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ABSTRACT
Classification models can demonstrate apparent prediction accuracy
even when there is no underlying relationship between the predictors
and the response. Variable selection procedures can lead to false posi-
tive variable selections and overestimation of true model performance.
A simulation studywas conductedusing logistic regressionwith forward
stepwise, best subsets, and LASSOvariable selectionmethodswith vary-
ing total sample sizes (20, 50, 100, 200) and numbers of random noise
predictor variables (3, 5, 10, 15, 20, 50). Using our critical values can help
reduce needless follow-up on variables having no true association with
the outcome.

1. Introduction

Recently, themedical field has beenunder fire for the frequencywithwhich published research
does not seem to be reproducible despite the billions of dollars invested in it. The journalist,
Michael Hilzik (2013) published an article in the Los Angeles Times about this topic. The
article was based on an influential Nature publication written by Glenn Begley, former head
of Hematology and Oncology Research at Amgen. In his article (2012), Dr. Begley described
how his team tried to reproduce results of influential papers from the past decade in the fields
of cancer research and blood biology. He claimed that “Of the 53 landmark papers, only 6
could be proved valid.” Similar findings were reported by a group at Bayer HealthCare in Ger-
many where only 25% of the published papers which they were basing their research and
development projects on could be categorized as reproducible (Prinz et al., 2011). Further-
more, the majority of Nature readers responding to a recent survey (66%) expressed a high
level of concern that current levels of reproducibility are a major problem (Reality check on
Reproducibility, 2016).

There are many reasons for lack of reproducibility in these fields, including low power (too
small a sample size), differing lab protocols, pre-processing variation between sites, differ-
ent patient populations, and use of non-random samplesto name a few. In addition, research
resultsmaynot be reproducible due to themisinterpretation ormisuse of statistical test results.
As a consequence, investigators may be overoptimistic about their models, which could suf-
fer from overfitting or may include spurious variables not truly related to the response. Nate
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Silver, creator of the popular website www.FiveThirtyEight.com, stated in his book (2012) that
forecasters often develop an elaborate model which is an overly specific solution to a general
problem where the model has little or no value in making predictions. He calls this “overfit-
ting,” which is “the most important scientific problem you’ve never heard of.”

Medical researchers are often interested in selecting a panel of predictor variables for diag-
nostic or prognostic models. A standard statistical approach is the use of logistic regression to
identify markers of patient status such as cancer or control. This scenario is especially com-
mon in biomarker validation studies which can include large numbers of predictor variables
relative to the sample size. See for example, the metabolomic comparison studies by Shen
et al. (2013) and Zhang et al. (2014). Situations where the number of metabolites is larger
than the number of subjects are very common. Marozzi (2014, 2015b) discusses that in these
situations, traditional methods like the Hotelling test cannot be used, and proposes more
appropriate methods. A frequently usedmethod for evaluating the performance of thesemul-
tivariable logistic regression models is to assess the magnitude and overall statistical signifi-
cance of the area under the receiver operating characteristic (ROC) curve after an automated
variable selection procedure has been performed.

This manuscript proposes to improve statistical reproducibility and accountability in the
field by providing useful guidance and better methodology for a more relevant test of statis-
tical significance from logistic regression models after variable selection has been performed.
While some approaches have beendeveloped to lower themagnitude of variable selection bias,
they often require possession of the dataset and considerable statistical programming expe-
rience to implement. Our tables for adjusting the critical value can be used even when the
dataset is unavailable to a researcher. The results of two cancer biomarker datasets which we
have acquired from collaborations at our institution are included to help illustrate ourmethod
and assess how our thresholds compare to the permutation test. The goal of this manuscript
is not to find the best variable selection technique, but to more accurately evaluate the signif-
icance of commonly used variable selection procedures.

2. Background

For a recent discussion on themisuse of statistics in practice, seeMarozzi (2015a)who empha-
sizes that a context where the debate is particularly fierce is medicine. Driven by the wide
availability of powerful and relatively cheap computers as well as statistical software, medical
researchers tend to use more complex methods than before with a correspondent increased
risk of misusing such methods. In the age of bioinformatics, genetics and high-throughput
genomic/proteomic/metabolomic studies, this problem is exacerbated by the complexity of
analyzing large datasets. However, it should be underlined that very standard methods like
Student t, chi-squared and Fisher’s exact test are still very commonly used, and despite being
well knownmethods, they are very often applied incorrectly (Ferraris and Ferraris 2003; Fong
et al. 2008; Gandhi et al. 2011; Ludbrook andDudley 1998; Lucena et al. 2011;McKinney et al.
1989 and Podoll et al. 2012).

