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ABSTRACT 

Reichard, Eric Jonathan.  M.S., Purdue University, May 2013.  Chemometrics 
Applied to the Discrimination of Synthetic Fibers by Microspectrophotometry.  
Major Professor: John V. Goodpaster. 
 
 
 
 Microspectrophotometry is a quick, accurate, and reproducible method to 

compare colored fibers for forensic purposes.  The use of chemometric 

techniques applied to spectroscopic data can provide valuable discriminatory 

information especially when looking at a complex dataset.  Differentiating a group 

of samples by employing chemometric analysis increases the evidential value of 

fiber comparisons by decreasing the probability of false association.  The aims of 

this research were to (1) evaluate the chemometric procedure on a data set 

consisting of blue acrylic fibers and (2) accurately discriminate between yellow 

polyester fibers with the same dye composition but different dye loadings along 

with introducing a multivariate calibration approach to determine the dye 

concentration of fibers.  In the first study, background subtracted and normalized 

visible spectra from eleven blue acrylic exemplars dyed with varying 

compositions of dyes were discriminated from one another using agglomerative 

hierarchical clustering (AHC), principal component analysis (PCA), and 

discriminant analysis (DA).  AHC and PCA results agreed showing similar 

spectra clustering close to one another.  DA analysis indicated a total 

classification accuracy of approximately 93% with only two of the eleven 

exemplars confused with one another.  This was expected because two 

exemplars consisted of the same dye compositions.  An external validation of the 

data set was performed and showed consistent results, which validated the 
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model produced from the training set.  In the second study, background 

subtracted and normalized visible spectra from ten yellow polyester exemplars 

dyed with different concentrations of the same dye ranging from 0.1-3.5% (w/w), 

were analyzed by the same techniques.  Three classes of fibers with a 

classification accuracy of approximately 96% were found representing low, 

medium, and high dye loadings.  Exemplars with similar dye loadings were able 

to be readily discriminated in some cases based on a classification accuracy of 

90% or higher and a receiver operating characteristic area under the curve score 

of 0.9 or greater.  Calibration curves based upon a proximity matrix of dye 

loadings between 0.1-0.75% (w/w) were developed that provided better accuracy 

and precision to that of a traditional approach.
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CHAPTER 1. INTRODUCTION TO FIBERS AND CHEMOMETRICS 

1.1. Textile Fibers 

 The Locard Exchange Principle states that when two objects come into 

contact, there is always a transfer of material.1  This principle is especially 

relevant to trace evidence such as textile fibers.  Fibers can be exchanged 

between two individuals, between an individual and an object, and between two 

objects.  This exchange can either occur as a direct transfer or an indirect 

transfer.  Fiber persistence is another important factor, which will determine 

whether or not a fiber will be found after a transfer.  There are numerous factors 

that will determine the number of fibers lost and the rate of loss.  Studies have 

shown that the initial rate of fiber loss is rapid.  For example, in some studies,18 

percent or less of fibers remained after only two hours.2  It is seen that transfer 

and persistence of fibers are two key factors that will determine the significance 

of fiber associations. 

1.1.1. Natural and Manufactured Textile Fibers 

 A textile fiber is a unit of matter that has a length that is at least 100 times 

its diameter that forms the basic element of fabrics.3  Fibers can be classified as 

either natural or man-made.  A natural fiber exists in a largely unaltered state and 

can come from a plant, animal, or mineral.  Plant fibers can originate from the 

seed, stem, or leaf.  The most common plant fibers include cotton, jute, flax, 

hemp, and sisal.3  Animal fibers are typically made from animal hairs, therefore, 

are made up of proteins.  There are three main types of hair produced by 

animals: whiskers, guard, and fur.  Guard hairs are the most useful when 

identifying the species of animal.  Some examples of animal fibers include wool, 
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camel, and rabbit.  It is important to note that silk, which is produced by the 

silkworm (B. mori), is considered an animal fiber, but it consists of fibroin fiber 

proteins instead of keratin fiber proteins like that of fur bearing mammals.4  The 

most common mineral fibers are asbestos.  Examples of mineral fibers include 

chrysotile, amosite, and crocidolite. 

   In contrast, a man-made fiber is created from raw materials that are 

either natural or chemical based.  Manufactured fibers made from natural 

materials are classified as cellulosic and manufactured fibers made from 

chemical polymers are classified as synthetic.  Cellulosic fibers are made from 

regenerated or derivative cellulosic polymers like cotton or wood.  Examples 

include acetate and rayon.  Synthetic fibers consist of multiple monomers 

covalently linked to one another.  Examples of synthetic fibers include polyester, 

nylon, and acrylic. 

 Polyester and acrylic fibers are two of the most widely produced textiles.  

Both polyester and acrylic fibers were used in this study and will be discussed 

further.  Polyester is comprised of any long chain polymer composed of at least 

85% by weight of an ester of a substituted aromatic carboxylic acid.3  Polyester 

comes in many forms, but the most successful and popular form is the 

polyethylene terephthalate (PET) fiber.  It is composed of ester links of aliphatic 

(ethylene glycol) and aromatic (terephthalic acid) groups.  Other common 

polyester fibers include polytrimethylene terephthalate (PPT), polybutylene 

terephthalate (PBT), and polyethylene naphthalate (PEN).  Acrylic, also referred 

to as polyacrylonitrile (PAN), is comprised of any long chain polymer composed 

of at least 85% by weight of acrylonitrile units.3  The other 15% or less is 

comprised of methyl acrylate (MA), methyl methacrylate (MMA), acrylamide (AA), 

and/or vinyl acetate (VA) to create a copolymer.  These monomers are added to 

the acrylonitrile backbone in order to improve the dyeability of the fiber. 
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1.1.2. Fiber Dyes 

 Dyeing is the process of imparting color to a textile fiber, which can 

provide discriminating characteristics for qualitative comparison purposes.  Dyes 

are molecules that contain chromophores and auxochromes.5  A chromophore is 

a simple unsaturated group attached to benzene or fused benzene rings.  There 

are two groups of chromophores, one containing π-bonds next to σ-bonds 

(double and triple bonds) and another containing non-bonding n-electrons (azo 

groups, cyano groups, carbonyl groups).  Auxochromes, which increase the 

depth of the color and allow the dye molecule to bond to a fiber, are basic salt-

forming groups like hydroxyl groups and amino groups.  The dye produces a 

color in the visible region of the electromagnetic spectrum due to the 

arrangement of the π-electrons and n-electrons in its chromophores.5  These 

locations of high electron density decrease the gap between the ground state 

and excited states to allow for energy transitions within the visible region. 

 Fiber dyes can be classified according to their method of application, 

chemical class, or the type of fiber they are applied to.  There are nine general 

dye classes: acid, basic, azoic, direct, disperse, metallized, reactive, sulfur, and 

vat.6,7  Acid dyes are applied under acidic conditions.  Negatively charged 

functional groups on the dye molecule form ionic bonds with positively charged 

functional groups on the fiber substrate.  Typical fiber substrates that are treated 

with acid dyes include wool, silk, polyamide, and polyacrylonitrile.  Basic dyes are 

also applied under acidic conditions.  In this case, however, the cationic dye 

forms an ionic bond with the anionic fiber functional groups.  These dyes are 

applied to polyacrylonitrile, polyester, polyamide, and polypropylene.  Azoic dyes 

are applied to cotton and viscose via coupling between a stabilized diazonium 

salt and a coupling component like naphthol.7  Direct dyes are mostly applied 

under slightly alkaline conditions to cellulosic fibers by direct incorporation in the 

presence of heat and an electrolyte.  Disperse dyes are insoluble in water and 

are directly incorporated into polyester, polyacrylonitrile, polyamide, 

polypropylene, and acetate/triacetate fibers.  High temperatures or the presence 
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of a carrier is needed to apply the dye, which is held onto the fiber via weak van 

der Waals forces and hydrogen bonding.7  Metallized dyes form metal complexes 

through the reaction of a mordant (metal) that is either applied before, after, or at 

the same time as the dye.6  Fibers that are dyed with metallized dyes include 

wool and polypropylene.  Reactive dyes are applied to cotton, wool, and 

polyamide fibers.  They react chemically to form covalent bonds with functional 

groups on the fiber.  Sulfur dyes are applied to cellulosic fibers.  The dye is 

chemically altered by a reducing agent into a soluble form where it penetrates the 

fiber.  Once incorporated into the fiber, the soluble dye oxidizes back into its 

insoluble form.  Vat dyes utilize a similar process to that of sulfur dyes where a 

reducing agent is used to form the soluble form and oxidation occurs within the 

fiber to form the original insoluble dye.6 

1.1.3. Forensic Fiber Analysis 

 More often than not a forensic fiber examiner is requested to compare a 

known and questioned fiber to determine if the questioned fiber could have come 

from the known source.  Textile fibers can be compared based on their 

macroscopic and microscopic characteristics, optical characteristics, chemical 

composition, and color.1,8-10  There are a variety of techniques that rely on 

microscopy, spectroscopy, chromatography, and mass spectrometry that the 

examiner can utilize in order to make a comparison. 

  Techniques used for fiber type comparisons can include 

stereomicroscopy, polarized light microscopy (PLM)11, Fourier transform-infrared 

spectroscopy (FT-IR)12,13, Raman spectroscopy14, and pyrolysis gas 

chromatography coupled with mass spectrometry15.  Stereomicroscopy is 

primarily used to locate and recover fibers of interest.  A stereomicroscope can 

also be used to identify certain natural fibers like cotton.  PLM is primarily used 

for synthetic fibers and utilizes polarized light to characterize those fibers based 

on their optical characteristics like refractive index, birefringence, and sign of 

elongation.  FT-IR can determine the chemical composition of a fiber based on 
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different vibrations of its functional groups when exposed to infrared light.  

