
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lsta20

Communications in Statistics - Theory and Methods

ISSN: 0361-0926 (Print) 1532-415X (Online) Journal homepage: https://www.tandfonline.com/loi/lsta20

Conditionally unbiased estimation in the normal
setting with unknown variances

David S. Robertson & Ekkehard Glimm

To cite this article: David S. Robertson & Ekkehard Glimm (2019) Conditionally unbiased
estimation in the normal setting with unknown variances, Communications in Statistics - Theory and
Methods, 48:3, 616-627, DOI: 10.1080/03610926.2017.1417429

To link to this article:  https://doi.org/10.1080/03610926.2017.1417429

© The Author(s). Published with license
by Taylor & Francis Group, LLC© David S.
Robertson and Ekkehard Glimm.

Published online: 05 Jan 2018.

Submit your article to this journal 

Article views: 963

View related articles 

View Crossmark data

Citing articles: 2 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=lsta20
https://www.tandfonline.com/loi/lsta20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03610926.2017.1417429
https://doi.org/10.1080/03610926.2017.1417429
https://www.tandfonline.com/action/authorSubmission?journalCode=lsta20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lsta20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03610926.2017.1417429
https://www.tandfonline.com/doi/mlt/10.1080/03610926.2017.1417429
http://crossmark.crossref.org/dialog/?doi=10.1080/03610926.2017.1417429&domain=pdf&date_stamp=2018-01-05
http://crossmark.crossref.org/dialog/?doi=10.1080/03610926.2017.1417429&domain=pdf&date_stamp=2018-01-05
https://www.tandfonline.com/doi/citedby/10.1080/03610926.2017.1417429#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/03610926.2017.1417429#tabModule


COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS

https://doi.org/./..

Conditionally unbiased estimation in the normal setting with
unknown variances

David S. Robertsona and Ekkehard Glimmb,c

aMRC Biostatistics Unit, University of Cambridge, Cambridge, UK; bNovartis Pharma AG, Novartis Campus, Basel,
Switzerland; cMedical Faculty, Institute for Biometrics and Medical Informatics, Otto-von-Guericke-University
Magdeburg, Magdeburg, Germany

ARTICLE HISTORY
Received  March 
Accepted  December 

KEYWORDS
Selection bias; Two-stage
sample; Uniformly minimum
variance conditionally
unbiased estimation.

MATHEMATICS SUBJECT
CLASSIFICATION
-

ABSTRACT
To efficiently and completely correct for selection bias in adaptive
two-stage trials, uniformly minimum variance conditionally unbiased
estimators (UMVCUEs) have been derived for trial designswith normally
distributed data. However, a common assumption is that the variances
are known exactly, which is unlikely to be the case in practice. We
extend the work of Cohen and Sackrowitz (Statistics & Probability Letters,
8(3):273-278, 1989), who proposed an UMVCUE for the best performing
candidate in the normal setting with a common unknown variance. Our
extension allows for multiple selected candidates, as well as unequal
stage one and two sample sizes.

1. Introduction

Two-stage adaptive trial designs offer an efficient way of selecting and validating multiple
candidate treatments within a single trial. A common strategy is to select the best performing
treatment (according to some ranking criteria) after an interim analysis, and to then validate
its properties in an independent sample in stage 2.

However, selecting and ranking candidates in this way can induce bias into the naïve esti-
mates that combine data from both stages. If the selection rules are not properly taken into
account by the estimation strategy, then intuitively one might expect overly optimistic esti-
mates of the performance of the selected candidate, given that it had to perform ‘well’ in stage 1
in order to proceed to stage 2.

In order to efficiently and completely correct for this selection bias, the technique of Rao-
Blackwellisation can be used, where the unbiased stage 2 data is conditioned on a complete,
sufficient statistic. The resulting estimator is the uniformly minimum variance conditionally
unbiased estimator (UMVCUE). An appealing feature of the UMVCUE is that, as the name
suggests, it has the smallest variance (or equivalently, mean squared error (MSE)) amongst all
possible unbiased estimators.

