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ABSTRACT
This paper proposes estimators of the first-order autocorrelation that
are based on suitably transformed ratios of successive observations.
The new estimators are given by simple functions of the observations.
Numerical optimization is not required. Simulations show that they are
highly robust against extreme values and clusters of high volatility and
are therefore particularly useful for the estimation of serial correlation
in return series. Besides, the results of the simulation study also call into
question the common practice of correcting the small-sample bias of
conventional estimators.

1. Introduction

Given n consecutive observations y1, . . . , yn from a zero-mean stationary process, the stan-
dard estimator of the first-order autocorrelation ρ is the least squares (LS) estimator

ρ̂ =
∑n

t=2 ytyt−1∑n−1
t=1 y2t

, (1)

which is neither mean-unbiased nor median-unbiased. Many methods were proposed to
reduce the finite-sample bias of this estimator (see, e.g., Bartlett 1946; Quenouille, 1949;
Hurwicz 1950; Kendall 1954; Marriott and Pope 1954; White 1961; Andrews, 1993). How-
ever, it is a priori not clear whether bias correction is a good thing. MacKinnon and Smith
(1998) showed that reducing the bias of an estimator may increase its variance or even its
mean squared error (MSE). Things get even more complicated when we look at the whole
distribution of an estimator rather than just focus only on its bias and variance. Since the LS
estimator ρ̂ of ρ can take values outside the open interval (−1,1) with positive probability, its
risk will be infinite if the squared error loss function is replaced by a loss function that is based
on the Kullback–Leibler divergence (Kullback and Leibler 1951; Schroeder and Zielinski
2010). However, this problem can easily be fixed by using the closely related estimator

ρ̂B = 2
∑n

t=2 ytyt−1∑n−1
t=1 y2t +∑n

t=2 y2t
(2)

(Burg 1967, 1975) instead of the LS estimator. But there are more serious problems. Let
us assume, for illustration, that ρ is large and the sample size n is small. In this case, the dis-
tribution of the LS estimator (and related estimators) is extremely skewed to the left. While
the median and the mean of this distribution are less than ρ, its mode is greater than ρ. Bias
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correction can easily be achieved by multiplying the estimator by a suitable constant greater
than 1. Unfortunately, this transformation has an undesirable side effect. The peak of the sam-
pling distribution moves further away from ρ, which reduces the probability of obtaining an
estimate reasonably close to the true value and also increases the probability of obtaining an
estimate greater than 1.

Inmacroeconomic and financial applications, where sample sizes are usually large, the cor-
rection of a small-sample bias is of lower priority. More pressing is the need to deal with
heteroscedasticity. Robustness against heteroscedasticity can be achieved by using a rolling-
window approach. Unfortunately, there are two conflicting objectives to trade offwhen choos-
ing the length of the estimation window, robustness versus accuracy. This paper tries to offer
a way out of this predicament by designing estimators that are functions of the ratios

xt = yt
yt−1

(3)

of two successive observations. With regard to robustness against heteroscedasticity, the use
of these ratios corresponds to a choice of an estimation window of minimal length 2. There
is no further need of an estimation window. All ratios can be used at the same time, hence
accuracy is not corrupted.

The next two sections deal with bias-corrected estimators and estimators based on the
ratios (3), respectively. In Section 4, the results of a simulation study are presented which
compares the new estimators proposed in this paper with conventional estimators. The simu-
lation study addresses both the bias in small samples and the robustness issue in large samples.
Section 5 concludes.

2. Bias correction

Let y1, . . . , yn be observations of a Gaussian AR(1) process with zero mean and innovation
variance σ 2. The LS estimator is also the conditional maximum likelihood (ML) estimator
obtained by maximization of the log likelihood

log( f (y2, . . . , yn|y1; ρ, σ 2)) = −n − 1
2

log(2πσ 2)−
∑n

t=2

(yt − ρyt−1)
2

2σ 2 (4)

conditioned on the first observation. The loss in efficiency due to the omission of the first
observation is negligible if n is large. The conditional ML estimator has the same asymptotic
distribution as the exact ML estimator and is therefore asymptotically efficient. The greatest
disadvantage of the exact ML estimator is that the likelihood

f (y1, . . . , yn; ρ, σ 2) = f (y1; ρ, σ 2) f (y2, . . . , yn|y1; ρ, σ 2) (5)

requires numerical maximization. There exists no simple solution in terms of y1, . . . , yn.
Moreover, the log marginal density

log( f (y1; ρ, σ 2)) = −1
2
log

(
2 πσ 2

1 − ρ2

)
− y21 (1 − ρ2)