Raman spectroscopy is considered a complement to FT-IR.  This technique uses 

inelastic light scattering to characterize functional groups on the fiber.  Raman 

spectroscopy has the advantage of characterizing not only the fiber polymer, but 

also the dye applied to that fiber.14  Pyrolysis gas chromatography coupled with 

mass spectrometry is used in some cases to determine the type of synthetic 

fiber, however, this technique can suffer from irreproducible results.16 

 Although the comparison of fiber polymers has discriminating power, the 

color of the fiber, which is attributed to the dye applied, can be the most 

important characteristic when comparing two fibers.  Techniques used for fiber 

dye and color comparisons can include thin-layer chromatography (TLC)17,18, UV-

visible microspectrophotometry (MSP)5, liquid chromatography-mass 

spectrometry (LC-MS)19,20, and capillary electrophoresis (CE)21.  These 

techniques, except for MSP, require some sort of extraction of the dye from the 

fiber.  An examiner will try to avoid these techniques or utilize them last due to 

their destructive nature.  TLC, LC-MS, and CE also require correct extraction and 

separation solvents and methods in order to identify the dye(s) depending on the 

fiber and/or dye in question.  This can cause difficulties especially when the 

sample is limited in amount.  Recent research has been conducted to solve the 

problem of extracting thus destroying fiber evidence.  Zhou et al.22 developed a 

method for dye identification utilizing time-of-flight-secondary ion mass 

spectrometry (TOF-SIMS).  This method shows promise, but requires long 

sample preparation times and has only been optimized for acid dyes on nylon 

fibers. 

 UV-visible microspectrophotometry is a quick, accurate, reproducible, and 

non-destructive technique used by forensic fiber analysts to examine the color of 

dyed fibers.  Humans are able to perceive color, however, color measurements 

between individuals is subjective.  Other factors can influence color like lighting 

conditions and the phenomenon called metamerism.  Metamerism occurs when 

two fibers are dyed with different dyes or combinations of dyes, but the perceived 
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color of the two fibers is the same.  Visual differences can be seen between two 

metameric pairs of fabric under different lighting conditions, however, metameric 

pairs of single fibers cannot be visually discriminated, thus MSP is a vital 

technique in the fiber color analysis scheme.  A microspectrophotometer is 

composed of two parts: a microscope and a spectrometer.10  The microscope 

gathers light from the sample and the spectrometer measures the change in light 

intensity as a function of wavelength.  MSP can discriminate between two 

colored fibers that are visually similar based upon the different chromophores in 

the dye’s molecular structure.  Research in color comparisons with MSP have 

been conducted and show the viability of this technique.1,23-25  There are 

limitations to this technique, however.  Resultant spectra tend to be broad and 

limited in features, although the first derivatives of the spectra can be taken to 

ascertain more information for comparative puporses.26  First derivatives, 

however, can magnify the noise in the spectra, which could lead to harder 

interpretation.  Quantitative analysis of the dye(s) applied to the fiber is also 

limited.  For this reason, microspectrophotometric analysis of dyed fibers is used 

primarily for comparison purposes.  Finally, lightly dyed fibers and darkly dyed 

fibers create issues due to the limits of the detector. 

1.2. Chemometrics 

1.2.1. Application of Chemometrics to Forensic Science 

 Forensic scientists are familiar with statistics that utilize one variable.  An 

example of this would be comparing a known and unknown glass fragment 

based upon their refractive indices.  Until recently, however, the use of 

multivariate statistics has been overlooked.  Multivariate statistics, also known as 

chemometrics when applied to chemical data (e.g., spectra or chromatograms), 

is a form of statistics that utilizes multiple variables to describe complex datasets.  

Forensic scientists are often tasked with identifying patterns as well as 
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interpreting any differences between spectra.  Currently, this is carried out by 

visual inspection and comparison by the examiner.  The problem arises when 

more than three variables (dimensions) are used as with a collection of 

absorbance spectra, which are often contain hundreds or thousands of 

wavelengths.  Although a trained examiner can locate the presence or absence 

of major peaks, subtle differences within the complex data set can be virtually 

impossible to find.  This especially holds true when there are numerous samples 

to be compared. 

 Chemometrics has the ability to identify patterns and groupings from large 

complex datasets more accurately than visual examination alone.  It can also 

investigate the dependence among variables, make predictions, and be used for 

hypothesis testing.27  Chemometrics does this by extracting information from 

large data sets, which in turn allows for easier interpretation.  It is important to 

note that multiple replicate samples must be acquired to obtain a valid conclusion 

from the data set.  Since its emergence into the forensic science arena it has 

been applied to a number of sample types, including accelerants, document 

examination, drug analysis, fibers, inks, glass, gunpowder, paint, soil, and 

condom lubricants.27 

 Visual comparison of trace evidence can be quite subjective.  There is no 

statistical basis for the conclusions reached by the examiner.  This is a concern 

for crime laboratories due to the issues of reliability and relevance of scientific 

evidence raised in the case of Daubert v. Merrell Dow Pharmaceuticals.28  

Chemometric analysis of multivariate data often found in trace evidence could 

help meet the Daubert requirements.27  The use of chemometric techniques can 

also address two recommendations laid out in the National Academy of Sciences 

(NAS) report.  Chemometrics could alleviate the issues of accuracy, reliability, 

and validity in trace evidence analysis (Recommendation 3) and assist in 

research on sources of human error in trace evidence analysis 

(Recommendation 5).29 
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 There are many multivariate techniques that could be applied to 

spectroscopic data.  The three techniques utilized for this study were 

agglomerative hierarchical clustering (AHC), principal component analysis (PCA), 

and discriminant analysis (DA).  Hierarchical clustering algorithms were created 

in the 1950’s.  The theory behind PCA was established by Pearson in 1901, 

however, the algorithm to compute principal components (PCs) was not 

introduced until 1933 by Hotelling due to the lack of machine computing.27  

Discriminant Analysis was first derived by Fisher in 1936. 

1.2.2. Preprocessing Techniques 

 Preprocessing is simply defined as any mathematical manipulation of the 

data prior to multivariate statistical analysis.30  Preprocessing the data before 

multivariate statistical analysis is often required to remove or reduce random or 

systematic sources of variation in the data set.  This allows for easier 

interpretation of the data.  Improper techniques applied to the data could remove 

important variation, so care must be taken when choosing the appropriate 

technique.  There are two ways the data can be preprocessed before analysis: 

sample preprocessing or variable preprocessing.  Sample preprocessing 

operates on one sample at a time over all variables.  Variable preprocessing 

operates on one variable at a time over all samples.  There are numerous 

methods used to preprocess the data, however, only background (baseline) 

correction and normalization will be discussed for sample methods and mean 

centering will be discussed for variable methods due to their use in the study. 

 Background correction reduces or eliminates a constant or systematically 

varying background within the data.27,30  There are various ways to background 

correct.  One method, called the explicit modeling approach, involves subtracting 

a fitted model for a trend present in the baseline.  Every spectra can be written as 

a function of variable number, where the function is equal to the sum of the signal 

of interest plus the baseline.30  When the baseline has an offset baseline feature 

(i.e. horizontal line), one number can express the baseline, thus subtraction of 
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that number from the signal would remove the baseline.  When a linearly sloping 

baseline is present, two or more points that only contain baseline information can 

be used to estimate a line.30  To remove the sloping baseline, the estimated line 

is subtracted from the sample vector.  Polynomials of higher magnitudes can be 

estimated using this approach depending on the shape of the baseline.  Another 

method of removing the baseline takes the derivative of the spectra with respect 

to variable number.  This approach is quite useful because it is not essential to 

select points that only contain baseline information.30  Taking the first derivative 

is essentially the same as subtracting out an offset baseline via the explicit model 

approach.30  Taking consecutive derivatives will remove all higher order baseline 

shapes.  The four most common methods to determine the derivatives are the 

running simple difference, the running mean difference, the Gorry algorithm, and 

the Savitzky-Golay algorithm.  The methods of Gorry and Savitzky-Golay are 

preferred because taking the derivative of a sample vector tends to propagate 

noise.27 

 Normalizing the data usually comes after background correction.  It 

removes systematic variations associated with sample size, concentration, 

amount of sample, and instrument response.27  This is accomplished by dividing 

each variable of the sample by a constant.  There are three common approaches 

to calculating a constant: normalizing to unit area, normalizing to unit length, and 

normalizing to maximum intensity.27,30  Normalizing to unit area is achieved by 

dividing each variable in the sample by the sum of the absolute value of all 

variables in that sample.  The second approach, normalizing to unit length, is 

achieved by dividing each variable by the square root of the sum of squares of all 

the variables in each sample.  The final approach divides each variable by the 

maximum value in the sample so that the maximum intensity is equal to 1. 

 Mean centering the data processes each variable at a time over all the 

samples.  In simplest terms, mean centering repositions the centroid of the data 

set to the origin of the coordinate system by subtracting out the mean value of 

each variable over all the samples.31  This prevents data points away from the  
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centroid from having more influence than data points closer to the original origin.  

Mean centering is not always appropriate, but for principal component analysis, 

mean centering is recommended.30 

1.2.3. Agglomerative Hierarchical Clustering 

 Hierarchical clustering is a form of cluster analysis and is considered 

unsupervised because there is no prior knowledge of the underlying groupings in 

the data.  It is performed to classify individual samples into groups or clusters 

based on their distances from each other.  There are two types of hierarchical 

clustering techniques that can be employed: divisive hierarchical clustering 

(DHC) and agglomerative hierarchical clustering (AHC).  DHC starts with all the 

samples in a single cluster.  The single cluster is split into two smaller clusters 

and those clusters are then split until each sample forms its own cluster.  This 

technique is uncommon because it is computationally demanding.32  AHC starts 

with each sample as its own cluster.  Similar samples are clustered together until 

a single cluster is formed.  This form of hierarchical clustering is more common 

and was utilized in this research.  A visual representation of the clusters or 

groups is presented as a two dimensional plot called a dendrogram.  The 

dendrogram, often expressed as a hierarchical tree, has the samples on the 

vertical axis and the dissimilarity or similarity distance on the horizontal axis.  