This two-stage estimation framework was introduced by Cohen and Sackrowitz (1989),
who derived theUMVCUE for normally distributed data. Their work has since been extended
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to a variety of other trial settings with normal (or asymptotically normal) data. Bowden
and Glimm (2008) extended the UMVCUE to apply to unequal stage one and two sample
sizes, and when the parameter of interest belongs to the j-th best candidate out of k. In
related work, Kimani, Todd, and Stallard (2013) derived UMVCUEs for the means of the
selected and control treatments in the seamless phase II/III trial setting with early stopping.
Meanwhile, Bowden and Dudbridge (2009) derived the UMVCUE for a two-stage genome-
wide association study with ranking based on p-values. In a recent development, Robertson,
Prevost, and Bowden (2016a, 2016b) generalised all of these approaches to normal data with
an arbitrary correlation structure.

However, apart from the original Cohen and Sackrowitz paper, all of the above analyses
assume that the variances of the parameter of interest are known exactly. This may not be a
reasonable assumption to make. In practice, the variance of a treatment effect (say) will often
be estimated directly from the data of the trial itself. Alternatively, the variance will be based
on the results from a previous trial or pilot study on the same treatments.

Cohen and Sackrowitz did derive the UMVCUE for themean of the selected normal popu-
lation with a common unknown variance. However, the estimator is only valid for the highest
ranked population when the stage 1 sample sizes are all equal, and the stage 2 sample size is
equal to one. In this paper, we aim to address these limitations.

In Section 2 we present the model framework and the (corrected) form of the UMVCUE
given by Cohen and Sackrowitz (1989). We extend their approach in Section 3, and in
Section 4 compare the resulting UMVCUE with the one derived by Bowden and Glimm
(2008) that assumes a known variance. A case study based on the INHANCE trial is presented
in Section 5, and we conclude with a discussion in Section 6.

2. Equal sample sizes

To start with, we consider the setting of Cohen and Sackrowitz (1989) with a common
unknown variance. Suppose there are k experimental treatments, with each tested on n sub-
jects in stage 1. Let the stage 1 data Xi j, i = 1, 2, . . . , k; j = 1, 2, . . . , n, be normally dis-
tributed withmeansμi and common unknown variance σ 2. Denote the stage 1 sample means
by X̄1, X̄2, . . . , X̄k.

At the end of stage 1, the treatment with the largest sample mean is selected for confirma-
tory analysis in stage 2. LetY be a single observation taken from the highest ranked treatment
group in stage 2. Also letQ be the event {X : X̄1 > X̄2 > · · · > X̄k}. Without loss of generality,
we condition on Q, as this can be viewed as simply a relabelling of the treatments.

Cohen and Sackrowitz derived the following UMVCUE for the mean μ1 of the highest
ranked treatment:

Theorem 2.1. The UMVCUE of μ1 given Q is

Z
n + 1

−
√

n
n + 1

× S̃(1 − r2)c

22ccB(c, c)Fβ(c,c)
( 1
2 (r + 1)

) (1)

where

Z = nX̄1 +Y, c = k(n − 1)/2

S2 =
k∑

i=1

n∑
j=1

X2
i j +Y 2
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S̃2 = S2 − (n + 1)
(

Z
n + 1

)2

− n

(
k∑

i=2

X̄2
i

)

r =
√
n(n + 1)

S̃

(
Z

n + 1
− X̄2

)
, r = min(r, 1)

B(a, b) = �(a)�(b)
�(a + b)

Fβ(v1,v2 ) is the cdf of a Beta distribution with parameters v1, v2.

Remark. Note that there are two errors in the formula for the UMVCUE as presented in
Cohen and Sackrowitz (1989). Firstly, the summation in the definition of S̃2 should start from
i = 2, and not i = 1. In addition, the denominator of the second termof theUMVCUE should
have a factor of 22c, and not 2c+1.

3. Extending the UMVCUE

A natural extension to the setting of Cohen and Sackrowitz is to consider unequal sample
sizes. Suppose now that treatment i is tested on ni subjects in stage 1. The stage 1 data Xi j

are again normally distributed with meanμi and common unknown variance σ 2. The stage 1
sample means X̄i are given by X̄i = 1

ni

∑ni
j Xi j. We also now allow there to be more than one

subject in stage 2.
Sometimes the properties of treatments that were not the highest ranked are of interest.

