore, the more mobile the molecules. Indeed, the FRAP technique has 

experienced a resurgence in popularity during the couple of decades, as it is quite suitable 

for analyzing the lipids and proteins. 39,40 

 

Figure 2.1. 3 Graphical representation of data collected during a FRAP experiment. A 
baseline of fluorescence is collected as following; (1) original intensity before the 
photobleaching (2). Over time, fluorescence increasing in the photobleached area from 
diffusion of fluorescent molecules from unbleached reservoir (3) then, stabilization of the 
amount of fluorescence recovery (4) and a steady flattop curve is observed. The percent 
recovery uses the formula: (Y/ X) x 100% = % recovery. 
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In the case of a bilayer substrate, the experimental data can be fitted using the 

following Gaussian diffusion equation (eq. [1]): 

𝐹(𝑡) = 𝐹𝑓𝑖𝑛𝑎𝑙√(1 − 𝑤2(𝑤2 + 4𝜋𝐷𝑡)−1)    [1], 

where F(t) is the intensity as a function of time; t= 0 is the initial point ; F(final) is 

the final intensity reached to the after complete recovery; w is the width; and D is the 

diffusion coefficient constant. To switch from the 1D Gaussian model into a 2D model, the 

fluorescence intensity of the photobleached area can be described as: 

𝐼𝑟𝑛(x. y) =  
2 𝐼𝑓𝑖𝑛𝑎𝑙

𝜋𝑟𝑛
2 exp(

−2(𝑋2+𝑌2)

𝑟𝑛
2 )    [2], 

where rn
2 is the radius of the photobleached region. Then, the concentration of 

the fluorescent probe C(x, y, t) can be described by the diffusion equation: 

𝐶𝑡 = 𝐷 ∆𝐶      [3], 

Here, D is a diffusion coefficient and Δ = (2/x2) + (2/y2), then the convolution 

of the fundamental solution of the diffusion equation can be expressed by:  

𝐶 (𝑥, 𝑦, 𝑡) = ∬ 𝐶(𝑥 − 𝑥′, 𝑦 − 𝑦′, 0)∅𝐷𝑡(𝑥′, 𝑦′) 𝑑𝑥′𝑑𝑦′  [4], 

where ∅Dt (x,y) in Equation 4 is: 

∅𝐷𝑡(𝑥, 𝑦) =  
1

4𝜋𝐷𝑡
exp(

−(𝑥2+𝑦2)

4𝐷𝑡
)     [5], 

and the fluorescent intensity of the lateral dye lipids is:  

𝐹(𝑡) = 𝑞 ∬ 𝜀 𝐼𝑟𝑛(𝑥, 𝑦)𝐶(𝑥, 𝑦, 𝑡)𝑑𝑥 𝑑𝑦      [6], 

Eq. 6,. has been simplified into Eq. 7  to 40  

 𝐹 (𝑡) = 𝐹𝑖 { 1 −
𝐾

1+𝛾2+2𝑡
𝜏𝐷

⁄
} 𝑀𝑓 + (1 − 𝑀𝑓)𝐹0    [7] 

where D = re
2/4D and γ = rn/re and Mf = F ∞–F0/ Fi-F0; F1/2 = (F0+F ∞)/2 and F(1/2) = F1/2  
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𝐹1/2 =  
(𝐹𝑖−𝐹0)

2
𝑀𝑓 + 𝐹0       [8] 

Applying the F1/2 back to Eq. 7 eventually provides the simplified equation for a 

confocal FRAP experiment, which is : 

𝐷𝑐𝑜𝑛𝑓𝑜𝑐𝑎𝑙 =  
2𝑟𝑛

2

8𝜏1/2
=

1

4

𝑟𝑛
2

𝜏1/2
       [9] 

Eventually, both Axelrod’s method41 using a Gaussian laser and Soumpasis’ 

42method using a uniform laser, result in the following equation:  

𝐷𝐸𝑥𝑝 = 0.224
𝑟𝑛

2

𝜏1/2
       [10] 

The simplified equation [10] enables quantitative analysis of confocal FRAP data 

from the 2D bilayer substrates, thus benefiting many biochemical and biophysical studies 

using laser scanning confocal microscopy.  

2.1.4 Atomic Force Microscopy (AFM) 43 

During the past decades, atomic force microscopy (AFM) has developed into a 

powerful method of supported lipid bilayer characterization at the nanoscale44. AFM not 

only enables visualization of the nanoscale structures of a lipid bilayer under physiological 

condition, but also AFM allows monitoring of dynamic events such as bilayer 

modifications and remodeling. AFM is also a well-established method for imaging the 

lateral organization of phase separated supported lipid bilayers. In a previous AFM study45, 

hydrated bilayers made of a mixed DMPE and DPPE (19:1) on DPPE-coated mica were 

imaged, revealing the coexistence of fluid and crystalline domains within the supported 

lipid bilayers via AFM images . In another example, two-phase coexistence was also 

observed in a supported lipid bilayer comprised of a binary mixture of DOPC/DPPC (1:1) 
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in buffer. In this case, the step height measured between the two phases is 1.1 nm, which 

results from a difference in the thickness and mechanical properties of the DOPC and 

DPPC films. Blanchette et al.46,47 investigated the impact of cholesterol to the ternary 

system of DLPC/ceramides/cholesterol using AFM, these researchers observed that this 

ternary mixture only displayed Ld/S coexistence and no Lo phase even at elevated 

cholesterol level. Chiantia et al. 48 combined AFM, confocal fluorescence microscopy and 

fluorescence correlation spectroscopy to probe the supported lipid bilayers consisting of 

sphingolipid/DOPC/cholesterol/ceramides. The authors observed three coexisting phases 

within the bilayer: Ld enriched in DOPC, Lo enriched in sphinogolipid and cholesterol, gel 

enriched in ceramide. 

Besides the investigation of nanoscale organization of lipid bilayers, AFM has also 

been used for investigating supported lipid bilayers in the presence of other important 

biological materials. For example, AFM was utilized to monitor the bilayer‐detergent 

interaction for the fractionation and reconstitution of membrane components, with the 

aim to perform biophysical and structural studies of biological membranes and proteins. 

AFM has also emerged as a powerful tool for visualizing the interaction of a supported 

lipid bilayer with short peptides and proteins, which play essential roles in a number of 

biological events like membrane fusion and membrane lysis. AFM was also employed to 

investigate bilayer‐drug interactions, in which the toxicity and activity of drugs could be 

demonstrated in terms of their impact on the structure and organization of biological 

membranes.  
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AFM is also suitable to explore membrane‐nanoparticle interactions, thus enabling the 

design of nanoparticles for biomedical applications, such as medical imaging and 

drug/gene delivery. 

Overall, AFM is now a powerful tool in biomembrane research, which is 

particularly well suited for monitoring coexisting micro- and nanoscale domains in 

supported lipid bilayers, and for observing membrane remodeling and alternation upon 

interaction with solvent, detergent, peptides and nanoparticles. AFM analysis also 

represents a viable strategy for characterizing other properties of supported lipid bilayer 

architectures, such as membrane elasticity and bilayer pore formation. AFM analysis can 

also be combined with other techniques, such as stimulated emission depletion far-field 

fluorescent microscopy, and secondary ion mass spectrometry, thus suggesting a wide 

range of new applications in future membrane research. 

2.1.5 Traction Force Microscopy49 

Traction force microscopy represents a powerful experimental tool that allows the 

analysis of cellular traction forces of migrating cells. Analysis of cellular traction forces is 

quite valuable as it provides important insight into cellular mechanosensitivity, with 

potential significance in biological processes including angiogenesis, inflammation, 

wound healing and metastasis formation. At the cellular and subcellular levels, the forces 

generated from a cell are just a few nN, which makes their accurate detection rather 

challenging. Yet, traction force microscopy provides a method for determining cellular 

traction forces with high accuracy. 
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Most of the cells in culture are typically adhering to a solid substrate to grow and 

survive. The adherent agrin of a cell develops tension via actomyosin interactions inside 

cells. The cellular tension is transmitted to the underlying substrate through focal 

adhesions (FAs) located on the substrates and linked with actin stress fiber inside the cells. 

The tensile force is referred to as cell traction force. It is well-known that the traction 

force at on single FA agrin to substrate is around 10 nN. However, the various factors of 

the microenvironment, such as substrate stiffness could impact the cell traction force and 

the cellular mechanoresponse. 

Prior to the emergence of traction force microscopy, several alternative methods 

were used to estimate cellular traction forces. Among the earliest methods50 was a cell‐

populated collagen gel (CPCG), which mixed cells with liquid collagen to form a 

polymerized gel disk. After the solidation of the gel, cells adhere to the collagen gel, 

thereby generating traction forces. Cellular traction force analysis by the CPCG method 

was accomplished by measuring the change in diameter of the gel disk. However, this 

method only allows semi‐quantitative measurements of cellular traction forces. 

Furthermore, it is not accurate enough to allow single cell analysis. Another technique 

was applied by floating a PDMS membrane in growth medium. In this method, cells attach 

to the PDMS gel in medium 51 and caused the PDMS surface to wrinkle, which allows the

 traction forces to be measured quantitatively. The micro‐patterned elastomer method 

was also developed for measuring cell traction force by the motion of the elastomer and 

stiffness of the substrates. However, this method does not provide a completely flat 

surface for cell adhesion.  
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Three major research groups, Dembo and Wang52, Butler49, and Yang53 have been 

instrumental in developing the cellular traction force method which uses an elastic 

polyacrylamide gel (PAA) substrate with embedded fluorescent beads to measure cellular 

traction forces. Traction force microscopy involves three major steps. The first step is to 

fabricate elastic PAA gels substrates with a flat surface. In the second step, the researcher 

has to acquire a pair of “null force” and “force loaded” fluorescent microscopy images, 

from which the displacement field can be determined based on the movement of a 

fluorescent marker on the PG surface. Finally, the substrate deformation is used to 

calculate cell traction forces via software such as Matlab.  

To fabricate PAA gel substrates, an acrylamide/Bis-acrylamide mixture is added to 

a pretreated glass coverslip of a circular dish after being mixed with micron sized 

fluorescent beads. Stiffness of PAA gel substrate is controlled by the percentage of the 

acrylamide in the PAA gel substrate, which can impact cellular traction force and cellular 

mechanoresponse. Following exposure to UV light and removal of excess Sulfo-SANPAH, 

the substrate can be coated with ECM proteins, such as fibronectin or collagen type I. 

Next, additional material can be coated on top of the ECM protein layer using specific 

crosslinker molecules. After preparation of the traction force microscopy assay, target 

cells can be placed above the substrates for incubation. Initially, “force loaded” images 

are acquired using an inverted microscope, followed by detachment of cells via 

trypsinization and acquisition of the corresponding “null force” image. Comparison of 
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bead positions in “force loaded” and “null force” images allow calculation of the 

displacement field as shown in Fig. 2.1.4.A. 

 

Figure 2.1. 4 Traction Force Microscopy for Fibroblast cells on PAA gels with fluorescent 
beads.54 

 

The determination of cell traction forces can be described in a formula for 

elucidation of an inverse problem, which calculates for the cell traction force via bead 

displacement. Most of the research groups including Dembo and Wang52, and Butler49 

use the Boussinesq analytical solution as the forward model, the expected displacement 

at any point, xj of an elastic substrate due to n cell traction force can be expressed in a 

general discrete convolution form as shown in Eq. [10]   

𝑑(𝑋𝑗) =  ∑ 𝐺(𝑋𝑖 − 𝑋𝑗) ∗ 𝐹(𝑋𝑗)𝑛
𝑖=1       [10], 
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where F(Xj) is the point force acting at Xj, and G(Xi-Xj) represents the forward model that 

computes the displacement at Xj due to force at Xi. The convolution can also be 

elaborated as following:  

[𝐴] ∗ {𝐹} = [𝑑]  where   𝐴 𝑖, 𝑗 = 𝐺( 𝑋𝑖 − 𝑋𝑗)    [11] 

where [A] is a full rank matrix, [F} can be found by simple inversion based on the approach 

of the Butler group. Both force points and the displacement points to the reside on regular 

grid as standard samples can be conducted to the computation in the frequency domain. 

Thus, the back substitution of force can be resulted as iteration until the force in the 

interior of a cell converge.  

On the other hand, the method employed and developed in Dembo and Wang’s 

group55,56 enable the computation of the force via Bayesian a posteriori statistics. In an 

FEM formulation based on Zienkiewicz’s theory, the force can be computed based on the 

displacement on the known substrate system and the adoption of adequate involves two 

major factors: measured displacement of fluorescent beads [d} and the stiffness of matrix 

substrate [K] with the force vector as the equation below:  

[𝐾] ∗  [𝑑] = [𝐹]      [12] 

By expressing the displacement in traction-free nodes as a formula of those at the 

prescribed displacement node, the cell traction force can be modified through 

multiplication as the following: 

[𝐹′] = [𝐾] ∗ [𝑑]     [13] 
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Where [d} represent the displacement and [F’] is the corresponding cell traction forces. 

Cellular traction force can be calculated based on Equation [13] via matlab software.    

Finally, the cell traction force can be computed as illustrated in Fig. 2.1.4.C, thus 

providing valuable insight into cellular focal adhesion forces.  

Traction force microscope technology provides automation and real-time tracking of cell 

traction force for observation of the cell mechanoresponse and cell migration. In that 

sense, it is also a useful tool for examining cellular biological processes, which are 

associated cellular actomyosin machinery. 

2.2 Cell Migration & Cellular Mechanosensitivity 

Cells can transduce mechanical signals into a biochemical response. The process is 

known as mechanotransduction57. But the subcellular mechanisms during cellular 

mechanotransduction are not well understood. Mechanical forces applied to a cell from 

surrounding microenvironments such as extracellular matrix, can cause the 

conformational change of membrane proteins at cell adhesion sites58. Such 

conformational changes can stimulate particular signaling pathways29,30 and gene 

expressions59; thus, it can ultimately alter cell morphology60, change cell migration speed 

and direction61, and cause the alternation of binding proteins in focal adhesion sites62. 

2.2.1 Cell Migration 

Cell migration analysis provides a simple strategy for observing many diverse 

cellular functions and behaviors such as cell motility, cell-cell adhesion and ECM  
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remodeling. Single cell migration allows us to study cell movement contribution to many 

physiological motility processes, such as development, immune cell surveillance, and 

cancer cell metastasis.  

There are two major categories of cell migration: collective cell migration63 and 

single cell migration63. Collective cell migration has been proven as one of the main steps 

of embryonic growth64; single cell migration is strongly addressed as a major process of 

metastasis65, which is highly related to cancer cell invasion. Recently, there are several 

approaches to investigate the mechanisms of cell migration in vitro within different 

microenvironments. (Shown as Table 2.1.1) 

Table 2.1. 1 Artificial substrates for investigation of cellular mechanoresponse11 

Model Cell Type Substrates Parameters assessed  Ref 

2D scratch 

wound assay 

Epithelial cells.  Plastic and Polymeric gel, 

supported lipid bilayer 

on glass slides 

Stiffness of substrate, different 

adhesion linkage, and 

individual or collective cells.  

66 

3D sprouting 

and invasion 

assay on to a 3D 

ECM   

Endothelial 

and epithelial 

cells. 

3D ECM‐coating 

hydrogels 

Strand length, cell numbers 

and extracellular proteolysis 

67,68 

3D organ 

explant culture 

Mammary 

ducts and 

primary cancer 

tissues 

3D matrigel or 3D 

collagen 

Strand length, branching and 

location of epithelial and 

stromal cells.  

69‐71 

2D models include the popular scratch wound assay that allows polarization, force 

generation, and mechanisms of cell-cell junction and cell-ECM adhesion to be studied for 

cellular mechanoresponse and cell migration research66,72. Different mechanical 
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properties of substrates, like stiffness and plasticity, would impact the cell migration and 

its related cell behaviors. 3D ECM-coated scaffolds67,70 were also employed for 

investigation of cell migration, in which vertical invasion of cells into a tissue matrix could 

be reproduced in 3D ECM culture. Cellular migration as a single invasion pattern or cancer 

invasion sprouting into tissue coating can also be studied using 3D matrigel and collagen 

models.  

Single cell and collective cell migration modes serve mutually exclusive purposes 

during morphogenesis, tissue regeneration, and during pathological conditions73,74. 

Collective cell migration is essential for the establishment, shaping and remodeling of 

complex tissue and tissue compartments, such as ducts and vessels. Otherwise, single cell 

migration enables a cell to cover local distance, to integrate into tissues, also observed 

during neural crest cell migration, or to move from one location to another in the body 

and fulfill effector functions like immune cell trafficking and protrusion processes of 

cancer cells during metastasis. Although the complete mechanisms15 of cell migration 

modes are not fully understood, some key factors have been identified , which maintain, 

or cause an increase or decrease of activity, or initiate transitions of cellular motility75,76. 

2.2.1.1 2D Cell Migration 

2D models have been broadly used for investigation of cell migration due to 

convenience of observation and tracking of cells on a flattop surface75. In general, single 

cell migration can occur with amoeboid or mesenchymal shaped cells. Amoeboid 

migration commonly refers to the movement of a rounded or ellipsoid shaped cell that 

lacks mature focal adhesions and stress fibers during migration77. These cells with blebby 
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peripheral structure can migrate fast and lack the formation of the pseudopodia 

(temporary actin fiber formation). In 2D models with accessible adhesion sites, cells with 

terminal mature non-adhesion sites can migrate with their leading edge and form an 

entanglement with substrates to establish focal adhesion sites. As Figure 2.2.1 (1) cells 

polarize in response to a stimulus/signal and protrusions called lamellipodia (flat 

protrusions containing a network of actin filaments) and filopodia (containing parallel 

fibers of actin filaments) are formed at the leading edge of migrating cells15. The 

filopodia’s role during the migration cycle is to sense the microenvironment and 

surroundings whereas formation of lamellipodia is associated with directional guidance 

of migrating cells. Cells with high levels of attachment and cytoskeletal contractility 

typically display mesenchymal migration, which involves localized cell-matrix interactions 

at focal adhesion sites, and movement in a fibroblast-like manner. Formation of cellular 

protrusions during cell migration is driven by actin polymerization, which happens 

underneath the cell surface regulated by specific actin-binding proteins. Lastly, cell 

motility also requires disassembly of focal adhesions at the cell’s tail in Figure 2.2.1 78 

Interestingly, there are a few in vivo examples for observation of 2D cell migration, such 

as epithelial keratocyte migration across a flat 2D substrate using rapid spread-out cell 

gliding. 
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Figure 2.2. 1 Cell migration on a 2D substrate. 78 

 

Besides the single cell migration mechanism, collective cell migration of a cohesive 

cell group is particularly prevalent during embryogenesis and drive the formation of many 

complex tissues and organs. For example, mechanistically distinct types of cell 

movements in embryological development, tissue and cancer invasion are highly 

influenced with the collective migration regulated by surrounding microenvironments. 

On 2D substrates, collectively migrating cells move as 2D sheets single cell level or along 

to form a single-layered epithelium, and start subsequent proliferation and thickening as 

a multiple-layered epithelium. Actin-rich pseudopodia and lamellipodia lead the 

migration and follower cells, which are connected each other via adherens junctions. Cells 

interact with the basement membrane via integrins in focal contact sites. Cell-cell 

cohesion is mediated by adherens junction proteins, including cadherins, other 

immunoglobulin superfamily members and integrins, all of the proteins are directly or 

indirectly connected to F-actin or filament cytoskeleton structures. Cell-cell adhesions 

and coupling to cortical actin cytoskeleton structure are mediated with various cadherins, 
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such as E-cadherin for epithelium formation, N-cadherin for stromal cell-cell contacts, and 

VE-cadherin for angiogenesis. 

Most mechanisms of collective cell migration are similar to single cell migrations, 

including principles of actin turnover and polarized force generation by moving cells. 

However, the group of cells are shared and coordinated between cells at different 

positions. The cortical actin network in the cell group shows multiple-cellular 

organizations, such as anterior protrusion activities and posterior retraction dynamics 

involving multiple cells. The mechanism controlling collective cell cytoskeleton 

organization is not very clear due to the difficulty of observation of cellular mechano-

response on current artificial biomembrane-mimicking substrates.  