Branches, visualized as horizontal lines, represent the clusters and nodes. 

Vertical lines represent when two clusters are linked together.33  A truncation line 

is often established to determine the significant clusters in the dendrogram.  This 

line is determined either by the analyst or by more objective criteria. 

 As stated above, the interpoint distances between samples must be 

calculated in order to cluster similar samples together.  Distance can be 

calculated in terms of similarity or dissimilarity.  The most common type of  
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distance is Euclidean distance, which is based on the Pythagorean Theorem. 

It is the geometric distance in multidimensional space and is represented in 

Equation 1.1.33,34  Equation 1.1 is expressed in the matrix format. 

 

                                             d(x,y) = [(x – y)’(x – y)]1/2                           Equation 1.1 
 

The distance between points is expressed as d(x,y) and (x – y)’ is the transpose of 

the matrix (x – y).  The smaller the distance between samples the more similar 

the samples are to each other.  Another common distance measurement is 

Manhattan distance.  Manhattan distance is slightly different than Euclidean 

distance in that the sides of the triangle are summed to determine distance rather 

than the length of the hypotenuse.  This method diminishes the effects of outliers 

and will always be slightly larger than that of the measurement from Euclidean 

distance.32,34  Manhattan distance is presented in Equation 1.2.33 

 

                                                   d(x,y) = Σi |xi – yi|                              Equation 1.2 
 

The correlation coefficient between samples can also be used as a distance 

measure.  This method computes the cosine of the angle between two samples 

to determine their similarity.  A correlation coefficient of 1 implies the two 

samples are very similar.  This method is often used for the comparison of 

infrared and mass spectroscopy data.32  The last distance measurement to be 

discussed is Mahalanobis distance.  This method is very similar to Euclidean 

distance except for it takes into account that some variables may be correlated.  

The inverse of the variance-covariance matrix is utilized as a scaling factor, 

which can be seen in Equation 1.3.34 

 

                                             d(x,y) = [(x – y)’C-1(x – y)]1/2                   Equation 1.3 
 

The Mahalanobis distance is also employed in discriminant analysis when 

predicting the group membership of new samples, which will be discussed in 
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Section 1.2.5.  This method is not always appropriate, especially when the 

number of variables exceeds the number of samples because the inverse of the 

variance-covariance matrix cannot be calculated.34 

 Once the distances between samples are determined, various aggregation 

methods are employed to link clusters together.  The most common method is 

single linkage.  This method links clusters based on the distance between the 

two closest samples within each cluster.  Another method, which is the opposite 

of single linkage, is complete linkage.  Complete linkage links clusters together 

based on the distance between the two furthest samples within each cluster.30,33  

The last aggregation method discussed is Ward’s Method.  This method utilizes 

an analysis of variance approach by determining the error sum of squares 

between any two clusters and linking the two clusters that have the least sum of 

squares.33  Every possible pair of clusters that can be joined must be considered 

during each step.  The error sum of squares is determined by measuring the total 

sum of squared deviations of every sample from the mean of the cluster.35  Other 

aggregation methods can be employed like weighted and unweighted pair-group 

average linkage, centroid linkage, or median linkage.33 

 Overall, AHC is an appropriate method when trying to determine the 

similarity or dissimilarity between samples in a data set.  The dendrogram can 

provide insight into how the samples cluster as well as outlier detection.  

However, AHC cannot determine what variables influence certain clusters.  A 

technique like principal component analysis (PCA) can be employed to determine 

such relationships.  Cluster analysis, along with AHC, have been applied to 

inks36, photocopy and printer toners37, glass38, soils39,40, polymers41,42, paint43, 

fibers44, hair dyes45, and electrical tapes46,47. 

1.2.4. Principal Component Analysis 

 Principal component analysis is the most widely used multivariate 

technique.  It is also considered an unsupervised technique because it does not 

require knowledge of the groupings in the data set.  The purpose of PCA is to 
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reduce the dimensionality of the data by concentrating the total amount of 

variance into a smaller number of latent variables, which are linear combinations 

of the original variables.27,32  This technique provides a visual representation of 

the groupings of data along with information on the contributions of the original 

variables to the latent variables.  These new variables are called principal 

components (PCs), and explain all or most of the total variance.  Principal 

components are orthogonal to one another and represent directions of maximum 

variation in the data set.30  The total number of PCs is equal to the number of 

samples or variables, whichever is smaller.30  The first PC explains the greatest 

amount of variance, while successive PCs explain decreasing amounts of 

variance.  Important PCs with eigenvalues representing systematic variation 

(signal) are retained, while insignificant PCs are eliminated, thus reducing the 

inherent dimensionality of the data.27  The eigenvalues are the variances 

explained by the PCs and sum to the total variance. 

 A two or three dimensional scatter plot can be constructed to visualize the 

inherent groupings of the data if sufficient variation can be explained.  This plot is 

called an observations plot, and it utilizes the first two or three PCs to plot the 

factor scores from one PC against the factor scores of another.  These factor 

scores are the new coordinates determined by the PCs.27  Groupings are 

determined based on the relative locations of each sample to one another.  

Samples close to one another are considered more similar than samples further 

away. 

 The contributions of the original variables to each new PC can also be 

represented as a factor loadings plot.  The extent to which a variable contributes 

to a PC depends on the relative orientation in coordinate space of the PC and 

variable axes.30  The factor loading is determined by taking the cosine of the 

angle between the variable axis and the PC axis.  Factor loadings can range  
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from -1 to +1, where a factor loading of -1 indicates a strong negative correlation 

and a factor loading of +1 indicates a strong positive correlation between the 

variable and PC.  A factor loading of 0 signifies no correlation between the two 

variables. 

 There are three common methods for determining the adequate amount of 

PCs to retain for further analyses like discriminant analysis.  The first method is 

to simply determine a percentage of the total variability, usually 95 percent, to be 

retained.  In this example, enough PCs would be retained so that they represent 

95 percent of the total variance.  Another method is the Kaiser Criterion.  This 

criterion, proposed by Kaiser in 1960, only retains PCs with eigenvalues above 

1.33  Any eigenvalue below 1 would explain less variance than an original 

variable.  This method often retains too many PCs.  The last method, which was 

employed in this research, is the scree test, proposed by Cattell in 1966.  The 

scree test utilizes a scree plot, which provides a visual representation of the 

decreasing variation in each principal component by plotting the eigenvalues 

against each principal component.27,33  A sudden break in the plot indicates the 

number of significant PCs to retain to the left of the plot.  Any PC to the right of 

that break is considered noise.  However, this method sometimes retains too few 

PCs for subsequent analysis. 

 Overall, PCA is a great dimensionality reduction technique that creates 

linear combinations of the original variables.  Inherent groupings of the data can 

be visualized if a significant portion of the variation in the data set can be 

explained in two or three PCs.  This technique also explains what original 

variables contributed the most to the new PC axes via factor loadings.  PCA has 

been applied to the analysis of accelerants48,49, fibers44,50,51, gun shot residue52, 

documents53, hair dyes45, glass38,54, inks36,55, electrical tape46,47, paints and clear 

coats56,57, soils40, and lubricants58. 



	
  

	
  

15 

1.2.5. Discriminant Analysis 

 Unlike AHC and PCA, discriminant analysis (DA) is a supervised 

technique, which means prior knowledge of the group memberships in the data 

set is required.  The purpose of DA is to visualize groupings in the data in two- or 

three-dimensions and to predict the group membership of new samples.33  DA is 

similar to PCA in that new axes called canonical variates (CVs) are created by 

taking linear combinations of the original variables.  Instead of determining 

directions of greatest variation like in PCA, CVs are constructed to maximize 

discrimination between groups of samples.  This is achieved by maximizing a 

new criterion called the Fisher ratio.  It is defined as the ratio of between group 

variance to within group variance.27,34  These new axes can then be plotted 

against each other to visualize the groupings of the data. 

 After new discriminant scores are established from the calculated CVs, the 

samples are classified into a group based on their Mahalanobis distance to the 

centroid of a particular group.  The sample is classified into the group, which 

gives the smallest Mahalanobis distance.  It is important to note that in order to 

compute the Mahalanobis distance, the number of samples must be greater than 

the number of variables because otherwise the inverse of the variance-

covariance matrix cannot be calculated.  PCA is usually performed before DA in 

order to reduce the number of variables.27 

 The accuracy of the classification scheme can be estimated via various 

cross-validation methods.  The resubstitution method utilizes the entire data set 

as a training set and creates a classification model based on the known class 

membership of each sample.  The class membership of every sample in the data 

set is then predicted based on that model by its Mahalanobis distance.  This 

method tends to overestimate the classification accuracy because resubstitution 

uses the same data to construct the classification model and estimate its 

accuracy.27  The second method is the hold-out method.  This method partitions 

the data set into a training and test set.  The training set is used to construct the 

classification model and the test set is used for prediction of classification.  The 
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method provides an unbiased way of estimating the error, however, this requires 

a large data set, which may not always be possible.27  The third method, which 

was utilized in this research, is the leave-one-out cross validation method.  In this 

method, the classification model is created using all but one of the samples.  The 

left out sample is then added into the model and is classified to a group.  This 

step is repeated for every sample until all samples in the dataset are classified.  

The results from the three methods can be placed in a table called a 

classification or confusion matrix.  The classification accuracies of each group 

along with the total classification accuracy of all the groups are displayed. 