Hence an additional extension is to find the UMVCUE of the mean of the l-th ranked treat-
ment (l = 1, . . . , k). To this end, let Ȳl be the mean of ml additional observations (denoted
byYl j) taken from the l-th ranked treatment group in stage 2.

Again conditioning on Q, we have the following UMVCUE for the mean μl .

Theorem 3.1. The UMVCUE of μl given Q is

Zl

nl + ml
−
√

nl
ml(nl + ml )

×
S̃l
[
(1 − r2l )

c − (1 − q2
l
)
c
]

22ccB(c, c)
[
Fβ(c,c)

( 1
2 (rl + 1)

)− Fβ(c,c)

(
1
2 (ql + 1)

)] (2)

where

Zl = nlX̄l + mlȲl, c = (N − k)/2, N =
k∑

i=1

ni

S2l =
k∑

i=1

ni∑
j=1

X2
i j + mlȲ 2

l

S̃2l = S2l − (nl + ml )

(
Zl

nl + ml

)2

−
∑
i �=l

niX̄2
i

rl =
√
nl(nl + ml )/ml

S̃l

(
Zl

nl + ml
− X̄l+1

)
, rl = min(rl, 1) for l = 1, . . . , k − 1
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ql =
√
nl(nl + ml )/ml

S̃l

(
Zl

nl + ml
− X̄l−1

)
, q

l
= max(ql, −1) for l = 2, . . . , k

and we define q1 = −1 and rk = 1.

Proof. The proof is similar to Cohen and Sackrowitz’s. We let

Ul =
√
ml(nl + ml )

nl
×

Ȳl − Zl
nl+ml

S̃l
.

The joint density of (Xi j, Ȳl ) given Q is

K(μ, σ 2)IQ(x̄1, . . . , x̄k)
1

(2πσ 2/ml )1/2
exp

(
− ml

2σ 2 (ȳl − μl )
2
)∏

i, j

1
(2πσ 2)1/2

× exp
(

− 1
2σ 2 (xi j − μi)

2
)

μ,σ 2

∝ exp

⎛
⎝− 1

2σ 2

⎡
⎣∑

i, j

(xi j − μi)
2 + ml(ȳl − μl )

2

⎤
⎦
⎞
⎠

μ,σ 2

∝ exp

⎛
⎝− 1

2σ 2

⎡
⎣
⎛
⎝∑

i, j

x2i j + mlȳ2l

⎞
⎠− 2

⎛
⎝ nl∑

j=1

xl j + mlyl

⎞
⎠μl − 2

∑
i �=l

ni∑
j=1

xi jμi

⎤
⎦
⎞
⎠

= exp

⎛
⎝− 1

2σ 2

⎡
⎣s2l − 2zlμl − 2

∑
i �=l

nix̄iμi

⎤
⎦
⎞
⎠

where ∝μ,σ 2 indicates that we are ignoring terms proportional to μ or σ 2, and K(μ, σ 2) =
Eμ,σ 2IQ(x̄1, . . . , x̄k) with IQ denoting the indicator function of the ordering condition Q.
Hence by the factorisation criterion, (Zl, X̄ c, S2l ) is a sufficient statistic, where X̄ c is the set
of k − 1 variables {X̄i, i = 1, . . . , k, i �= l}. The statistic is also complete, since it is from the
exponential family of distributions (Lehmann and Romano 2005).

The UMVCUE of μl is the Rao-Blackwellisation of the unbiased estimator Ȳl , con-
ditional on the complete, sufficient statistic (Zl, X̄ c, S2l ). That is, we seek the estimator
E(Ȳl|Zl, X̄ c, S2l ,Q). Given the formofUl , showing thatE(Ȳl|Zl, X̄ c, S2l ,Q) is equal to Equation
(2) is equivalent to showing

E
(
Ul |Zl, X̄ c, S2l ,Q

) = −
[(
1 − r2l

)c − (
1 − q2

l

)c]
22ccB(c, c)

[
Fβ(c,c)

( 1
2 (rl + 1)

)− Fβ(c,c)

(
1
2 (ql + 1)

)] . (3)