2σ 2 (6)

is undefined in the unstable case when |ρ| ≥ 1.
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It is well known that the LS estimator is biased in finite samples. Its mean is to order 1/n3

given by

E (ρ̂) =
(
1 − 2

n
+ 4

n2
− 2

n3

)
ρ + 2

n2
(
ρ3 + ρ5)+ . . . , (7)

(White 1961; for earlier results see Bartlett 1946; Hurwicz 1950; Kendall 1954; Marriott
and Pope 1954; for the unstable case see Le Breton and Pham 1989). Assuming that the bias
is approximately proportional to 1/n, Quenouille (1949) proposed to reduce the bias to order
1/n2 simply by calculating the sample correlation coefficient not only for the whole sample
but also for the first and second half separately. Indeed, the mean of his estimator

ρ̂Q = 2ρ̂ − 1
2
(ρ̂1 + ρ̂2) (8)

is given by

E
(
ρ̂Q
) = 2

(
1 − 2

n

)
ρ − 1

2

(
1 − 2

n
2

+ 1 − 2
n
2

)
ρ + O

(
1
n2

)
= ρ + O

(
1
n2

)
. (9)

However, Orcutt and Winokur (1969) found in a Monte Carlo study that a direct applica-
tion of the approximation of E(ρ̂) to the power of 1/n (Kendall 1954;Marriott and Pope 1954)
yields an estimator with a smaller mean square error than Quenouille’s (1949) estimator.

In the present case, where the truemean is known to be zero, the approximation equation

E
(
ρ̂Q
) =

(
1 − 2

n

)
ρ + O

(
1
n2

)
(10)

of Marriott and Pope (1954) implies that the bias of the estimator

ρ̂MP =
(
1 + 2

n − 2

)
ρ̂ (11)

is only of order 1/n2 and the estimator is therefore less biased than the LS estimator. A further
reduction of the bias can be achieved by using White’s (1961) approximation of the expected
value. Substituting ρ̂ for E(ρ̂) in this approximation yields

ρ̂ ≈ w (ρ) = γ ρ + ψρ3 + ψρ5, (12)

where

λ = 1 − 2
n

+ 4
n2

− 2
n3
, ψ = 2

n2
,

and solving for ρ yields

w−1 (ρ̂) ≈ ρ. (13)

Clearly, this approximation is useful only if the value of ρ̂ is close to E(ρ̂). The inverse
function of w can be determined numerically to any desired precision. Using the standard
formulas for series reversion obtained by plugging w−1 into w and equating the first seven
coefficients (see, e.g., Abramowitz and Stegun 1970), we obtain

ρ̂W = 1
γ
ρ̂ − ψ

γ 4 ρ̂
3 + 3ψ2 − γψ

γ 7 ρ̂5 + 8γψ2 − 12ψ3

γ 10 ρ̂7. (14)
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Andrews (1993) considered more general AR(1) models that allow for an intercept, a time
trend and even a unit root. He proposed a bias correction method which replaces the LS esti-
mate by that value which implies amedian equal to the LS estimate. To establish the unbiased-
ness of Andrews’ estimator ρ̂A in the stable case, where |ρ| < 1, we use Burg’s (1967, 1975)
estimator ρ̂B instead of the LS estimator for the definition of ρ̂A because it only takes values
between −1 and 1. Since the median function

m (ρ) = med ( ρ̂B; ρ) (15)

of ρ̂B is strictly increasing on the parameter space (−1,1), we have

ρ̂A = m−1 ( ρ̂B) (16)

and

ρ = m−1m (ρ) = m−1 (med ( ρ̂B; ρ)) = med(m−1( ρ̂B); ρ) = med( ρ̂A; ρ) (17)

for all ρ ∈ (−1, 1). The estimator ρ̂A is therefore a median-unbiased estimator. Andrews
(1993) pointed out that the properties of his estimator depend on the specification of the
distribution of the innovations (normality, homoskedasticity) and of the form of autocorre-
lation (first-order AR). However, perhaps the most serious drawback is that both the median
functionm and its inverse must be evaluated numerically. Tables of values ofm are provided
only for a very limited number of scenarios. Also Tanizaki (2000), who extended Andrew’s
estimator to higher-order AR models, used Monte Carlo techniques rather than analytical
techniques.