 Overall, DA is an appropriate method to discriminate between groups of 

samples and predict group memberships of new samples.  DA can be performed 

on two groups or multiple groups depending on the data set, however, the 

number of canonical variates cannot exceed the number of groups minus 1 or the 

number of variables.27  The most common way of determining group membership 

is by calculating the Mahalanobis distance of each sample to the centroid of each 

group and placing that sample into the group with the smallest distance.  DA has 

been applied to the analysis of lubricants58, fibers and dyes50,59, paints and clear 

coats56,57, gun shot residue52, fuel oils and asphalts60, glass61, bacteria62, 

electrical tapes46,47, inks36,63, soils40, and gasoline64. 
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CHAPTER 2. CHEMOMETRIC ANALYSIS OF BLUE ACRYLIC VISIBLE 
SPECTRA 

2.1. Introduction and Purpose 

 The purpose of this study was to use a chemometric approach to 

discriminate visible spectra of blue acrylic fibers with similar dye compositions.  

The traditional means of discriminating between two fibers is to visually compare 

the fibers’ spectra acquired from a microspectrophotometer.  An examiner 

compares the position of the peak maxima, peak width, and peak intensity to 

determine if significant differences are exhibited between two fibers.65  The use 

of chemometrics can provide a better understanding of subtle differences within 

the data that an examiner could not see with the naked eye.  This study is by no 

means trying to eliminate human judgment in favor of chemometrics for fiber 

color comparisons.  It is, however, a good complement to the established 

protocols utilized in crime laboratories across the United States and can further 

assist the examiner in difficult fiber comparisons.  Research by Cochran et al. 

has shown that dye identification can be achieved by direct analysis of a textile 

fabric utilizing an infrared matrix-assisted laser desorption electrospray ionization 

(IR-MALDESI) source for mass spectrometry.66  Microspectrophotometric 

analysis would be all but obsolete due to the discriminating power of this new 

technique, however, it is not optimized for single fiber analysis, it can be 

destructive to the sample depending on the fiber polymer, and only a few dyes 

yielded acceptable spectral results. 
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2.2. Materials and Methods 

2.2.1. Materials 

 Eleven blue acrylic fibers with a bilobal cross-section were provided by Dr. 

Stephen L. Morgan from the University of South Carolina.  Table 2.1 provides 

images of each exemplar taken via the MSP utilized for this study.  These eleven 

exemplars were dyed with varying compositions of basic dye formulations.  Table 

2.2 provides the naming system employed for this study along with the CI names 

of the dyes used for each exemplar.  The exemplars had different diameters and 

dye concentrations were not known. 

 

Table 2.1. Images of the representative exemplars 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2.2. Naming system used for eleven exemplars along with their dye compositions 

 

 

	
  

EXEMPLAR FIBER ID/DYE 
Blue 

3 
Blue 
41 

Blue 
60 

Blue 
147 

Red 
18 

Red 
29 

Red 
46 

Yellow 
21 

Yellow 
28 

Yellow 
29 

A FID 86 � � � 

B FID 87 � � � � 

C FID 88 � � � 

D FID 91 � � � 

E FID 95 � � � 

F FID 98 � � 

G FID 99 � � � 

H FID 112 � � � 

I FID 113 � � � 

J FID 114 � � � 

K FID 145 � � � 
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2.2.2. Instrumental Analysis 

 Four fibers from each exemplar were removed and mounted on glass 

microscope slides using Permount (Fischer Scientific, Fairlawn, NJ) mounting 

media.  Two additional fibers from each exemplar were removed and mounted in 

Permount for an external validation.  Standard MSP protocols outlined by the 

Scientific Working Group on Materials Analysis: Fiber Subgroup (SWGMAT) 

were followed for data collection.65  A CRAIC QDI 2000 microspectrophotometer 

(Craic Technologies, San Dimas, CA) was used in transmitted light mode at a 

total magnification of 150X.  The microscope was calibrated by Kohler 

illumination and the spectrophotometer was calibrated by NIST traceable 

standards before each use of the instrument.  Autoset optimization, a dark scan, 

and a reference scan were performed before each sample scan.  Fifty scans 

were taken at a resolution factor of five for each sample spectrum as absorbance 

values.  The wavelength range utilized was from 400 nm to 800 nm.  Five spectra 

were obtained at different locations along each fiber to account for intra-fiber 

variation.  A total of 20 spectra were collected for each exemplar.  A different 

analyst used the same parameters, as above, for the two additional fibers.  A 

total of 10 spectra were obtained for each exemplar for the external validation. 

2.2.3. Data Analysis 

 Before use of statistical techniques, the data was preprocessed to 

eliminate systematic and random noise.  Background subtraction was performed 

on each spectrum by subtracting the minimum absorbance value from all 

absorbance values for each sample.  This eliminated the effects of scattered light 

and brought the baseline down to zero.  Next, each spectrum was normalized to 

unit vector length by dividing each absorbance value by the square root of the 

sum of squares of all absorbance values for each sample.  Normalizing the data 

accounted for variability due to varying fiber diameters and dye concentration. 

 All chemometric techniques were performed by use of XLSTAT Pro 

(Addinsoft, Paris, France), an add-in software program for Microsoft Excel.  For 
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AHC, the average of the five spectra for each fiber were used to produce a 

readable dendrogram.  The proximity measure utilized was the Euclidean 

distance and the aggregation method used for clustering samples was Ward’s 

Method.  The truncation line was automatically determined by a histogram of 

node positions.  For PCA, all the spectra were utilized instead of the averaged 

spectra.  The algorithm used was Pearson (n).  A factor loadings plot and 

observations plots were generated from the first three principal components.  Six 

principal components were retained for DA based upon a Scree plot.  For DA, all 

spectra were utilized instead of the averaged spectra. 

 For the external validation, only PCA and DA were performed.  PCA was 

performed to reduce the amount of variables being subjected to DA.  DA was 

performed to predict the class memberships of the external validation samples.  

Otherwise, the same conditions were employed as with the training dataset. 

2.3. Results and Discussion 

2.3.1. Training Set 

 The eleven blue acrylic exemplars exhibited slight visible differences in 

hue and saturation (see Table 2.1).  While differences in color could be seen, 

human judgment of color is subjective.  More information was obtained by 

looking at the representative spectra of the eleven exemplars in Figure 2.1.  A 

noticeable difference in the behavior of the peaks was seen.  The absorbance 

maximum of all eleven exemplars ranged from 600 nm to 650 nm.  Several 

exemplar spectra contained a second peak, while others exhibited shoulders 

along their absorbance maximum.  Exemplars A and H had overlapping spectra, 

which was expected due to identical dye compositions (see Table 2.2). 
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Figure 2.1. Representative spectra of the eleven blue acrylic fibers 

 

 Differences in the fibers’ spectra could be seen; however, utilizing 

multivariate statistics can provide more information on the variation of the spectra 

thus providing a better understanding of the groupings of the data as well as the 

areas of the spectra that provide the most variation.  The AHC dendrogram of the 

eleven exemplars is shown in Figure 2.2.  The dendrogram provided a 

visualization of the groupings of spectra based on their distances from each other 

in coordinate space.  From where the truncation line was set, three distinct 

classes were indicated. 
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Figure 2.2. AHC dendrogram showing the three classes of averaged fibers 
 
 Class 1 was made up of Exemplars A, F, H, and K.  Exemplars A and H 

were the most related followed by Exemplar K then Exemplar F.  Replicates of 

Exemplars A and H were confused with each other.  All other replicates for each 

exemplar were clustered together in the dendrogram. 

 Class 2 was made up of Exemplars B, C, D, E, I, and J.  All the replicates 

of each exemplar were clustered together.  Exemplars I and J were the most 

similar to each other followed by Exemplars B and C.  Exemplar D was more 

similar to Exemplars B and C rather than Exemplars I and J.  Exemplar E was 

the most dissimilar when compared to the others in Class 2. 

 Class 3 only contained Exemplar G, which is considered unique thus 

allowing discrimination of it from all others in the dataset.  Figure 2.3 shows the 

spectra that were most similar to the average spectra for each class.  Exemplars 

A4, I4, and G3 represent the average spectra for Classes 1, 2, and 3, 

respectively.  Apparent differences in spectral features can be seen.  Class 1 has 

0" 0.5" 1" 1.5" 2" 2.5" 3"
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Class"1:"A,F,H,K"
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two peaks with a shoulder on one of the peaks.  Class 2 has a peak at a lower 

absorbance and slightly blue-shifted when compared to Class 1 along with a 

minor peak at a lower wavelength.  Class 3 has a single peak with a slightly 

higher absorbance to that of Class 2, but lower than Class 1.  Differences in 

spectral features of the exemplars within each class are not as obvious except 

for Exemplar G since it was clustered by itself. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Normalized central objects plot of the three AHC classes 
 

 

 PCA was utilized to better understand groupings along with potential 

outliers and what areas of the spectra provided the most variations within the 

data.  PCA was performed on every spectrum for each exemplar.  From the 

observations plot, the first two principal components captured 75.69% of the total 

variance (see Figure 2.4).  Class 1 exemplars were grouped on the right side of 

the plot.  Exemplars within Class 1 were all grouped separately except for 

Exemplars A and H.  Exemplar F was farthest away from the others in that class, 

which is similar to what was seen in the dendrogram.  There was a potential 
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outlier for Exemplar A, but after reanalyzing the data without A4-5, no significant 

change in the groupings of the data was seen.  Spectrum A4-5 was left in for 

further analysis.  Class 2 exemplars were grouped on the lower left side of the 

plot.  Exemplar E is grouped by itself, while the other exemplars are overlapping 

one another.  Generating observation plots of PC2 vs. PC3 and PC1 vs. PC3, 

provides a three dimensional view of the data (see Figures 2.5 and 2.6).  Utilizing 

these plots presents a better understanding of the separation within Class 2.  