2.2.1.2 3D Cell Migration 

Most cells in vivo are embedded in a 3D environment49,53. Consequently, many 

scientists have focused on the design and characterization of artificial substrates that 

allow analysis of cell migration and growth in 3D matrices. In particular, it has been of 

interest to explore whether cell migration in 2D and 3D models can be described by 

comparable mechanisms. For example, in a 3D matrix, it has been observed that cells do 

not show distinct focal adhesions or with small focal adhesion sites lasting only a very 

short time period. Fraley et al79. reported that HT1080 cells in 3D matrix contain some 

pseudopodia, which were neither similar to filopodia or lamellipodia. They also 

investigated the same cell line in 2D and 3D models and compared the migration speed 

of wild type HT1080 and concluded that 2D migration behaviors were not correlated to 

3D migration patterns. To illustrate the new mechanism in 3D models, Petrie et al80 
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file:///C:/Users/Yu-Hung/Documents/Corey_Full%20Thesis%20112015_CN_edit_07%20KS%20Final%20Chapter%205%20Done.docx%23_ENREF_53


31 

 

3
1
 

proposed “lobopodial migration”. This theory states that lobopodia are large, blunt, and 

cylindrical protrusions used for cell migration in 3D models. They also claim that cells 

would alternate between the lobopodial-mechanism and the lamellipodia mechanism 

based on the linear elasticity of different ECM substrates. It was found that cells migrate 

via a lobopodial mechanism while attaching to linear elastic substrates. 

In 3D environments6, cells migrate between pores and holes and attach on the 

linear elastic substrates. It has been shown that cells start remodeling or getting 

deformed depending on the size of pores (physical properties) and the stiffness of 3D 

substrates (mechanical properties). The strength of adhesion sites between cell and 

substrate is a one of the major factors for cell migration speed in 3D models. With higher 

adhesion strength, cells move much slower and start degrading the substrate. Another 

main factor that impacts cell migration is related to cell shapes in 3D matrices; in 

mesenchymal shape, cells are able to degrade the substrate like fibroblasts; in amoeboid 

shape81, cells move faster and do not damage the structure of substrates or surrounding 

matrix. 

2.2.2 Cellular Mechanotransduction Mechanism 

Analysis of cellular mechantransduction, the mechanism by which cells convert 

mechanical signals into a biochemical response, has focused on the identification of 

critical mechano-sensitive molecules and other cellular components82. Like behaviors of 

cell migration, differentiation and proliferation, there are several mechanical parameters 

in the physiological environment to investigate influence of cell behaviors from 

mechanical force, which cells respond to cell-microenvironment interaction. At the same 
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time, several advanced methods and technologies such as nanotechnology, 

micromanipulation83, biological imaging84, and computer modeling85 have been applied 

for the analysis of cellular mechanotransduction between a cell and its surroundings.  

The field of mechano-biology has been driven by a search for specialized proteins86-89, 

which change their chemical activity state in response to mechanical cues, thereby 

converting mechanical energy into biochemical energy. However, the function of virtually 

every molecule90 could potentially be altered by mechanical stimuli in the process of 

carrying out their biochemical activities. One major mechanical stimulus19,91 for a cell can 

be the mechanical properties of the cell substrate, which cells are cultured in/on. Stiffness 

of the substrate is considered as one of the main mechanical substrate properties known 

as stimulus for cell behaviors. Wang and Pelham92 in late 1990s showed that cells are 

impacted by the mechanical properties of the substrate, which is demonstrated on 

polyacrylamide gels with tunable stiffness via concentration of acrylamide/bis-acrylamide. 

Spreading area of cells on stiffer substrates is higher compared to cells on softer 

substrates; as well as the migration speed of cells on softer polyacrylamide (0.55 m/min) 

is faster on comparable stiffer PAA gel (0.06m/min). Furthermore, the focal adhesion 

size of cells on softer substrates is typically smaller and irregularly shaped compared to 

those on stiffer substrate. 

Another source of mechanical stimulus for cell can be the external forces applied 

to cells58,93,94. Differentiation of force amplitude in different tissues may range from 10 

nN to 10 kN. For instance, on bone and cartilage tissue, cells are under cyclic stresses of 

both tension and compression around 9kN95; During cardiac cycle, cells feel shear, 
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compressive, and tensile stresses, whereas cells on inner vessels experience shear forces 

from blood flow. There are many techniques for mimicking the externally applied 

mechanical stimulus to cells, such as magnetic tweezer96, substrate stretching94,97 and 

atomic force microscopy,61,97,98. The single-cell mechanoresponse is usually explored 

using artificial substrates with tunable mechanical properties.  

Currently, it remains unclear how the whole cell processes this molecular scale 

mechanical information and orchestrates a physiologically relevant response in the 

context of the multiscale architecture at tissue level. To understand how cells react to 

mechanical stimuli in a tissue environment, the close cooperation of various 

complementary fields such as biophysics, molecular cell biology, physiology, anatomy, 

engineering, and computer science, is required. Major mediators for cellular 

mechanotransduction can be categorized into four fields: a. Ion channels, b. Cell 

membrane, c. Nuclei, d. Focal adhesion and cytoskeleton. 

a. Ion channels82,99,100 

In general, the plasma membrane is somewhat permeable with respect to smaller 

and more hydrophobic molecules. In contrast, transport of larger molecules and 

ions across the membranes is efficiently blocked by the lipid bilayer of the plasma 

membrane. Ion channels, which consist of protein complexes that are selective to 

specific ions, play an important functional role in that they are important 

regulators of controlled ion transport across cellular membranes. Interestingly, 

some of the ion channels have been found to be mechanosensitive101 By using 
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patch‐clamp techniques, it was observed that induced conformational changes of 

ion channels led to a modulation of their cation‐transporting activity. Specifically, 

the change of ion channel conformation was found to alter the rates of opening 

and closing speed through the distortion of intramolecular gating domains.102   

b. Cell Membrane103 

G-protein coupled receptors (GPCRs) are cell membrane proteins, which are 

involved in signaling cascades associated with smelling, sight and tasting. Some of 

the signaling pathways depend on more than one receptor. For instance, adrenalin 

interacts with 9 different GPCRs, and some are known to be mechanosensitive 

related to their signaling cascades104. Conformational change of the protein 

receptors can be altered by applied shear force105; thus, GPCRs could be activated 

without ligand binding, or de-activated with bound ligands by mechanical stimuli. 

Properties of plasma membrane like fluidity and polarity can also be involved in 

mechanotransduction pathways on cellular membranes, in addition to 

mechanotransduction-related processes involving membrane protein 

receptors.106      
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c. Nuclei 

Two types of methods have been pursued to investigate the impact of mechanical 

properties on the cell nucleus. In one case, the cell nucleus is examined in its 

natural state inside the cell. In the other case, experiments are conducted on an 

isolated nucleus107 . With nucleus isolation performed by mechanical or chemical 

techniques, it was observed that the stiffness of the cell nucleus is higher than 

typical stiffness values of cell membrane and cytoplasm108. Interestingly, while 

adherent cells detach from substrates, their nuclei change shape and become 

rounder. Such a shape change has been attributed to changes in hydrostatic 

pressure or lack of stretching in the adherent state109 It also has been reported 

that cell nuclei are under constant mechanical load and that the mechanical 

properties of cells are viscoelastic and highly nonlinear107. There is some 

experimental evidence110-112 that externally applied mechanical forces can deform 

the nucleus and change the cell shape. In response to the applied force, such as a 

shear force, the cell nucleus can become notably stiffer. Under shearing force, 3T3 

fibroblast were found to show cytoskeleton reorganization and increased nucleus 

movements. Thus, change of cell shape and nuclei can affect cell phenotypes112 . 
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d. Focal adhesion and cytoskeleton 

Focal adhesions are anchoring spots of cells to their substrate. According to recent 

research113 , the main membrane proteins involved in focal adhesion binding site 

are “Integrins”, which form a connection between ECM and cytoskeleton. FAs are 

sophisticated mechanosensors as they change their size and connectivity to the 

cytoskeleton in response to mechanical stimuli. The linkage between integrins and 

actin filaments of the cytoskeleton is regulated by a large number of proteins, 

which include, vinculin, talin, FAK, and paxillin. As exemplified by paxillin, 

mechanical cues are associated with changes in the phosphorylation activity. 

Other proteins, like Rho and Rho A kinase, are also involved in the FA‐associated 

mechanoresponse and mechanotransduction114 . For example, by tuning 

substrate stiffness, human stem cells show altered levels of calcium ion 

concentration, a process which is strongly regulated via Rho A kinase13. External 

applied force115,116 from substrates with various mechanical properties is another 

major factor to impact the focal adhesion assembly and disassembly. There is also 

a close relationship between mechanical stimuli and cytoskeleton organization. 

This is most strikingly demonstrated by the altered organization of actin filaments 

in response to changing substrate stiffness. Mechanical signals may also result in 
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changing actin polymerization during cell migration. Microtubules, another 

important component of the cytoskeleton, are also involved in the 

mechanotransduction pathway, as illustrated by altered actin filament formation 

and motor protein action.  

2.2.3 Other Key Characteristics of Cellular Mechanosensitivity 

Based on recent research, there are several major indicators for analyzing cellular 

mechanosensitivity in biophysics and physiology as described in the results and discussion 

section: 1. Migration behavior, 2. Cell spreading area, 3.Cellular cytoskeletons, 4. Focal 

adhesion size, 5. Cellular phenotype, 6. Cell stiffness, and 7. Cell proliferation. 

In 2000, Lo et al.91 reported a substrate with tunable stiffness for the investigation 

of cell migration on 2D artificial substrates, known as durotaxis. Durotaxis was also used 

to analyze cell migration in 3D collagen matrices, demonstrating distinct cellular 

mechanoresponse. As reported12,117, mesenchymal stem cells are able to detect the 

substrate stiffness gradients and migrate from the softer side to the stiffer side of 

substrate. Also the spreading area and proliferation of stem cells on polydimethylsiloxane 

(PDMS) substrates are much higher on stiffer substrates118. For example, unlike on the 

softer substrates, stem cells on stiffer substrates increasingly display biomarkers 

representative of osteogenic cells.  

In 3D collagen model61,98,119, cellular mechanoresponse of 3T3 fibroblasts is 

illustrated by a close relationship between substrate stiffness and cell stiffness, indicating 

organizational changes of the cytoskeleton. Here cell stiffness can be examined using 
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atomic force microscopy. According to research from Coughlin and Fredberg120, 

metastatic kidney cancer cells have higher stiffness of cell membranes compared to the 

same cells with milder metastatic capability. Interestingly, Miron‐Mendoza et al. 121 

reported that 3T3 fibroblasts exhibit enhanced proliferation in 3D collagen gels of higher 

stiffness, whereas the  spreading area and migration of 3T3 fibroblasts was not impacted 

by substrate stiffness. Ligand density represents another parameter that affects cellular 

mechanosensitivity. For example, smooth muscle cells placed on a substrate with 

patterned ligands have different  migration speeds in regions of lower ligand density122,123 

and patterning124 relative to regions of higher ligand density. In the case of mammalian 

epithelial cells, it was also reported that the ligand density influences the cell spreading 

and migration of different cell phenotypes10 

2.2.4 Cellular Adhesions 

Most eukaryotic cells have cytoskeleton organization, which not only maintains 

the shape of cell, but provides mechanical and supportive functions.125 The three major 

types of filaments in the cytoskeleton are the following: intermediate filament, 

microtubule, and actin filaments. Actin filaments are flexible fibers consisting of actin 

monomers, which are highly related to the formation of focal adhesions and 

mechnotransduction. While mammal cells placed on ECM-coated substrates, motor 

protein, myosin, on membrane interact with actin filaments unknown as “stress fiber”. 

Cytoskeleton organization, such as the ratio of stress fibers, was proven to be correlated 

to surrounding microenvironment mechanical properties. Moreover, stress fiber were 
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shown to be attached to the complex of focal adhesion proteins on cell membranes 

illustrating the important role of cytoskeleton and focal adhesions in cell mechanisms. 

2.2.4.1 Focal Adhesions 

In 1971, focal adhesions were first discovered by Abercrombie et al 126 via 

interference  reflection microscopy. While attached to ECM substrates, cells assemble 

particular adhesion  proteins at focal adhesions, which represent complex and dynamic 

structures at the cell  membrane127. As shown in the figure below, integrins play a key 

role within focal adhesion structures. These α and β heterodimers128 elongate to extend 

from the cytoplasm to the extracellular region, thereby forming a linkage between 

cytoskeleton (via actin‐binding proteins) and extracellular matrix (via ECM proteins like 

fibronectin and laminin) 129  Hereby, different types of integrins of the integrin family 

show distinct binding affinity to specific ECM ligands. For example, α3β1 and α 5β 1 

integrins bind most commonly to collagen and laminin, while α 2β1 and α3β1 preferably 

attach to fibronectin130 



40 

 

4
0
 

 

Figure 2.2. 2 Complex of Integrin and surrounding proteins on cell membrane127,131 

 

Integrins are not only important adhesion proteins, but also play a pivotal role as 

signaling proteins in inside‐out and outside‐in signaling. During such signaling processes, 

integrins can not only collect information from microenvironments but also send the 

signal into the cell via their association with focal adhesions and linkage with the 

cytoskeleton. In fact, integrins can contribute to many different signaling cascades132. A 

hallmark of focal adhesion formation is the clustering of integrins. However, the 

functionality of focal adhesions not only depends on integrin assembly, but also on a wide 

range of regulatory, focal adhesion‐associated proteins, such as vinculin, talin, and focal 

adhesion kinase (FAK) exemplified by FAK, protein functionality typically depends on the 
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presence of multiple adaptor proteins. All adaptor proteins are important for formation 

of focal adhesions as they form a bridge between integrins and actin filaments. For 

example, fibroblasts deficient of talin cannot form stable focal adhesion sites and are 

unable to maintain lamellipodial structures82. 

Focal adhesion formation and maturation is associated with several stages. First, 

dot‐like small initial adhesions are formed in the cell membrane; then the integrin binding 

to ECM ligands and attachment to the cytoskeleton leads to focal complex formation133,134. 

Eventually, focal complexes mature into larger focal adhesions, which is accompanied by 

a stronger connection to the cytoskeleton. Paxillin plays a key role in the maturation of 

focal complexes. A stable focal adhesion site can extend and gather more material like 

zyxin. Interestingly, the size of focal adhesions depends on substrate stiffness, illustrating 

the functionality of focal adhesions as mechanosensors. In fact, the process of focal 

complexes maturation into focal adhesions reflects the presence of mechanical forces, 

which can be either intracellular forces caused by actomyosin contraction or external 

forces from the outside environment. Interestingly, it was shown that cells show a 

different mechanoresponse on substrates of different mechanical properties present, 

even though myosin activity was blocked110. It is worth noting that cells can apply forces 

to the substrates via focal adhesion sites, thereby remodeling the surrounding matrix. 

2.2.4.2 Adherens Junctions 

As outlined above, there is a close interplay between cellular traction forces and 

external environmental forces, which are transmitted across focal adhesions. Intracellular 

traction forces mediated via integrins to the ECM are proven to be regulated with the 
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ECM mechanical properties and external forces, which also impact cytoskeleton 

organization. Similarly, intercellular and external mechanical signals also play an 

important role in a number of collective cell migration processes, such as cell 

rearrangement and tissue reshaping during embryonic morphogenesis. Intercellular 

forces also influence cell migration, inflammatory processes, and cell differentiation. 

Cadherins135 are the linker proteins for force transmission through cell‐cell junctions as 

they constitute a universal family in the animal kingdom. 

A whole family of cadherin proteins was recognized and named after the tissue type 

they were found in, for instance, E-cadherin in epithelial cells and N-cadherin in neural 

tissue. The extracellular part of the cadherin N-terminus consists of 5 Ig-like repetitive 

subdomains, known as extracellular cadherin (EC1 to EC5)136. To prevent the hinges 

between each repeat from flexing, calcium ions are essential to maintain the more or less 

rigid cadherin structure for engaging in homotypic interactions. The main proteins of 

adheren junctions in cytoplasmic plaques, which form a bridge between cadherin and 

cytoskeleton, are -, - , and P-120 catenin. P-120 catenin associates with the 

juxtamembrane domain of cadherin, and functions as regulator of cadherin turnover. -

catenin binds further to the C-terminus of cadherins, thereby interacting with -catenin 

to form the complex that links to F-actin filaments137-139. Furthermore, a large number of 

additional cytosolic proteins have been found to bind to cadherins in adheren junction 

sites that mediate the link between the cadherin complex and F-actin complex139.  
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There are three major types of cadherin junction structures which are focal adherens 

junction, linear adherens junction, and Zonula adherens junction as shown in Figure 

2.2.3140,141. 

In 2D cell culture models, cadherin cell-cell adhesions have been identified in three 

types of cadherin-cadherin contacts. Myosin II dependent focal adherens junctions are 

formed upon initial cadherin contact with the appearance of calcium ions. Tension-

dependent presence of vinculin has been recognized in association with cell-cell 

junctions142. During maturation of adherens junctions, the cell will form linear cell-cell 

junction structures, which colocalize with thin F-actin and align with thicker parallel F-

actin bundles. In this conformation, vinculin is absent from cadherin complexes, which 

indicates the presence of an -catenin non-stretched model without applied force. In the 

final stage of maturation, the cell-cell junction is called a Zonula adherens junction in 

which an apical F-actin belt binds to the cadherin complex in the presence of vinculin; 

recruitment of vinculin indicates the tension force applied and the stretching mode of -

catenin in the cadherin complex20,143,144. Measurement of -catenin activity indicates the 

tension in cells and tissues as confirmed by Schwartz and coworkers145,146, who used a 

FRET probe to investigate cell-cell adhesion force in the loop region of a focal adhesion 

site. Despite these efforts, the mechanism of cellular mechanorespose at cadherin-F-actin 

interface is still not well understood, in part due to the limitation of existing artificial 

models.
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Figure 2.2. 3 Different Types of cadherin junction structures.147,148 

 

Forces at cell-cell junctions in single cells and cell clusters impact cellular 

mechanoresponse differently, especially in morphogenesis and physiology149-151. Cells in 

whole tissue can reorganize cytoskeleton and its shape due to the change of applied force 
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from focal adhesions. Thus, both actomyosin-based forces and coordinated cohesive 

forces via cadherin junctions regulate collective cell movements in embryogenesis and 

wound healing. For example, Chen et al.152 showed that cell migration is significantly 

influenced by the stiffness of substrates through a cadherin dependent mechanism. It is 

worth noticing that -catenin plays a central role in mechanosensitive processes as well 

as to investigate for impact from exact molecular machineries involved. At the single cell 

level, the tension of cadherin-F-actin linkage also affects -catenin and the associated 

actin machinery to feed back into cortical actin organization and cell sorting. Actomysin-

based tensile forces at cell-cell junctions are an important role for tissue morphogenesis, 

in which cellular morphology change is apical constriction that derives153. For instance, 

cells with knocked-out -catenin expression display in a disconnection between 

actomysin cytoskeleton and cell-cell junctions, which impact the cell morphology and 

cellular mechanoresponse154. According to these results, -catenin is hypothesized as the 

key mechanosensor to trigger the force-induced actin remodeling and reshaping155,156. 

To understand the cellular mechanism of adherens junction and their 

mechanoresponse, there are several studies157,158,which employ cadherin chimera in 

artificial substrates mimicking the cell-cell junctions. For example, Groves and 

coworkers17 observed that trans-interaction of E-cadherin molecules regulates initial 

stages of junction formation in this hybrid system, and proceed via a nucleation process 

in which protrusion and retraction of filopodia play an important role. 
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Figure 2.2. 4 Map of interaction between integrin and cadherin mechanotransduction135 

 

 

2.3 Artificial Cell Substrates 

In biological systems, boundaries between many phases are defined by “soft 

interlayers”, such as membranes and biopolymers, which are immersed in physiological 

electrolytes. For instance, biological membranes are vital components that define the 

outer boundary of living cells to the surrounding environments as well as that of cell 

compartments (organelles) in cytoplasmic space. For physiological and biophysical 
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studies22,34,159-161, artificial cell substrates of well-defined, tunable physical properties are 

used to investigate mechanical between cells and their surroundings. To accomplish such 

cellular studies, artificial substrates need to fulfill following specific properties: 1. 

Biocompatibility, 2.Existence of suitable cell attachment sites, and 3. Tunable 

mechanical properties. 

1.  Biocompatibility: Biocompatibility illustrates the ability to mimic natural conditions 

and to exhibit low cytotoxicity. A model system must be able to allow cells to grow on 

the top of (2D substrates) or within (3D substrates) the substrates without impairing 

substrate integrity. 

