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ABSTRACT
In this article we propose methodology for inference of binary-valued
adjacency matrices from various measures of the strength of asso-
ciation between pairs of network nodes, or more generally pairs of
variables. This strength of association can be quantified by sam-
ple covariance and correlation matrices, and more generally by test-
statistics and hypothesis test p-values from arbitrary distributions.
Communitydetectionmethods suchasblockmodeling typically require
binary-valued adjacency matrices as a starting point. Hence, a main
motivation for the methodology we propose is to obtain binary-valued
adjacency matrices from such pairwise measures of strength of asso-
ciation between variables. The proposed methodology is applicable to
large high-dimensional data sets and is based on computationally effi-
cient algorithms. We illustrate its utility in a range of contexts and data
sets.

1. Introduction

Networks and other non Euclidean relational data sets have become important applications in
modern statistics. Key considerations include balancing statistical fidelity with computational
tractability. Much effort has gone into developing parametric models for networks which
take account of such considerations, typically by specifying both node-specific effects such as
degree, and grouped-node effects such as community structure (Holland et al., 1983; Bickel
and Chen, 2009; Rohe et al., 2011; Qin and Rohe, 2013; Wilson et al., 2013). One of the most
widely studied of these models is the stochastic blockmodel in which (under the assortative
assumption) there is a greater probability of observing an edge (or interaction) between a
pair of nodes (or entities) if they are in the same block, or community. Practical approaches
to finding communities in social and biological networks have been studied for many years
(Girvan and Newman, 2002), and real-life examples of this problem include identifying
groups of friends in social networks, and identifying functional subnetwork modules in
biological networks. In the biological setting, considering groups of genes defined together as
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subgraphs can lead to increases in statistical power, aiding discovery of biological phenomena
(Li and Li, 2010; Peng et al., 2010; Jacob et al., 2012).

There are important differences between community detection and clustering. A com-
munity within a network typically refers to a grouping of entities with a strong tendency for
direct interaction within the group, such as a friendship group in a social network. On the
other hand, a cluster typically refers to a group of variables which are highly correlated, but
these variables do not necessarily represent entities which interact directly. However, prac-
tical application of community detection and clustering methodologies often yields similar
results. The stochastic blockmodel is an efficient method to detect communities in networks,
and more generally it can be used to cluster together variables with correlated observations.
However, most of the important theoretical understanding of the stochastic blockmodel
has been developed under the assumption of a binary-valued relationship between the
network nodes (Holland et al., 1983; Bickel and Chen, 2009; Rohe et al., 2011; Qin and Rohe,
2013; Wilson et al., 2013; Olhede and Wolfe, 2014). This relationship corresponds to the
presence and absence of network edges between these nodes, and is typically represented
by 1s and 0s (respectively) in an adjacency matrix. If such theoretical understanding is
to be relevant to the use of community detection/the stochastic blockmodel as a means
of clustering, the data to be clustered must first be transformed into this binary-valued
format.

The methodology that we propose in this article allows a binary-valued adjacency matrix
to be estimated based on association matrices composed of sample covariances, or correla-
tions, or test statistics from arbitrary known or unknown distributions. This binary-valued
adjacency matrix is then an ideal summary of the relational data set on which to carry out
community detection. Hence, the main motivation of this article is to propose methodology
to allow continuous-valued statistics whichmeasure the strength of association between pairs
of variables to be transformed into a binary-valued adjacency matrix format, for use in com-
munity detection. In this format, 1s and 0s can be considered to represent variables which are
and are not correlated, respectively.

If a binary-valued adjacency matrix is used to define pairs of variables which are corre-
lated, and other pairs of variables which are not correlated, then the zero entries in this matrix
define pairs of variableswhich are independent. This relates closely to the “probabilistic graph-
ical model” (Koller and Friedman, 2009) paradigm, in which a joint probability distribution
over a large number of variables is made tractable by taking advantage of independencies
between pairs of variables as specified by the graphical model. These ideas are also closely
related to thresholding a covariance matrix to a sparse representation (Bickel and Levina,
2008; Rothman et al., 2009; Bien and Tibshirani, 2011), where again 0s in the sparse repre-
sentation imply independent pairs of variables. Sparse multivariate methods such as the lasso
(Tibshirani, 1996) are also popular for obtaining sparse representations via linear modeling,
and can be extended to networks data via the graphical lasso (Friedman et al., 2008). How-
ever the methodology proposed in this article offers two main advantages over the lasso in
this context. Firstly, the computational implementation is via a closed-form expression and
therefore it is much quicker than the iterative procedures required by the lasso. Secondly, the
mixture-modeling strategy we employ is precisely specified for the problemwe consider here,
unlike the lasso.