Separation between exemplars can be seen, however, Exemplars I and J exhibit 

slight overlap.  A three dimensional view does not allow for complete separation 

of the exemplars in Class 2; approximately 15% of the variation is unaccounted 

when utilizing only three PCs.  Higher dimensions might provide more 

information.  Finally Exemplar G was separated from all other exemplars, which 

is consistent with the dendrogram. 

 

Figure 2.4. Projections of the data in the first and second principal component 
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Figure 2.5. Projections of the data in the first and third principal component 

Figure 2.6. Projections of the data in the second and third principal component 
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 A factor loadings plot, seen in Figure 2.7, plots the cosine of the angles 

between the original variables and principal components.  This plot was used to 

determine spectral regions, where large variations in the data occur.  This plot 

also expresses how the exemplars were separated on the PCA observations 

plot. 

Figure 2.7. Factor loadings plot of the first two principal components 
 

 PC1 showed positive correlations between 640-675 nm and negative 

correlations between 500-580 nm.  PC2 showed positive correlations between 

690-725 nm and negative correlations between 450-475 nm.  Figure 2.8 overlays 

these regions with the representative spectra.  Class 1 was separated from the 

other classes based on the positive region of PC1 where the absorbance 

maximum of Class 1 exemplars is seen.  Exemplars within Class 1 were 

separated based on the positive and negative regions of PC2.  The trailing edges 

of their respective curves in the positive region have different slopes.  The 

negative region of PC2 encompasses a peak for Exemplars A and H, which 

!1.0%

!0.8%

!0.6%

!0.4%

!0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

400% 450% 500% 550% 600% 650% 700% 750% 800%

Fa
ct
or
'L
oa

di
ng
'

Wavelength'(nm)'

Factor'Loadings'Plot'

PC1%

PC2%



	
  

	
  

28 

cannot be said for Exemplars F and K.  Class 2 exemplars are separated from 

the other classes based on the negative regions of PC1 and PC2.  The negative 

region of PC1 exhibited differences along the leading edges of the spectral 

curves of the exemplars.  Differences in the negative region of PC2 were seen 

based on the presence of a peak.  As discussed above, utilizing three PCs 

instead of two further separated exemplars within this class.  Class 3, which 

consisted of Exemplar G, was separated from the other classes based off of the 

positive region of PC2 and the positive region (not shown) of PC3.  The positive 

region of PC2 consisted of the trailing edge of its spectral curve.  The 

absorbance maximum of Exemplar G consisted of the positive region of PC3. 

 

Figure 2.8. Regions of high correlation (factor loadings) superimposed over the 
fiber spectra 

 

 A Scree plot was used to determine the number of principal components 

to retain for DA and it was determined that the first six PCs were meaningful.  In 

this analysis, each exemplar was considered to be its own class.  The results 

from the first six PCs are shown in Figure 2.9, with 88.39% of the total variance 

accounted for in the first two canonical variates. 
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Figure 2.9. Projections of the data in the first two canonical variates 

Figure 2.10. Projections of the data in the first and third canonical variate 
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Figure 2.11. Projections of the data in the second and third canonical variate 
 

 

 There is overlap seen between Exemplars A and H and slight overlap 

between C and D.  All other exemplars are separated into their own classes.  

Creating observation plots of CV1 vs. CV3 and CV2 vs. CV3, provides a three 

dimensional view of the data.  After examining Figures 2.10 and 2.11, it becomes 

apparent that Exemplars C and D do not overlap, however, Exemplars A and H 

do not visually separate into two classes.  A “leave-one-out” cross validation was 

performed to determine the classification accuracy of the model produced by DA.  

The generated confusion matrix, seen in Table 2.3, produced a classification 

accuracy of 92.73%.  All Exemplars except A and H were classified correctly 

100% of the time.  Eight spectra from A and H were misclassified, which led to a 

60% classification accuracy for both.  This was expected since both exemplars 

had the exact same dye compositions. 
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Table 2.3. Cross-validation confusion matrix of the training set 
 
 
 

 

 

 

 

 

 

 

 

 

 

  

 

	
  

Predicted 
--------- 
Actual 

A B C D E F G H I J K Total % 
correct 

A 12 0 0 0 0 0 0 8 0 0 0 20 60 % 

B 0 20 0 0 0 0 0 0 0 0 0 20 100 % 

C 0 0 20 0 0 0 0 0 0 0 0 20 100 % 

D 0 0 0 20 0 0 0 0 0 0 0 20 100 % 

E 0 0 0 0 20 0 0 0 0 0 0 20 100 % 

F 0 0 0 0 0 20 0 0 0 0 0 20 100 % 

G 0 0 0 0 0 0 20 0 0 0 0 20 100 % 

H 8 0 0 0 0 0 0 12 0 0 0 20 60 % 

I 0 0 0 0 0 0 0 0 20 0 0 20 100 % 

J 0 0 0 0 0 0 0 0 0 20 0 20 100 % 

K 0 0 0 0 0 0 0 0 0 0 20 20 100 % 

Total 20 20 20 20 20 20 20 20 20 20 20 220 92.73% 
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 The PCA results agreed with the AHC results, however, PCA separated 

nine out of the eleven exemplars, whereas AHC created three classes that 

clustered exemplars based on similar spectral features.  The DA results created 

a model that best discriminated the exemplars from one another and provided 

error rates to all the classified spectra. 

2.3.2. External Validation 

 An external validation on the training set was performed using two 

additional fibers from each exemplar.  PCA was performed to determine the 

number of PCs to retain for subsequent DA.  DA then predicted the class 

membership of the additional fibers spectra.  Table 2.4 shows the confusion 

matrix of the external validation.  Overall, the performance of the predicted model 

was excellent, with a total classification accuracy of 90.91%.  Exemplars A and H 

were misclassified with each other and had classification accuracies of 70% and 

80%, respectively.  In this case, the accuracies are higher than expected.  

Examining the probability of each spectrum to the predicted class, however, 

shows probabilities of membership between 50% and 60% between the two 

classes.  Two spectra from Exemplar E were misclassified as Exemplar G and 

three spectra from Exemplar I were misclassified as Exemplar J.  Observation 

plots, seen in Figures 2.12, 2.13, and 2.14, of CV1, CV2, and CV3 show where 

the predicted fiber spectra were placed on the coordinate system.  Utilizing all 

three dimensions shows that the two-Exemplar E misclassifications are closer in 

distance to the centroid of Exemplar G.  The same can be said for the three 

Exemplar I misclassifications.  An obvious drift of the misclassified spectra from 

their respective class centroid was seen.  This could be due to the lack of 

homogeneity of the fibers within each exemplar.  A study on the homogeneity of 

fibers within and between garments should be conducted.  



	
  

Table 2.4. Confusion matrix of the prediction set 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predicted 
----------- 
Actual 

A B C D E F G H I J K Total % 
correct 

SA 7 0 0 0 0 0 0 3 0 0 0 10 70 % 
SB 0 10 0 0 0 0 0 0 0 0 0 10 100 % 
SC 0 0 10 0 0 0 0 0 0 0 0 10 100 % 
SD 0 0 0 10 0 0 0 0 0 0 0 10 100 % 
SE 0 0 0 0 8 0 2 0 0 0 0 10 80 % 
SF 0 0 0 0 0 10 0 0 0 0 0 10 100 % 
SG 0 0 0 0 0 0 10 0 0 0 0 10 100 % 
SH 2 0 0 0 0 0 0 8 0 0 0 10 80 % 
SI 0 0 0 0 0 0 0 0 7 3 0 10 70 % 
SJ 0 0 0 0 0 0 0 0 0 10 0 10 100 % 
SK 0 0 0 0 0 0 0 0 0 0 10 10 100 % 

Total 9 10 10 10 8 10 12 11 7 13 10 110 90.91% 

33 



	
  

	
  

34 

 

Figure 2.12. Projections of the data in the first two canonical variates of the 
prediction set 

 

Figure 2.13. Projections of the data in the first and third canonical variate of the 
prediction set 
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Figure 2.14. Projections of the data in the second and third canonical variate of 
the prediction set 

2.4. Conclusions 

 A comparison of this dataset utilizing AHC, PCA, and DA resulted in 

several findings.  AHC provided an initial understanding of the groupings of 
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consisted of Exemplar G, was grouped by itself using two PCs.  PC1 exhibited 

high correlations around 500-580 nm and 640-675 nm.  PC2 exhibited high 

correlations around 450-475 nm and 690-725 nm.  The exemplars showed high 

classification accuracies using both cross-validation and external validation.  

Caution should be taken when interpreting the data because two exemplars 

showed misclassifications in the external validation and not the cross-validation.  

Overall, nine of the eleven exemplars were discriminated using AHC, PCA, and 

DA. 
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CHAPTER 3. MICROSPECTROPHOTOMETRIC ANALYSIS OF YELLOW 
POLYESTER FIBER DYE LOADINGS WITH UTILIZATION OF CHEMOMETRIC 

TECHNIQUES 

3.1. Introduction and Purpose 

 The purpose of this study was to discriminate between different yellow 

polyester fiber visible spectra based solely upon their dye loadings using 

chemometric analysis.  A dye loading is the concentration of a dye, usually in 

weight percent, applied to a fiber.  Research has shown that visually similar 

yellow polyester fibers with different dye compositions can be discriminated 

based on their UV-visible spectra.59  However, it has not been determined if 

fibers dyed with the same dye, but different dye loadings, can be reliably 

discriminated by their visible spectra alone using a chemometric approach.  

Being able to discriminate between dye loadings would provide a higher level of 

discriminating power to forensic fiber examiners in their everyday casework.  This 

study addresses issues brought about by the National Academy of Sciences 

(NAS) report for strengthening forensic science in the United States.29  For 

example, the use of chemometric analysis would address issues with the 

accuracy and reliability of observer interpretations of spectroscopic data. 