This in turn is equivalent to showing that the conditional density f (ul|zl, x̄c, S2l ,Q) of
(Ul|Zl, X̄ c, S2l ,Q) is

(1 − u2)c−1∫ rl

ql

(1 − u2)c−1du
IQ′
(
ul, zl, x̄c, S2l

)
(4)

where Q′ = {q
l
< Ul < rl , X̄1 > · · · > X̄l−1, X̄l+1 > · · · > X̄k}. This is because integrating

u f (ul|zl, x̄c, S2l ,Q) gives the right hand side of Equation (3).
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Consider a new sampling model, where Ȳ ∗
l is the mean ofml additional observations from

population l, without having observed X̄1 > X̄2 > · · · > X̄k. Let S∗
l ,Z

∗
l ,U

∗
l and S∗∗

l be equal
to Sl,Zl,Ul and S̃l with Ȳ ∗ replacing Ȳ in all formulae. Rearranging terms gives the following
expression forU ∗

l
2:

U ∗
l
2 =

ml (nl+ml )
nl

(
Ȳ ∗
l − Z∗

l
nl+ml

)2
ml (nl+ml )

nl

(
Ȳ ∗
l − Z∗

l
nl+ml

)2
+∑k

i=1
∑ni

j=1(Xi j − X̄i)2
. (5)

Hence U ∗
l
2 follows a β( 12 , c) distribution. Note that clearly U ∗

l
2 ≤ 1 ⇒ −1 ≤ U ∗

l ≤
1. Additional restrictions on U ∗

l come from conditioning on Q. Firstly, X̄l > X̄l+1 ⇒ Ȳ ∗
l

< 1
ml

(Z∗
l − nlX̄l+1). HenceU ∗

l < r∗l , where

r∗l =
√
nl(nl + ml )/ml

S∗∗
l

(
Z∗
l

nl + ml
− X̄l+1

)
.

Secondly, X̄l−1 > X̄l ⇒ Ȳ ∗
l > 1

ml
(Z∗

l − nlX̄l−1). HenceU ∗
l > q∗

l , where

q∗
l =

√
nl(nl + ml )/ml

S∗∗
l

(
Z∗
l

nl + ml
− X̄l−1

)
.

Note thatU ∗
l is an ancillary statistic, and so by Basu’s theorem (Basu 1955) is independent

of Z∗
l , X̄

c, S∗
l
2. Hence the joint density of (U ∗

l ,Z∗
l , X̄

c, S∗
l
2) is

g
(
u∗
l

)
h
(
z∗
l , x̄

c, S∗
l
2) (6)

where g(u∗
l ) is the density ofU

∗
l and h(z∗

l , x̄
c, S∗

l
2) is the density of (Z∗

l , X̄
c, S∗

l
2). The numer-

ator of the conditional density ofU ∗
l |(Z∗

l , X̄
c, S∗

l
2,Q) is then Equation (6) times

K−1(μ, σ 2)IQ∗
(
u∗
l , z

∗
l , x̄

c, S∗
l
2)

where

Q∗ = {q∗
l

< U ∗
l < r∗l , X̄1 > · · · > X̄l−1, X̄l+1 > · · · > X̄k},

r∗l = min(r∗l , 1), q∗
l

= max(q∗
l , −1),

with IQ∗ being the indicator functions of the ordering condition Q∗.
The denominator of the conditional density ofU ∗

l |(Z∗
l , X̄

c, S∗
l
2,Q) is the integral of Equa-

tion (6) with respect to u∗
l from q∗

l
to r∗l . This can be calculated using the fact thatU ∗

l
2 follows

a β( 12 , c) distribution. Putting everything together gives the conditional density equivalent to
Equation (4). �

Remark 1. As an important special case, setting l = 1 in Equation (2) gives the following
UMVCUE for the mean of the highest-ranking treatment:

Z1

n1 + m1
−
√

n1
m(n1 + m1)

× S̃(1 − r2)c

22ccB(c, c)Fβ(c,c)
( 1
2 (r + 1)

) (7)

where

Z1 = n1X̄1 + m1Ȳ1, S2 =
k∑

i=1

ni∑
j=1

X2
i j + m1Ȳ 2

1
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S̃2 = S2 − (n1 + m1)

(
Z

n1 + m1

)2

−
k∑

i=2

niX̄2
i

r =
√
n1(n1 + m1)/m1

S̃

(
Z1

n1 + m1
− X̄2

)
, r = min(r, 1)

Remark 2. As a simple check of consistency with Section 2, set ni = n (for i = 1, . . . , k) and
m1 = 1 in Equation (7). Thenwe recover the corrected Equation (1) of Cohen and Sackrowitz.