2. Suitable cell attachment sites: Substrates need to carry specific anchoring sites for 

cell adhesion. For example, with several modifications to activate the substrate 

surface, PAA gels can be functionalized with heterobifunctional crosslinkers, which 

allow linkage of ECM ligands. 

3. Tunable mechanical properties: A hallmark of artificial cell substrates for the analysis 

of cellular mechanosensitivity is the ability to adjust substrate stiffness. Artificial 

substrates may for example have tunable elasticity and viscosity, or may be patterned 

with regions of different viscoelasticity. For example, NIH 3T3 fibroblasts are placed 

on PEG‐coated hydrogel substrates, in which viscoelasticity is adjusted by crosslinking 

density within the gel. 

To find a proper artificial substrate for studying the mechanism of cellular 

mechanoresponse, scientists have been developing polymeric substrates to mimic the 

specific aspects of natural microenvironments by manipulating specific properties102-110. 
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To illustrate this, we will discuss in the following chapter different types of substrates, 

which are designed for particular demands. 
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Table 2.3. 1 Polymeric substrates for investigation of cellular mechanoresponse.  

 

162,163 -16 5,165 -16 8,169, 170,1 71, 166, 167,1 72-174,1 75,17 6, 177, 1 78,17 9, 170  

2.3.1 Polymeric Substrates 

Due to their ability to combine biocompatibility and adjustability of mechanical 

properties, polymers are broadly used in biomedical studies as a template for tissue 

engineering, shells for drug delivery, and coating for medical implants such as 
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cardiovascular stents. As already outlined, cells sense the underlying substrate with 

respect to mechanical properties such as elasticity, topography, gradients, and 

geometrical change. Polymer materials are great biomaterials because they allow the 

controlled adjustment of important mechanical properties, such as surface topography, 

roughness, elasticity, and adhesion180 For instance, not only substrate roughness 

provides adhesion and alignment cues for endothelial cells, but also substrate elasticity 

induces change in cellular fate and functions, as exemplified by altered cell morphology 

and migration speed. Therefore, polymeric substrates could benefit researchers to 

understand how mechanical properties of substrate influence cellular mechanoresponse. 

In the following sections, not only the impact of polymeric substrates as cell substrates 

will be described, but also their potential and limitation towards practical use in in vitro 

biophysical studies will be discussed181 

2.3.1.1 Artificial Polymeric Substrates 

In the late 1990s, Pelham and Wang182,183 used polyacrylamide (PAA) gel as the first 

template to investigate cellular mechanotransduction. Fabrication of gels was initiated 

with tetramethylethylenediamine (TEMED) and ammonium persulfate for polymerization 

of monomeric acrylamide and cross linker bis-acrylamide. Sulfo-SANPAH was added to 

the gel for activation of PAA gel surface under ultraviolet light, and then ECM proteins 

could be applied on the substrate. The advantages of the PAA gel as a template for 

studying cellular mechnoresponse are the following: (1) ease to adjust the versatile 

properties by adjusting the concentration of acrylamide, (2) optical clearness (relevant in 
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optical experiments), (3) chemical inertness, and (4) linear elasticity over a wide range of 

stress forces. However, the PAA gel technique also has its disadvantages, such as the 

rather rough surface and the frequently occurring monomeric residues. While changing 

the elasticity of the substrate, porous architectures are formed on the surface of the gel 

altering the surface density of ECM molecules affecting cell spreading. Furthermore, 

monomeric acrylamide has a high cytotoxicity to most mammalian cells. Despite these 

potential problems, PAA gels are considered as a good polymeric cell substrate of tunable 

elasticity for basic control experiments and traction force microscopy 184. 

Surface roughness relates to the texture of the uppermost layer of material and is 

quantified by measuring the protrusion or depression at the surface. Owing to the 

improvement of biomaterials in nanofabrication, poly (dimethylsiloxane) (PDMS) gels 

were developed as a good template with tunable surface properties such as roughness 

and topography185. Shadpour et al.186 established a technique to polish PDMS surface with 

alumina particles to achieve similar smoothness as obtained using epoxide-based photo-

resists with SU-8 and 1002F reagents. The roughness value (Ra) of PDMS substrates 

treated by particle polish was observed to be 7.7-19.8 nm. Three different cell lines, (Rat 

basophilic leukemia, HeLa and 3T3 fibroblast) were seeded on such polished substrates. 

These experiments showed that cell adhesion sites on rough substrates increased 20-fold 

compared to smooth surface PDMS substrates of comparable elasticity. 

Not only flat 2D PDMS gels have been used to investigate cellular mechanoresponse, 

but also 3D PDMS gels with different topographic features, such as micro-pillar and 

microstructure patterns, have been employed as cell substrates. In Ghibaudo group’s 
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work187,188, fibroblast cell adhesion and migration were observed on PDMS substrates 

with micro-pillar structure of 2 to 10 mm height and 5 to 10 m diameter. Their 

experiments showed that cellular morphology and cytoskeleton organization are 

dependent on the size of micro-pillar, which also impacts cell migration if compared to 

cellular mechanoresponse on corresponding flat PDMS substrates. Interestingly, 

fibroblast with fewer focal adhesion sites on micro-pillar patterned substrates have 

enhanced focal contact on the edge of pillars188. 

Poly-lactic-co-glycolic acid (PLGA)189,190 is another widely utilized polymeric 

biomaterial and known for its high biocompatibility and degradability. In most biomedical 

applications, PLA polymer is used in the replacement of diseased bladder tissue as buffer 

materials between smooth surface and rough surface of the native bladder. The mixture 

of polystyrene (PS) and polybromostyrene (PBrS)191 was utilized as template for studying 

cellular mechanoresponse of human fetal osteoblastic cells. Cell adhesion size and 

morphology was analyzed with different stiffness and topographic scaffold of PS/PBrS 

substrate.  

In summary, artificial polymeric substrates have advantages such as ease of tunable 

mechanical properties and fabrication of various topographies. However, most artificial 

polymeric substrates need extra coating procedures to activate the surface for cellular 

adhesion. Immobility of cell adhesion sites on the polymeric substrate barely mimic 

authentic cellular ECM systems. Furthermore, such substrates fail to replicate the rich 

dynamics found at cell‐cell junctions. 
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2.3.1.2  Natural Polymeric Substrates 

3D collagen matrix gels were first developed to explore the effect of dimensionality 

on cellular mechanoresponse192,193 . Like biochemical composition and mechanical 

properties, dimensionality plays an important role in cell behavior, such as proliferation, 

biosynthesis and migration. However, due to the biodegradability of polymers, it remains 

challenging to utilize them in the quantitative and qualitative analysis of cellular 

mechanoresponse to dimensionality. To overcome such challenges, other 3D scaffolds 

were applied with different materials, such as synthetic polymers, ceramics and even 

metals. Current methods and techniques194-199 provide a micrometer or sub-micrometer 

3D scaffold functionalized with ECM materials to monitor the cellular mechanoresponse 

in the defined 3D environments. There are several fabrication strategies discussed in the 

following section: Photolithographic resins of 3D structure, Microfabrication and soft 

lithography, and Tough 3D structure. 

Photolithographic resins of 3D structure187,200: This direct laser writing method is 

one of the popular methods for manufacturing 3D scaffolds (typically accomplished by 

exposure to a laser operated in two photon absorption mode). Scanning of the laser with 

respect to the material of interest results in a 3D structure, which can be functionalized 

with ECM ligands for cell growth. According to Klein and coworkers, this method offers a 

highly controllable 3D scaffold to mimic in vivo conditions, advantageous to the 2D planar 

environments commonly used201.By employing this method, chicken fibroblast cells could 

be seeded on a fibronectin-coated 3D scaffold consisting of polyethylene glycol diacrylate 

and pentaerythritol tetra‐acrylate. Another method for manufacture of ECM‐mimicking 
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3D scaffolds comprised of hydrogel and biodegradable polymers is called pressure-

assisted microsyringe (PAM). This method has been utilized to investigate the influence 

of defined 3D topography and stiffness to cellular mechanoresponse.  

Microfabrication and soft lithography196: As already mentioned188, , PDMS is a well‐

known polymeric biomaterial that is suitable as an artificial cell substrate for the analysis 

of cellular mechanoresponse. Recently, 3D scaffolds comprised of PDMS with precise 

micro-pattern and micro‐texture have been developed by soft lithography. Mesenchymal 

stem cells were placed onto 3D PDMS scaffolds, which were molded with a mechanical 

jig for alignment and stacking of subsequent PDMS layers. Within the textured scaffold, 

cells can grow, differentiate, and migrate freely on the surface compared to those 

cultured on a smooth surface. For example, fibroblasts were cultured on the novel 3D 

biopolymer scaffold, which was fabricated via the combination of microfabrication and 

soft lithography methods. To enable cell spreading, the surface of the biopolymer 

scaffolds was coated with laminin, to which the cells adhere in both static and dynamic 

conditions. Interestingly, cell migration and morphogenesis, which are highly significant 

parameters in tumor invasion and metastasis, are influenced by scaffold architecture and 

pore size of the scaffold202.  

Tough 3D structure199,203: The tough 3D scaffold was broadly used in the medical field 

and was built with photopolymers or metals. For example, biomaterials like 

polypropylene fumarate were utilized as there are few elastic substrates to mimic 

mechanical properties of bone tissues. Most of the tough materials are usually mixed with 

other soft biomaterials to establish a hybrid scaffold for better cell adhesion and growth.    
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It is worth noticing that cellular mechanoresponse in 2D and 3D scaffolds is different. 

However, in contrast to 2D substrates, it remains challenging to conduct quantitative 

experiments related to cellular mechanosensitivity. This challenge is exemplified by the 

complex impact of mesh size of polymer gels on cell migration. Here mesh size not only 

influences cell migration in terms of steric conditions, but also in terms of mechanical 

properties. Consequently, 2D cell substrates will remain to be important as artificial cell 

substrates for the examination of cellular mechanoresponse. 

2.3.1.3 Substrates with Elastic Gradient and Patterns 

Substrates with gradient patterns in terms of elasticity and texture have emerged as 

an attractive experimental tool to probe cellular mechanosensitivity. Such substrates are 

interesting because different parts of a cell are located or attached on various points of a 

continuous gradient substrate thus receiving different mechanical inputs. Cellular 

mechanoresponse should reflect the parallel exposure to different mechanical cues. 

Recently, several methods were introduced to prepare continuous and patterned 

gradient substrates for the analysis of cellular mechanoresponse. The original method to 

control the gradient of polymerization was achieved by physical strategies like pressing a 

gel or inter-diffusion of two components204.Most of the gels were generated by defined 

photo-irradiation to control the process of polymerization or degradation of 

photosensitive polymers 205. Another strategy has been to design a PAA gel composite 

comprised of two regions of different concentrations of acrylamide monomers, and a 

boundary region consisting of several gel strips of continuous stiffness. While placed on 
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continuous gradient gels, 3T3 fibroblasts were found to migrate from the softer region to 

the stiffer region, displaying a process known as durotaxis. In Crowe‐Willoughby’s 

research206  two elastic polymers, PDMS and Polyvinylmethylsiloxane, were mixed, 

thereby forming a substrate with a continuous gradient stiffness ranging from 20 to 400 

kPa.  

To optimize the manufacturing process of substrates with gradient elasticity, 

photopolymerization was applied, in contrast to the mixing method above. The variables 

here are the distribution of the photo initiators and the irradiation intensity and time. 

Wong's group presented a method to use the photo masks with linear or gradual 

transmittance to establish PAA gels with gradient elasticity from 2 to 11 kPa. Meanwhile, 

Kiodoaki et al.207 manufactured the styrenated gelatin with gradient elasticity form 10 to 

400 kPa. 

2.3.2 Biomembrane-Mimicking Substrates 

One of the main purposes of the biological membrane is to provide an outer 

boundary of living cells and internal cell compartments to keep toxic materials away and 

bring in essential materials 208,209. Biomembranes are also the sites of membrane channels, 

which regulate the transport of ions, and adhesion proteins like integrins and cadherins, 

which organize in specialized cell adhesions, thus enabling cellular attachment to the ECM 

and formation of cell-cell linkages209. Thus, the lipid bilayers of the plasma membrane are 

probably nature’s most important two-dimensional fluid, forming the underlying 

architecture of cell membranes. The character of the lipid bilayer as a 2D fluid enables the 

mobility of embedded membrane proteins, unless membrane proteins are attached to 
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the cytoskeleton. Proteins embedded in the plasma membrane and carbohydrates 

attached to its surface facilitate communication and transport across the membrane. Due 

to the complexity of biological membranes, it has been difficult to design mimetics of such 

sophisticated supramolecular assemblies. Nevertheless, multiple efforts have been made 

to develop models of biological membranes for biophysical studies and bioanalytical 

applications. 

In particular, planar supported model membrane systems, such as solid-supported 

phospholipid bilayers and polymer-tethered lipid bilayers, are potentially interesting as 

artificial biomembrane-mimicking cell substrates. In 1985, Tamm and McConnell34 

reported the first fabrication method of a solid‐supported lipid bilayer using two 

successive monolayer transfers. Currently, such bilayer architectures are used as model 

systems in a wide range of different fields, including chemistry, biology, and physiology210. 

Stable solid-supported lipid bilayers can be established by multiple techniques which 

include: spin-coating, micro-contact printing, solvent-exchange deposition, lipid-

surfactant micelles, evaporation induced assembly, lipid dip-pen nanolithography, vesicle 

fusion and Langmuir-Blodgett/ Langmuir-Schaefer (LB/LS) methods. The most commonly 

used methods to fabricate solid-supported bilayer are perhaps LB/LS deposition and 

vesicle fusion.  

Bilayer formation by vesicle fusion typically occurs by adsorption of lipid vesicles to a 

substrate, followed by vesicle rupture, fusion and bilayer spreading. Among all techniques, 

vesicle fusion is the most simple and versatile one since it does not require any 

sophisticated instruments to produce high quality lipid bilayers. Due to these advantages, 
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vesicle fusion still plays a pivotal role in advancing solid-supported bilayer research 

platforms particularly with respect to complex, multi-component supported lipid bilayers. 

However, the underlying mechanisms of vesicle fusion are not fully‐understood and the 

process is influenced by many factors including vesicle composition, size, and surface 

charge, roughness of substrate, pH value, and ionic strength. In contrast, bilayer 

formation by LB/LS deposition is achieved through subsequent LB and LS monolayer 

transfers from the air‐water interface to the solid substrate. During LB transfer, lipids are 

transferred from the air‐water interface to a glass substrate mounted on a moving dipper. 

The LS monolayer is added by pushing the LB‐functionalized glass substrate horizontally 

through another phospholipid monolayer at the air-water interface. The LB/LS methods 

not only allows the fabrication of high quality symmetric bilayer systems, but also enables 

the design of asymmetric lipid compositions.  

Due to lubrication effect of the thin water layer between bilayer and hydrophilic 

substrate, solid-supported bilayer can exhibit substantial long-term lateral mobility, thus 

mimicking the functionally important membrane fluidity in biomembranes. To make 

supported lipid membranes available for the analysis of membrane proteins, a hydrophilic 

polymer layer has been introduced between lipid bilayer and solid substrate. Current 

supported membrane designs include bilayers with: a. hydrated polymer “cushion” b. 

functional lipopolymer “tethers” and C. Lumazin synthase (LuSy). Previously, solid‐

supported lipid bilayers have been employed as biomembrane‐mimicking cell 

substrates24 For example, solid-supported lipid bilayers have been employed to explore 

processes of immunological synapse formation160. However, such relatively simple model 
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membrane architectures are not well suited for the analysis of cellular mechanosensitivity, 

as they lack the ability to adjust substrate mechanical properties in a systematic way. In 

fact, cell spreading and migration on a fluid lipid bilayer is typically suppressed 171As 

shown in this thesis, polymer-tethered lipid bilayers comprised of phospholipids and 

lipopolymers overcome these limitations. Here the polymer moiety of lipopolymers 

forming a polymer cushion between lipid bilayer and solid substrate prevents the 

protrusion of cells through bilayer defects. More importantly, lipopolymers enable the 

controlled adjustment of membrane viscoelasticity, which is a key requirement for 

artificial cell substrates for the analysis of cellular mechanosensitivity. The fascinating 

properties of these biomembrane-mimicking materials are described in more detail in the 

following sections. 

2.3.2.1 Polymer-tethered Phospholipid Single Bilayers (TYPE I) 

Polymer-tethered phospholipid single bilayers comprised of phospholipids and 

lipopolymers are attractive biomembrane‐mimicking materials because their dynamic, 

organizational, and mechanical properties can be adjusted by the concentration of 

lipopolymers. Throughout this thesis, such membrane systems are referred to as TYPE I 

bilayers. For example, changes in lipopolymer concentration were found to have a 

profound influence on the lateral mobility of lipids and membrane proteins in a 

physisorbed polymer‐tethered lipid bilayer24. Similarly, tuning of lipopolymer 

concentration causes changes in mechanical and topographic properties of the polymer‐
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tethered lipid bilayer system. In the sub‐section 2.3.2.1, the mechanical and topographic 

properties of polymer-tethered single bilayers will be discussed in more detail. 

 

Figure 2.3. 1 Common Chemical structure of phospholipids employed on biomembrane-
mimicking bilayer substrates 
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Figure 2.3. 2 Chemical structure of Lipopolymers employed on Biomemebrane mimicking 
bilayer substrates 
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2.3.2.1.1 Design and Fabrication of TYPE I Substrates 

To design polymer‐supported lipid bilayers, different types of polymer supports have 

been employed, including poly(ethylene glycol), polyacrylamide, polyethylenimine, or 

different types of lipopolymers. In this work, most TYPE I substrates, which consist of 

physisorbed poly (2‐ethyl‐2oxazoline) and poly(ethylene glycol) (PEG) lipopolymers, were 

built using the LB/LS techniques. Alternatively, lipopolymers can also be chemically linked 

to the glass substrate (e.g., by silanized polyethylene glycol lipids or benzophenon 

silane)211. To use TYPE I bilayers as artificial cell substrates, an additional surface 

modification with ligands for cell adhesion proteins is necessary to facilitate the formation 

of specific cell‐substrate linkages, thus enabling cell spreading and migration. To achieve 

this, the top leaflet of all bilayer substrates contain a mixture of 1‐palmitoyl-2-oleoyl‐sn‐

glycero3-phosphocholine (POPC) and 5 mol% 1,2-Dipalmitoyl-sn-Glycero-3‐

Phosphothioethanol (DPTE), which acts as bridge between substrate and ECM coating; 

the bottom leaflet is comprised of different concentrations of lipopolymer from 5-40 mol% 

in a POPC lipid matrix. In our previous works, formation of physisorbed polymer‐tethered 

lipid bilayers was characterized by a stable lateral gradient in lipopolymer concentration 

(TYPE I) substrate. TYPE I substrates are typically analyzed using atomic force microscopy 

(AFM), fluorescent (EPI) microscopy and FRAP. 

2.3.2.1.2 Role of Lipopolymer on Membrane Stiffness 

By altering the concentration of lipopolymers, properties of polymer‐tethered lipid 

bilayers of TYPE I can be tuned in terms of compressibility and bending stiffness. Previous 
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mean‐field calculations of polymer‐tethered membranes have demonstrated that 

mechanical properties of such model membranes, including bending modulus and 

compressibility, can be altered by the type, molecular weight and concentration of 

lipopolymer in the membrane. Bivas et al.212-214 have shown that lipopolymers are able to 

alter the mechanical properties of lipid vesicle membrane using the micropipette 

techniques. Both artificial lipid monolayer and bilayer membrane systems mimicking 

elastic properties can be altered with the concentration of the lipopolymer such as DSPE-

PEG5000 or poly (2-ethyl-2-oxazoline) lipopolymers. The increase in bending stiffness 

with increasing lipopolymer concentrations reflects the superposition of the lipid layer 

and the increasing polymer layer thickness (polymer chains stretch at elevated 

lipopolymer concentrations). The increased repulsive inter-polymer interactions at 

increasing lipopolymer concentrations give rise to fascinating stress relaxation 

phenomena, such as membrane buckling, which are discussed in the next section. 