3. Using cauchy distributed ratios

Looking for a more convenient alternative to Andrew’s (1993) median-unbiased estimator,
Zieliński (1999) revisited Hurwicz’s (1950) proposal to use the median of the ratios of succes-
sive observations as an estimator of ρ. He was able to prove Hurwicz’s (1950) conjecture that
the estimator

ρ̂H = med
(
y2
y1
, . . . ,

yn
yn−1

)
(18)

is median-unbiased. The reason for Hurwicz (1950) to consider the median rather than the
mean is that xt = yt/yt-1 is the ratio of two centered normal variables with corr(yt,yt-1) = ρ

and is therefore a Cauchy variable with density

f (x; ρ) = 1
πθ

θ 2

(x − ρ)2 + θ 2
=

√
1 − ρ2

π

1
x2 − 2ρx + 1

, (19)

where the location parameter ρσ t/σ t-1 = ρ specifies both the median and the mode and the
scale parameter

θ =
√
1 − ρ2σt

σt−1
=
√
1 − ρ2 (20)

specifies the interquartile range (see Jamnik 1971; for the distribution of the ratio of any two
jointly normal variables see Cedilnik et al. 2004; Marsaglia 2006). Since the Cauchy distribu-
tion does not have any finite moments, the sample mean cannot be used for the estimation of
ρ. The sample median is an obvious alternative (for other estimators based on sample order
statistics see Rothenberg et al. 1964; Bloch 1966), but its asymptotic relative efficiency (A.R.E.)
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is already relatively low (81%) in the simplest case (θ = 1, ρ = 0) and decreases further as |ρ|
increases. We must therefore replace the median by a more efficient estimator if we want to
keep using the ratios xt = yt/yt-1. Their main advantage is that they are not affected by (con-
ditional) heteroscedasticity as long as the (conditional) variances of successive observations
yt-1 and yt are approximately of the same size.

Pretending that the ratios are i.i.d., wemay use a (quasi-) ML approach. The derivative of

log
(
f (x; ρ)) = − log (π )+ 1

2
log

(
1 − ρ2)− log

(
x2 − 2ρx + 1

)
(21)

with respect to ρ can be written as

− ρ

1 − ρ2 + 2x
x2 − 2ρx + 1

= − ρ

1 − ρ2 + 21
x( 1

x

)2 − 2ρ 1
x + 1

, (22)

hence theML estimator ρ̂1 based on the random sample x2, . . . , xn remains unchanged when
each observation xt with absolute value greater than 1 is replaced by its inverse 1/xt. As far as
ML estimation is concerned, there is no difference between the original sample and the new
sample. However, there is a huge difference when it comes to calculating the sample mean or
other sample moments.

To overcome the main weakness of the Cauchy distribution, the nonexistence of its
moments, Nadarajah and Kotz (2006) introduced a truncated version with probability den-
sity

f ∗ (z) = 1
θ

1
D

{
1 +

(
z − ρ

θ

)2
}−1

= 1
D

θ

θ 2 + (z − ρ)2
, −∞ < A ≤ z ≤ B < ∞, (23)

where

D = arctan (β)− arctan (α) , α = A − ρ

θ
, β = B − ρ

θ
, (24)

and ρ and θ are the location parameter and the scale parameter, respectively. Using the ordi-
nary hypergeometric function represented by the hypergeometric series

F (a, b, c, v ) = 1 + a · b
c · 1 v + a (a + 1) b (b+ 1)

c (c + 1) · 1 · 2 v2 + . . . , (25)

they derived explicit expressions

E(Zk) = ρk

D

∑k

j=0

1
j + 1

(
k
j

)(
θ

ρ

) j {
β j+1F

(
1,

j + 1
2

, 1 + j + 1
2

,−β2
)

−α j+1F
(
1,

j + 1
2

, 1 + j + 1
2

,−α2
)}

(26)

for the noncentral moments.
In the case of the ratios of successive observations of a Gaussian AR(1) process, we have

A= −1 and B= 1. Since yt/yt-1 and yt-1/yt have the same distribution, we might wish to select
always that one with the smaller absolute value. All values would then be between −1 and
1 and the new density would just be two times the old density on the interval [−1,1]. The
location parameter would still be the mode of the distribution. Clearly, we cannot expect that
some nonparametric estimator of the mode (e.g., the half sample mode; see Robertson-Cryer
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1974; Bickel and Frühwirth 2006), which is based on the “truncated” ratios

zt = sign(yt−1yt )
min(|yt−1|, |yt |)
max(|yt−1|, |yt |) , (27)

is more accurate than the sample median of the original ratios xt = yt/yt-1. Again, a (quasi-)
ML approach makes more sense. As pointed out at the end of the previous section, it does not
make any difference whether the original ratios xt or the “truncated” ratios zt are used in the
maximization. But the truncated Cauchy distribution has other advantages. Since it is defined
over a finite interval, it has all its moments. We may therefore also put the sample mean to
use.