4. Comparison with the known variance setting

Assuming a common known variance σ 2, we can use the results of Bowden andGlimm (2008)
to find the UMVCUE. Letting φ and � denote the pdf and cdf respectively of a standard
normal distribution, the UMVCUE of μl is as follows.

Theorem 4.1. The UMVCUE of μl given Q is

Zl

nl + ml
−
√

nl
ml(nl + ml )

× σ [φ(Wl,l+1) − φ(Wl,l−1)]
[�(Wl,l+1) − �(Wl,l−1)]

(8)

where

Wl,l+1 =
√
nl(nl + ml )/ml

σ

(
Zl

nl + ml
− X̄l+1

)

Wl,l−1 =
√
nl(nl + ml )/ml

σ

(
Zl

nl + ml
− X̄l−1

)

and we define X0 = ∞ and Xk+1 = −∞.

Remark. This is structurally the same as the UMVCUE with unknown variances given by
Equation (2). Firstly, both estimators are in the form of theMLE Zl

nl+ml
minus a bias correction

term, where the latter has a multiplicative factor of
√

nl
ml (nl+ml )

.

The role of the known standard deviation σ in Equation (8) is played by the estimate S̃l
in Equation (2). Hence rl and ql in Equation (2) can be seen to be exact analogues ofWl,l+1

and Wl,l−1 respectively in Equation (8). Finally, the standard normal density and distribu-
tion functions in Equation (8) are replaced by (transformed) beta density and distribution
functions in Equation (2).

4.1. Simulation study

We now conduct simulation studies to assess how the UMVCUE with a known variance per-
forms when the assumed known variance σ̂ 2 is not exactly equal to the true variance σ 2. We
compare various estimators for the largest mean μ1:

� Stage 2 estimator, which is independent of σ 2.
� MLE, which is independent of σ 2.
� Ûknown, the UMVCUE which assumes that σ 2 is known, and equal to some value σ̂ 2.
� Ûunknown, the UMVCUE with unknown σ 2.
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To evaluate the performance of a generic estimator for μ1, say μ∗
1, we use the following

definitions of the bias and MSE, as in Bowden and Glimm (2008):

bsel
(
μ∗

1

) =
K∑
i=1

E
[
μ∗

1 − μi | X1 = Xi
]
P (X1 = Xi) ,

MSEsel
(
μ∗

1

) =
K∑
i=1

E
[
(μ∗

1 − μi)
2 | X1 = Xi

]
P (X1 = Xi) .

We first compare characteristics of the estimators for trials with different target powers.
Consider testing the hypothesis H0 : μ1 ≤ 0 against the alternative H1 : μ1 > 0 at the end of
the trial. To do so, we use the usual t-statistic

Td = Z1

σ̂
√
n1 + m1

where σ̂ 2 is the pooled sample variance of the stage 1 and stage 2 data, i.e.

σ̂ 2 = 1
N + m1 − k − 1

⎛
⎝ k∑

i=1

ni∑
j=1

(Xi j − X̄i)
2 +

m1∑
j=1

(Y1 j − Ȳ1)
2

⎞
⎠ . (9)

Under H0, Td follows a t-distribution with d = N + m1 − k − 1 degrees of freedom.
Hence, when testing at significance level α, we rejectH0 ifTd > t−1

d (1 − α), where t−1
d denotes

the inverse cdf of a t-distribution with d degrees of freedom.
Suppose we are targeting a power of at least (1 − β) to detect a λ–fold standard deviation

increase in the mean, i.e. under the alternative hypothesis H1 : μ1 = λσ̂ . This implies that

n1 + m1 ≥ 1
λ

[
t−1
d (1 − α) + t−1

d (1 − β)
]2

. (10)

For simplicity, suppose we have equal numbers of subjects for each treatment and each
stage, denoted byM, so that n1 = m1 = M, N = kM and hence d = M(k + 1) − k − 1. For
given values of α, β and λ, Equation (10) can be solved forM numerically.