2.3.2.1.3 Membrane Buckling in TYPE I Bilayer 

It is now widely recognized that thin elastic films can show stress relaxation 

phenomena, such as wrinkling and buckling. While wrinkling is observed for elastic thin 

films on compliant substrates, their counterparts on rigid substrates display buckling 

delaminations215 .For example, wrinkling patterns have been reported in monolayers of 

phospholipids and lung surfactants. In this case, the lung proteins not only induce the 

wrinkling pattern as surfactant, but also prevent phase separations among the lipids 

during compression. Our group recently reported the formation of buckling patterns in 
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mixed LB monolayers of phospholipids and lipopolymers [poly (2‐ethyl‐2oxazoline)‐

lipopolymers and DSPE‐PEG5000] over a wide range of lipopolymer concentrations216. 

Here buckling width, 2b, and buckling amplitude, wmax, were analyzed using AFM. Table 

2. 3. 3. below provides a summary 217 of the buckling analysis from 3 mol% to 40 mol% 

lipopolymer of polymer‐tethered lipid monolayer substrate using atomic force 

microscope in 5 x 5 μm2 area. 

Table 2.3. 2 The characteristics of TYPE I substrates with various lipopolymer 
concentrations in ratio of buckling area202. From the quantitative data of buckling 

structure in the table above, the empirical relationships between buckling area and the 
lipopolymer concentration are illustrated. It is worth noting that the histogram is divided 
into two regimes. While 0≦Xp ≦0.2 %, the relationship between buckling area and Xp is 

linearly correlated; it shows nonlinear scaling in the range of Xp≧0.2. 

 

Importantly, experimental analysis of buckling structures in polymer‐tethered 

lipid monolayers can be combined with buckling theory of an Euler column (straight‐sided 

blister), to link buckling structures to membrane elasticity. Here values of membrane 

thickness and bending elasticity can be obtained from mean-field calculations of polymer‐

tethered membranes and applied to simplified buckling theory, which dates back to the 

analyses by Foeppl and Karman of the buckling of thin plates in the late 1990s. For an 



65 

 

6
5
 

Euler column, the bending stiffness is related to Young’s modulus (Ef) and the plane strain 

modulus (E*
f) of the film as follows: 

K𝑐 =
E𝑓ℎ3

12(1−𝑣2)
=  

𝐸∗
𝑓ℎ3

12
    [15], 

where Kc is the bending modulus; v is Poisson ratio of the film; and h represents 

the film thickness. Buckling theory provides a relationship between non‐dimensional 

loading parameter, which is the ratio of the film stress σo and the film stress at onset of 

buckling σc and the experimentally accessible buckling parameters wmax and b: 

𝑊𝑚𝑎𝑥

ℎ
= √

4

3
(

𝜎𝑜

𝜎𝑐
− 1)    [16] 

The critical stress at the onset of buckling can be related to bending modulus 

buckling width, and film thickness: 

σ𝑐 =
𝜋2𝐾𝑐

𝑏2ℎ
     [17] 

Table 2. 3. 3. Summarizes results, in which the concentration of DSPE‐PEG5000 was 

varied from 3-40 mol% (Xp: 0.03- 0.4)to modify the lateral stress in a polymer‐tethered 

SOPC monolayer. The table compares elastic properties of the film for different values of 

Xp and h. The gradual change of mechanical film properties with lipopolymer 

concentration is exemplified by a linear relationship between E*
f and Xp in the range of 

0.05≦Xp≦0.4.
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Table 2.3. 3 the characteristics of TYPE I substrates with various lipopolymer 
concentrations202. 

 

2.3.2.1.4 Obstacle-Induced Obstructed Diffusion in TYPE I Bilayers 

By building TYPE I bilayers layer‐by‐layer using LB/LS deposition technique, one is able 

to vary lipopolymer concentration over a wide concentration range. Previously, Deverall 

et al218 demonstrated that lipopolymers (polymer‐tethered lipids) act as diffusion 

obstacles of lipid and membrane protein diffusion. In these wide‐field single molecule 

fluorescence microscopy experiments, TRITC-DHPE and monomeric bacteriorhodopsin 

mutants were used as lipid and membrane protein tracers, respectively, in a bilayer of 

1stearoyl‐2‐oleoyl‐sn-glycero‐3-phosphocholine (SOPC) of varying concentrations (0‐40 

mol%) of physisorbed dioctadecylamine [poly (ethyloxazoline) 8988] (DODA‐E85) 

lipopolymers in its inner monolayer. These experiments not only revealed the largely 

homogeneous distribution of obstacles in the bilayer, but also showed their 

immobilization as percolation thresholds of tracer diffusion could be observed. Previously, 

obstructed lipid diffusion was also observed in binary phospholipid‐cholesterol systems219 

and in mixtures of fluid and gel‐phase domains220. 
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Table 2.3. 4 Diffusion coefficients Dlipid listed at different molar concentrations of 
tethered lipids Xp

202. 

 

 

Experiments of obstacle‐induced obstructed diffusion with known concentrations of 

obstacles help us understand how lipid and proteins in biomembranes may be obstructed 

by very small obstacles consisting of one or a few molecules. Furthermore, the impact of 

the membrane lateral mobility by interaction of lipids and membrane proteins can be 

theoretically illustrated using established models. 

2.3.2.2 Biomembrane-Mimicking Polymer-Tethered Multi-Bilayer Substrate (TYPE II) 

As mentioned above, the tunable mechanical properties of biomembrane‐mimicking 

substrates are important for research in biology, physiology and biophysics. In TYPE I 

bilayers, this was achieved by altering the concentration of lipopolymer in the bilayer. 

However, single bilayer substrates are limited in terms of their mechanical properties and 

their susceptibility for substrate‐induced bilayer artifacts. Therefore, several groups have 

pursued the design of solid‐supported multi bilayer systems25. Tamm et al. 26,34 presented 

a well-defined method for establishing a double bilayer system by using biotin‐
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streptavidin coupling. In this case, the double bilayer system was stable and showed good 

lateral fluidity of lipids in the second bilayer. Chung and coworkers28,221 built a solid‐

supported double bilayer system by DNA hybridization using NHS/EDC coupling chemistry. 

However, their double bilayer system lacked stability, as established by the reduced 

bilayer fluidity observed by FRAP method 40. 

2.3.2.2.1 Design and Fabrication of TYPE II Substrates 

In order to fabricate a stable polymer-tethered multiple bilayer substrates, the 

following three major components were used: (a) 1-palmitoyl-2-oleoyl-sn- glycero-3-

phosphocholine (POPC) (b) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N- 

[maleimide(polyethylene glycol)-2000] [ammonium salt](DSPE-PEG2000-maleimide) (c) 

1,2-dipalmitoyl-sn-glycero-3- phosphothioethanol [sodium salt] (DPTE). In the first step, 

a mixture of 95 mol% POPC and 5 mol% DSPE-PEG2000-maleimide was deposited to glass 

coverslips through subsequent LB/LS depositions. In the second step, GUVs consisting of 

95 mol% POPC and 5% DPTE lipids were formed within 0.1 mM glucose/1 mM CaCl2 

aqueous solution and added into the first bilayer substrate immersed within 0.1 mM 

sucrose/ 1 mM CaCl2 stock solution. Here, a sugar gradient difference helps the GUVs to 

sink down to the underlying bilayer thus promoting GUV rollout and double bilayer 

formation using maleimide‐thiol coupling chemistry. Compared to other previously 

employed methods of double bilayer formation, the resulting double bilayer shows good 

stability and homogeneity, as evidenced by AFM and fluorescent microscopy. 
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Assembly of double bilayers can be analyzed in terms of bilayer fluidity using 

methods like FRAP and single molecule tracking. This is because the diffusivity of the top 

bilayer is expected to be higher relative to the bottom bilayer. Remarkably, the double 

bilayer substrate from Han and Evan’s research222 using NHS/EDC shows the opposite 

effect compared to other coupling method. Tamm and coworkers reported26,34 that a 

double bilayer with different biotin‐strepatavidin linker densities exhibits a slower 

diffusion coefficient (<1μm2/s) compared to a GUV system (~3.5 μm2/s). 

2.3.2.2.2 Linker Density in TYPE II Substrates 

Different compositions of the biomembrane‐mimicking substrates impact the 

mechanical properties such as diffusion coefficient and elasticity. Among all multiple lipid 

bilayer substrates, the density of the linker lipids act as a bridge in the gap between 

bilayers were varied. For example, the concentration of lipids with NHS/EDC coupling 

reagents was changed from 5% to 18 mol% by Evan’s group222. Thus, the diffusion 

coefficient of the bilayer decreases with increasing concentration of linker lipids on the 

inner bilayers. Tamm’s lab26 varied the density of biotin‐streptavidin linkages between 

0.1-1 mol% biotin‐PEG‐DPPE lipids, resulting in bilayer diffusivities from 0.25 to 0.03 

μm2/s. Interestingly, these linker density changes were associated with changes in the 

thickness of double bilayer substrates ranging from 14.6 to 16.6 nm. Linker density 

between double bilayers was also varied in the presence of DNA‐lipid conjugate 

linkers221,223. In our previous work24,170,171 linker concentration was altered from 0.1 to 5 
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mol% in a multi-bilayer system stabilized maleimide-thiol coupling chemistry. In this case, 

the multi‐bilayer substrates remain homogeneous and laterally mobile. 

2.3.2.2.3 Inter-Bilayer Coupling in TYPE II Substrate 

There are three major methods for establishing multiple lipid bilayer substrates: (a) 

by DNA‐lipid tethered via hydrogen bonding, (b) by functionalized lipids via covalent 

bonding, such as EDC/NHS coupling, and (c) by charged polyelectrolyte lipids with 

opposite charges via electronic bonding. The different methods for fabricating multiple 

lipid bilayer substrates are summarized in Table 2.3.5. One key feature of lipid multi‐

bilayer substrates is the ability to alter substrate thickness and bilayer fluidity by changing 

the degree of stacking. Multiple lipid bilayer substrates interconnected by lipopolymer 

tethers can have adjustable thickness by utilizing lipopolymers with different polymer 

chain lengths 

Table 2.3. 5 summary of current methods to fabricate multiple lipid bilayer substrates 

Number of 
bilayers 

Lipids Force between 
lipid bilayer 

First bilayer 
Diffusion 
coefficient 

Top bilayer 
Diffusion 
coefficient 

Ref. 

Double DOPC/DMPC/DOPS electrostatic 
adhesion 

0.3  25 

Double POPC/ DPPE/ 
Biotin‐PEG‐DSPE 

Biotin/ 
Streptavidin 

0.52 0.88 4a 

Double DMPC/ DHPC/  DNA‐tethered 3.1 5.1 142 

Double Egg PC/ DHPE/ 
DNA‐lipids 

DNA‐tethered 3.2 (GUV)/ 
3.4 (Vesicle 
Fusion)  

6.5 (Immobile 
tethered) /4.8 
(mobile 
tethered) 

4c, 140 

Double Egg PC/ DOTAP NHS/EDC 1.3 (18%)/ 
1.7(9%)/ 
1.9(5%) 

0.9(18%)/ 
1.0(9%)/ 1.5(5%) 

143 

Quadruple POPC/ DSPE‐
PEG2000 
Maleimide/ DPTE 

NHS/ 
Thiolethanol 

0.9  1.94 106 
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2.4 Solid-Supported Phospholipid Bilayer Systems with Various Linker Systems 

There are two major common linker strategies to mimic the linkage between cell and 

artificial substrates: a. Cell-ECM mimicking linkage and b. cell-cell junction-mimicking 

linkage. In the Cell-ECM linkage, ECM proteins or ECM‐mimicking peptides are specifically 

linked to the model membrane system. Linkages may be based on: collagen 147,224,225, 

RGD-functionalized short peptide209,226, and fibronectin92a, 103c, 120b. In cell-cell junction 

linkage3,17,147,165,227, different kinds of cadherin proteins can be employed. Because 

cadherins are membrane‐spanning proteins, cadherin‐based linkers have been typically 

designed by binding cadherin constructs (lacking transmembrane and cytosolic domains) 

with a histidine tag coupling to Ni‐chelator lipids in the planar bilayer system. 

In our previous work24,170,171, membrane proteins, such as fibronectin and laminin, 

were added onto solid-supported lipid bilayers and associated via N-γ-maleimidobutyryl-

oxysulfosuccinimide ester (GMBS) and DPTE (thioethanol-functionalized) lipids. However, 

extracellular membrane proteins usually form sheets of networking structure above 

biomembrane-mimicking substrates at 37°C, resulting in their immobilization. In contrast, 

bilayer-‐bound cadherin constructs remain laterally mobile, unless they are assembled in 

linker clusters underneath cellular adhesions.

file:///C:/Users/Yu-Hung/Documents/Corey_Full%20Thesis%20112015_CN_edit_07%20KS%20Final%20Chapter%205%20Done.docx%23_ENREF_118
file:///C:/Users/Yu-Hung/Documents/Corey_Full%20Thesis%20112015_CN_edit_07%20KS%20Final%20Chapter%205%20Done.docx%23_ENREF_142
file:///C:/Users/Yu-Hung/Documents/Corey_Full%20Thesis%20112015_CN_edit_07%20KS%20Final%20Chapter%205%20Done.docx%23_ENREF_170
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 MATERIALS AND EXPERIMENTAL PROCEDURES 

3.1 Materials 

3.1.1 Biomemebrane-Mimicking Bilayers Substrates 

All lipids and lipopolymers were purchased from Avanti Polar Lipids (Alabaster, AL). 

Laminin and fibronectin were purchased from Invitrogen Life Sci. (Temecula, CA). The 

fluorescent probes: TRITC-DPPE, NBD-PE and Texas Red DHPE were acquired from 

Molecular Probes (Eugene, OR). The HPLC grade solvents and other chemicals were 

purchased from Fisher Sci. Sulfo-GMBS was purchased from Sigma Aldrich (Milwaukee, 

WI). Water utilized was purified using a Milli-Q Water Purification System (Millipore, 

Millford, MA). All glass substrates used were cleaned using sonication for 30 minutes in 

each of the following solutions: 1% SDS, methanol saturated with sodium hydroxide, and 

0.1% HCl. Following each sonication step, the slides are rinsed and stored in Milli-Q water. 

3.1.2 Cell Culture Materials 

3T3 Fibroblasts, purchased from ATCC Virginia, and MEF Fibroblasts, provided by 

Profs. Fabry and Goldmann at University of Erlangen, were both cultured in DMEM 

medium (Invitrogen life science, CA) with 10% fetal bovine serum (Thermo Fisher Sci., 

MA), 100 U/mL Penicillin/Streptomycin (Thermo Fisher Sci., MA), and incubated at 37 °C 

in a humidified 5% CO2 atmosphere (Prixar Air). For cell passaging, 2.5% trypsin (Therm
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 Fisher Sci., MA) was used to detach C2C12 myoblasts and 3T3 fibroblasts from 75 mL or 

25 mL culture flasks (BD BioScience, CA). For rinsing off residues of cells, phosphate buffer 

solution (PBS) 10X (Thermo Fisher Sci., MA and IBI Scientific, Iowa) was diluted to 1X and 

sterilized via autoclave treatment. All aspirator pipettes and micropipettes were 

purchased from Thermo Fisher Sci. MA and sterilized with an autoclave from Primus 

Sterilze Co. Omaha NE. 

3.1.3 Traction Force Microscopy Materials 

All chemicals used in the preparation of PAA gels were purchased from Sigma-

Aldrich and they include: sodium hydroxide powder: (3-Aminopropyl)trimethoxy silane, 

97%; ammonium persulfate (APS); glutaraldehyde, 25%; acrylamide/bis-acrlamide, 40% 

(PAA); electrophoresis-grade N,N,N,N’-tetramethylethylenediamine, >99.0% (TEMED); 

electrophoresis-grade ammonium persulfate, >98%; and 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES). Dulbecco’s PBS without Ca2+ and Mg2+, 

Fibronectin, and yellow-green 0.5µm carboxylate fluorospheres were obtained from 

Invitrogen CA. The crosslinkers utilized in these experiments, N-Sulfosuccinimidyl-6-(4'-

azido-2'-nitrophenylamino) hexanoate(Sulfo-Sanpah) and N-[g-

Maleimidobutyryloxy]succinimide ester (GMBS) were purchased through Pierce 

Biotechnology MN. Basic glassware and supplies including: 1x3in glass slides, 1x1cm gene 

frames, and 24x67 four-well multidishes were purchased from Fisher Scientific. 
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3.2 Experimental Procedures 

3.2.1 Fabrication of Bilayer via Langmuir Blodgett (LB)/Langmuir Schaefer (LS) 

Deposition Techniques 

Lipid bilayer-based cell substrates were constructed by using Langmuir-Blodgett 

and Schaefer techniques or by using Langmuir-Blodgett and vesicle fusion. A film balance 

with a dipper (Labcon, UK) was used to transfer the inner layer of the supported bilayer 

model to a glass substrate. A film pressure of 30 mN/m was used because this pressure is 

significantly above the plateau region of the pA isotherm that represents the submerging 

transition of polymers from the air-water interface into the water phase. The lipid mixture 

for the inner layer consists of lipopolymers to provide a cushion between the lipid bilayer 

and the solid substrate, and in the case of patterned substrates, can be used to tune 

mechanical properties. The outer layer of the lipid bilayer systems was completed using 

either a Schaefer transfer technique or vesicle fusion. 

All first bilayers within the multiple-bilayer substrates were fabricated on a glass 

slide using Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques with stock 

solutions of lipids at a concentration of 1mg/mL in chloroform and containing 95 mol% 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 5 mol% 1,2-distearoyl-sn-

glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)2000] (ammonium 

salt) (DSPE-Maleimide PEG-2000). 
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3.2.2 Giant Unilamellar Vesicles (GUV) and Small Unilameller Vesicles (SUV) 

Stacks of multiple polymer-tethered lipid bilayers were fabricated as described 

previously24,170. In short, the layer-by-layer assembly of the polymer-tethered multi-

bilayer stacks was accomplished through subsequent rollout of giant unilamellar vesicles 

(GUVs) consisting of either 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 

5 mol% 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPTE) or POPC and 5mol% 1,2-

distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)2000] 

(ammonium salt) (PEG2000-Maleimide). All lipids and lipopolymers were purchased from 

Avanti Polar Lipids (Alabaster, AL). Here, maleimide-thiol coupling between DPTE and 

PEG200-Maleimide lead to stable linkages between adjacent lipid bilayers. To assist this 

process, GUVs contained 0.1mM sucrose/1mMCaCl2, thus promoting their transport to 

the substrate via gravitation. For each planar bilayer addition, GUVs were allowed to bind 

and unfold for 2-4 h and then rinsed with Milli-Q to remove excess GUVs. To facilitate the 

formation of cadherin-cadherin linkages between multi-bilayer substrates and plated 

cells, GUV’s forming the top bilayer also contained 0.5 mol% of the Ni chelator lipid 1,2-

dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (nickel 

salt) (DGS-NTA Ni) (Avanti Polar Lipids, Alabaster, AL); In this case, GUV addition was 

conducted in calcium ion-free buffer. In a subsequent step, an equimolar ratio (relative 

to DGS-NTA Ni) of His-tagged N-cadherin chimeras (R&D Systems, Minneapolis, MN) was 

added and allowed to bind to DGS-NTA Ni within the top bilayer of the multi-bilayer 

system (incubation time: 30 min), thus forming N-cadherin linkers. Next, the bilayer 

sample was rinsed with PBS to remove unbound N-cadherin. To confirm the distribution 
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and lateral mobility of bilayer-bound cadherin linkers in the absence of plated cells, Alexa 

555-labeled anti-cadherin antibodies (Thermo Fisher Sci. Waltham, MA) were added in 

excess and allowed to bind to N-cadherin linkers using an incubation time of 1.5 h 

followed by rinsing off excess (unbound) antibodies with PBS. Dye-labeling of antibodies 

using an Alexa 555 antibody labeling kit (Life Technologies/Invitrogen, Carlsbad, CA) 

followed standard procedures228. Laminin linkers were formed by linking mouse laminin 

(Invitrogen, Carlsbad, CA) to DPTE within the top bilayer of the multi-bilayer substrates 

via the heterobifunctional maleimide-NHS esther crosslinker N-gamma-

Maleimidobutyryl-oxysulfosuccinimide (Sulfo-GMBS) (Thermo Scientific, Rockford, IL), as 

described before170. To confirm the presence and integrity of the bilayer system in the 

presence of plated cells, top bilayers typically contained 0.5 -0mol% of the fluorescently 

labeled lipid Texas Red-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (TR-

DHPE) (Invitrogen, Carlsbad, CA). NBD-DHPE (Avanti Polar Lipids, Alabaster, AL) was also 

used together with labeled cadherins in the fabrication of multiple bilayer substrates. 