This article is organized as follows. In Section 2we define notation and present themethod-
ology and practical details for its usage and implementation. Then in Section 3, we present
examples to illustrate the performance of this methodology, including a simulation study and
several real data sets from different contexts.
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2. Proposedmethodology

We start this section by specifying the model which we will use to estimate the adjacency
matrix A.

Definition 1. For m ∈ N
+ define the set of network nodes {1, . . . ,m}, and for each node

i define a corresponding variable xi. Let zi j represent an observed measure of associa-
tion/dependence between variables xi and x j, where

zi j ∼ N (
μi j, σ

2)
Let A ∈ {0, 1}m×m be an adjacency matrix, the elements of which satisfy

Ai j =

⎧⎪⎪⎨
⎪⎪⎩

0, if there is no edge between nodes i and j, implying
that the variables xi and x j are independent

1, if there is an edge between nodes i and j, implying
that the variables xi and x j are not independent

and letw = p(Ai j = 1). Then, the observedmeasures of association zi j may bemodeled using
the mixture distribution:

zi j ∼ (1 − w) · N (
0, σ 2) + w · N (

μi j, σ
2) (1)

In Section 2.1 we describe how to calculate the observed measures of associa-
tion/dependence zi j from sample covariance/correlation matrices. Then, in Section 2.2, we
describe the equivalent calculations based on test statistics from arbitrary or unknown dis-
tributions. Next, in Section 2.3 we describe how the model of Definition 1 can be fitted, and
how the adjacency matrix Â can be estimated from the fitted model. Then in Section 2.4, we
discuss community detection based on Â.

2.1. Applying themodel to a covariance/correlationmatrix

We can estimate an adjacencymatrix from a sample covariance or correlationmatrix by fitting
the model of Definition 1 by starting with the following procedure. Equation (2) defines the
sample covariance matrix �̂ for the m variables represented by the vector x, x1, . . . , xm, for
samples x(k), k = 1, . . . , n:

�̂ = 1
n

n∑
k=1

(x(k) − x̄) (x(k) − x̄)T , where x̄ = 1
n

n∑
k=1

x(k) (2)

By dividing each row and each column of �̂ by the square roots of the corresponding elements
of the leading diagonal, we obtain the sample correlation matrix r̂:

r̂ =
(
diag(�̂)

)−1/2
�̂

(
diag(�̂)

)−1/2

The (i, j)th element of r̂, i.e. r̂i j, is the Pearson correlation coefficient between variables xi
and x j. If xi and x j are jointly normally distributed, and the {xi(k), x j(k)}, k = 1, . . . , n, sam-
ples are independent, the Fisher transform (Fisher, 1915) converts r̂i j to the approximately
normally distributed variable zi j:

zi j = 1
2
ln

(
1 + r̂i j
1 − r̂i j

)
(3)
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where

zi j
approx∼ N

(
1
2
ln

(
1 + ri j
1 − ri j

)
,

1
ν − 3

)

where ri j is the true correlation coefficient between variables xi and x j, and ν is the degrees
of freedom. Hence, we can model the Fisher-transformed sample correlation coefficients zi j
with the mixture model of Equation (1), also with

μi j = 1
2
ln

(
1 + ri j
1 − ri j

)
and σ 2 = 1

ν − 3
(4)

2.2. Applying themodel to test statistics from arbitrary distributions

We can also estimate an adjacency matrix by fitting the model of Definition 1 when the asso-
ciation between variables xi and x j is assessed by a test-statistic from an arbitrary distribu-
tion expressed as a hypothesis-test p-value. Such p-values may result from test-statistics from
any known distribution, or may even be derived from an unknown distribution, for exam-
ple by Monte-Carlo simulation. We can represent these p-values in the matrix P, where pi j is
the estimated probability of observing the association test-statistic for the pair of variables xi
and x j under the null hypothesis H0 that there is no association between xi and x j (i.e., they
are independent). Assuming these p-values arose from upper-tailed tests, we can apply the
inverse-normal transformation as follows:

zi j = �−1 (
1 − pi j

)
(5)

with an equivalent expression available for lower-tailed tests. Applying this transformation is
equivalent to applying quantile normalization, mapping the null distribution of pi j onto the
standard normalN (0, 1) distribution. Hence, after applying this transformationwe can again
fit the mixture model of Definition 1, and use this model fit to infer the estimated adjacency
matrix Â.