In general, the sample mean is a biased estimator of themode of a truncated Cauchy distri-
bution. We must therefore take care of the bias. The first step is to derive a simple expression
for the expected value. For A = −1 and B = 1, we have

− α = 1 + ρ

θ
= 1 + ρ√

1 − ρ2
=

√
1 + ρ√
1−ρ =

√
1 − ρ2

1 − ρ
= 1
β

(28)

and

D = arctan(β)− arctan(α) = arctan(β)+ arctan(−α) = arctan(β)+ arctan
(
1
β

)
= π

2
(29)

Noting that F(a,b,c,v) = F(b,a,c,v) and using further properties of F (see Gradshteyn and
Ryzhik 2007, pp. 1006–1007), we obtain

E (Z) = ρ

D

[
βF

(
1
2
, 1,

3
2
,−β2

)
− αF

(
1
2
, 1,

3
2
,−α2

)
+ θ

2ρ
{
β2F(1, 1, 2,−β2)− α2F(1, 1, 2,−α2)

}]
= ρ

D

[
β
arctan ( β)

β
− α

arctan (α )
α

+ θ

2ρ

{
β2 log(1 + β2)

β2 − α2 log
(
1 + α2

)
α2

}]

= ρ + θ

π
log

(
1 + β2

1 + 1
β2

)
= ρ + θ

π
log(β2) = ρ +

√
1 − ρ2

π
log

(
1 − ρ

1 + ρ

)
= h (ρ) .

(30)

Thus, the estimator

ρ̂2 = h−1(Z̄) (31)

will take a value close to ρ if the value of Z̄ is close to E(Z). The inverse function of h can be
approximated by an odd polynomial of sufficiently high order or simply by

ρ̂3 = ĥ−1(Z̄) = −1 + 2�0.295(Z̄) (32)

(see Figure 1), where �σ denotes the cumulative distribution function of a normal distribu-
tion with mean 0 and standard deviation σ .
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Figure . Graphs of the function h (black), its inverse function h− (red), and the simple approximation ĥ−1

(green) of h−.

4. Simulations

In this section, the new estimators ρ̂W (14), ρ̂1 (ML estimator based on ratios), ρ̂2 (31), ρ̂3
(32) of the first- order autocorrelation ρ are compared with the existing estimators ρ̂ML (ML
estimator based on observations), ρ̂ (1), ρ̂B (2), ρ̂CC (33), ρ̂MP (11), ρ̂H (18) both in case of a
standard AR(1) model and in case of deviations from the standard model. In the latter case,
our focus is on nonnormality and heteroscedasticity. The sample counterpart

ρ̂CC =
∑n−1

t=1 ytyt+1√∑n−1
t=1 y2t

∑n
t=2 y2t

(33)

of the correlation coefficient between yt and yt−1 is also included in the comparison. Of par-
ticular interest is the performance of the simple robust estimators ρ̂2 and ρ̂3.

We consider the ARMA(p,q)-GARCH(r,s) model

yt =
p∑

k=1

φkyt−k +
q∑

k=1

θkut−k + ut , (34)

where

ut = σt zt ,

σ 2
t = α0 +

r∑
k=1

αku2t−k +
s∑

k=1

βkσ
2
t−k.