Formation of GUVs containing lipid or lipid-lipopolymer mixtures has been described 

elsewhere24 

3.2.3 Cell-Substrate Linkage Systems on Boimembrane-Mimicking Substrates 

3.2.3.1 Cell-ECM Mimicking Linkage 

To bind ECM proteins to the biomembrane‐mimicking substrate, 1 mg (in 100 μL 

Milli‐Q water) of the thiol‐NHS heterobifunctional crosslinker Sulfo‐GMBS (Aldrich‐Sigma) 

was added to the DPTE‐containing bilayer. Here the thiol group of the crosslinker enables 



77 

 

7
7
 

linkage to the DPTE in the bilayer, whereas the NHS group allows binding to ECM proteins. 

Following an incubation time of 40 mins, samples were rinsed twice with PBS and 5 mg of 

Laminin (Invitrogen Carlsbad CA) (incubation time: 40 mins) followed by subsequent 

rinsing with PBS. 

3.2.3.2 Cell-Cell Junction Mimicking Linkage 

To enable the formation of cell‐cell mimicking linkages, polymer‐tethered single 

and multi‐bilayers were fabricated largely following procedures described for the design 

of laminin-functionalized substrates. However, in this case, the cell‐exposed bilayer also 

contained 0.5 mol% 1,2‐dioleoyl‐sn‐glycero‐3‐[(N‐(5‐amino‐1-

carboxypentyl)iminodiacetic acid)succinyl] (nickel salt) (DGS-NTA Ni) (Avanti polar lipid 

Inc.). Here the DGS‐NTA lipid was added to allow binding of His-tagged N‐cadherin 

chimera (R&D systems Cat. No.: 748-EC-50) to the bilayer. Specifically, the GUV’s forming 

the top bilayer of the multi-bilayer system were comprised of 94.5%mol POPC, 5%mol 

DPTE and 0.5% 1,2-dioleoyl-sn-glycero‐3-[(N-(5‐amino‐1‐carboxypentyl)iminodiacetic 

acid)succinyl] (nickel salt) (DGS‐NTA Ni) (Avanti polar lipid Inc.). These GUV’s were added 

to the planar membrane system in calcium ion free buffer. After addition of the DGS‐NTA‐

Ni‐containing top bilayer to the multi‐bilayer system, the sample was rinsed several times 

with Milli‐Q water, followed by addition of N‐cadherin chimera (R&D systems Cat. No.: 

748‐EC‐050). Following an incubation time of 2 hours to 2.5 hours, excess N‐cadherin was 

rinsed off, thus allowing plating of C2C12 myoblasts. 
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3.3 Image Acquisition Systems 

3.3.1 Zeiss Axiovert 200 Microscope and Accessories 

An Axiovert 200M (Carl Zeiss, Oberkochen, Germany), equipped with a Zeiss C‐

Apochromat objective (water immersion, 40 x NA=1.2) and a Zeiss AxioCam MRm 

monochrome digital camera was utilized to analyze the distribution, aggregation state, 

and lateral mobility of Alexa 555‐antibody‐labeled cadherin linkers bound to the bilayer 

systems (prior to cell plating). The microscope, which is part of a Confocor 2 fluorescence 

correlation spectroscopy system, not only allows epifluorescence (EPI) microscopy 

analysis, but also enables the acquisition of differential interference contrast (DIC) 

micrographs. The microscope is equipped with a stage incubator for live cell imaging 

experiments at 37°C. 

3.3.2 Olympus FV-1000 Confocal Microscope and Accessories 

Live cell imaging experiments on C2C12 myoblasts were mostly conducted 20 h 

after plating using confocal microscopy system (FV1000, Olympus USA, Center Valley, PA) 

equipped with an active z-axial drift correction system (ZDC, Olympus USA, Center Valley, 

PA) to facilitate long-term studies. To enable live cell imaging experiments, the 

microscopy system was equipped with a stage cell incubator (Takashi Thermo., Japan) 

operated at 37°C and 5% CO2. Confocal micrographs of plated cells were acquired through 

a 20x objective (Olympus USA, UPlanSAPo 20x/0.75) using Olympus FV10-ASW imaging 

software (Olympus USA, Center Valley, PA). Micrographs were analyzed in terms of cell 

spreading area and extent of stress fiber formation using FV10-ASW viewer software 

(Olympus USA, Center Valley, PA). To determine cell migration speed, confocal 
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micrographs of plated cells were acquired every 5 mins over a time period of 2h. Cell 

motility data were obtained by tracking the nucleus of migrating cells over time using 

ImageJ and the plugin “object tracker and manual tracking” [ImageJ, U. S. National 

Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2014 date 

last access 12/10/2015.]. 

3.4 Immunostaining of Multiple Cell Lines 

3.4.1 Cell Culture 

3.4.1.1 3T3 and MEF Fibroblasts 

3T3 Fibroblasts, purchased from ATCC Virginia, and MEF Fibroblast provide by 

Profs. Ben Fabry and Goldmann from the University of Erlangen, were both cultured in 

DMEM medium (Invitrogen life science, CA) with 10% fetal bovine serum (Thermo Fisher 

Sci., MA), 100 U/mL Penicillin/Streptomycin (Thermo Fisher Sci., MA), and incubated at 

37 °C in a humidified 5% CO2 atmosphere. For cell passaging, 2.5% trypsin (Thermo Fisher 

Sci., MA) was used to detach C2C12 myoblasts & 3T3 fibroblasts from 75 mL or 25 mL 

culture flasks (BD BioScience, CA) 

In typical experiments, cells were plated with a density of 80/mm2. Cells were 

analyzed on the different experimental substrates 20 and 40 h after plating. After 

incubation at 37℃ and 5% CO2 for 20 and 40 hrs, 200 L of LIVE/DEAD viability stock 

solution (Invitrogen Life Science, Carlsbad, CA) was added into the sample to cover all 

cells. Incubating for 40 mins under 37 °C or room temperature, the samples were rinsed 

with PBS buffer and observed using Confocal EPI microscopy. (FV 1000, Olympus USA, 
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Center Valley PA) In this case, the images were acquired through FITC and Alexa 555 

channel to monitor live (FITC) and dead cells (Alexa 555) using the LIVE/DEAD Assay229. 

3.4.1.2 C2C12 Myoblasts 

C2C12 myoblasts was purchased from ATCC Virginia, cultured in DMEM medium 

(Invitrogen life science, CA) with 10% fetal bovine serum (Thermo Fisher Sci., MA), 100 

U/mL Penicillin/Streptomycin (Thermo Fisher Sci., MA), and incubated at 37℃ in a 

humidified 5% CO2 atmosphere. For cell passaging, 2.5% trypsin (Thermo Fisher Sci., MA) 

was used to detach C2C12 myoblasts & 3T3 fibroblasts from 75 mL or 25 mL culture flask 

(BD BioScience, CA). 

3.4.2 Immunohistochemical Staining of Cellular Adhesions Target Proteins 

3.4.2.1 F-Actin 

Immunofluorescence experiments were conducted to characterize actin network 

organization and AJs by adapting procedures described before171. Typically, about 8.5 

cells/mm2 were cultured for 20 h at 37°C and 5% CO2 on laminin-coated glass or multi-

bilayer substrates with laminin or N-cadherin linkers inside of a 35 mm petri dish with a 

15 mm diameter glass bottom. Cells were fixed in 4% formaldehyde and treated with 0.5% 

Triton X-100 (incubation time for each step: 10 min) followed by rinsing with PBS and 1h 

incubation in PBS with 1% BSA and the subsequent addition of secondary IgG1 antibody 

(Biolegend, San Diego, CA), and phalloidin-TRITC (Sigma Aldrich, St. Louis, MO). Primary 

and secondary antibodies were added for one hour using 1:500 for phalloidin- TRITC, 

respectively. Samples were washed with PBS and 3% BSA in PBS and stored at 4°C until 
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used. Fluorescently labeled cells were imaged using confocal microscopy (FV1000, 

Olympus USA, Center Valley, PA) and analyzed using Olympus FV10-ASW imaging 

software and Image J. 

3.4.2.2 -Catenin 

For the immunostaining of -catenin on C2C12 Myoblasts, cells were fixed with 4% 

formaldehyde and rinsed twice with 1% BSA solution. After a 10 min incubation time with 

0.5% Triton X-100, samples were rinsed with BSA buffer and theprimary-catenin 

antibody (eBioscience, San Diego, CA) was added for direct labeling with Alexa 488 for 2 

hours. After rinsing twice with BSA and PBS buffer, samples were imaged using confocal 

microscopy (FV 1000, Olympus USA, Center Valley PA) or stored in a refrigerator for up to 

2 days followed by imaging. 

3.5 Acquisition and Analysis of Cellular Mechanosensitivity 

3.5.1 Cell Spreading Area and Morphology 

DIC and EPI images of C2C12 Myoblasts and MEF/3T3 Fibroblasts placed on 

biomembrane-mimicking substrates were obtained with 20x and 40x objectives on both 

Zeiss Confocor 2 microscope and Olympus FV1000 confocal microscope described in 

section 3.3. For cell spreading area analysis, fluorescently labeled cells were imaged using 

confocal microscopy (FV1000, Olympus USA, Center Valley, PA) and analyzed using 

Olympus FV10-ASW imaging software and Image J. For cellular morphology, cells were 

imaged with using the DIC channel of the Confocor 2 Microscope and analysis was 

performed with Image J. 
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3.5.2 Cytoskeleton Organization 

Analysis of actin stress fiber formation has been a useful measure to probe the 

extent of cell-generated forces on substrates of different stiffness. By building on this 

general concept, we recently reported that the percentage of fibroblasts with visible 

ventral stress fibers on different laminin-functionalized bilayer substrates decreases from 

about 20% on a single bilayer to less than 5% on a quadruple bilayer, thus validating the 

ability to alter substrate stiffness by altering bilayer stacking on linker-functionalized 

multi-bilayer substrates230. 

3.5.3 Cellular Adhesions 

For analysis of size of cellular adhesions on biomembrane-mimicking substrates, 

the biomarkers of the focal adhesion protein were labeled with specific antibodies and 

fluorescent dye as described: C2C12 myoblasts on substrates for linkage of cell-cell 

junction mimicking were supplied with -catenin antibodies with Alexa 488 for one hour 

incubation and rinsed off excess adhesion peptides with PBS buffer; MEF and 3T3 

Fibroblasts were supplied with IgG protein antibodies labeled with rhodamine phalloidin 

to colorize focal adhesion kinase. Image data of labeled cellular adhesion agrin sites would 

be obtained from EPI microscopy and analyzed with Matlab software and ImageJ with a 

plugin compatible for an Olympus image format. 

3.5.4 Cell Migration 

To determine cellular migration speed, confocal micrographs of plated cells were 

acquired every 5 mins over a time period of 2h. Cell motility data were obtained by 

tracking the nucleus of migrating cells over time using ImageJ and the plugin “object 
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tracker and manual tracking” [ImageJ, U. S. National Institutes of Health, Bethesda, 

Maryland, USA, http://imagej.nih.gov/ij/, 1997-2014.date last accessed 12/10/2015]. 

3.5.5 Traction Force Microscopy 

A modified traction force microscopy assay was employed to probe cellular 

traction forces in a PAA gel underneath biomembrane-mimicking cell substrates using 

procedures described previously56. In short, after preparation of PAA gels, with a Young’s 

modulus of 11.3 kPa, that contained embedded fluorescent particles and a fibronectin 

surface coating (described in 2.3), linkage between lipid bilayer and fibronectin layer was 

accomplished by subsequent addition of heterobifunctional NHS-maleimide cross-linker 

Sulfo-GMBS (Thermo Fisher Sci. Rockford, IL) (concentration: 10mg/mL in DMSO; 

incubation time: 30min) and lipid bilayer containing POPC and 5 mol% DPTE. Formation 

of multi-bilayers and design of bilayer-cell linkers followed procedures described in 2.1. 

C2C12 myoblasts were placed on the bilayer-functionalized gels at a density of 80 

cells/mm2 and incubated at 37 ℃ and 5% CO2. Bright-field images of plated cells were 

acquired together with fluorescent micrographs (through FITC channel) of bead positions 

20 hours after plating using an inverted optical microscope (Axiovert 200M, Carl Zeiss, 

Oberkochen, Germany) with EC Plan-NEOFLUAR objective (20 x, NA=0.5) (Carl Zeiss, Jena, 

Germany). Following the treatment of cells with a 100l cocktail of 80M cytochalasin D 

(BD BioScience, CA) in 0.25% trypsin solution, fluorescent micrographs of the bead 

positions were taken again. The displacement of beads between gel relaxations due to 

the cells traction were estimated and analyzed with an unconstrained deconvolution 

algorithm. Both of the traction force and the displacement field were calculated using the 
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Fourier transform traction cytometry method described in ref49. Furthermore, strain 

energy, U, of each cell was estimated with the methodology within the reference56 . 

3.5.5.1 Fabrication of Traction Force Microscopy Assay 

Polyacrylamide gels (PAA gel) were built on pretreated glass slides. Pretreatment 

of glass slides included subsequent incubation in aqueous solutions of 0.1 M NaOH, 2.0% 

3-aminopropyltrimethoxysilane, and 2.5% glutaraldehyde and rinsing with Milli-Q water 

after each incubation step. Formation of the PAA gel followed established procedures56. 

In short, aqueous solutions with 40% acrylamide/bisacrylamide with embedded 0.5m 

green fluorescent beads (505/515) (Invitrogen/ Life Science, Carlsbad, CA) were made to 

achieve final concentrations of 4.1% or 6.1% acrylamide. The solution was centrifuged at 

1500 rpm for 30 mins at 4 ℃ and 0.2% N.N.N'N-tetramethylethylenediamine (TEMED) 

was added as a crosslinker and mixed with the initiator 0.5% ammonium persulfate (APS) 

to start the polymerization and crosslinking reactions resulting in the PAA at room 

temperature (1 h for polymerization). For activation of the gel surface, 150 l of the 

photocrosslinker Sulfo-SANPHA (Thermo Fisher Sci. Rockford, IL) was added and allowed 

to bind to the gel using UV light irradiation for 5 mins. After extensive rinsing with PBS to 

remove unbound Sulfo-SANPHA, 120 l of 1.5% fibronectin solution (Thermo Fisher Sci. 

Rockford, IL) was added and incubated overnight to allow fibronectin binding to the gel 

via Sulfo-SANPHA linkers. Prior to usage, the gel was stored in PBS buffer at 4℃ for up to 

4 days.
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Sulfo-GMBS (Thermo Fisher Sci. MA) was added onto PAA gel traction force assays for 

bridging to fibronectin above PAA gels with NHS functional group for 40 mins incubation. 

For single bilayer substrate on traction force microscopy analysis, GUVs solution 

consisting of POPC, DPTE and DGS-NTA Ni lipids was manufactured as section 3.2.2.2 

describes and added to the fibronectin‐coated PAA gel with Sulfo‐GMBS linker molecules. 

For multiple lipid bilayers stacking, GUVs solutions were added to PAA gels via the fusion 

of GUVS containing 5 mol% DPTE, and 95 mol% POPC forming the first bilayer substrate 

and the subsequent fusion of GUV’s comprised of 5 mol% DSPE PEG-2000 Maleimide and 

95 mol% POPC for the secondary bilayer. The third bilayer was built by fusion of GUVs 

containing 0.5 mol% DGS‐NTA Ni /5 mol% DPTE/94.5 mol% POPC. In a last step N-cadherin 

Chimera was added to the DGS-NTA Ni‐containing bilayer, thus creating a modified 

traction force microscopy gel, which is surface of N‐cadherin‐functionalized multi‐bilayer 

system. 

Polyacrylamide gels (PAA gel) were built on pretreated glass slides. Pretreatment 

of glass slides included subsequent incubation in aqueous solutions of 0.1 M NaOH, 2.0% 

3-aminopropyltrimethoxysilane, and 2.5% glutaraldehyde and rinsing with Milli-Q water 

after each incubation step. Formation of the PAA gel followed established procedures56. 

In short, aqueous solutions with 40% acrylamide/bisacrylamide with embedded 0.5m 

green fluorescent beads (505/515) (Invitrogen/ Life Science, Carlsbad, CA) were made to 

achieve final concentrations of 4.1% or 6.1% acrylamide. The solution was centrifuged at 

1500 rpm for 30 mins at 4 ℃and 0.2% N.N.N'N-tetramethylethylenediamine (TEMED) was 
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added as a crosslinker and mixed with the initiator 0.5% ammonium persulfat (APS) to 

start the polymerization and crosslinking reactions resulting in the PAA at room 

temperature (1 h for polymerization). For activation of the gel surface, 150 l of the 

photocrosslinker Sulfo-SANPHA (Thermo Fisher Sci. Rockford, IL) was added and allowed 

to bind to the gel using UV light irradiation for 5 mins. After extensive rinsing with PBS to 

remove unbound Sulfo-SANPHA, 120 l of 1.5% fibronectin solution (Thermo Fisher Sci. 

Rockford, IL) was added and incubated overnight to allow fibronectin binding to the gel 

via Sulfo-SANPHA linkers. Prior to usage, the gel was stored in PBS buffer at 4℃ for up to 

4 days. 

Sulfo-GMBS (Thermo Fisher Sci. MA) were added ontoPAA gel traction force 

assays for bridging to fibronectin above PAA gels with NHS functional group for 40 mins 

incubation. For single bilayer substrate on traction force microscope, GUVs solution 

consisted with DPTE lipids and DGS-NTA Ni lipids manufactured as section 3.2.2.2 section 

heated in 75℃ water was added to the assay substrates for single bilayer formation with 

thiol linker to Sulfo-GMBS. For multiple lipid bilayers stacking, GUVs solutions were then 

added to atop PAA gels via the fusion of GUVS containing 5%mol DPTE, and 95%mol POPC 

forming the first bilayer substrate, and then 5%mol DSPE PEG-2000 Maleimide and 95% 

POPC for the secondary bilayer. GUVs solution with 0.5%mol DGS-NTA Ni /5%mol 

DPTE/94.5%mol POPC was added to the third bilayer substrate for linkage to N-cadherin 

Chimera as descripted as coated system as descripted in section 3.2.2.2.for cadherin 

system or 5%mol DPTE/95%mol POPC for Laminin coated system. 
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3.5.5.2 Process of Image Acquisition and Data Analysis 

C2C12 Myoblasts and other cells were placed on the traction force microscopy 

assay and incubated in 37℃ and 5% CO2 for 24 hrs and 48 hrs. Assays were imaged with 

both DIC and EPI-FITC channel for recording the cell shape, location and bead 

displacements between treatment with the 100 µL cocktail of 80 mM Cytochalasin D 

(Sigma-Aldrich) in 0.25% trypsin. With no cellular force applied, the gel relaxes back to its 

stress-free configuration, and the second image was taken. The displacements of the 

bead due to the cell tractions are estimated with Matlab software using an unconstrained 

deconvolution algorithm, and the cell tractions are computed using the Fourier transform 

traction cytometry method described in reference49. From the displacement field and the 

traction force, the strain energy U were calculated as the following formula  

𝑈 =
1

2
∫(𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑥 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡) 𝑑𝑥𝑑𝑦  [14] 
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  RESULTS AND DISCUSSION 

4.1 Design and Characteristics of Cell-Cell Junctions Biomembrane-mimicking Multi-

Bilayer Substrates (TYPE II) with N-cadherin Linkers 

Previously, cadherin linkers were employed in artificial cell-cell mimicking 

substrates, which were mainly comprised of polymeric gels such as PDMS186,215 and 

PAA57,118,231. In this work, we successfully design and fabricate a cadherin system on 

polymer‐tethered multi-bilayer substrates with DGS‐NTA lipids (4.1.1) (Type II substrates). 

These novel cell surface-mimicking cell substrates represent a significant advance over 

existing polymeric systems with polymer-conjugated linkers because they enable the free 

assembly of linkers at cell-cell-junctions without impairing cell spreading and migration. 