2.3. Model fitting and adjacencymatrix inference

We propose fitting the model of Definition 1 with an empirical Bayes procedure used previ-
ously for thresholding (Johnstone and Silverman, 2004). This method is based on a mixture
prior over μi j, with a Laplace density for the non zero mean component.

Definition 2. Withμi j andw given byDefinition 1, let γ (·) represent the Laplace distribution
probability density function with spread parameter a:

γ
(
μi j

) = a
2
exp

(−a
∣∣μi j

∣∣)
Then, the mixture prior over μi j is defined as

fprior
(
μi j

) = (1 − wi) δ
(
μi j

) + wiγ
(
μi j

)
Typically the Laplace spread parameter is taken as a = 0.5. If the mixture components

have Gaussian likelihoods fN (·|μi j, σ
2) as in Definition 1, it follows from Definition 2 that

the posterior density over the observed measures of association zi j is

fposterior
(
μi j

∣∣zi j) = (1 − wi) δ
(
μi j

)
fN

(
zi j

∣∣0, σ 2
) + wiγ

(
μi j

)
fN

(
zi j

∣∣μi j, σ
2
)

fmarginal
(
zi j

)
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where the marginal density is

fmarginal
(
zi j

) = (1 − wi) fN
(
zi j

∣∣0, σ 2) + wig
(
zi j

)
(6)

where g(μi j) is the convolution of the Laplace density with the standard normal density. Com-
paring the expression for fmarginal(zi j) in Equation (6) with Equation (1), we see that the nor-
mally distributed non zero mean mixture component in Equation (1) is replaced with the
convolution of this Laplace and normal densities in Equation (6). If a Gaussian prior were
used here instead of the Laplace prior, then the marginal density in Equation (6) would be
exactly the same as Equation (1). However, as noted previously (Johnstone and Silverman,
2004), this empirical Bayes procedure requires a prior with tails that are exponential or heav-
ier. Hence we use, as previously, the Laplace rather than a Gaussian prior. We note that this is
a slight model mis-specification.

This procedure results in a separate model being fitted to each pair of variables (xi, x j),
based on the corresponding observed statistic zi j. This methodology was originally developed
to be applied to vector data (in the form of wavelet coefficients) (Johnstone and Silverman,
2004). Because the dependency structure of matrix data (such as covariance or correlation
matrices) may be different to that of vector data, we apply the model fitting to each row of
the association matrix, i.e., a vector, separately. As the association matrices under consider-
ation are symmetric, this is equivalent to applying the method to both rows and columns of
the matrix. We then take a conservative estimate, only inferring an edge in the network when
there is agreement between the result of model fitting with respect to both rows and columns
of the association matrix. Applying the methodology in this way results in a common weight
wi being used for all models corresponding to each xi. This estimate of wi is found as the
value which maximizes the marginal likelihood (Equation (7)) of the observed statistics zi j
over all the pairwise comparisons of xi with x j, j �= i. This allows the model for each pair-
wise comparison (xi, x j) to “borrow strength” from all the other comparisons (xi, x j′ ), j′ �= i,
j′ �= j:

ŵi = argmax
w

∑
j �=i

log
{
(1 − w)φ

(
zi j

) + wg
(
zi j

)}
(7)

For a particular xi, if zi j are mostly close to 0 then wi will be set low, which means that fewer
edges (Ai j = 1) will be detected: this corresponds to i being a low-degree node. If for a dif-
ferent xi, the zi j are generally further from 0, then ŵi will be set high, which corresponds to
more edges being detected: this corresponds to i being a high-degree node. Hence, setting ŵi

separately for each variable xi allows adaptation to a heterogenous degree distribution in A.
As in the original use of this methodology (Johnstone and Silverman, 2004), we use the

posterior median to calculate μ̂i j. Based on this, we can estimate the corresponding adjacency
matrix entry Ai j as

Âi j = 1 if
∣∣μ̂i j

∣∣ > 0 (8)

Âi j = 0 otherwise

We make the conservative estimate of Ai j discussed above as follows:

Âi j = 1 if
∣∣μ̂i j

∣∣ > 0 and
∣∣μ̂ ji

∣∣ > 0
Âi j = 0 otherwise
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We note that requiring agreement between |μ̂i j| > 0 and |μ̂ ji| > 0 is likely to result in
decreased sensitivity: this point is discussed further in Section 3.1 in the context of the simula-
tion study. The spread parameter a in the Laplace prior is set as standard as a = 0.5 (Johnstone
and Silverman, 2004). However, for additional model flexibility where needed, a can also be
estimated by marginal maximum likelihood, in which case we estimate ai separately for each
variable xi, simultaneously with wi.