Many scholars have emphasized that a large share of published medical research contains
statistical errors. Strasak et al. (2007) and Fernandes–Taylor et al. (2011) underline that also
top class journals like Nature Medicine and The New England Journal of Medicine publish
a considerable proportion of papers containing statistical errors (more or less severe). They
conclude with caution that the journal impact factor is not a very meaningful predictor for
the statistical quality of published research.Medical researchers can also be under tremendous

http://www.FiveThirtyEight.com
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pressure from institutions to publish manuscripts for career advancement, personal prestige,
grant funding opportunities, and/or financial incentives. This pressure can cause a researcher
to be more desperate to publish quickly before getting the proper statistical guidance.

A less commonly reported misuse of statistics includes variable selection bias, which can
be defined as finding a spurious relationship between a predictor variable and the response;
that is, concluding that there is a statistically significant relationship when in reality the result
was just a product of multiple hypothesis testing. This type of mistake is called a Type 1 error
and can be controlled by setting the alpha (α) level before an analysis is run.When hypothesis
tests are conducted for more than one variable it is often desirable to control the family-wise
error rate (FWER)which is defined as the chance of selecting any noise predictors. The FWER
after implementing a variable selection algorithm is much harder to control andmay increase
dramatically in unpredictable ways.

Variable selection bias can lead to developingmodels that fit well in the original set of sam-
ples but do not generalize well to external samples due to lack of true association between the
model predictors and outcomes. An example would be a study trying to discriminate between
10 cancer and 10 control samples using 50 biomarkers. There would certainly be some com-
bination of markers which would separate the two groups perfectly whether or not any real
biological signal was captured by the markers. However, if a model were chosen and then
applied to another set of 10 cancer and 10 control samples from a similar cohort of patients,
it would be unlikely to validate. In such cases of overfitting, logistic regression models some-
times suffer from quasi or complete separation of the groups in the dataset at hand and the
parameter estimates may fail to converge. Even if the model does converge, scenarios with
small sample sizes and large numbers of predictor variables are unlikely to give very useful
results.

In research, we often set the Type 1 error rate (α) for any particular testing procedure
to be 5% for one hypothesis test and set the FWER to be 5% for multiple hypothesis tests.
This means that we are willing to tolerate the mistake of declaring a result to be statistically
significant about 5% of the time. If a variable selection algorithm was controlling the FWER
appropriately, the percentage of final models selecting at least one predictor should be around
5% when all the predictors are noise.

2.1. Common approaches

One way researchers have attempted to control the FWER in classification problems is not to
include too many predictor variables relative to the number of cases and controls. A common
rule of thumb is to compute the events per variable (EPV), defined as the ratio of events (E: the
smaller of either response category) to the number of predictor variables. Harrell (1985) found
that theminimumEPV to give reliable results was around 10 by using simulation studies, later
confirmed by Peduzzi (1996). For example, with 50 cases and 50 controls, one would not want
to include more than five predictor variables because 50/5 = 10. Although this rule of thumb
may help to prevent convergence problems, it does not address variable selection bias.

One way to evaluate the FWER is to carry out a permutation test. This type of test is useful
in assessing significance of a model produced from automated variable selection techniques
because it preserves the correlation structure between the predictor variables and the p-value
resulting from this test will be adjusted for multiple testing. One can construct a null dis-
tribution empirically for the statistic of interest by randomly permuting only the outcome
variable and rerunning the procedure many times. After the null distribution of that statistic
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is constructed, the observed test statistic from the unscrambled dataset can be plotted and
an adjusted p-value can be computed (Pesarin and Salmaso, 2010). Permutation based tests
have been shown to have many desirable properties above and beyond the more common
parametric based tests in biomedical research (Ludbrook and Dudley, 1998). Although this
method seems to give better results, it requires the original dataset and considerable statistical
programming experience to implement.