In that sense, this biomembrane‐mimicking substrate better replicates the rich dynamics 

found at cell‐cell interfaces. Moreover, recent magnetic tweezer experiments on 

magnetic beads bound to laminin‐functionalized single, double, triple, and quadruple 

bilayers demonstrated the largely elastic nature of these supramolecular assemblies with 

respect to adsorbed 4.5mm size particles mimicking cellular adhesions and the ability to 

alter substrate mechanical properties by changing the number of bilayers in the stack171 

These remarkable, tunable materials properties can be attributed, at least in part, to the 

fascinating coupling phenomena in polymer-tethered membranes, which include 
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coupling of lipopolymer-enriched interbilayer connections, percolation of linker clusters, 

and strong interleaflet coupling of immobilized linker clusters 218,232-234. As part of this 

thesis, the characteristics of TYPE II substrates with cadherin linkers was examined using 

complementary microscopy methods (4.1.2). After placing C2C12 myoblast cells on TYPE 

II substrates with N-cadherin linkers, the cellular mechanoresponse of myoblast cells was 

analyzed on such substrates (4.1.3). Results from these experiments will be presented in 

the following subsections.  

4.1.1 Fabrication of TYPE II Substrates with N-Cadherin Linkers 

Fabrication of TYPE II substrates with N‐cadherin linkers was successfully 

accomplished by multi‐bilayer formation using subsequent LB/LS and GUV deposition 

techniques (see schematic of multi‐layer assembly in Fig. 4.1.1 [A]). Here the first bilayer 

was built by the LB/LS method using a membrane composition of 5 mol% DSPE‐PEG2000‐

Maleimide lipopolymer and 95 mol% POPC. Cadherin linkage to the cell-exposed bilayer 

was accomplished by incorporating 0.1 mol% DGS‐NTA into the lipid mixture, enabling 

binding of his‐tagged N‐cadherin chimera. While building multiple bilayer substrates, GUV 

deposition techniques were employed forming a substrate with two to four lipid bilayers. 

The GUV fusion method is the same as described in previous experiments and utilizes 0.1 

mM sucrose/1 mM CaCl2-filled GUVs containing 95 mol% POPC and 5 mol% DPTE in the 

presence of 0.1 mM glucose/0.1 mM CaCl2 buffer. The sugar gradient, which causes the 

sinking of the GUVs, assists in the formation of the second planar bilayer. In contrast, the 

third bilayer was composed of 95 mol% POPC and 5 mol% DSPE-PEG2000 Maleimide with 

the same buffer to form GUVs and utilizing sugar gradient to help the process of third 
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bilayer stacking. The fourth bilayer on a quadruple bilayer substrate consists of 95 mol% 

POPC and 5 mol% DPTE with only 0.1 mM sucrose buffer to form GUVs to avoid the of 

replacement of Ni2+ ions on DGS-NTA lipids; there are no calcium ions added into the final 

GUV solution to enhance the process of vesicle formation. Thus, formation of GUV 

solution requires 15-30 minutes more to complete in calcium-free glucose buffer 

compared to glucose buffer with 0.1 mol% calcium chloride. Figure 4.1.1 [B, C] show 

representative fluorescence micrographs, which demonstrate the homogeneous 

distribution of dye‐labeled lipids (NBD-DHPE) [B] and N‐cadherin chimera (labeled with 

Alexa‐555tagged anti‐N‐cadherin antibody) [C] in the polymer‐tethered lipid bilayer prior 

to cell plating. 

In the planar model membrane system, lipopolymers with a terminal maleimide 

functional group act as specific linkers to lipids with a sulfhydryl group in the adjacent 

lipid bilayer, resulting in the formation of a stable polymer-‐tethered multiple bilayer 

stack. In such a system, lipopolymer density not only impacts the degree of obstructed 

lipid diffusion, but also affects membrane curvature and surface roughness with direct 

implications on membrane tension and interleaflet coupling of lipid lateral mobility. 
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Figure 4.1. 1 a: the scheme of multiple stacking bilayer containing N-cadherin chimera 
via His-tag chemistry. b: Single bilayer containing 0.01% DGS-NTA and 0.1% NBD-PE. c: 

Single bilayer containing 0.01% DGS-NTA and N-cadherin chelating with antibodies 
labeled with Alexa-555. Size of b and c are 200 μm x 200 μm 

 

The other role of the lipopolymer on TYPE II substrates is to allow the facile 

adjustment of bilayer bending stiffness with different molar concentrations, also acting 

as efficient crowding agents170. Interestingly, a polymer-tethered single bilayer substrate 

with 95 mol% POPC and 5 mol% of DSPE-PEG 5000 has a bending modulus (Kc) of about 

50 KbT, which is similar to that of a red blood cell membrane208. 
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Figure 4.1. 2 Cadherin-functionalized lipid bilayers were built by incorporation of DOGS-
NTA-Ni into the bilayer and subsequential binding of His-tagged cadherin chimera. 

 

Figure 4.1.2 illustrates the cell-cell junction formation via N-cadherin homotypic 

binding, by which the extracellular domain of opposing N-cadherin proteins bind to each 

other. Here, the cellular cadherins form a complex with proteins, such as P120, β-catenin 

and α-catenin, which facilitate the linkage with actin filaments of the cytoskeleton 

structure. As mentioned in the previous chapter, fluorescent intensity of cadherin-catenin 

complexes after immunostaining indicates the degree of force of the cytoskeleton system 

on artificial substrate such as PDMS gel and PAA gels. Fluorescent intensity of β-catenin 

immunostaining on the periphery of the cell membrane also increases with increasing 

stiffness of artificial cell substrates 235,236. In our work, C2C12 Myoblasts were placed on 

TYPE II substrates tethered with cadherin linkers as shown above. 
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Figure 4.1. 3 [A] and [B] are DIC images before and after recovery with FRAP technique; 
[C] and [D] are EPI images before and after recovery with FRAP. Scale Bar: 20 μm 

 

Integrity of the biomembrane‐mimicking substrate was examined 48 hours after 

cell plating using confocal fluorescence analysis of DHPE‐Texas Red distribution 

underneath plated cell together with FRAP analysis of dye‐labeled lipid diffusivity. Figure 

4.1.3, A and B illustrate representative DIC images of C2C12 myoblasts above the 

bleaching spot (indicated by circle) generated by the confocal laser system; C and D are 

corresponding EPI micrographs of the same area of the sample illustrating the distribution 

of DHPE-Texas Red in the top bilayer of a N‐cadherin‐functionalized double bilayer 

substrate immediately after bleaching (C) and 2min after bleaching (D). No optically 
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visible bilayer defects can be observed in these micrographs, demonstrating the stability 

of the multi-bilayer system in the presence of plated cells. Similarly, FRAP analysis 

revealed a lipid diffusion coefficient of D = 2.2 ± 0.2 μm2s‐1 and a 90 % intensity recovery 

(2 min after bleaching), confirming the integrity of TYPE II bilayer system underneath 

plated cells 

4.1.2 Key Characteristics of TYPE II Substrates with N-Cadherin Linkers 

To further characterize the properties of the cadherin linker system, we next 

determined the lateral mobility of TRITC-DHPE and N-cadherin chimera (labeled with 

Alexa-555 anti‐N-cadherin antibody) using fluorescence correlation spectroscopy. Figure 

4.1.4 shows representative results from these experiments, which demonstrate the 

lateral mobility of both fluorescently‐labeled lipids and N‐cadherin chimera in the 

polymer‐tethered bilayer. It should be pointed out that compared to previous artificial 

cell surface-mimicking substrates 111,208, the current biomembrane‐mimicking system is 

one of only a few models, in which individual cadherin linkers maintain their lateral 

mobility, thus better replicating a biomembrane‐like environment. 

 

Figure 4.1. 4 Dye labeling (Alexa 555) of N-cadherin linkers allows analysis of linker 
distribution in the absence and presence of plated cells. FCS autocorrelation analysis 

confirms the lateral mobility of individual N-cadherin chimera in TYPE II Substrate prior 
to cell plating

file:///C:/Users/Yu-Hung/Documents/Corey_Full%20Thesis%20112015_CN_edit_07%20KS%20Final%20Chapter%205%20Done.docx%23_ENREF_111


95 

 

9
5
 

In order to further investigate the properties of N‐cadherin clusters in TYPE II 

substrates, we functionalized fluorescent beads with N-cadherin and let them bind to a 

single polymer-tethered bilayer with N‐cadherin linkers (Figure 4.1.5 left). Binding of 

fluorescent beads functionalized with N‐cadherin on the TYPE II bilayer was in the 

presence of calcium ions (Figure 4.1.5 right). Importantly, results from time lapse images 

(Figure 4.1.5 right) revealed that all bilayer‐bound N-cadherin beads were immobilized, 

illustrating the immobilization of N‐cadherin linker clusters in TYPE II bilayers. 

 

Figure 4.1. 5 N-cadherin functionalized bead placed on TYPE II polymer-tethered 
substrates shows linker clusters are immobilized 

 

The analysis of N‐cadherin linkers and linker clusters suggested that N‐cadherin 

linkers are able to assemble into linker clusters underneath plated cells. To confirm this, 

we explored the distribution of dye-labeled N-cadherin linkers in the presence of plated 
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C2C12 myoblasts. Figure 4.1.6 illustrates a representative fluorescence intensity 

distribution of Alexa‐555 labeled N-cadherin on a TYPE II substrate underneath a C2C12 

myoblast. Most importantly, Figure 4.1.6 confirms the accumulation of N‐cadherin linkers 

underneath the adsorbed cell. Moreover, quantitative fluorescence analysis (through 

confocal line scans) at 24, 48, and 72 hrs demonstrates the gradual accumulation of 

bilayer bound N‐cadherin chimera underneath plated cells, indicating the linkers’ ability 

to freely assemble into linker clusters in such membrane architectures. Figure 4.1.6 also 

shows that N‐cadherin linkers are heterogeneously distributed underneath the plated 

cells. 

 

Figure 4.1. 6 Analysis of Alexa 555-labeled N-cadherin chimera distribution underneath 
C2C12 Myoblasts placed on TYPE 1 Bilayers:  Fluorescence micrograph (a) demonstrates 

the accumulation of N-cadherin chimera at the leading edge of a migrating cell. Time 
evolution of confocal fluorescence intensity line scans (b) illustrates the gradual dynamic 

assembly of N-cadherin linkers underneath plated C2C12 Myoblasts. 

 

Taken together, TYPE II bilayers display intriguing properties. Individual N‐

cadherin linkers are laterally mobile and free to assemble into immobilized N‐cadherin 
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linker clusters, enabling the gradual accumulation of such linkers underneath plated cells 

over time. The ability of cells to spread on such a biomembrane‐mimicking substrate (see 

Fig. 4.1.6) suggests that linkers underneath adsorbed cells are assembled, at least in part, 

into linker clusters, which are unable to diffuse freely. 

4.1.3 Cellular Mechanoresponse of C2C12 Myoblasts on Multi- Bilayer Substrates 

(TYPE II ) 

The work in this section supports the central hypothesis that cellular 

mechanoresponse can be tuned by altering the number of bilayers in a polymer‐tethered 

multi‐bilayer of TYPE II. Previous reports demonstrated that mechanosensitive cells 

behave differently on substrates of different stiffness, thereby altering properties such as 

spreading area237 migration speed, cellular traction forces, and cytoskeleton organization. 

For example, fibroblasts on multi-bilayer substrates displayed increased migration 

velocities, migration directionality and heightened shape fluctuations170. Corresponding 

traction force microscopy experiments demonstrate the lubricating effect of the bilayer 

substrates that lead to a reduction of cellular traction forces 171. Furthermore, a series of 

control experiments confirmed the integrity of the multi-bilayer systems underneath 

plated cells, thus excluding potential bilayer defects as possible explanation for the 

observed differences in cellular response on biomembrane-mimicking substrates. 
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Figure 4.1. 7 Myoblast cells on double bilayer coated with different ligands a: No Linker 
b: 0.04 mol% N-cadherin c: 0.1 mol% N-cadherin d: Laminin. 

 

In Figure 4.1.7, C2C12 myoblasts on double bilayers coated with different density 

of linker conditions are shown. As illustrated in Fig. 4.1.7 [a], most cells cannot spread out 

or remain in a spherical shape on double bilayers without any linker. In contrast, cells on 

double bilayers with high (0.1 mol%) and low density (0.04 mol%) of N‐cadherin linkers 

show good cell spreading, thereby not displaying any notable differences in terms of 

shape and spreading area. According to figure 4.1.7 [b] and [c], linker density on TYPE II 

substrates contributes little to impact cell spreading and morphology. Interestingly, 
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myoblasts on TYPE II bilayer substrates coated with laminin show a somewhat larger 

spreading area60 (if compared to the value obtained on an N‐cadherin substrate of 

comparable linker density).  

4.1.3.1 Cell Spreading Area and Morphology 

As reported in Figure 4.1.8, the cell area decreases with increasing number of 

bilayers of a TYPE II multi‐bilayer system. Cells are also smaller on the softer 4.1% PAA 

gels compared to cells on stiffer 6.1 and 6.8% PAA substrates. The relationship between 

bilayer stacking and cell area is characterized by a statistically significant correlation if one 

considers PAA gels and TYPE II substrates coated with laminin linkers. This correlation is 

less pronounced for TYPE II substrates with 0.1 mol% N-cadherin. As mentioned before, 

C2C12 spreading areas are moderately increased on TYPE II bilayers with laminin linkers 

versus N‐cadherin linkers of the same degree of stacking. 

 

Figure 4.1. 8 C2C12 myoblast cell area on various substrates as. Blue strips: Poly 
acrylamide gel coated with fibronectin; Red strips: Multiple bilayer system coated with 
N-cadherin linker (N-Cad); Green Strips: multiple bilayer system coated with laminin. 
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4.1.3.2 Cytoskeleton Organization and Adheren Junctions Formation 

There is a close correlation between cellular contractile forces and substrate 

stiffness. At the same time, the strength of cellular contractile forces is typically reflected 

by the extent of actin stress fiber formation and the size/distribution of cellular adhesions. 

For example, we have previously shown that increasing bilayer stacking in a laminin‐

functionalized TYPE II bilayer is associated with more dynamic and irregularly shaped focal 

adhesions. Similarly, Figure 4.1.9 illustrates that increases in bilayer stacking of N‐

cadherin‐functionalized TYPE II bilayers reduce adherens junction size (visualized by β-

catenin distribution). 

 

Figure 4.1. 9 β-catenin Immunostaining (in green) of C2C12 myoblast on stacking bilayer 
system 24 hours after placement. Average fluorescent intensity on Olympus Confocal 

microscopy of antibodies β-catanin decreases with additional bilayer stacking:  A: Single 
bilayer (2364), B: Double bilayer (1577), and C: Quadruple bilayer (867). 

 

Cytoskeletal organization is another indicator of cellular mechanoresponse on 

substrates with different mechanical properties. Fig. 4.1.9. already illustrates that 

increasing bilayer stacking of N‐cadherin functionalized multi‐bilayer system of TYPE II 

causes reduced formation of visible ventral actin stress fibers. The influence of bilayer 
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stacking on cytoskeletal organization is illustrated more quantitatively in Figure 4.1.10. 

Herein, Figure 4.1.10 shows that notable static stress fiber formation can be observed in 

single bilayers regardless of linker type (laminin versus N-cadherin). However, compared 

to laminin‐functionalized TYPE II substrates, a smaller percentage of the C2C12 myoblasts 

showed formation of visible ventral actin stress fibers on N-cadherin coated substrates. 

Figures 4.1.9 and 4.1.10 are both important for the illustration of cytoskeletal 

organization since they can be well interpreted in terms of the cells’ ability to adhere 

efficiently to both TYPE II and single bilayers coated with laminin and cadherin. The result 

of Figure 4.1.10 suggests that defect‐mediated cell adhesion to the glass substrates 

appears to be only potentially significant on single bilayer substrate, but not on double or 

quadruple bilayer substrates. Similar results were previously obtained with 3T3 

fibroblasts on laminin-coated TYPE II substrates170. That is to say, polymer-tethered 

multiple bilayer substrates with specific bilayer-cell linkers maintain their integrity in the 

presence of plated cells. 
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Figure 4.1. 10: Stress fiber ratio of C2C12 myoblast cells on multiple bilayer system 
coated with N-cadherin (gold) and laminin linkers (gray) demonstrates fewer stress 

fibers found for N-cad linked cells than laminin cells using single, double and quadruple 
bilayers 

 

4.1.3.3 Cell Migration 

To further investigate the impact of bilayer stacking on the cellular 

mechanoresponse of C2C12 myoblasts above TYPE II substrates coated with N-cadherin 

linkers, we next analyzed cellular migration speed. Cellular motility on N-cadherin and 

laminin-coated TYPE II substrates;(i.e, single, double and quadruple bilayers) were 

examined using time-lapse DIC imaging (time lag = 5 mins). In Figure 4.1.11 nuclear 

displacement over time demonstrates that cellular migration speed of myoblasts on TYPE 

II substrates gradually increases with bilayer stacking. Cellular motility results echo the 
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findings of cytoskeletal organization obtained on TYPE II substrates with N-cadherin and 

laminin linkers, respectively. Again, migration data obtained on TYPE II bilayers with N‐

cadherin and laminin linkers are slightly different for the same degree of bilayer stacking.

 

Figure 4.1. 11 Cell migration speed of C2C12 myoblasts on substrates functionalized with 
N-cadherin (gold) and laminin linkers (gray). N-cadherin and laminin linkers are 

histograms where each data point represents a measurement between sequential 
frames. All data poines within a given column represent the movement of the same cell 

over a 2 hour period. Average values are displayed as horizontal red line. 

 

4.1.3.4 Cellular Traction Force 

Cellular traction force microscopy is significant because traction forces are related 

to contractile cytoskeletal prestress 171In this work, cell contractility changes on TYPE II 

substrates coated with N-cadherin were measured using traction force microscopy. 

C2C12 myoblast cells were placed directly on 6.1% PAA gels or on single or triple bilayers 

that were coupled to the activated 6.1% PAA gels via fibronection and Sulfo-GMBS linker. 
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After detaching the cells from substrates, the cell traction forces are counter-balanced by 

an equal and opposite substrate force, which is measured by bead displacement at the 

top of the elastic PAA layer, and which can be analyzed and estimated as cell traction. 

Furthermore, the strain energy stored in the substrate for each cell can be computed as 

in previous experiments171. Figure 4.1.12 demonstrates the calculation of the traction 

force of myoblast cells on different substrates; the data illustrates that the cell tractions 

and strain energy gradually decrease with bilayer stacking. 

 

Figure 4.1. 12 Traction Force Microscopy of C2C12 Myoblasts on different biomembrane-
mimicking substrates: A. PAA gel. B. Single bilayer. C. Triple bilayer. 

 

4.2 Design and Fabrication of Biomembrane-mimicking Single Bilayer Substrates with 

Various Lipopolymer Concentrations. (TYPE I ) 

Mechanical properties of polymer-tethered membranes can not only be adjusted 

by varying the degree of stacking in a polymer-tethered multi‐bilayer stack (TYPE II), but 

also by changing the concentration of lipopolymers in a single polymer‐tethered lipid 

bilayer (TYPE I). Hereby, TYPE I and TYPE II substrates exhibit complementary substrate 
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viscoelasticity, enabling experiments of cellular mechanosensitivity on biomembrane-

mimicking substrates over a wider range of substrate stiffness. TYPE I substrates were 

successfully built using the Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques. 

Previous experiments216 showed that TYPE I bilayers show buckling structures, a stress 

relaxation phenomenon, at medium to elevated lipopolymer concentrations. 

Furthermore, systematic analysis using AFM demonstrated that increasing lipopolymer 

content (increasing film stress) in the TYPE I bilayer results in increasing buckling 

amplitude and buckling width. Moreover, by combining experimentally determined 

buckling parameters with mean-field calculations of polymer‐tethered membranes and 

buckling theory of an Euler column (straight‐sided blister), a metric between elastic 

properties and buckling parameters in polymer‐tethered monolayer and bilayer 

substrates can be derived217. 

4.2.1 Homogeneous Polymer-Tethered Single Bilayer of Tunable Viscoelasticity 

4.2.1.1 Analysis of Mean Field and Impact of Lipopolymer Concentration on Stiffness of 

TYPE I Membrane Substrates 

Previous research217  on TYPE I substrates containing DSPE-PEG 5000 showed that there 

is a linear relationship between lipopolymer concentration and the plane strain modulus 

(Ef 
*) (Figure 4.2.1). Similarly, previous micropipette experiments showed that increasing 

concentrations of PEG lipopolymers in vesicular systems are associated with increasing 

membrane bending elasticity238,239 . And more experiments illustrate that the film 

thickness of lipid and lipopolymer mixtures, built as solid‐supported substrates, were 
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gradually increasing with the polymer thickness from lower to higher concentration of 

lipopolymer compatible with mean‐field and scaling calculations of polymer physics. 