2.4. Community detection

Having inferred Â, community detection (Girvan and Newman, 2002) may then proceed by
fitting the degree-corrected stochastic blockmodel (Holland et al., 1983; Bickel and Chen,
2009; Rohe et al., 2011; Qin andRohe, 2013) directly to Â. However, to fit the degree-corrected
stochastic blockmodel the number of communities in the model, T , must first be specified;
this number can be estimated by the “network histogram” method (Olhede andWolfe, 2014).
Using this estimate of the number of communities, we infer the set of communities Ĉ based on
Â, such that a community ĉt ∈ Ĉ, t ∈ {1, . . . ,T}, is a group of variables xi, i ∈ ĉt . Such a com-
munity ĉt would correspond to an unexpectedly large number of non zero entries |�̂i j| > 0
of the sample covariance matrix �̂ for pairs of variables xi and x j where i ∈ ĉt and j ∈ ĉt .
Alternatively, the community ĉt would correspond to an unexpectedly large number of sig-
nificant p-values pi j in the matrix P for pairs of variables xi and x j again with i ∈ ĉt and
j ∈ ĉt .

3. Examples

In this section, we present the results of applying the methodology proposed in Section 2
to simulated data, and to publicly available data sets relevant to genomics and consumer-
product reviews. For each data set, we carry out network inference as described in Sections
2.1–2.3 resulting in a binary-valued adjacency matrix. To each such adjacency matrix, we fit
the degree-corrected stochastic blockmodel, by regularized spectral clustering (Holland et al.,
1983; Bickel and Chen, 2009; Rohe et al., 2011; Qin and Rohe, 2013). Spectral clustering is in
general computationally intensive, as it requires the singular value decomposition (SVD) of a
large matrix. However, the network inference described in Sections 2.1–2.3 provides us with
a sparse binary-valued adjacency matrix, and efficient computational methods exist to find
the top few components in the SVD of large sparse matrices (Sørensen, 1992; Lehoucq and
Sørensen, 1996). Hence, as we only require as many SVD components as the number of com-
munities or clusters we are trying to find (which tends to be two or more orders of magnitude
smaller than the dimension of the adjacency matrix,m), these efficient computational meth-
ods can be used here. Relevant software implementations of these methods are included in
Matlab and R, meaning that this methodology is practical for large data sets, and is quick to
implement for many end-users.

3.1. Simulation study

We first carried out a simulation study to assess the effectiveness of our network inference
methodology in the context of generated networks with known community structure. A gen-
erative model for exchangeable random networks with heterogenous degrees is the logistic-
linear model (Perry and Wolfe, 2012). We use a version of that model here with community
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structure added, defined as

Logit
(
pi j

) = αi + α j + θi j

where pi j defines the probability of an edge being observed between nodes i and j. We choose
to use thismodel, because the parameters can take any real values, while the edge probabilities
pi j are guaranteed to lie between 0 and 1. This model only deviates from the equivalent log
model when the parameter values become very large – it is this effect that prevents pi j from
reaching (and exceeding) 1. The node-specific parametersαi, i ∈ 1, . . . ,m, are elements of the
parameter vector α which defines a power-law degree-distribution for the nodes. Each αi is
generated as the logarithm of a sample taken from a bounded Pareto distribution (Olhede and
Wolfe, 2012). We note that because our αi are chosen to be random, our generated networks
are exchangeable (Kallenberg, 2005), whereas if the elements of α were defined determinis-
tically, these networks would instead be generated under the inhomogenous random graph
model (Bollobás et al., 2007). The community parameter θi j is allowed to take two values:
θi j = θin if i and j are in the same community, and θi j = θout otherwise. We choose to con-
strain θi j in this way because it is a simple means of adding community structure, and it is
equivalent to a modeling constraint which improves parameter identifiability in some formu-
lations of the stochastic blockmodel (Newman, 2013). After generating the pi j, the network
is generated by sampling each Ai j according to the law of

Ai j ∼ Bernouilli
(
pi j

)
The communities themselves are planted in the network as randomly chosen groups of 150
nodes. We set the number of communities k = 20, and hence the generated networks each
comprisem = 3000 nodes.