2.2. Variable selection techniques

A common strategy to reduce the number of predictors is to test each one individually with
the response and then fit a final model using only the variables which were significant on
univariate analysis. This is known as “data snooping” or “pre-screening” and has been shown
to give poor results (Harrell et al., 1985). One problem with using this approach is that the
reported p-values are not adjusted for multiple hypothesis testing; thus greatly increasing the
chances of an inflated FWER. Another approach for variable selection is to use statistical soft-
ware to select variables bymaximizing orminimizing a pre-specified fit criterion. TheAkaike’s
Information Criterion (AIC) has been shown to have useful properties for selecting variables
(Beal, 2005). The formula for the AIC is given by 2(m + 1) – 2ln(L) where m is the number
of predictor variables in the model and L is the likelihood function for the model (Akaike,
1974). The penalty 2(m + 1) discourages overfitting because extra predictor variables which
aren’t very helpful will lead to a suboptimal model. The panel of predictor variables with the
lowest AIC is deemed to be the best. The AIC criterion was used for our forward stepwise
and best subsets scenarios. However, the software does not make any adjustment for multiple
hypothesis tests which can inflate the FWER.

2.3. Assessing predictive performance

The area under the ROC curve (AUC) is a measure of discrimination between two groups
and is standardly reported for binary classification models. The curve is constructed from
several different cutpoints of a marker for which sensitivity and specificity values can be
computed. Numerical integration is used to calculate the total area under the curve which
can range from 0.5 (useless model) to 1.0 (perfect discrimination). The AUC can be calcu-
lated for a panel of markers using logistic regression models by calculating predicted prob-
abilities and has been shown to be useful in hypothesis testing (Chen et al., 2013). The
statistical significance of the AUC can be assessed using the Wilcoxon test statistic, which
although it has been shown to be the appropriate test of significance for AUC on a pre-
specified set of variables, does not adjust for multiple hypothesis tests (Hanley and McNeail,
1982).

The traditional test of significance for a logistic regression model is the Likelihood Ratio
Test (LRT) (Agresti, 2007). One problem with using this test after variable selection is that
the p-value is not very informative. It is difficult to construct an adjusted p-value for this test
statistic (e.g., Bonferroni) because it is unknown a priori howmany tests (or steps) will be run
using these algorithms.

A method of valid post-selection inference or “PoSI” has been proposed in the literature
(Berk et al., 2013). This method adjusts the standard errors for variables chosen by vari-
able reduction techniques. However, the dataset is required to implement their method and
it is limited to scenarios with less than 20 predictor variables (computation time restraint).
Although the method may be helpful, it can be difficult to implement.
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2.4. Forward stepwise

Perhaps the most common variable selection strategy for logistic regression is to use a
statistically automated process which tests all (or several) combinations of potential predictor
variables and chooses the best model for you. For instance, in epidemiology journals, step-
wise selection methods were reported as the predominant method for variable selection
(Walter and Tiemeier, 2009). In the forward stepwise method, the process involves a series
of steps. In step one, all single variable models are run in order to see which variable is
the best predictor on its own. In step two, all two variable models are tried after retaining
the variable selected from step one. The process is repeated until adding extra variables
does not improve the AIC or other fit criteria (Efroymson, 1960). Although many statisti-
cians are aware of the limitations of implementing this method, this unadjusted procedure
is routinely (if not prominently) implemented in the research community. One reason
may be that it is widely taught in introductory regression courses without mentioning its
limitations. It is also available and easy to implement in all standard statistical software
packages. Other reasons for its popularity may include the ability for the researcher to feed
in all variables without much thought, the speed at which the final model is produced,
and because of the seemingly high accuracy and statistically significant p-values it typically
produces.

2.5. Cross-validation

Cross-validation for forward stepwise models can provide a better estimate of prediction to
external samples because the data for which the model was constructed are not included in
the assessment of model performance. However, if the available dataset is small, there may be
no sizable cross-validation set. The concept of leave-one-out cross-validation (LOO-CV) was
introduced by Mosteller and Tukey (1968).

The approach has been extended to k-fold cross-validation, in which instead of one value
being removed at a time, the dataset is split up into k partitions. If we set k equal to 10,
the algorithm splits the dataset into 10 equal subsets and uses 9 of the subsets to build a
model and predict values in the 10th subset. The process is then repeated 9 times, omit-
ting a different subset each time. Classification ability for the “hold out” 1/10 part of the
samples is then computed and averaged. This technique often gives some level of com-
fort to researchers because they assume this solves the variable selection bias problem,
thinking that their results can better generalize to the population of interest. We assessed
our stepwise models with both leave-one-out and 10-fold cross-validation. Although cross-
validation techniques can be extended to other selection strategies, they are often not
reported.