In our simulation study, α = 0.05 and we vary β from 0.05 to 0.5, which corresponds to
trials with powers between 50% to 95%.We set k = 3, withμ = (0, 0, 0), σ 2 = 1 and λ = 0.5.
For the estimator Ûknown, we calculate σ̂ 2 as the pooled sample variance given in Equation (9)
and simply plug it in to Equation (8).

Figure 1 shows the mean bias of the MLE and Ûknown as the power varies from 50% (which
corresponds to M = 4) to 95% (which corresponds to M = 12). We also simulated the bias
of Ûunknown and the stage 2 estimator, but as expected, this resulted in no bias apart from
simulation error. Hence these simulation results are not shown here, andwe simply plot where
the bias equal to zero. The MLE is positively biased, with a mean bias ranging from 0.21 (for
a power between 50% and 58%) to 0.12 (for a power of 95%). In contrast, Ûknown is essentially
unbiased, although there seems to be a very small positive bias when the power is less than
58%.

Figure 2 shows the MSE of the four estimators. The stage 2 estimator has the highest MSE,
while the MLE has the lowest. The estimators Ûunknown and Ûknown have approximately the
same MSE, which is 29%–30% higher than the MSE for the MLE, but 26%–27% lower than
the MSE for the stage 2 estimator.

To demonstrate the differences further, Figure 3 shows the boxplots for the estimatorswhen
M = 10, which corresponds to a power of 90%. The boxplots demonstrate the severity of the
positive bias of theMLE, and the unbiasedness of the other three estimators. The distribution
of the estimators Ûunknown and Ûknown seem to be almost identical.
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Figure . Mean bias of the MLE and Ûknown as the power varies from % to %. Results are based on 105

simulations for each value of the per-group sample sizeM.

To explore what sort of estimates of σ̂ lead to substantial differences between Ûunknown and
Ûknown, we conduct a further simulation study which does not assume that we are using the
pooled sample variance as our estimate of σ̂ . Keeping M = 10 as before, we vary the value
of σ̂ 2 from 0.25 to 4 and simply plug it in to Equation (8). In order to get a handle on the
likely values of σ̂ 2 that could be estimated from the data, note that σ̂ 2 ∼ σ 2

d χ 2
d , and hence

var(σ̂ 2) = 2σ 2

d .

Figure . MSE of the four estimators as the power varies from % to %. Results are based on 105 simula-
tions for each value of the sample sizeM.
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Figure . Boxplots of the four estimators for a sample sizeM = 10, based on 105 simulations.

ForM = 10, σ 2 = 1 and k = 3, this gives var(σ̂ 2) ≈ 0.0556. Hence in our simulation set-
ting, a very simple approximate 95% confidence interval for σ̂ 2 is given by 1 ± 2 × √

0.0556,
which we show on the plots below as a shaded gray region.

Figure 4 shows the mean bias of the MLE and Ûknown. The MLE has a positive bias of
3

4
√
10π = 0.1338... for all values of σ̂ 2. In contrast Ûknown is positively biased for σ̂ 2 < 1 and

negatively biased for σ̂ 2 > 1. The symmetry of the positive and negative bias of Ûknown around
σ̂ 2 = 1 explains why, on average, using a pooled sample variance estimator (which would be
expected to under and overestimate σ 2 almost equally) results in an essentially unbiased esti-
mator.

Figure . Mean bias of the MLE and Ûknown as σ̂ 2 varies from . to . Results are based on 105 simulations
for each value of σ̂ 2. The gray region shows an approximate % confidence interval for σ̂ 2.
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Figure . MSE of the four estimators as σ̂ 2 varies from. to . Results are based on 105 simulations for each
value of σ̂ 2. The gray region shows an approximate % confidence interval for σ̂ 2.