3.2. Materials and Methods 

3.2.1. Materials 

 Ten yellow polyester exemplars dyed with various amounts of Dianix 

Yellow 5-6G (Disperse Yellow 114) dye and round cross-section were supplied 

by Dr. Stephen L. Morgan from the University of South Carolina.  Table 3.1 and 



	
  

	
  

38 

Table 3.2 show the amount of dye applied, in weight percent, to each exemplar, 

the naming system employed for the study, and an image of the fiber.  All fibers 

in the study were of the same fiber type, cross-sectional shape, and dye. 

 

Table 3.1. Exemplars A-E with respective dye loadings in weight percent and 
images 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.2. Exemplars F-J with respective dye loadings in weight percent and 
images 

 

Fiber ID Naming System Dye Loading % 
(w/w) Image 

674 A 0.10 

675 B 0.20 

676 C 0.40 

677 D 0.50 

678 E 0.75 

Fiber ID Naming System Dye Loading % 
(w/w) Image 

679 F 1.50 

680 G 2.00 

681 H 2.50 

682 I 3.00 

683 J 3.50 
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3.2.2. Instrumental Analysis 

 Preliminary measurements using a Leica DM EP PLM (Leica 

Microsystems, Buffalo Grove, IL) and a Perkin Elmer Spectrum One FT-IR 

spectrometer with a universal ATR sampling accessory (Perkin Elmer, Waltham, 

MA) were performed in order to confirm that the dataset consisted of polyester 

fibers with a round cross-section.  For PLM, Cargille oils (R.P. Cargille 

Laboratories, Cedar Grove, NJ) were used to determine refractive indices and 

Michel-Levy charts to determine birefringence values.  For FT-IR, sixteen scans 

with a resolution of 4.00 cm-1 were utilized.  All spectra were acquired with a 

wavenumber range of 4000 to 650 cm-1. 

 Following the guidelines of the Scientific Working Group on Materials 

Analysis: Fiber Subgroup (SWGMAT)65, ten fibers from each exemplar were 

removed and mounted on glass microscope slides using Permount (Fischer 

Scientific, Fairlawn, NJ) mounting media.  A CRAIC QDI 2000 

microspectrophotometer (Craic Technologies, Sam Dimas, CA) was used in 

transmitted light mode at a total magnification of 150X.  Calibration of the 

spectrometer by use of NIST traceable standards was performed before each 

use along with Kohler illumination for the microscope.  Autoset optimization, a 

dark scan, and a reference scan were acquired prior to each sample scan.  Fifty 

scans were taken at a resolution factor of five for each sample spectrum.  Five 

spectra were taken at different locations along each fiber to account for intra-fiber 

variation.  A total of 50 spectra were collected for each exemplar.  This provided 

enough information on the dye loading variation within each exemplar.  All data 

was collected in the UV-visible wavelength range (350-800 nm). 

3.2.3. Data Analysis 

 Preprocessing techniques were employed before subjecting the data to 

statistical treatment.  Background subtraction was performed on each spectrum 

by subtracting the minimum absorbance value for each sample from all 

absorbance values.  Background subtraction was performed to eliminate the 
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effects of scattered light and bring the baseline for each spectrum down to zero.  

Next, each background-subtracted spectrum was normalized to unit vector length 

by dividing each absorbance value by the square root of the sum of squares of all 

absorbance values.  Normalization was used to account for differences in 

pathlengths due to varying fiber diameters.  In theory, normalizing would also 

remove any concentration effects, but this may not always be the case as our 

results show otherwise (see Section 3.3).  All subsequent data analyses were 

performed on the background subtracted and normalized data. 

 Calibration plots based on the absorbance maximum (425 nm) and the 

Euclidean distance between an exemplar and a blank were generated on the 

fibers with dye loading percentages from 0.1-0.75%.  Three calibrators (0.2%, 

0.4%, and 0.5%) were left out of the curve one at a time and considered an 

unknown to determine the efficiency of the calibration curve. 

 All chemometric techniques were performed by use of XLSTAT Pro 

(AddinSoft), an add-in software program for Microsoft Excel.  For agglomerative 

hierarchical clustering, the five spectra for each fiber were averaged.  This was 

done to produce a readable dendrogram.  The proximity between two samples 

was measured by Euclidean distance and the aggregation method used for 

grouping samples was Ward’s Method.  The truncation line was set just higher 

than the most dissimilar exemplar’s replicates.  Values were determined by 

locating the node where all the replicates for each exemplar met.  From that 

truncation line, exemplars were placed into classes. 

For principle component analysis all scans were utilized instead of the 

averaged scans.  The PCA algorithm used was Pearson (n), which utilizes a 

correlation matrix of the original variables to produce principal components.  A 

factor loadings plot and observations plot were generated from the first two 

principal components.  Three PCs were retained for subsequent discriminant 

analysis based upon a Scree plot. 

For discriminant analysis all scans were utilized instead of the averaged 

scans.  A Box test was performed to determine if the covariance matrices were 
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unequal.  From that test it was determined if subsequent analysis of data should 

utilize quadratic discriminant analysis (QDA) or linear discriminant analysis 

(LDA).  The first three PCs were used as variables instead of the original 

variables because the number of variables must be less than the number of 

samples when using DA. 

 An external validation was performed on three new fibers from each 

exemplar in the dataset.  The same conditions were used as with the training 

dataset.  Only PCA and DA were performed on these fibers.  PCA was 

performed to obtain factor scores of the validation set and subsequent DA was 

performed to predict where those new samples would be placed in the training 

set model. 

 Finally, PCA and DA were performed on pair-wise comparisons of the 

original dataset.  Receiver operating characteristic (ROC) curves were generated 

to determine the performance of the model created by DA.  More specifically the 

area under the curve was calculated to determine the performance of the model.  

ROC curves are generated by plotting the true positive and false positive rates 

associated with the model.  The same pretreatments and conditions were used 

as with the training dataset.  Dyed exemplars with dye loadings closest to each 

other were compared to discriminate one from another (B-C, C-D, D-E, etc.). 

3.3. Results and Discussion 

 Ten yellow polyester fibers with round cross-sections and the same dye 

composition were analyzed using multivariate statistical techniques to evaluate 

whether dye loadings could be used to discriminate them.  Visual examination of 

the fibers showed a slight difference in saturation between exemplars.  

Discrimination of similar dye loadings was not apparent, however.  A preliminary 

examination of the exemplars by use of PLM and ATR-FTIR was conducted to 

confirm the identity of the fibers and to determine if the dye loading had any 

effect on the analysis.  PLM was used to determine diameters, refractive indices, 

birefringence values, and signs of elongation.  All exemplars had similar optical 
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characteristics and dye loadings did not affect the results other than visual 

differences based on saturation.  IR spectra were subjected to chemometric 

analysis and resulted in no significant differences between spectra of different 

fiber dye loadings.  Library searches of the spectra were conducted, and they 

were highly correlated to exemplars of polyester. 

Figure 3.1. Fiber spectra with adjusted absorbance values for A) background 
subtracted and normalized data and B) background subtracted only data 

 
 
 Normalization of the spectra was appropriate due to the different 

diameters of the fibers.  Normalizing spectral data should also eliminate 

concentration differences, but in this case it does not affect the results due to the 

superposition of the spectrum on the underlying background, which consisted of 

the fiber polymer and possibly the delustering agent.  This background arises  
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due to increased light scatter at short wavelengths, which leads to a background 

that gradually increases.  Regardless, normalizing retains the overall shape of 

the spectra (see Figure 3.1) and still allows for differentiation. 

3.3.1. Calibration Plots 

 The absorbance maximum of the spectra was plotted against the 

exemplars’ dye loading percentage.  Proximity matrices were also created and 

the generated distances between exemplars and blanks were plotted against the 

exemplars’ dye loadings.  Both plots exhibited a curve with a linear portion at 

lower dye loadings that produced a negative deviation at higher dye loadings.  

This negative deviation can be attributed to several reasons, including the use of 

polychromatic light from the MSP source.  In particular, Beer’s law is considered 

invalid if polychromatic light is used as a light source at higher concentrations.67  

The linear portion of the curve ends at a dye loading of 0.75%.  Therefore, 

calibration plots were created from 0.1% - 0.75% dye loading (see Appendix).  

This assertion complements previous work that characterized different pigments 

loaded into polypropylene fibers.68 

 

Table 3.3. Calibration curve results for three unknowns using a statistical and 
non-statistical approach 

 
  

 

 

Statistical Treatment 

Expected Dye 
Loading 

Calculated Dye 
Loading Std. Dev. R2 

0.20% 0.20% 0.058 0.981 

0.40% 0.45% 0.038 0.992 

0.50% 0.53% 0.050 0.986 

Non-statistical Treatment 

Expected Dye 
Loading 

Calculated Dye 
Loading Std. Dev.  R2 

0.20% 0.23% 0.122 0.913 

0.40% 0.50% 0.094 0.951 

0.50% 0.57% 0.119 0.924 
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 The results from Table 3.3 indicate that statistical treatment of the data 

provides better results than simply using the absorbance maximum.  Using 

proximity matrices, which utilize every variable, are more accurate and precise 

than using one absorbance value for generating a calibration curve.  This is 

particularly true in this case as the absorbance maximum shifts to a higher 

wavelength as dye concentration increases for this dataset. 

3.3.2. Training Set 

 The ten exemplars from Table 3.1 and Table 3.2 were subjected to AHC, 

PCA, and DA after being background subtracted and normalized.  Exemplars A 

and B exhibit a slight difference in their spectral shape because of the low dye 

loading on those fibers.  The remaining exemplars exhibited the same general 

spectral curve, but at different absorbance maximum values.  The absorbance 

maximum slightly shifted to higher wavelengths as dye loading increased as 

seen in Figure 3.2. 