2.6. Best subsets

Best subsets is a technique which is similar to forward stepwise, except instead of selecting
variables in a series of steps, it models all possible combinations of variables (Hosmer et al.,
1989). The process includes fitting every one variable model, two variable model, three vari-
able model, and so on. The total number of models assessed will be 2m −1 where m is the
number of predictor variables. With only five variables, there are 31 models to test and with
ten variables, there are 1023 models. An advantage of this approach is that all possible com-
binations of variables are given a chance to appear together. An obvious disadvantage is that
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the computation time required when m is greater than 10 can be quite large. The final model
is chosen by observing the minimum AIC or other fit criteria from all models. This method
has high potential for variable selection bias.

2.7. LASSO

A solution proposed by Tibshirani to the variable selection problem is the least absolute
shrinkage and selection operator (LASSO) selection technique (1996). LASSO is a reg-
ularization procedure which places a bound on the sum of the absolute values of the
regression coefficients, shrinking them towards zero with some being exactly zero. The
shrinkage is controlled by the regularization parameter, λ, which is commonly chosen
with cross-validation. LASSO has been shown to perform quite well in small datasets
and likely better than stepwise (Steyerberg et al., 2000). Implementing the LASSO pro-
cedure generally does not generate test statistics/p-values for the coefficient estimates
although recent methods have been proposed (Lockhart et al., 2014). The predicted prob-
abilities from the model coefficients produced by LASSO can be extracted and those
can be used to generate ROC curves and significance can be assessed as described
earlier.

2.8. Method

The goal of our simulation was to assess the frequency of convergence problems, the rate at
which any noise predictors are selected, and to compute the FWER. We evaluated forward
stepwise, best subsets, and LASSO variable selection techniques. From the simulation results,
AUC thresholds which control the FWER at our chosen alpha level of 5% were tabulated and
plotted.

The first input for the simulation is the sample size, which we define as the number of
events and equal number of non-events (total sample size= 2E). The other inputs include the
number of noise predictor variables and selection technique (Table 1). One thousand itera-
tions were performed for each combination of the simulation inputs setting α = 0.05 for each
model. Independent predictor variables were randomly generated from the standard normal
distribution for each of the 1,000 iterations of the simulation.

First, a dataset was simulated where Y is a 2E × 1 outcome vector and X is a 2E × m0
design matrix where E is the number of events and non-events andm0 is the number of noise
predictors. Forward stepwise, best subsets, and LASSO variable sectionmethods were run for
each of the 1,000 datasets and the AUCwas extracted from each of the final fittedmodels. The
95th percentiles calculated from the simulations serve as thresholds to control the FWER at
the pre-specified α level of 5%. Figures were constructed with number of events on the square
root scale for ease of interpolation.

Table . Methods table.

Parameters Number Description

Events (E)  Events and non-events (E= , , , ) Total Sample size= × E
Noise Predictors (m)  Number of potential noise predictor variables (m = ,,,,,)
Variable selection technique  Forward stepwise, Best-subsets, LASSO
Iterations  Simulations per each combination listed earlier
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Table . Simulation results and proposed critical values.

Inputs Stepwise Results LASSO Results

Eventsa
Predictor
variables

Failed to
converge

Noise predictors
chosenb Critical AUC

Critical AUC
with CVc

Noise predictors
chosenb Critical AUC

  % (–) . . (–) .
  % (–) . . (–) .
  % (–) . . (–) .
  % (–) . . (–) .
  % (–) . . (–) .
  % (–) . . (–) .

  % (–) . . (–) .
  % (–) . . (–) .
  % (–) . . (–) .
  % (–) . . (–) .
  % (–) . . (–) .
  % (–) . . (–) .

  % (–) . . (–) .
  % (–) . . (–) .
  % (–) . . (–) .
  % (–) . . (–) .
  % (–) . . (–) .
  % (–) . . (–) .

  % (–) . . (–) .
  % (–) . . (–) .
  % (–) . . (–) .
  % (–) . . (–) .
  % (–) . . (–) .
  % (–) . . (–) .

aTotal sample size= × Events.
bValues reported as Median (IQR).
c-fold cross-validation.

2.9. Software

All analyses were performed in R Version 3.1.2 (http://www.R-project.org) utilizing the fol-
lowing functions: bestGLM for bestsubsets selection, stepAIC for forward stepwise selection,
cvbinary for calculating cross-validated AUC values, Lroc and pROCfor calculating AUC val-
ues and confidence intervals, cv.glmnet for the LASSO technique, andmvrnormfor generating
the noise predictors. The source code is available upon request.