Having generated a network with known ground-truth community structure in this way,
we use it to randomly generate a sample correlationmatrix r̂, fromwhich we attempt to repro-
duce the known community structure. To do this, we first generate a random sample covari-
ance matrix Ŝi j for each pair of nodes i and j, according to

Ŝi j ∼ Wishart (S, ν)

where

S =
(
1 rgen
rgen 1

)

if Ai j = 1, where rgen is the model generative correlation coefficient, and

S =
(
1 0
0 1

)

if Ai j = 0, and ν is the degrees of freedom. We then calculate the estimate of the sam-

ple Pearson correlation coefficient r̂i j for nodes i and j as r̂i j = (Ŝi j)12/
√

(Ŝi j)11 × (Ŝi j)22 =
(Ŝi j)21/

√
(Ŝi j)11 × (Ŝi j)22. With all elements of r̂ generated in this way, with r̂i j = r̂ ji and

r̂ii = 0 for i, j ∈ {1, . . . ,m}, we proceed with network inference and community detection
according to the methodology set out in Section 2.

We test the proposed methodology on networks generated with values of
θin ∈ {50, 30, 20, 10}, which correspond to within-community edge density ρin ∈
{0.81, 0.34, 0.15, 0.039}. For all networks, we set θout = 1, corresponding to between-
community edge density ρout = 0.0013. We generate sample covariance matrices with
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rgen ∈ (0, 1], and degrees of freedom ν ∈ {50, 100, 200}. For each combination of parame-
ters, we carry out 50 repetitions of network generation followed by network inference and
community detection. These repetitions enable assessment of the variability of the accuracy
of the network inference. To compare detected communities in the inferred network with
the ground-truth planted communities, we use the normalized mutual information (NMI)
(Danon et al., 2005). The NMI assesses the numbers of nodes which appear together in
the detected communities, compared with whether they appeared together in the planted
communities (adjusted for group sizes). The NMI takes the value 1 if the communities are
perfectly reproduced in the community detection, and 0 if they are not reproduced at all, and
somewhere in between if they are partially reproduced.

The results of the simulation study are shown in Figure 1. The accuracy of reproduc-
tion of the ground-truth community structure is high (as evidenced by NMI values close
to 1), if the generative correlation coefficient rgen is sufficiently large. There is rapid deteri-
oration of performance below the optimal range of rgen, and when rgen is sufficiently low, no
edges are detected. In this regime, the non zero mean component of the generative mixture

Figure . Simulation study: performance of proposed methodology. Normalized mutual information (NMI)
compares detected community structure with ground-truth planted communities. Each line corresponds to
a different within-community edge density; these are set as ρin ∈ {0.81, 0.34, 0.15, 0.039} by setting θin ∈
{50, 30, 20, 10}. The degrees of freedom, ν, are set as ν ∈ {200, 100, 50}. For each network, the number of
nodesm = 3000, the ground-truth number of communities is k = 20, and the between-community edge
density is set as ρout = 0.0013 by setting θout = 1. Dashed lines indicate quartiles.
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model is centered sufficiently close to 0 that the zi j from this component become categorized
together with those from the zero-mean mixture component. The result is that the model
fitting effectively assigns all zi j to the zero-mean component. However, as long as the genera-
tive correlation coefficient rgen is sufficiently large, the method performs well even with fairly
sparse within-community edge density in the ground-truth planted communities. Typically,
the method fails when rgen falls below roughly 0.45, 0.35, and 0.25 for ν = 50, ν = 100, and
ν = 200, respectively. In the regime where the method is close to failing, there is an apparent
increase in performance before complete failure, which manifests as the spikes in NMI val-
ues seen in Figure 1 in the range 0.3 < ρgen < 0.4. This phenomenon occurs because in this
regime, there is a transition from mainly larger communities being detected to many more
smaller communities being detected, as evidenced by a decrease in the mode of the distribu-
tion of detected community sizes (Figure S1). Community size is initially maintained in this
regime as ρgen is decreased below 0.4, and the corresponding decline in performance occurs
because these larger communities only partially overlap with the ground-truth communities.
As ρgen is decreased further and gets close to the point where the methodology will fail com-
pletely, fewer edges are detected overall leading to the larger communities breaking up into
many small communities. These small communities are mostly subsets of the ground-truth
communities, and this is reflected in the higher NMI values. As ρgen is decreased beyond this
regime, no edges are detected and the method fails completely. We also note that for large val-
ues of rgen, the performance of the methodology is slightly worse for the largest values of ρin.
The planted ground-truth communities each comprise 150 nodes, and this decrease in per-
formance occurs because in this regime several of these communities coalesce in the inferred
network to form a much larger connected component (Figure S2). This is likely to be due
to the higher false-positive rate in this regime (Figure S4) leading to spurious connections
between communities.