Figure 4.2. 1 Buckling Pattern and Structures with Various Polyethyleneglycol (PEG)-

Based Lipopolymer Concentrations202. 

 

Figure 4.2.2 illustrates representative atomic force microscope micrographs of 

solid-supported monolayer (a) and bilayer (b) substrates consisting of elevated 

lipopolymer DSPE‐PEG5000 concentration (20 mol%). The enhanced film stress caused by 

elevated lipopolymer levels cause formation of buckling patterns in LB monolayers (Figure 

4.2.2a) and bilayer compartmentalization in corresponding LB/LS bilayer systems (Figure 
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4.2.2b). Buckling structures in LB monolayers represent a stress relaxation phenomenon, 

also known as buckling delamination, whereas the bilayer compartmentalization is 

caused by the inability of bilayer formation on top of buckling structures (presumably, 

surfaces of buckling structures are somewhat hydrophilic, due to penetrated/flipped 

polymer chains). As described before, polymer-tethered monolayers with buckling 

structures are obtained using LB deposition, whereas the compartmentalized polymer‐

tethered bilayer of TYPE I is accomplished using LB/LS depositions. Note that the LB 

deposition technique is essential to build polymer‐tethered membranes with lipopolymer 

concentrations higher than 10 mol%, which is the reported saturation concentration of 

these amphiphiles in vesicular systems14. Interestingly, the buckling-associated bilayer 

compartmentalization in TYPE I bilayers acts as efficient lipid/protein diffusion boundary, 

resulting in fascinating length scale‐dependent diffusion properties of membrane 

constituents, similar to those observed in cellular membranes216. Systematic analysis of 

buckling structures in polymer‐tethered monolayers also revealed a gradual increase of 

buckling regions with increasing lipopolymer content, illustrating the film stress‐inducing 

effect of lipopolymers in such model membrane systems.  

Overall, this earlier work demonstrated that mechanical properties of TYPE I 

bilayers, which can be altered by lipopolymer concentration, can be determined by mean-

field calculations and analysis of buckling structures combined with buckling theory of a 

straight-sided blister. Another intriguing outcome from these experiments was the 

discovery that such model membranes show complex length‐dependent diffusion 

properties with remarkable parallels to those found in plasma membranes. Such tunable 
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properties are also interesting because they allow cell migration experiments in patterned 

membrane environments.

 

Figure 4.2. 2 Atomic force microscope micrographs of Single Monolayer (a) and Bilayer 
(b) comprised of mixture of 80 mol% phospholipid and 20 mol% lipopolymer202. 

 

4.2.1.2 Polyethyleneglycol (PEG) and Poly(2-Methyl-2-Oxazoline) (Pmox)-Based Single 

Bilayers of TYPE I Substrates 

TYPE I substrates can also be built using LB/LS techniques by replacing DSPE‐

PEG5000 with more hydrophilic Poly(2-Methyl-2‐Oxazoline) (Pmox) lipopolymers. 

Interestingly, in this case, buckling structures are much smaller (only observable by AFM) 

and no bilayer compartmentalization is detected216 . Figure 4.2.3 illustrates that enhanced 

lipopolymer concentrations not only cause membrane buckling, but also lead to increased 
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membrane roughness at a smaller length scale. At low tethering density, a polymer‐

tethered bilayer has a relatively smooth bilayer surface and polymers between bilayer 

and solid substrate are organized in a mushroom conformation. In contrast, at high 

tethering concentration, the bilayer shows enhanced roughness (membrane tension) and 

rather stretched polymer chains. Importantly, our group previously demonstrated that 

the polymer‐induced roughening of the bilayer leads to a strong interleaflet coupling of 

lipid diffusion in TYPE I bilayers 232. Furthermore, single molecule tracking experiments of 

dye‐labeled lipids suggested that tethered lipids exist as randomly distributed obstacles 

of individual molecules at lipopolymer concentration of < 10 mol%; whereas aggregates 

of tethered lipids may occur at lipopolymer concentrations >10 mol%. Polymer‐tethered 

bilayers of TYPE I consisting of Pmox lipopolymers are interesting as artificial cell 

substrates because changes in lipopolymer concentration (substrate stiffness) are not 

associated with lipopolymer-induced bilayer compartmentalizations216,217. 

 

Figure 4.2. 3 the role of Poly(2-Methyl-2-Oxazoline) Lipopolymer within a polymer-
tethered bilayer substrate202. 
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4.2.2 Cellular Mechanoresponse of Fibroblasts on TYPE I Single Bilayer Substrates 

As already mentioned, external mechanical cues may influence anchorage‐

dependent cells, thereby leading to changes in cell morphology and motility. Stimulation 

of signaling pathways and gene expression through mechanotransduction can alter cell 

spreading area, cell migration speed and direction, and cause the alternation of binding 

proteins in focal adhesion sites on TYPE I substrates of various lipopolymer concentrations 

(substrate stiffness). In the following, different aspects of cellular mechanosensitivity on 

TYPE I substrates are examined in more detail. 

4.2.2.1 Cell Spreading on TYPE I Substrates 

 

Figure 4.2. 4 GFP-Actin transfected MEF Fibroblast cells on TYPE I substrates comprised 
of low to high lipopolymer concentration (a) 5 mol% (b) 10 mol% (c) 15 mol% (d) 20 

mol%. 
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The representative EPI micrographs in Figure 4.2.4 illustrate the influence of 

lipopolymer concentration, ctether, in TYPE I bilayers on the spreading of GFP-Actin 

transfected MEF fibroblasts. Specifically, MEF Fibroblasts exhibit increased cell area and 

formation of more polygonic cells with increasing lipopolymer concentrations of ctether= 5 

(A), 10 (B), 15 (C), 20 mol% (D). Systematic analysis of cell spreading behavior on laminin‐

functionalized TYPE I bilayers demonstrate that there is a statistically significant 

correlation between cell area and ctether. 

As depicted in Figure 4.2.5, the average cell spreading area of MEF fibroblasts on 

TYPE I substrates with 2.5 mol% DSPE‐PEG 5000 was found to be 550 μm2. Furthermore, 

the average spreading area increased by 56% between 5 and 15 mol% DSPE‐PEG 5000 on 

comparable substrates. As Fig. 4.2.5 also shows, the cell spreading areas on laminin-

functionalized TYPE I substrates reach a plateau if lipopolymer concentrations in these 

membrane systems are larger than 20 mol% within TYPE I substrate. Notably, there is an 

interesting correlation between the influence of lipopolymer concentration on cell 

spreading area and the influence of lipopolymer content on the extent of membrane 

buckling formation (i.e., the percentage of the membrane occupied by buckling regions.) 
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Figure 4.2. 5 MEF Fibroblast cell spreading Area on TYPE I substrates. Number of cells 
spreading analysis on each substrate ranging from 80 to 120 individual cells. 

 

4.2.2.2 Cytoskeleton Organization of MEF Fibrooblast Cells on TYPE I Substrates 

Cytoskeleton organization is another indicator of cellular mechanosensitivity. This 

behavior is already illustrated in Fig. 4.2.4, which shows the increased stress fiber 

formation of GFP‐Actin transfected MEF Fibroblast on laminin‐functionalized TYPE I 

substrates of increasing ctether. Comparison of fibroblast data with the result of mean‐field 

calculations of TYPE I substrates suggests that the extent of stress fiber formation is 

directly related to substrate stiffness. The influence of lipopolymer concentration on 

cytoskeletal organization is illustrated more quantitatively in Figure 4.2.6 where the 

percentage of cells forming ventral actin stress fibers is plotted as a function of increasing 

lipopolymer concentration. The tendency of cells to form stress fibers on TYPE I substrates 

is significantly increased from 0 to 20 mol% DSPE‐PEG 5000; after 20 mol% ctether, the 
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percentage of cells with stress fibers remains steady, in good agreement with the 

tendency of buckling structure formation in such membranes. 

 

Figure 4.2. 6 Ratio of MEF Fibroblasts with stress ventral stress fiber on TYPE I substrate 
with increasing Ctether. Number of individual cells on substrates with different Ctether 

range from 80 to 120

4.2.2.3 Cell Migration on TYPE I Substrates 

Cellular mechanosensitivity can also be examined in terms of cell migrations speed. 

Consequently, cell migration experiments were pursued on laminin-functionalized 

polymer-tethered membranes of TYPE I. The experiments showed that fibroblast 

migration speed increases with increasing concentration of lipopolymers between 5 and 

30 mol%. As presented in Figure 4.2.7, the average cell migration speed on laminin‐

functionalized TYPE I substrates increases from 0.352 μm/min to 0.880 μm/min by 

altering lipopolymer concentration in such membranes from 5 to 20 mol% DSPE‐PEG5000. 

Interestingly, 3T3 fibroblast migration speed on TYPE II substrates was reported to 

increase with increasing bilayer stacking, illustrating an opposite effect 
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Figure 4.2. 7 MEF Fibroblast migration speed on TYPE I substrate with various 
lipopolymer concentrations. 

 

4.3 Alternative Physisorbed Polymer-Tethered Lipid Single Bilayer with Lipopolymer 

Gradient TYPE I 

In this work we report the fabrication of two types of physisorbed polymer-tethered 

lipid bilayers where the lateral distribution of lipopolymers can be regulated. In the case 

of TYPE Ia membrane systems, polymer-tethered membranes are characterized by a 

sharp boundary between regions of low (no buckling structures) and high (with buckling 

structures) lipopolymer concentrations. Importantly, the sharp boundary remains static 

after physisorption of the polymer-tethered membrane to the solid substrate. In contrast, 

TYPE Ib membranes exhibit a gradual concentration gradient in lipopolymer 

concentration achieved by adjusting the phospholipid-lipopolymer mixing ratio at the air-

water interface prior to LB transfer. Again, this gradient can be maintained after the 
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transfer of the polymer-tethered membrane to the solid (glass) substrate. These 

membranes illustrate that TYPE I bilayers have exciting properties including the ability to 

fabricate substrates with well‐defined elasticity patterns and gradients, representing an 

attractive tool in the analysis of cellular mechanosensitivity. 

4.3.1 Design and Fabrication of Sharp Boundary (TYPE Ia) and Gradient Pattern (TYPE 

Ib) Polymer-Tethered Single Bilayer 

4.3.1.1 Buckling Pattern and Structures with Various Polyethyleneglycol (PEG)-Based 

Lipopolymer Concentrations 

Previously, we demonstrated that physisorbed polymer-tethered phospholipid 

bilayers with different concentrations of lipopolymers in their inner monolayer display 

distinct, lipopolymer concentration-dependent, buckling structures. The formation of 

these structures was confirmed by AFM and was explained in terms of a stress relaxation 

phenomenon caused by stress-inducing lipopolymers in the membrane system. In the 

case of lipopolymers with amphiphilic polymer moieties, such as poly(ethylene glycol) 

(PEG) and poly(2-ethyl-2-oxazoline), buckling structures were easily resolvable by optical 

microscopy, such as EPI microscopy. At low lipopolymer concentrations, buckling 

structures were found to exist as circular or straight-sided blisters. With increasing 

lipopolymer concentration, blisters were reported to become more elaborate and 

branched and to eventually develop into a compartmentalizing buckling pattern. Fig.4.3.1 

[A] and [B] illustrate typical EPI micrographs of buckling structures in polymer-tethered 

lipid bilayers containing different amounts of DSPE-PEG 5000. At 5 mol%, lateral stress is 



116 

 

1
1

6
 

comparably low and membrane buckling regions exist as straight-sided blisters (Fig. 

4.3.1[A]). In contrast, at 40 mol%, lateral stress is high resulting in the formation of 

membrane-compartmentalizing buckling regions (Fig. 4.3.1[B]). 

 

Figure 4.3. 1 EPI micrographs of physisorbed polymer-tethered lipid bilayers of 5 mol% 
(A) and 40 mol% DSPE-PEG 5000 (B)226. All pictures were taken with 40x objective and 

1.6x Optovar magnification. The size of the micrographs is 100 μm x 100 μm. 

 

4.3.1.2 Impact of Lipopolymer Density on Stiffness of TYPE Ia and Ib Lipid Bilayer 

Substrates 

Fig. 4.3.2 [A]-[D] displays corresponding AFM micrographs of different regions of 

a typical TYPE I monolayer containing DSPE-PEG5000 (length scale 20 µm x 20 μm). While 

Fig. 4.3.2 [A] shows a monolayer region, which is characterized by straight-sided blisters, 

Fig. 4.3.2 [B]-[D] depict a compartmentalizing buckling pattern of decreasing 

compartment size. Using previously applied protocols, analysis of buckling width, 2b (Fig. 

4.3.2 [A]), and compartment density, Ncorr (Figs. 4.3.2 [B]-[D]), suggests lipopolymer molar 

concentrations of 4 mol% (Fig. 4.3.2 [A]), 16 mol% (Fig. 4.3.2 [B]), 31 mol% (Fig. 4.3.2 [C]), 
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and 36 mol% (Fig. 4.3.2 [D]), are associated with a change in the plane strain modulus, Ef
*, 

of the membrane from 1.9-7.3 MPa. 

 

Figure 4.3. 2 AFM micrographs of different regions of a TYPE Ia physisorbed polymer-
tethered monolayers exhibiting distinct degrees of membrane buckling226: straight-sided 
blisters [A], and compartmentalizing buckles of decreasing compartment size [C-D]. The 

decreasing compartment size indicates increasing lipopolymer molar concentrations. 
Image size: 20μm x 20μm. 

 

4.3.1.3 Key Characteristics of TYPE Ia and Ib Single Lipid Bilayer Substrates 

Fig. 4.3.3 shows representative EPI micrographs obtained from a TYPE I polymer-

tethered lipid bilayer system. As outlined in the Experimental Section, the lipopolymer 

gradient in TYPE Ia membranes was allowed to build up at the air-water interface prior to 

film transfer to the solid substrate. Fig. 4.3.3 [A] presents a lower magnification 

micrograph captured using a 20x objective, which clearly illustrates the gradual transition 

from a region without optically resolvable buckling structures to one with well-developed, 

bilayer-compartmentalizing buckling patterns. 

Fig. 4.3.3 [B]-[D] depict higher magnification micrographs using a 40x objective of 

different regions of a TYPE I bilayer sample, which are distinct in terms of buckling 
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formation. Fig.4.3.3 B exemplifies the region without optically resolvable buckling 

structures, which suggests a polymer-tethered lipid bilayer with less than 5 mol% DSPE-

PEG 5000. The bilayer area in Fig. 4.3.3 [C] is characterized by straight-sided, partially 

branched blisters, indicative of a local DSPE-PEG 5000 molar concentration of 5-10 mol%. 

Also illustrated by Fig. 4.3.3 [C] is the tendency of sufficiently long buckling ridges to 

compartmentalize the lipid bilayer. Fig. 4.3.3 [D] shows a region of well developed, 

bilayer-compartmentalizing buckling structures indicating a local DSPE-PEG 5000 molar 

concentration of 15-20 mol%. 
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Figure 4.3. 3 Representative EPI micrographs of a TYPE Ia physisorbed polymer-tethered 
lipid bilayer. The gradual change of buckling structures in Fig. 4.3.3 A indicates the 

existence of a lateral lipopolymer gradient in the membrane system226 (20x 
magnification). Figs. 4.3.3 B-D show magnified micrographs (40x magnification) of 
bilayer regions characterized by differences in buckling formation: no buckling (B), 

partially branched blisters (C), and well developed, bilayer-compartmentalizing buckles 
(D). The image size of A is 320 μm x 320 μm, whereas that of B, C and D is 160 μm x 160 

μm 
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Figure 4.3. 4 Fluorescence recovery after photobleaching of dye-labeled lipids in different 
regions of a TYPE Ia bilayer sample (images taken 1.5 min after spot photobleaching) 

exhibiting a buckling-free region (A), a region with branched buckling structures (B), and 
a region with bilayer-compartmentalizing buckles (C). The micrographs illustrate the 

fluidity of lipids in the bright (buckle-free) regions of the bilayer and confirm the ability of 
buckling structures to act as efficient lipid diffusion barriers, as reported previously226. 

 

Results from spot bleaching experiments in Figs. 4.3.4 [A]-[C] illustrate the 

influence of buckling structures on lipid lateral fluidity in different regions of a TYPE 1 

bilayer. In the region without optically resolvable buckling structures (Fig. 4.3.4 [A]), the 

circular bleaching spot exhibits a gradual transition of the bleaching intensity indicating 

good fluidity within the bilayer (images taken 1.5 min after spot photobleaching). In the 

region of straight-sided, partially branched blisters (Fig. 4.3.4 [B]), qualitatively similar 

fluorescence recovery can be observed, which displays lateral fluidity outside buckling 

areas. Fig.4.3.4 [C] best demonstrates that buckling areas act as efficient lipid diffusion 

barriers, as reported previously for physisorbed polymer-tethered lipid bilayers 

containing poly(2-ethyl-oxazoline) or PEG lipopolymers. Combined AFM and spot 

photobleaching experiments revealed that in such cases no lipid bilayer can form on top 

of buckling regions. Consequently, in TYPE Ia bilayers, these regions of “buckling-induced 
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dewetting” cause the formation of diffusion obstacles at low to medium lipopolymer 

concentrations and the compartmentalization of the lipid bilayer system at high 

lipopolymer concentrations. Notably, the available diffusion data reveal a complex length 

scale-dependent lipid diffusion behavior in physisorbed polymer-tethered lipid bilayers, 

which exhibits remarkable parallels to those observed in plasma membranes. At sub-

optical resolution length scale (~100nm), wide-field single molecule fluorescence 

microscopy experiments show that lipid diffusion is well described by a model of obstacle-

induced obstructed diffusion. Here the degree of obstruction is determined by the density 

of lipopolymers in the membrane system. Interestingly, the observed obstruction of lipid 

diffusion at this length scale seems to be, in part, associated with a lipopolymer-induced 

roughening of the bilayer, which alters membrane tension. At micron-size length scale, 

the formation of diffusion barriers in buckled regions reveal a second type of obstructed 

lipid diffusion. In this case, the degree of obstruction is determined by the length and 

connectivity of buckles. The complex lipid diffusion behavior in physisorbed polymer-

tethered membranes was recently demonstrated through long-term tracking of 

photostable quantum dot-conjugated lipids218 . These experiments not only showed a 

lipopolymer density-dependent obstruction of lipid diffusion over the entire detected 

length scale range, but also exhibited the feature of hop diffusion at a particular length 

scale (qualitatively similar to plasma membranes). It should be noted that the described 

lipid diffusion properties are distinct from those reported on chemisorbed polymer-

tethered lipid bilayers. 
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As described before, physisorbed polymer-tethered lipid bilayers not only show 

fascinating diffusion behavior, but are also characterized by interesting mechanical 

properties. Previously, mean-field calculations have shown that the mechanical 

properties of polymer-tethered membranes depend on lipopolymer density. Interestingly, 

the bending elasticity, Kc, of a typical red blood cell membrane of about 50 kBT 

corresponds to that of a polymer-tethered lipid bilayer of 5 mol% DSPE-PEG 5000 and Kc 

= 400 kBT of a typical membrane of Dictyostelium discoideum (wild type) is comparable 

to Kc values in polymer-tethered membranes of 20 mol% DSPE-PEG 5000. In contrast, a 

fluid lipid bilayer without lipopolymer is notably softer than typical cell membranes. 

Importantly, there is an empirical correlation between the extent of buckling formation 

and membrane elastic properties. We already described that a more quantitative 

relationship between buckle formation and membrane elasticity can be developed by 

linking experimentally determined buckling parameters, such as the buckling width, 2b, 

or the maximum height of buckles, wmax, to mean-field calculations of polymer-

lipopolymer mixtures and buckling theory of an Euler column. In this case, the Euler 

column approximation can be applied because the buckling width is notably larger than 

the overall membrane thickness, h, and because the Young’s modulus of the glass 

substrate is much higher than that of the polymer-tethered membrane. In the case of 

compartment-forming buckling structures, information about the density of lipopolymers 

and the corresponding membrane elasticity can be also obtained by determining the 

compartment density, Ncorr.217 The buckling parameter information needed for 

quantitative correlation can be best acquired from the analysis of EPI and AFM 
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micrographs of polymer-tethered lipid monolayers. Fig. 4.3.5 [A]-[E] illustrates 

representative EPI micrographs of different regions within a TYPE Ia polymer-tethered 

monolayer sample. The micrographs depict the gradual transition from regions of low 

lipopolymer concentration (≤5 mol% DSPE-PEG 5000) (Fig. 4.3.5 [A]) to those of elevated 

lipopolymer concentration (~30 mol% DSPE-PEG 5000) (Fig. 4.3.5 [E]). Monolayer 

micrographs show typical phase inversion (relative to corresponding bilayer system) 

observed on polymer-tethered membranes with PEG lipopolymers (i.e., bright phase 

represents buckling regions in monolayer, while dark phase represents buckling regions 

in bilayer). 