3. Results

We investigated three issues for each of the automatic variable selection techniques. The first
was quantifying how often themodels failed to converge. The secondwas observing the actual
FWER, that is, how often any noise predictors were selected. The third was assessing the num-
ber of models reported as statistically significant from the Wilcoxon test on the predicted
probabilities from the final chosen model when no included variables had been generated
to be predictive. More realistic thresholds for distinguishing real statistical significance com-
pared to software reported statistical significance were calculated for each of the different
modeling and design scenarios (Table 2).

3.1. Forward stepwise

The forward stepwise models often had convergence problems in situations where the num-
ber of predictor variables was similar to the sample size. For example, in forward stepwise

http://www.R-project.org
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Figure . The percent of models selecting one or more noise predictor variables for Stepwise and LASSO.
The % confidence interval for these points gives a margin of error around+/− %.

simulations with E= 10, 32% of models with 10 predictors failed to converge and the propor-
tion which failed to converge jumped up to 65%, 86%, and 99% for 15, 20, and 50 predictors,
respectively (Table 2). The other scenarios converged most of the time.

The number of noise predictors selected by forward stepwise was exceedingly high, indi-
cating inadequate control of the FWER. With only three predictor variables, 40%–50% of the
stepwise models selected at least one of the predictors across all sample sizes we modeled
(Fig. 1). With five predictors, the percent of models with any noise predictors was around
60%. When we modeled 10, 15, 20, or 50 predictors, over 80% of the models included some
noise predictors. One hundred percent of themodels with 50 predictors across all sample sizes
included at least one noise predictor.When testing even a small number of predictor variables,
the percent of models selecting at least one of them was high. Whenever possible, the poten-
tial pool of predictor variables should be carefully considered and reduced in number before
the stepwise process is implemented.

Another way to define the FWER is to be the percentage of fitted models reported to have
a statistically significant AUC from the Wilcoxon Test. With only 3 noise predictors, the pro-
portion of fitted models which were reported as statistically significant was around 20% for
the 4 different sample sizes (Fig. 2). We observed a steady 10–20% increase in the proportion
reported as significant as the number of predictors rose to 5, 10, 15, and 20. With 50 predic-
tors, 100% of the scenarios incorrectly reported statistically significant final models. Whether
we define the FWER to be any noise predictors selected or a statistically significant AUC of
the fitted model, the FWER was well above 5%.

3.2. Cross-validation

The cross-validated stepwise AUC estimates were better than the unadjusted estimates, but
still too high. The leave-one-out and 10-fold cross-validatedAUCvalueswere nearly identical,
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Figure . The percent of models reporting a statistically significant AUC at an unadjusted ?level of . for
both Stepwise and LASSO. The % confidence interval for these points results in a margin of error around
+/− %.

so we only presented the critical values for 10-fold CV (Table 2). The difference between the
95th percentiles of the unadjusted and CV adjusted AUC values was about 0.10 across all
simulation scenarios. Using cross-validation did not fix the variable selection bias problem,
but it did reduce the effect of variable selection bias compared to the unadjusted AUC.

3.3. Best subsets

The best subsets method yielded nearly identical results to forward stepwise in terms of con-
vergence failures, variable selection, and critical value estimates for the AUC (results not
shown). The average difference between the critical AUCs was about 0.01 between the two
methods. The number ofmodels run in the best subsets algorithm ismuch larger and requires
a lot more computation time than forward stepwise, yet produces similarly poor results.

3.4. LASSO

Using the forward stepwise or best subsets method in these scenarios led to serious conver-
gence problems, the selection of many noise variables, and far too many final models incor-
rectly reported as statistically significant. The cross-validation did not help correct the over
optimism much either. However, LASSO does not have the same convergence problems as
forward stepwise due to its regularization properties.

LASSO did better in terms of selecting fewer noise predictors than forward stepwise. The
median number of noise predictors chosen by Stepwise ranged from 0 to 13 across all scenar-
ios, whereas for LASSO the median number of predictors chosen was always 0 (Table 2). The
proportion of models selecting any noise predictors was roughly half of the forward stepwise
models across all scenarios (Fig. 1). In the most extreme cases with 50 predictor variables, all
(100%) stepwise models selected at least one noise predictor. However, LASSO only selected
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Figure . For the scenario with  events and  predictor variables the distribution of the AUC is plotted for
both Stepwise and LASSO for the same , datasets. The critical value (th percentile) for each method
is shown by the dashed line.

a noise variable in 35%–40% of those specific simulations. Furthermore, the 95th percentiles
of the AUC estimates for LASSO were similar to those for forward stepwise (Table 2). The
distribution of the AUC between the two techniques for a specific scenario is shown in Fig. 3.
Although the median and overall distribution of the AUC between the two methods is very
different, the 95th percentiles are similar (Stepwise: 0.87, LASSO: 0.85). Therefore, none of
the three methods performs well in terms of controlling the FWER.