 



	
  

	
  

45 

Figure 3.2. Magnified view of the shift of the absorbance maximum as dye 
loading increases 

 
 
 AHC was performed in order to detect any outliers and classes of fibers.  

The intra-fiber spectra were averaged in order to visualize the classes in the 

dendrogram.  This brought the replicates down from fifty to ten.  The dendrogram 

in Figure 3.3 shows how the data was grouped.  The truncation line was set just 

higher than the highest level of dissimilarity between replicates.  In this case, the 

replicates of Exemplars C and D were determined to be the most dissimilar by 

locating the node where all the replicates for each exemplar met.  Everything 

then to the right of the dendrogram was grouped into classes.  From the 

truncation line, three distinct classes of data were produced, representing low, 

medium, and high dye loadings. 

400# 410# 420# 430# 440# 450# 460# 470#

No
rm

al
ize

d+
Ab

so
rb
ac
e+

Wavelength+(nm)+

Fiber#A#

Fiber#B#

Fiber#C#

Fiber#D#

Fiber#E#

Fiber#F#

Fiber#G#

Fiber#H#

Fiber#I#

Fiber#J#



	
  

	
  

46 

 

Figure 3.3. AHC dendrogram of the ten exemplars from the training set 
 
 
Class 1 are low dye loadings and include Exemplars A and B.  Class 2 are 

medium dye loadings and includes Exemplars C, D, and E.  Class 3 are high dye 

loadings and includes Exemplars F, G, H, I, and J.  Class 1 exemplars are further 

separated into their own respective groups because of their high reproducibility.  

Class 2 and Class 3 exemplars show low reproducibility and are intermixed in 

their respective classes.  Figure 3.4 represents the spectra that were most similar 

to the average spectra for the three classes.  Fibers B6, D3, and I1 represent the 

average spectral shape of all the other fibers clustered in Classes 1, 2, and 3, 

respectively.  Each class exhibits different spectral features. 
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Figure 3.4. AHC central objects plot of the three classes 
 
 
 PCA was performed on every spectrum for each exemplar.  Observation 

plots of the individual exemplars and the three classes captured 92.59% of the 

total variance in two PCs.  Figure 3.5 shows the ten exemplars spread out from 

low to high dye loadings.  PC1 separates out Exemplars A-E while PC2 slightly 

separates Exemplars F-J.  Figure 3.6 shows the observation plot of the three 

classes produced from AHC.  PC1 separates out Classes 1, 2, and 3, while PC2 

separates samples within each class.  From the results of PCA and AHC, it is 

apparent that three classes representing low, medium, and high dye loading can 

be seen. 
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Figure 3.5. Projections of the data in the first two principal components 

Figure 3.6. Projections of the data in the first two principal components of the 
class data 
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 A factor loadings plot, seen in Figure 3.7, was also created to understand 

the relationship between the original wavelengths and the new principal 

components.  The factor loading was determined by finding the cosine of the 

angle between the principal component and the original variable.  A factor 

loading approaching 1 or -1 corresponds to positive and negative correlations, 

respectively, between the original wavelengths and the PCs. 

Figure 3.7. Factor loadings plot of the first two principal components 
 
 
 PC1 exhibited a strong negative correlation around the absorbance 

maximum (400-475 nm) of the spectra and strong positive correlations between 

350-375 nm and 500-700 nm.  PC2 exhibited positive correlations around 395 

nm and 475 nm.  The importance of these regions explains how the exemplars 

were separated on the observations plot.  Figure 3.8 overlays the areas of 

positive and negative correlations of PC1 and PC2 onto the three classes of fiber 

spectra created from AHC.  The lower dye loading exemplars in Class 1 were 

separated from Classes 2 and 3 exemplars based on the absorbance maximum.  

Class 2 and 3 exemplars were separated based on the sides of their respective 
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spectral curves, not the absorbance maximum as expected because their 

spectral curves plateaued and became broader.  This was especially seen with 

spectra that exhibited absorbance values greater than unity. 

 

Figure 3.8. Regions of high correlation (factor loadings) superimposed over the 
three classes of fiber spectra from AHC 

 
 
 DA was performed several times on all the spectra.  First, the exemplars 

were assigned to their own classes.  The ten exemplars showed the same 

general trend from low to high dye loadings, as seen in Figure 3.9.  This 

observation plot had a total captured variance of 99.82% using two canonical 

variates. 
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Figure 3.9. Projections of the data in the first two canonical variates 
 
 
 A “leave-one-out” cross validation was performed on the training set and a 

subsequent confusion matrix was produced.  Here, DA is performed on all but 

one of the samples and a model is created.  The left out sample is then added 

into the model and is assigned to a class.  This step is repeated until every 

sample in the dataset is classified.  Cross validating the training set gave a total 

classification accuracy of 50.80%, which can be seen in Table 3.4.  The 

classification accuracy generally decreased as dye loading increased.  This 

decrease can be attributed to the limitations of the instrument and/or the 

polychromatic light issue stated in Section 3.3.1.  Higher dye loadings produced 

absorbance values above 1, which pushed the limits of the detector.  At 

absorbance values of this magnitude, the detector is less sensitive to changes in 

concentration due to the minimal amount of light transmitted through the sample. 
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Table 3.4. Cross-validation confusion matrix of the training set 
 
 
	
  

Predicted 
-------- 
Actual 

A B C D E F G H I J Total % correct 

A 46 4 0 0 0 0 0 0 0 0 50 92 % 

B 5 40 5 0 0 0 0 0 0 0 50 80 % 

C 0 4 23 18 5 0 0 0 0 0 50 46 % 

D 0 0 18 18 14 0 0 0 0 0 50 36 % 

E 0 0 1 10 33 6 0 0 0 0 50 66 % 

F 0 0 0 0 7 30 8 5 0 0 50 60 % 

G 0 0 0 0 0 9 27 9 2 3 50 54 % 

H 0 0 0 0 0 7 10 11 5 17 50 22 % 

I 0 0 0 0 0 1 10 17 8 14 50 16 % 

J 0 0 0 0 0 2 7 15 8 18 50 36 % 

Total 51 48 47 46 59 55 62 57 23 52 500 50.80 % 
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Consequently, exemplars with high dye loadings had spectra with similar 

intensities and spectral shapes.  Also, the molar absorptivity of the dye changes 

when polychromatic light is utilized because of the varying chemical and 

electrostatic interactions of the dye molecules as concentration is increased.67  In 

this case, as dye loading increased to high concentrations the molar absorptivity 

decreased.  This caused spectra of high dye loading exemplars  

 The exemplars were also assigned to their AHC classes and DA was 

performed.  Three classes were formed representing low, medium, and high dye 

loadings.  The observation plot in Figure 3.10 had a total captured variance of 

100% using two canonical variates.  Although the 95% ellipses did overlap, the 

centroids for each class were not captured by the other ellipses.  A leave-one-out 

cross validation was performed and gave a total classification accuracy of 

95.60%, which can be seen in Table 3.5.  The medium dye loadings, 

representing Class 2, were confused the most because of the confusion with 

both the low and high dye loading exemplars. 

 

Figure 3.10. Projections of the data in the first two canonical variates of the 
classes generated from the dendrogram 
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Table 3.5. Cross-validation confusion matrix of classes generated from   
dendrogram 

 

 

 

 

 

 

 

 

 

 

 

 
 

3.3.3. External Validation 

 Three additional fibers from each exemplar were analyzed by PCA and 

DA in order to evaluate the accuracy of the model predicted in the training set.  

These additional samples were then placed into the class its spectra most 

resembled.  This was based on the probabilities calculated during DA analysis.  

The samples were placed into one of the ten exemplar classes for the first DA 

analysis, and then placed into one of the three AHC classes for the second DA 

analysis for comparison purposes.  Table 3.6 shows the classification accuracies 

of the external validation. 

 

 

Predicted 
-------- 
Actual 

1 2 3 Total % correct 

1 94 6 0 100 94.00 % 

2 3 145 2 150 96.67 % 

3 0 11 239 250 95.60 % 

Total 97 162 241 500 95.60 % 
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Table 3.6. External validation results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 A total classification accuracy of 56.67% was seen when the fibers were 

placed into the ten classes and 98.67% when the fibers were placed into the 

three classes.  There was extensive confusion between exemplars when the 

fibers were placed into the individual exemplar classes.  This was expected 

because there was significant confusion in the training set especially as dye 

loading increased.  However, less confusion was seen when the additional fibers 

were predicted into the AHC class model.  Exemplars E and F were the only two 

confused when exemplars were placed into the three classes.  Both misclassified 

one sample into a wrong class. 

 

Individual Fiber Exemplars Class Fiber Exemplars 

Additional 
Fiber Class Accuracy Additiona

l Fiber Class Accuracy  

SA A 100 % SA 1 100 % 

SB B 93.33 % SB 1 100 % 

SC C 46.67 % SC 2 100 % 

SD D 46.67 % SD 2 100 % 

SE E 60 % SE 2 93.33 % 

SF F 86.67 % SF 3 93.33 % 

SG G 40 % SG 3 100% 

SH H 40 % SH 3 100 % 

SI I 26.67 % SI 3 100 % 

SJ J 26.67 % SJ 3 100 % 
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3.3.4. Pair-Wise Comparisons 

 PCA and DA were performed on two groups of exemplars in order to 

determine whether the groups could be discriminated from each other.  The 

results in Table 3.7 show that only two exemplar comparisons and both the class 

comparisons were discriminated from each other based on a classification 

accuracy of 90% or higher and a receiver operating characteristics curve score of 

0.9 or higher.  All other comparisons fell below this threshold and were 

considered to be confused with each other.  The exemplar comparisons were 

chosen as seen because this was the closest two exemplars could be to each 

other and not be the same dye loading.  In other words, the classification 

accuracies would be better if comparisons other than the ones in Table 3.7 were 

performed. 