Figure 5 shows the MSE of the four estimators. The stage 2 estimator has the highest MSE
of 0.1, while the MLE has the lowest MSE of 1

20 (1 +
√
3

4π ) = 0.05689... for all values of σ̂ 2. The
estimator Ûunknown has a MSE of approximately 0.074. This is a 26% decrease compared to the
stage 2 estimator, but a 43% increase compared to the MLE. Finally, Ûknown has a lower MSE
than Ûunknown for σ̂ 2 < 1, which can be explained by regarding Ûknown as a sort of shrinkage
estimator. Again, the symmetry of the difference between the MSEs of Ûknown and Ûunknown

around σ̂ 2 = 1 explains why, on average, the MSEs of these two estimators are so similar.

5. Case study

Finally, we illustrate our methodology using data based on the INHANCE study (Lawrence,
Bretz, and Pocock 2014), which evaluated the use of inhaled indacaterol for the treatment of
patients suffering from chronic obstructive pulmonary disease (COPD). The study followed
a two-stage adaptive seamless design, where the first stage was a dose-finding stage with dose
selection at the interim analysis, and the second stage was a confirmatory analysis of the effi-
cacy and safety of the selected doses. The primary outcome was the 24-hour post-dose FEV1

(which is the Forced Expiratory Volume after one second).
In the study, four doses of indacaterol were tested in stage 1 (75 μg, 150 μg, 300 μg and

600 μg), and two doses were selected based on a set of dose selection guidelines (see pages
84–87 in Lawrence, Bretz, and Pocock (2014) for further details). For simplicity, and in order
for the selected doses to be the same as those that would be selected when ranking by sample
means, we only consider the three doses 75 μg, 150 μg and 300 μg of indacaterol.

Table 1 gives the observed least-squaresmean treatment difference versus placebo at week 2
for each dose of indacaterol for the two stages, with the stage 1 results as given in Barnes et al.
(2010), and the stage 2 results as given in Donohue et al. (2010). On the basis of ranking by
the sample means, doses 150 μg and 300 μg would be selected for confirmatory analysis in
stage 2.
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Table . Sample sizes used for the case study, with the observed treatment difference from placebo at week
 as observed in the INHANCE study.

Stage 1 Stage 2

Indacaterol dose (μg) ni Treatment difference vs placebo (L) mi Treatment difference vs placebo (L)

  . — —
  .  .
  .  .

Table . Estimators for the treatment difference from placebo (L) at week , based on results from the
INHANCE study.

Indacaterol dose (μg) Stage  Stage  MLE Ûknown Ûunknown

 . . . . .
 . . . . .

The INHANCE study had over 100 patients randomised to each of the three doses in
stage 1, and over 400 patients randomised to each of the two selected doses in stage 2. With
these large sample sizes, we would not expect there to be appreciable differences between the
estimators. Hence, for the purposes of our illustrative case study, we consider a trial with only
n = (10, 9, 7) patients in stage 1, and 9 patients for each dose in stage 2, as shown in Table 1.

We use the observed mean treatment differences from each stage of the INHANCE study
to simulate a realisation of the data with the sample sizes given above. For each dose at each
stage, the data was simulated from a normal distribution with mean equal to that observed
in the INHANCE study, and a standard deviation of 0.3L (as given in the results of Donohue
et al. 2010).

Table 2 shows the various estimators for the treatment difference from placebo (L) at week
2 for the two selected doses. Note that for Ûknown, we use the pooled sample variance as given
in Equation (9) as our estimate for σ̂ 2. For both doses, there is a drop in the mean between
the stage 1 and stage 2 data, with the MLE in-between since it is a weighted mean. For the
300 μg dose, there are only very small differences between the MLE, Ûknown and Ûunknown,
while for the 150 μg dose these three estimators are in fact identical. Hence for these data,
there would be no practical difference in using any of these three estimators to correct for
selection bias.

6. Discussion

In two-stage adaptive trials with normally distributed data, it is unlikely that the variance will
be known exactly. Ourmodified estimator allows for efficient unbiased estimation of multiple
selected treatments with a common unknown variance, where the stage one and two sample
sizes are arbitrary.