The thresholding methodology that underlies the proposed methodology of Section 2.3
was originally developed in the context of thresholding data vectors (Johnstone and Silver-
man, 2004). Applying this methodology to relational data matrices such as covariance and
correlation matrices is complicated by the presence of additional dependency structure, and
to mitigate spurious detection, the conservative adjacency matrix estimate of Equation (9)
is used. To check the performance of the methodology in this context of adjacency matrix
thresholding against the intended vector thresholding application, we carried out comparative
true positive rate (sensitivity) and false positive rate (1-specificity) analyses. For these analyses
the same simulated data are considered as presented in Figure 1, and the results appear in the
supplement in Figures S3 and S4. True and false positive rates are calculated for the adjacency
matrix inference presented in Sections 2.1–2.3, and these results are labeled “matrix” in Fig-
ures S3 and S4. The equivalent results based on Equation (8) are also recorded for each row of
the thresholded adjacency matrix before applying the conservative estimate of Equation (9),
and the means of these over each row of the adjacency matrix are also shown in Figures S3
and S4 and labeled “vector”. The true positive rate is only slightly lower for adjacency matrix
inference than for vector thresholding, except when ρin is lowest. The false positive rate is
close to 0 in all cases, although it is apparently sufficiently great for the largest values of θin
and ρin to cause spurious coalescence of some communities, as discussed.

3.2. Comparisonwith popular clusteringmethods

The clustering problem is fundamentally different to that of community detection, although
there are nevertheless many similarities. The basic task of clustering is to group together enti-
ties (usually variables or samples) based on their similarity or distance from one another in
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observation space, which can be assessed by, for example, Pearson correlation.When the enti-
ties being grouped are nodes in a network, the problems of clustering and community detec-
tion are very similar. In this study, we infer binary-valued networks from continuous data
before carrying out community detection. However, a number of popular methods provide
alternative means of clustering entities into groups (which may be considered equivalent to
communities) based on continuous data.

A method of clustering which is very popular across the biological and social sciences is
hierarchical clustering. In thatmethod, variables or samples are grouped together according to
their distance from one another. A popular measure of distance between a pair i and j of such
variables or samples is 1 − |r̂i j|, where |r̂i j| is the absolute value of the Pearson correlation
coefficient between i and j estimated from the available observations. Hence, this method
can be easily applied to data of the type presented here (without carrying out the network
inference presented in Section 2.3). We tested this method on the simulated data presented in
Section 3.1, by applying hierarchical clustering to the generated sample correlation matrix r̂
before comparing the detected clusters with the planted communities. However, we found that
in every case, the result of this comparison was an NMI value close to 0. Therefore, we may
conclude that hierarchical clustering performs significantlyworse than themethods presented
here on problems of this type.

One of the most popular clustering methods is K-means. In that method samples (which
may be thought of as equivalent to network nodes) are grouped into K clusters based on their
location in N-dimensional space. On its own, this method is fundamentally ill-suited to net-
work data because of the high dimensionality of the problem. However, K-means clustering
is often used in spectral clustering after dimension reduction by SVD: we use that method
of spectral clustering in this article to fit the stochastic blockmodel. Spectral clustering can
also be used to cluster continuous data, and so for comparison we have applied regular spec-
tral clustering (without carrying out the network inference described in Sections 2.1–2.3)
to the simulated data presented in Section 3.1. To do this, we applied spectral clustering as
described at the start of Section 3 directly to |r̂|, the absolute of the generated sample cor-
relation matrix (i.e., to continuous data). The absolute values are used to ensure that the
data are non negative, as required for spectral clustering (Von Luxburg, 2007). The results
appear in Figure 2. Spectral clustering applied directly to r̂ is generally less accurate (accord-
ing to the NMI) than if the network inference/thresholding of Sections 2.1–2.3 is first applied
(Figure 1). One exception when spectral clustering applied directly to r̂ is more accurate
occurs when rgen is lowest, as in that regime the problem of total failure of the network infer-
ence/thresholding (as discussed in Section 3.1) is avoided. Another such exception occurs
when ρin is highest and rgen is large. The reason is that in this regime, the phenomenon of the
ground-truth clusters/communities coalescing due to false positives caused by the network
inference/thresholding (also as discussed in section 3.1) is avoided. However in general, for
problems of the type presented here, applying the network inference/thresholding of Sections
2.1–2.3 prior to carrying out spectral clustering producesmore accurate results. Furthermore,
as this network inference/thresholding generally results in a sparse adjacencymatrix, it allows
use of efficient computational methods to find the top components in the SVD which are
required for spectral clustering.