Table 3.7. Pair-wise comparison results 

 Comparison Classification Accuracy ROC AUC 

A-B 92 % 0.992 

B-C 94 % 0.992 

C-D 64 % 0.720 

D-E 82 % 0.936 

E-F 89 % 0.982 

F-G 83 % 0.918 

G-H 75 % 0.845 

H-I 57 % 0.721 

I-J 52 % 0.644 

Class 1 - 2 98 % 0.998 

Class 2 - 3 97 % 0.998 
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3.4. Conclusions 

 Chemometric treatment of visible spectra from fibers with different dye 

loadings has been shown to be a reliable and effective way of discriminating 

between fibers.  Higher classification accuracies were seen when fibers were 

placed into low, medium, and high classes.  Calibration curves, based on 

proximity matrices, can be produced and accurately predict the dye loading of an 

unknown fiber.  Comparisons of two groups of fibers can provide discriminating 

information.  From this data set, absorbance differences of 0.1% between two 

groups of fibers could be discriminated.  Overall, forensic fiber examiners can 

have a more objective way of comparing a known and questioned fiber using 

chemometric techniques on visible spectra. 
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CHAPTER 4. LIMITATIONS AND FUTURE WORK 

4.1. Limitations 

 As with any research conducted, there will always be limitations.  The first 

limitation involves the yellow polyester data set.  The fibers used in this study had 

varying diameters ranging from 20-27.5 µm.  Normalizing the spectra was 

required in order to compensate for these differences.  Normalizing the spectra, 

however, can eliminate concentration effects, which would inhibit the 

interpretation of the data since the difference in concentration is the primary 

discriminating factor.  Normalizing in this case is appropriate due to the sloping 

background of the spectra.  It would have been best suited to have a data set 

containing fibers with the same diameter, but our collection did not contain that 

representative data set. 

 The second limitation involves both the yellow polyester study and the 

blue acrylic study.  Both studies utilized data sets containing ten and eleven 

exemplars, respectively.  A good representative sample is important particularly 

when performing discriminant analysis.  A drawback to DA is that an individual 

sample is forced into an existing group established by the model created for the 

training set.  This is especially important for comparisons of questioned and 

known samples in casework.  For example, multiple fibers from different locations 

of a shirt with varying dye formulations and shades of color would have to be 

collected in order to create a model that represents every possible outcome 

associated with that shirt.  An unknown colored fiber could mistakenly be 

classified into an incorrect group.  Care must be taken when interpreting the  
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data.  Other chemometric classification techniques like soft independent 

modeling of class analogy (SIMCA) can be used to compensate for this 

drawback.  SIMCA is considered a soft modeling technique, meaning a sample 

can belong to more than one group or to no defined groups at all.32 

4.2. Future Work 

 The research in this thesis can be expanded upon along with other future 

work that can be conducted.  An interlaboratory study on the yellow polyester 

and blue acrylic data sets should be completed.  An interlaboratory study would 

verify the reproducibility of the chemometric procedure along with the MSP 

method.  Performing an external validation at certain time intervals on the same 

set of fibers can be conducted in order to determine if drifts in the predicted 

samples occur as time increases.  This is in response to a slight drift in the 

predicted samples from their correct groups of the blue acrylic data set.  Finally, 

the fibers used in these studies were considered pristine meaning there were no 

other variables affecting the fiber’s color other than the dye applied and the dye 

concentration.  Data sets comprising of damaged, weathered, and/or laundered 

fibers should be explored in order to assess the effects these variables have on 

the chemometric analysis. 

 Future work can also be completed on different data sets using FT-IR and 

PLM with our chemometric procedure to classify and compare different fiber 

types and sub types.  For FT-IR, variables (wavenumbers) contributing to the 

most variation within the data set can be determined along with comparing 

functional groups between samples.  Another project that could be completed 

utilizes principal component regression (PCR).  PCR is able to quantify the 

concentrations of multiple dyes applied to a fiber instead of one (i.e. yellow 

polyester data set).  It is a combination of PCA and ordinary least squares 

regression.  PCA is conducted in order to reduce the dimensions of the data and 

extract significant PCs that will be subjected to ordinary least squares regression 

for quantitative analysis.32  The chemometric procedure would be more 
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applicable to case work since the majority of fabrics in production employ 

multiple dyes to achieve a desired color.  A final project, will quantify the dye 

concentration of a yellow polyester exemplar with an unknown dye concentration 

by LC-MS.  An extraction procedure of the disperse dye and LC-MS procedure 

would be optimized.  These procedures can also be used to validate the 

predicted concentrations of the yellow polyester data set found from the 

calibration procedure outlined in Chapter 3.
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APPENDIX. ADDITIONAL FIBER FIGURES 

A.1. Blue Acrylic Fibers 

A.1.1. Training Set Exemplar Spectra 

 

 
Figure A1. Averaged Spectra for Exemplar A 

 

 
Figure A2. Averaged Spectra For Exemplar B 
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Figure A3. Averaged Spectra for Exemplar C 

 
 
 

 
Figure A4. Averaged Spectra for Exemplar D 
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Figure A5. Averaged Spectra for Exemplar E 

 
 
 

 
Figure A6. Averaged Spectra for Exemplar F 
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Figure A7. Averaged Spectra for Exemplar G 

 
 
 

 
Figure A8. Averaged Spectra for Exemplar H 
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Figure A9. Averaged Spectra for Exemplar I 

 
 
 

 
Figure A10. Averaged Spectra for Exemplar J 
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Figure A11. Averaged Spectra for Exemplar K 
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A.1.2. External Validation Exemplar Spectra 
 

 
Figure A12. Averaged Spectra for Exemplar SA 

 
 
 

 
Figure A13. Averaged Spectra for Exemplar SB 
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Figure A14. Averaged Spectra for Exemplar SC 

 
 
 

 
Figure A15. Averaged Spectra for Exemplar SD 
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Figure A16. Averaged Spectra for Exemplar SE 

 
 
 

 
Figure A17. Averaged Spectra for Exemplar SF 
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Figure A18. Averaged Spectra for Exemplar SG 

 
 
 

 
Figure A19. Averaged Spectra for Exemplar SH 
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Figure A20. Averaged Spectra for Exemplar SI 

 
 
 

 
Figure A21. Averaged Spectra for Exemplar SJ 
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Figure A22. Averaged Spectra for Exemplar SK 
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A.2. Yellow Polyester Fibers 

A.2.1. Calibration Plots 
 

 
Figure A23. Calibration Plot utilizing the Max Wavelength Approach for the 

Exemplar with 0.2% Dye Loading 
 
 
 

 
Figure A24. Calibration Plot utilizing the Max Wavelength Approach for the 

Exemplar with 0.4% Dye Loading 
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Figure A25. Calibration Plot utilizing the Max Wavelength Approach for the 

Exemplar with 0.5% Dye Loading 
 
 
 

 
Figure A26. Calibration Plot utilizing the Proximity Matrix Approach for the 

Exemplar with 0.2% Dye Loading 
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Figure A27. Calibration Plot utilizing the Proximity Matrix Approach for the 

Exemplar with 0.4% Dye Loading 
 
 
 

 
Figure A28. Calibration Plot utilizing the Proximity Matrix Approach for the 

Exemplar with 0.5% Dye Loading 
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A.2.2. Training Set Exemplar Spectra 
 

 
Figure A29. Averaged Spectra for Exemplar A 

 
 
 

 
Figure A30. Averaged Spectra for Exemplar B 
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Figure A31. Averaged Spectra for Exemplar C 

 
 
 

 
Figure A32. Averaged Spectra for Exemplar D 
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Figure A33. Averaged Spectra for Exemplar E 

 
 
 

 
Figure A34. Averaged Spectra for Exemplar F 
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Figure A35. Averaged Spectra for Exemplar G 

 
 
 

 
Figure A36. Averaged Spectra for Exemplar H 
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Figure A37. Averaged Spectra for Exemplar I 

 
 
 

 
Figure A38. Averaged Spectra for Exemplar J 
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A.2.3. External Validation Exemplar Spectra 
 

 
Figure A39. Averaged Spectra for Exemplar SA 

 
 
 

 
Figure A40. Averaged Spectra for Exemplar SB 
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Figure A41. Averaged Spectra for Exemplar SC 

 
 
 

 
Figure A42. Averaged Spectra for Exemplar SD 
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Figure A43. Averaged Spectra for Exemplar SE 

 
 
 

 
Figure A44. Averaged Spectra for Exemplar SF 
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Figure A45. Averaged Spectra for Exemplar SG 

 
 
 

 
Figure A46. Averaged Spectra for Exemplar SH 
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Figure A47. Averaged Spectra for Exemplar SI 

 
 
 

 
Figure A48. Averaged Spectra for Exemplar SJ 
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A.2.4. PCA Projections of Pair-Wise Comparison Data 
 

 
Figure A49. PCA Observations Plot of Exemplars A and B 

 
 
 

 
Figure A50. PCA Observations Plot of Exemplars B and C 
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Figure A51. PCA Observations Plot of Exemplars C and D 

 
 
 

 
Figure A52. PCA Observations Plot of Exemplars D and E 
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Figure A53. PCA Observations Plot of Exemplars E and F 

 
 
 

 
Figure A54. PCA Observations Plot of Exemplars F and G 
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Figure A55. PCA Observations Plot of Exemplars G and H 

 
 
 

 
Figure A56. PCA Observations Plot of Exemplars H and I 
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Figure A57. PCA Observations Plot of Exemplars I and J 

 
 
 

 
Figure A58. PCA Observations Plot of Classes 1 and 2 
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Figure A59. PCA Observations Plot of Classes 2 and 3 
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