3.5. Application

In order to compare the critical AUC estimate from our simulation with a critical AUC
estimate from a permutation test, we analyzed two cancer biomarker examples. Our first
example has 10 biomarkers measured in 20 cancer and 20 control samples (E = 20).
After running the forward stepwise procedure, two predictors were selected for the model
resulting in an observed AUC of 0.78 and a reported p-value of 0.002 (10-fold CV AUC
of 0.70). We performed a specific simulation for this case by specifying m0 = 10 and
E = 20, resulting in an estimated 5% critical AUC of just under 0.87. More generally,
we can use interpolation with Fig. 4 and estimate the 5% critical AUC for this scenario
to be around 0.85. The permutation test performed for this example resulted in a 95th
percentile for the AUC of 0.83. For this study we would be skeptical of the significance
of the observed model since the AUC of 0.78 fell below the simulated 5% critical value,
suggesting that the set of markers may not be informative for discrimination in cancer status.
This study was the scenario used in Fig. 3, which illustrates the higher frequency of no
variables selected (AUC = 0.50) for LASSO, while the 95th percentile remains about the
same.

The second example includes 15 biomarkers with 30 cases and 30 controls (m0 = 15 and
E = 30). The forward stepwise procedure was run resulting in a final model with 1 variable
selected and an AUC of 0.71 with a reported p-value of 0.006 (10-fold CV AUC of 0.63). The
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Figure . Our adjusted critical AUC valueswhichwould control the FWERat ?= . for Stepwise and LASSO.
The  noise predictor scenario was added to this figure to show the unadjusted or naive significance level
assuming no variable selection bias.

exact case specification yielded a simulated critical AUC of 0.85 with Fig. 4, also giving a value
near 0.85 using interpolation. The permutation test resulted in a critical AUC of 0.83. Again
our conclusion would be to view this final model skeptically because 0.71 failed to surpass the
threshold.

The permutation test yielded approximately the same critical AUC values as our tables.
For both examples, the simulated critical values between the exact scenarios and closest ones
provided in Table 2 and Fig. 4 were essentially the same. The distribution of the AUC for the
stepwise simulations looked very similar to the distribution from the permutation test. Our
tables provide similar information to the permutation test without needing to obtain the data
or running the specific test ourselves.

The critical values in Table 2 and Fig. 4 can be used to give a better assessment of true sig-
nificance without relying on obtaining the specific dataset. Scenarios not directly simulated
may be interpolated from Fig. 4 or determined from the code accessible in the uploaded dig-
ital content portion of the journal. This result gives researchers a tool to quickly assess the
significance and believability of studies using variable selection algorithms.

3.6. Limitations

Although our method controls the FWER, there are limitations. Our method was only tested
with an equal number of events and non-events. The predictor variables were all generated
to be independent and normally distributed which is often not true in biomarker research.
However, for two application problems which included correlated and skewed markers, our
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method gave similar critical values to the permutation test, which does account for the
correlation structure of the predictor variables because only the outcome variable is permuted.
The AIC was used as the information criterion, and others such as BIC and AICC were not
explored. We presented several common selection techniques, but many more exist such as
least angle regression (LARS), classification and regression trees (CARTmodels), neural net-
works, Dantzig selector, elastic net, gradient boosting, and support vector machines (SVM),
to name a few. However, we wanted to present critical values for relatively simple techniques
standardly used by clinical researchers and not focus on finding the “best” and most current
method.

4. Conclusion

We have found that using automated variable selection techniques often leads to artificially
high AUC values when the generated predictor variables have no underlying predictive
ability. Cross-validation methods and more recent selection strategies (LASSO) helped
slightly, but did not overcome this problem. We have demonstrated for many common
scenarios that the traditional statistical significance level reported for the AUC in a logistic
regression model after variable selection is inaccurate and should not be relied upon. Many
statisticians recommend that researchers should not to use automated methods but these
methods are still frequently implemented. Therefore, the tables and figures presented in
this article are relevant because they better control the FWER at a pre-specified alpha level
of 0.05.
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