3.3. Genomics example

We now give an illustrative example of a practical application of these methods to a stan-
dard problem in genomics. Community detection can be used to infer groups of genes that
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Figure . Simulation study: spectral clustering without network inference. Normalized mutual information
(NMI) compares detected community structure with ground-truth planted communities. Each line corre-
sponds to a different within-community edge density; these are set as ρin ∈ {0.81, 0.34, 0.15, 0.039} by
setting θin ∈ {50, 30, 20, 10}. The degrees of freedom, ν, are set as ν ∈ {200, 100, 50}. For each network,
the number of nodes m = 3000, the ground-truth number of communities is k = 20, and the between-
community edge density is set as ρout = 0.0013 by setting θout = 1. Dashed lines indicate quartiles.

comprise functional subnetwork modules, or groups of co-regulated genes. Examples of such
groups are found in gene regulatory networks and protein signaling networks (Shen-Orr et al.,
2002). Defining x(k) to be the gene expression measurements for sample k for the genes
x1, x2, . . . , xm, we calculate the covariance matrix according to Equation (2), and carry out
network inference as described in Sections 2.1–2.3. We note that the network edges detected
in this waymay be transitive edges, i.e., they do not necessarily represent physical interactions
between genes and gene products. To determine this would require additional functional data,
such as those relating toDNAbinding by gene products (e.g., transcription factors) (Jojic et al.,
2013). However, in general the groups of genes detected in this way can be expected to form
biologically meaningful subnetwork modules, generating biological hypotheses which may
justify further investigation by experimental scientists.

We carried out this process of network inference and community detection in gene expres-
sion data from 8 different types of cancer: brain, breast, colon, kidney, lung, ovarian, rectal,
and uterine (data source: The Cancer Genome Atlas Hampton, 2006). Each data set com-
prises gene expression measurements for 17,505 genes (i.e.,m = 17, 505). Figure 3 shows the
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Figure . Detected communities in a gene expression data set, relating to lung cancer. Entries in the adja-
cency matrix equal to  (representing a network edge) are colored blue, and detected communities are out-
lined in black.

inferred adjacency matrix after community detection for the lung cancer data set. The num-
ber of communities is estimated as 105 by the network histogrammethod (Olhede andWolfe,
2014) for this data set, and the edge density is ρ = 0.062 (which is typical of all 8 gene expres-
sion data sets).

We also tested the domain relevance of the communities detected in the inferred net-
works. We tested the overlap of the genes of each detected community separately with each
of 10,295 known gene groups (data source: http://www.broadinstitute.org/gsea/msigdb/). This
is known as “gene set enrichment analysis” (GSEA) (Subramanian et al., 2005). Table 1 shows
the percentage of the communities detected in each cancer data set which overlapped signifi-
cantly with at least one of these known gene groups. For this purpose, significance is assessed
by Fisher’s exact test, with the significance level set by FDR (false discovery rate) adjusted
p < 0.05. As a benchmark, we also sampled random groups of genes from the 17,505 genes
represented in the cancer data sets, and tested them for overlap with the same 10,295 known
gene groups. The number of genes in each random sample was itself randomly sampled from
the distribution of the sizes of the communities detected in the cancer data sets. We took
1000 randomly sampled groups of genes like this, of which 2% overlapped significantly with
at least one of the known gene groups. These results show a high level of domain relevance of
the detected communities, in all 8 genomics data sets analyzed here.

Table . Domain relevance of detected communities in the genomics example.