As the simulation studies demonstrated, when using the pooled sample variance, on aver-
age the UMVCUE Ûknown that assumes a known variance will be essentially unbiased, with a
very similar MSE to our modified UMVCUE. However, if the variance is under or overesti-
mated, then Ûknown is no longer unbiased, with a higher MSE if the variance is overestimated.
We note that our proposed estimator is most useful when the sample sizes are small. Indeed,
if σ̂ 2 is estimated using the pooled sample variance, then for d > 200, var(σ̂ 2) < 0.01σ 2 and
there is unlikely to be any substantial variation of σ̂ 2 from the true value σ 2.
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In this paper, we only looked at ranking by the treatment means. However, it should be
reasonably straightforward to adapt our result to ranking by other criteria. One example
would be ranking by one-sided ‘p-value’, where the conditioning would change to the event
Q′ = {X :

√
n1X̄1 > · · · >

√
nkX̄k}. Then the proof follows through identically to give the for-

mula (2), except that the X̄l+1 in rl is replaced by
√nl+1X̄l+1/

√
nl , and the X̄l−1 in ql is replaced

by √nl−1X̄l−1/
√
nl .

The proof of the UMVCUE is quite a delicate one, and we do not see a straightforward way
to generalise the result to the setting where we no longer assume a common unknown variance
but instead let treatment i have variance σ 2

i say. The problem is thatU ∗
l
2 as given in Equation

(5) is no longer a ratio of independent chi-squared distributions, and would now depend on
the unknown parameters σ 2

1 , . . . , σ
2
k .

Finally, the focus of this paper was on point estimation, but it is natural to try to derive
confidence intervals for the UMVCUE as well. One approach is to use a bootstrap procedure,
similar to that described in e.g., Bowden andGlimm (2008) andRobertson, Prevost, and Bow-
den (2016a). Alternatively, the approach of Sampson and Sill (2005) can possibly be extended
to give exact confidence intervals in the unknown variance setting.
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of Statistics (1933–1960) 15 (4):377–80.

Bowden, J., and F. Dudbridge. 2009. Unbiased estimation of odds ratios: Combining genomewide asso-
ciation scans with replication studies. Genetic Epidemiology 33 (5):406–18.

Bowden, J., and E. Glimm. 2008. Unbiased estimation of selected treatment means in two-stage trials.
Biometrical Journal 50 (4):515–27.

Cohen, A., and H. B. Sackrowitz. 1989. Two stage conditionally unbiased estimators of the selected
mean. Statistics & Probability Letters 8 (3):273–8.

Donohue, J. F., C. Fogarty, J. Lotvall, D. A. Mahler, H. Worth, A. Yorgancioglu, A. Iqbal, J. Swales,
R. Owen, M. Higgins, and B. Kramer. 2010. Once-daily bronchodilators for chronic obstructive
pulmonary disease: Indacaterol versus tiotropium.American Journal of Respiratory andCritical Care
Medicine 182 (2):155–62.

Kimani, P. K., S. Todd, and N. Stallard. 2013. Conditionally unbiased estimation in phase II/III clinical
trials with early stopping for futility. Statistics in Medicine 32 (17):2893–910.

Lawrence, D., F. Bretz, and S. Pocock. 2014. INHANCE: An adaptive confirmatory study with dose
selection at interim. In Indacaterol, 77–92. Basel: Springer.

Lehmann, E. L., and J. P. Romano. 2005. Testing statistical hypotheses. New York: Springer.
Robertson, D. S., A. T. Prevost, and J. Bowden. 2016a. Accounting for selection and correlation in the

analysis of two-stage genome-wide association studies. Biostatistics 17:634–49.
Robertson, D. S., A. T. Prevost, and J. Bowden. 2016b. Unbiased estimation in seamless phase II/III trials

with unequal treatment effect variances and hypothesis-driven selection rules. Statistics inMedicine
35:3907–22.

Sampson, A. R., and M. W. Sill. 2005. Drop-the-losers design: Normal case. Biometrical Journal 47
(3):257–68.

COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 627


	Abstract
	1.Introduction
	2.Equal sample sizes
	3.Extending the UMVCUE
	4.Comparison with the known variance setting
	4.1.Simulation study

	5.Case study
	6.Discussion
	Acknowledgments
	References