 

Figure 4.3. 5 EPI fluorescence micrographs of different regions of a TYPE Ia physisorbed 
polymer-tethered monolayer illustrating the gradient in terms of buckling structures 
representative of changes in lipopolymer density226: no optically resolvable buckles 

(A),straight-sided blisters (B), increasingly branched blisters (C), branched blisters and 
compartmentalizing buckles (D), and compartmentalizing buckles (E).  Image size: 160 

μm x 160 μm. 

 

The data presented for TYPE Ia membranes in Figs. 4.3.2-5 bring to light a 

fascinating model membrane system with gradually changing properties of membrane 

organization, dynamics, and elasticity. The significance of the TYPE Ia architecture is that 

gradients are static and do not change over time. This static behavior is caused by the 
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physisorption of lipopolymers onto the glass substrate preventing the gradual relaxation 

of the lipopolymer gradient. Resulting differences in lipopolymer density in TYPE Ia 

systems demonstrate the ability to maintain regions of different lateral stress within one 

membrane sample. These regions manifest themselves in terms of clearly distinguishable 

buckling structures. Furthermore, the lateral lipopolymer gradient leads to remarkable 

length scale-dependent lipid fluidity gradient in TYPE Ia bilayer systems ranging from 

regions of low obstruction of lipid diffusion to those characterized by significant 

lipopolymer-induced obstructed and hop diffusion processes. Here it is important to 

recognize that the physisorption of lipopolymers on the glass substrate does cause the 

obstruction of lipid diffusion, but typically not to the degree of complete membrane 

immobilization. A simple fluid lipid bilayer system with a comparable static gradient does 

not appear to be feasible as the lateral mobility of lipids will decrease any previously 

formed gradient over time. This is beautifully illustrated by the analysis of transient 

gradients of charged lipids in micro-patterned solid-supported lipid bilayers240 . In this 

case, the gradient of charged, dye-labeled lipids was created by applying an electric field 

and the time evolution of the gradient was analyzed after turning off the applied electric 

field, thus providing information about lipid diffusivity. However, in the case of 

engineered solid substrates with specific gradient properties (e. g., surface charge or 

curvature), lipid bilayer structures with membrane constituent gradients seem possible. 

An alternative gradient strategy could be achieved by the use of polymerizable lipids to 

build a lipid bilayer system with a lateral gradient in lipid crosslinking density240. 
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Physisorbed polymer-tethered phospholipid bilayers with sharp a boundary between 

regions of low and high lipopolymer concentrations (TYPE Ib): 

The immobilization of physisorbed lipopolymers on the glass surface not only 

offers the possibility to fabricate membrane systems with lateral lipopolymer density 

gradients, but also those with a sharp boundary between regions of low and high 

lipopolymer molar concentrations. As described in the Experimental Section, TYPE Ib 

membranes were built by regulating the phospholipid-lipopolymer mixing ratio at the air-

water interface and by conducting partial LB transfers at altered lipopolymer 

concentrations.  

 

Figure 4.3. 6 : EPI (A, B) and AFM micrographs (C, D) of TYPE Ib physisorbed polymer-
tethered lipid bilayer and monolayer226, respectively. Micrographs confirm the existence 
of a sharp boundary between regions of low and high lipopolymer densities with distinct 
properties of membrane dynamics and elasticity. (EPI micrograph image size: 160 μm x 

160 μm; AFM micrograph image size: 20 μm x 20 μm 



126 

 

1
2

6
 

Fig. 4.3.6 [A]-[D] shows representative EPI and AFM micrographs of such a 

physisorbed polymer-tethered lipid membrane. The EPI micrograph in Fig. 4.3.6[A] 

illustrates two sharply separated membrane regions, a homogeneous region and a region 

characterized by compartmentalizing buckling structures. As outlined in the Materials and 

Methods section, the homogeneous and non-homogeneous buckled regions contain 

approximately 5 and 30 mol% DSPE-PEG5000, respectively. The shape of the bleaching 

spot in Fig. 4.3.6 [B] demonstrates good bilayer fluidity in the homogeneous region of the 

membrane with the low lipopolymer density. In contrast, the partially recovered 

bleaching spot in the non-homogeneous region shows that the “dark phase” acts as a lipid 

diffusion barrier. This behavior suggests that the non-homogeneous region is not caused 

by phospholipid-lipopolymer phase separation, but instead is a typical fingerprint of 

membrane buckling and buckling-induced “dewetting”. Indeed, the presence of buckling 

structures is confirmed by AFM micrographs in Figs.4.3.6 [C] and [D] that show 

representative AFM data from the boundary region of a typical TYPE Ib polymer-tethered 

monolayer. Again it should be emphasized that the sharp boundary between regions of 

low and high lipopolymer densities, which exhibit distinctly different dynamic end elastic 

properties, remains unchanged over an extended period of time. Of course, the concept 

of TYPE Ib membranes should not remain limited to those with one sharp boundary. 

Modifications to the membrane fabrication process can be envisioned, which lead to well-

defined patterned polymer-tethered bilayer systems. Previously, several successful 

strategies have been pursued to build patterned solid-supported lipid bilayers.  For 

example, Groves et al. used patterned grids of photoresist, aluminum oxide, or gold on 
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oxidized silicon substrates to form patterned solid-supported lipid bilayers241 . Other 

patterning strategies include the photochemical patterning and patterning via the 

controlled crosslinking of polymerizable lipids242. An interesting example of patterning in 

polymer-supported membranes represents the controlled formation of stripe phases in 

polymer-tethered lipid bilayers comprised of lipids and lipopolymers, in which stripe 

formation was controlled through changing LB transfer conditions243. 

4.3.2 Cellular Mechanoresponse of Fibroblasts on TYPE I Alternative Single Lipid 

Bilayer Substrates 

4.3.2.1 Cellular Mechanosensitivity 

As shown in Figure 4.3.7, confocal microscopy analysis demonstrates that MEF 

fibroblasts display notably different cell spreading behavior and morphologies in low 

ctether and high ctether regions of a TYPE Ib bilayer system. As regions of low and high ctether 

are associated with distinct substrate stiffness, linker‐functionalized TYPE Ib systems are 

suitable as artificial substrates to probe cellular mechanosensitivity. Similar to patterened 

polymeric substrates with different elasticities240,243 , TYPE Ib biomembrane‐mimicking 

substrates are attractive tools in cell affinity assays. To test the functionality of laminin‐

functionalized TYPE Ib bilayers, cellular mechanoresponse was investigated in terms of 

phenotypical change of fibroblasts using DIC and epifluorescence analysis. 
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Figure 4.3. 7 Representative micrograph [B] of fibroblasts plated on TYPE Ib patterned 
polymer-tethered lipid bilayer substrates [left half: ctether = 5%mol, right half: ctether = 

30%mol]; EPI micrographs of patterned polymer-tethered lipid bilayers show sharply 
separated membrane regions, a homogeneous region, (ctether = 5 mol%) and 

compartmentalized region, (ctether = 30 mol%) [A]. 

 

Figure 4.3.8 shows results from a quantitative analysis of cell morphology 

populations on TYPE Ib single bilayer substrates with regions containing low and high 

lipopolymer concentrations (cell morphology analysis was preformed 24 hours after 

plating.). As Fig. 4.3.8 illustrates, cells in the region of elevated lipopolymer concentration 

(higher substrate stiffness) predominently display polygonic and triangle morphologies, 

whereas those in the low lipopolymer region (lower substrate stiffness) mainly show 

spindle and amoeboid cell shapes. Interestingly, it is worth noticing that the spindle cell 

shape is similar to cellular morphologies observed in 3D matrices models119,201,244 . Thus, 

the TYPE Ib single bilayer substrates can represent a model for cell behavior in the twilight 

zone of different tissue organization such as muscle and neuron cells. 
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The relative abundance of different shapes of cell phenotype was correlated to 

substrate mechanical properties. The morphology histogram in Figure 4.3.8 shows that 

varying populations of cell shapes with respect to region of TYPE Ib single bilayer 

substrates with high lipopolymer and low lipopolymer concentrations (Shape analysis 

preformed 24 hours following plating). In previous studies, the cell phenotypes were 

significant in that they show intriguing parallels and remarkable differences compared to 

mechanoresponse observed on traditional culturing surface and on 2D PAA gels of 

adjustable viscoelasticity. With larger polygonic and triangle shapes being typical on the 

stiffer substrate surfaces and smaller shapes such as spindle and amoeboid are 

representative for softer PAA substrates. As reported in Figure 4.3.8, the phenotype of 

cellular shape match to the general trend as described above. On stiffer region, the 

predominant morphology of fibroblast on glass is polygonic, crescent and triangle; on the 

softer region with lower lipopolymer concentration, the major populations of cell 

phenotypes are spindle and amoeboid respectively. 

 

Figure 4.3. 8 Cellular phenotype histograms for fibroblast plated on TYPE Ib substrate 
after plating 24 hours 
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The other important indicator of cellular mechanoresponse to artificial substrates 

is cell spreading area. As reported in Figure 4.3.9, cell spreading area 24 hours after plating 

on TYPE Ib single bilayer substrates was analyzed using EPI and bright‐field microscopy. 

Here a notable difference of cell spreading area was observed between regions of low 

and high lipopolymer concentrations. Specifically, the region of low lipopolymer 

concentration is characterized by smaller cell spreading areas compared to the region of 

high lipoplymer content, which shows larger cell spreading areas. 

 

Figure 4.3. 9 MEF fibroblast cell spreading area on TYPE Ib substrate after 24 hours. 

 

4.3.2.2 Cytoskeletal Organization of Fibroblast on TYPE Ib Substrate 

The cytoskeleton structure plays an important role in different cellular properties, 

including cell shape, growth and migration. It is also an indicator of a cell’s mechanical 

interaction with the environment. Actin filaments, as one of the three main constituents 

of cytoskeletal organization, are believed to act not only as mediators during cellular 

mechanotransduction, but also as important components of cellular mechanoresponse 
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by transmitting myosin‐generated forces to cellular adhesions and by regulating cell 

protrusion at the leading edge of migrating cells. To test the functionality of linker‐

functionalized TYPE Ib bilayers as biomembrane‐mimcking cell substrates of cellular 

mechanosensitivity analysis, we therefore also analyzed the percentage of cells with 

visible ventral stress fibers in low and high lipopolymer regions of TYPE Ib bilayers at 24 

and 48h after plating. In this case, experiments were conducted using GFP‐Actin 

transfected MEF fibroblasts. Figure 4.3.10 demonstrates the significant difference of 

ventral stress fiber formation in TYPE Ib regions of low and high lipopolymer 

concentrations. Figure 4.3.10 shows that the percentage of cells with visible stress fibers 

is substantially higher in the region of high lipopolymer concentration (high substrate 

stiffness) compared to the region of low lipopolymer concentration (low substrate 

stiffness). Here stress fiber structures of the actin cytoskeleton typically represent 

bundles of actin filaments. These structures can be divided into three major groups based 

on subcellular location and interaction with focal adhesions, which include ventral stress 

fibers, transverse arcs and dorsal stress fibers. Another significant finding from Fig. 4.3.10 

is that the percentage of cells with ventral stress fibers is slightly smaller at 48 hours after 

plating compared to 24 hours after plating. This result illustrates the integrity of the 

linker‐functionalized TYPE I bilayer architecture in the presence of plated cells. In case, 

the bilayer structures would not withstand cellular pulling forces, an increase of the stress 

fiber‐forming cell population would be expected over time. Note cells show substantial 

stress fiber formation on glass substrates. 
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Figure 4.3. 10 Ration of MEF Fibroblast with ventral stress fiber on TYPE Ib single bilayer 
substrates after plating 24 hours and 48 hours. 

 

4.3.2.3 Cell Migration and Tortuosity 

Cell migration represents another property of cellular mechanoresponse. Analysis 

of cell migration on patterned substrates are particularly interesting because it provides 

insight into the substrate stiffness affinity of migrating cells57 Previous experiments on 

biomembrane-mimicking bilayer substrates of TYPEs I and II have demonstrated the 

influence of substrate stiffness on cell migration, similar to comparable findings of 

migrating cells on polymeric substrates of adjustable stiffness55 As described before, cell 

migration on a TYPE II substrate bilayer has been monitored by altering the degree of 

bilayer stacking, whereas cell motility on TYPE I systems was accomplished by changing 

the concentration of lipopolymers. In Figure 4.3.11 shown below, cell migration speed is 

faster in the area comprised of lower lipopolymer concentration compared to higher 

tethering region on TYPE II alternative substrate with sharp boundary pattern. 
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Figure 4.3. 11 : Comparison of fibroblast migration shows higher migration speed at the 
region of ctether = 5 mol% relative to region of ctether = 30 mol%. 

 

On the other hand, the cell migration direction on TYPE II alternative substrate is 

significant influenced by the pattern of the bilayer structures. On sharp boundary 

between -high and low DSPE-PEG5000 concentration single bilayer, cell are freely moving 

on region with the same ctether. However, as Figure 4.3.12 shows, the movement of cells 

from low to high concentrations of ctether is inhibited (i.e., cells turn around to stay in the 

area of low ctether). In contrast, cells can move freely from the area of high to low ctether. In 

previous experiments, fibroblast cell on the immobilized artificial substrates are intent to 

move from softer to stiffer regions. 
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Figure 4.3. 12 Fibroblast cells on TYPE Ib sharp boundary bilayer system display 
migration directionality towards low ctether. 

 

Interestingly on TYPE Ia substrates with a gradual gradient in lipopolymer 

concentration, cells appear to be able to move freely between different regions of 

different lipopolymer concentrations (Figure 4.3.13). However, these experiments also 

show that cell migration is in part influenced by the presence of bilayer‐

compartmentalizing buckling structures. Specifically, these experiments reveal that such 

lipid diffusion barriers are able to hinder, at least for some time, the free migration of 

cells. However, the specific processes associated with this hindered cell migration by 

membrane buckling structures are currently not well understood. 
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Figure 4.3. 13 : EPI micrographs of TYPE Ia with gradual lipopolymer gradient from low 
ctether (5mol%) to high ctether (30mol%) (left). The low tethering density region 

corresponds to a softer substrate (~2MPa), whereas the high tethering region represents 
a stiffer substrate (~ 7MPa). Fibroblasts are able to migrate on laminin‐functionalized 

TYPE Ia substrates, albeit buckling structures may cause the temporary hindrance of cell 
movement 
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 CONCLUSION AND OUTLOOKS 

5.1 Conclusion 

Mechanical cues are increasingly recognized to play a crucial role in the regulation 

of cellular fate and function. However, the underlying mechanisms of cellular 

mechanotransduction still remain a topic of open debate. Traditionally, advancements in 

this field have been made using polymeric substrates of adjustable stiffness with 

immobilized linkers. Recently, we introduced an alternative strategy, in which cells are 

plated on a laminin-functionalized, polymer-tethered multi-bilayer stack of adjustable 

substrate stiffness.  

First, a cell surface‐mimicking polymer-tethered multi-bilayer system with N‐

cadherin linkers (TYPE II) has been designed and employed for the investigation of the 

mechanosensitivity of C2C12 myoblasts. Experiments are presented, which demonstrate 

that properties of plated cells such as morphology, cytoskeletal organization, cellular 

traction forces, and migration speed, can be changed by altering the number of bilayers 

in the stack. Furthermore, application of sensitive fluorescence detection techniques 

confirms the dynamic assembly of bilayer-bound N‐cadherin linkers underneath plated 

cells without impairing cell spreading and migration. This remarkable behavior can be 

attributed to the distinct properties of individual and clustered N-cadherins in polymer‐

tethered membrane systems. Together our data 
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illustrate that these biomembrane‐mimicking cell substrates better replicate the 

dynamics and plasticity found at cell‐cell interfaces than traditional polymeric cell 

substrates with polymer‐conjugated linkers. 

To expand the range of accessible substrate stiffnesses, cellular properties were 

also investigated on a linker-functionalized polymer‐tethered single bilayer, in which 

substrate stiffness is altered by lipopolymer concentration (TYPE I substrate). 

Experimental results are presented, which show that lipopolymer concentration in TYPE 

I bilayers has a profound influence on cellular properties, including cell spreading, 

morphology, cytoskeletal organization, and motility. Importantly, depending on 

lipopolymer type, these membrane systems allow formation of homogeneous and 

compartmentalized bilayers, influencing cell behavior differently. 

Third, the LB/LS deposition approach for the fabrication of TYPE I bilayers enables 

the design of single polymer‐tethered lipid bilayers systems with a lateral gradient in 

lipopolymer concentration (TYPE Ia), as well as a sharp boundary between regions of low 

and high lipopolymer concentrations (TYPE Ib). Specifically, we show that the lipopolymer 

gradient has a notable impact on spreading, cytoskeletal organization, and motility of 3T3 

fibroblasts. Taken together, the presented experiments support the central hypothesis 

that cellular mechanoresponse can be tuned through substrate stiffness on linker-

functionalized polymer-tethered membrane architectures. 

5.2 Outlooks 

This research contained within this thesis focused on the cellular mechanoresponse 

induced by changes in substrate mechanical properties, linker type, and surface 
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topography of complementary biomembrane-mimicking cell substrates based on 

polymer‐tethered single‐ and multi‐bilayers. As described within this work, adherent cells 

attach to bilayer‐bound ECM‐mimicking laminin linkers or cell‐cell‐mimicking cadherin 

linkers. In particular, the following three different future research directions are 

envisioned: 

1. Design/characterization of TYPE II substrates with alternative surface topography.  

2. Experiments on TYPE II substrates with different linkers.  

3. Examination of dynamic linker assembly and disassembly mechanisms.  

These different directions are discussed in more detail below.  

1. By designing polymer‐tethered double bilayers, in which substrate stiffness can be 

adjusted by lipopolymer concentration, it will be possible conduct experiments on 

plated cells in the presence of compartmentalized bilayers. Furthermore, double 

bilayer systems can be built, which have either a lateral gradient in substrate elasticity 

(lipopolymer content) or a sharp boundary between regions of low and high 

lipopolymer densities. Such systems would expand the range of artificial cell 

substrates with gradients or patterns in substrate elasticity, such as PDMS gels with a 

microtopographical surface to guide cellular fate and function174,176,245. Polymer-

tethered multi‐bilayers with patterns or gradients in substrate elasticity will be 

particularly beneficial to obtain more insight into the influence of mechanical signals 

across cell‐cell interfaces.  

2.  Diffusion mediated assembly and disassembly processes of linkers on 

biomemebrane-mimicking substrate are not only important in the formation of FAs, 

but also in the formation of adherent junctions.  Through, the analysis of linker 
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assembly and disassembly mechanisms a deeper understanding about the role of 

linker dynamics and plasticity in cell spreading and migration can be provided, as well 

as insight into cellular mechanosensing.  

3.  Diffusion mediated assembly and disassembly processes of linkers on 

biomemebrane-mimicking substrate are not only important in the formation of FAs, 

but also in the formation of adherent junctions.  Through the analysis of linker 

assembly and disassembly mechanisms, a deeper understanding about the role of 

linker dynamics and plasticity during cell spreading/migration and cellular 

mechanosensing can be obtained. 

The biomembrane-mimicking cell substrate could also be potentially significant in 

a variety of different practical applications. For example, the very low cytotoxicity of 

these artificial substrates makes them attractive candidates for culturing primary cells. 

Such an application could be useful in future cell‐based drug screening assays. 

Polymer-tethered single‐ and multi-bilayers with cadherin linkers could also be 

employed in research related to the epithelial-to‐mesenchymal transition of cancer 

cells57,75,246 . Also the mechanical and topographical properties of substrates affecting 

matrix resistance to cell tension forces have been shown to influence mutagenesis in 

cell development. Studies with different linker‐functionalized cell substrates of 

tunable mechanical properties provide a tool of controlling mechanoresponse 

physically, physiologically and biochemically, resulting in a better understanding of 

processes associated with cellular mechanotransduction.
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