Breast Colon Brain Kidney Lung Ovarian Renal Uterine

% % % % % % % %

The table shows the percentage of the communities detected in each cancer data set which overlap significantly (Fisher’s exact
test, FDR-adjusted p < 0.05) with at least one known gene group.

http://www.broadinstitute.org/gsea/msigdb/
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Figure . Detected communities in the movie review data set. Entries in the adjacency matrix equal to 
(representing a network edge) are colored blue, and detected communities are outlined in black.

3.4. Consumer product review example

We now give a second, contrasting illustrative example of a practical application of these
methods to real data, based on a consumer-product review data set. We downloaded movie
review data from the Movie Lens database, which details 1,000,209 reviews of 3952 different
movies, by 6040 unique users who each provided at least 20 different reviews (data source:
http://grouplens.org/datasets/movielens/). Covariate information is also available, classifying
each user into one of 7 age groups and 20 professions; this can be used to verify the detected
communities/clusters.

http://grouplens.org/datasets/movielens/
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For each pair of users (i, j), we tested the overlap of the movies reviewed by user i with
the movies reviewed by user j with Fisher’s exact test. This provided an estimated p-value for
each pair of users pi j, under the null hypothesis that there is no significant overlap between
the movies reviewed by users i and j. These are a one-tailed test p-values corresponding to
an alternative hypothesis that there is more overlap between movies reviewed by users i and
j than would be expected by chance. Then, we applied the inverse normal transformation
to each pi j to obtain the values of zi j, and obtained the estimate of the adjacency matrix Â
as described in Sections 2.1–2.3. Using the network histogram method (Olhede and Wolfe,
2014), the optimal number of communities for the blockmodel was estimated as 125. How-
ever, the granularity of this estimate is much greater than that of the covariate information we
have available for verification of detected clusters. The network histogram method estimates
the optimal granularity for the stochastic blockmodel; however, we can also select a smaller
number of communities with which to fit the stochastic blockmodel, while noting that this
will not result in the optimal blockmodel as assessed by the mean squared integrated error
(MISE) (Olhede andWolfe, 2014). We selected 15 communities for the blockmodel, which is
of the same order as the number of covariate classes, but chosen to be less than the total num-
ber of classes to take account of the fact that many of these classes are overlapping. The edge
density ρ for the inferred adjacency matrix Â is calculated as ρ = 0.16, which is relatively
high.

Figure 4 shows the inferred adjacency matrix after community detection. The detected
communities are tested for overlap with the known covariate groups; those which overlap sig-
nificantly (Fisher’s exact test, FDR-corrected p < 0.05) are specified along themargin. Almost
all of the detected communities/clusters overlap with at least one covariate group, and several
communities/clusters overlap with multiple covariate groups. Where the overlap is with mul-
tiple covariate groups, there is generally an obvious link between these groups, such as similar
age groups, or professions which suggest similar demographic groups. These findings show
that this methodology is very effective in the context of this example, in which we obtain Â
from an arbitrary non Gaussian distribution, based on corresponding p-values of association
pi j between pairs of variables (xi, x j).

4. Conclusion

In this article, we have proposed methodology combining estimation of binary-valued adja-
cency matrices with community detection via the stochastic blockmodel, based on sample
covariance and correlation matrices or more general test statistics quantifying association
between pairs of variables. We have presented the theoretical basis for this proposed method-
ology, and provided practical details for its implementation. We have shown the accuracy of
this methodology in the context of a simulation study, and have shown its effectiveness in sev-
eral contexts based on multiple real data sets, with a range of sparsities. We have also shown
that this methodology performs better than popular clusteringmethods for discovering latent
groupings in data of the type presented here. An important point to note is that some network
edges inferred from the correlation structure of data as in themethodology proposed heremay
be what are often referred to as “transitive edges”; that is, an inferred edgemay not correspond
to a direct physical real-life interaction, instead deriving from some indirect interactionwhich
may alternatively bemediated via a less direct route through the network, possibly also involv-
ing unobserved variables. Interesting extensions to this methodology include consideration
of overlapping blocks in the stochastic blockmodel (Latouche et al., 2011), and development
of an online version of the methodology as a computationally efficient approach to large and
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growing data sets (Zanghi et al., 2010). This methodology would be expected to work equally
well in many other network contexts, and in more general scenarios where the aim is to clus-
ter together correlated variables. This methodology can be implemented using readily avail-
able and computationally efficient algorithms, and performs well on large high-dimensional
data sets.
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