In the simulations, the ARMA order (p,q) is either (0,0) or (1,0), the first-order autocorre-
lation ρ is 0 if (p,q) = (0,0) or ρ = φ1 = 0.8 if (p,q) = (1,0), the GARCH order (r,s) is either
(0,0) or (1,1), the GARCH parameters are α0 = 1, α1 = 0.1, β1 = 0.8999, and the GARCH
innovations zt are either i.i.d. N(0,1) or t(3). For each case, 1,000,000 time series of length
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Figure . Sampling distributions of the estimators ρ̂ML (orange), ρ̂ (red), ρ̂B (pink), ρ̂CC (gold), ρ̂MP (blue), ρ̂W
(lightblue), ρ̂H (black), ρ̂1 (darkgreen), ρ̂2 (green), ρ̂3 (gray), withmeans (vertical lines) andmedians (dotted
lines) under different assumptions, Gaussian white noise: (a) ρ = , n = , (b) ρ = , n = , Gaussian
AR(): (c) ρ = ., n= , (d) ρ = ., n= , GARCH(,) with t() innovations: (e) ρ = , n= „ (f ) ρ = ,
n= , AR()-GARCH(,) with t() innovations: (g) ρ = ., n= , (h) ρ = ., n= .

n = 25 and n = 100, respectively, are generated. All computations are carried out with the
free statistical software R (R Core Team 2017).

The densities of the sampling distributions of the competing estimators of ρ are estimated
by histograms with bin-width 0.002. Smoothing, e.g., by kernel density estimators, is not
appropriate because it obscures what happens at the boundaries of the stable region. Figures 2
and 3 show the histograms and boxplots, respectively. The sampling distributions are very
similar within certain groups of estimators. The first group consists of the ML estimator ρ̂ML,
the LS estimator ρ̂, Burg’s (1967, 1975) estimator ρ̂B, and the sample autocorrelation ρ̂CC. The
only noteworthy difference is that the LS estimator takes values outside the critical region,
which is, of course, most noticeable when ρ is large, n is small, and the innovations come
from a fat-tailed distribution (see Figure 2.g). Since there is practically no difference between
ρ̂B and ρ̂CC, the latter will be omitted from further analysis. The second group consists of
Marriott and Pope’s (1954) estimator ρ̂MP and the estimator ρ̂W , which is based on White’s
(1961) approximation of the bias of ρ̂. If ρ = 0, the bias is not an issue (see Figures 2.a, 2.b,
2.e, 2.f). But if ρ = 0.8, these two “bias-corrected” estimators are indeed much less biased
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Figure . Boxplots of the estimators ρ̂ML (orange), ρ̂ (red), ρ̂B (pink), ρ̂CC (gold), ρ̂MP (blue), ρ̂W (light-
blue), ρ̂H (black), ρ̂1 (darkgreen), ρ̂2 (green), ρ̂3 (gray) under different assumptions, Gaussian white noise:
(a) ρ = , n= , (b) ρ = , n= , Gaussian AR(): (c) ρ = ., n= , (d) ρ = ., n= , GARCH(,) with
t() innovations: (e) ρ = , n = „ (f ) ρ = , n = , AR()-GARCH(,) with t() innovations: (g) ρ = ., n
= , (h) ρ = ., n= .

than the LS estimator. However, this improvement comes with a price. The mode of the sam-
pling distribution moves further away from ρ towards the edge of the stable region, which
increases the probability of obtaining an estimate greater than 1 and reduces the probability
of obtaining an estimate reasonably close to the true value (see Figures 2.c and 2.g). Because
of the high agreement between ρ̂MP and ρ̂W , only the former will be considered below. The
remaining estimators ρ̂H, ρ̂1, ρ̂2, ρ̂3 are all based on ratios of successive observations. While
the first one is never among the best, the other three are the best estimators under conditional
heteroscedasticity provided that n is not too small (see Figures 2.f and 2.h), hence they are
particularly useful for financial applications. In the following, ρ̂2 will be omitted because its
sampling distribution is very similar to that of ρ̂3 but the latter is much simpler.

In addition to the plots of the sampling distributions shown in Figure 2, Table 1 summarizes
important characteristics of these distributions such as their means, medians, modes (esti-
mated with the help of the function hsm of the R packagemodeest), root-mean-square errors
(RMSE), mean absolute deviations (MAD), and the probabilities that the value of the esti-
mator falls into specific intervals. These numbers corroborate our interpretation of Figure 2,
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Table . Comparison of various estimators of the first-order autocorrelation ρ under different assumptions.

Gaussian white noise: (a) ρ = , n= , (b) ρ = , n= 

Gaussian AR(): (c) ρ = ., n= , (d) ρ = ., n= 

ρ̂ML ρ̂ ρ̂B ρ̂MP ρ̂H ρ̂1 ρ̂3

(a) Mean − . − . − . − . − . − . − .
Median . − . − . − . − . . − .
Mode . . . . . . .
SD . . . . . . .
RMSE . . . . . . .
MAD . . . . . . .
�[,�) . . . . . . .
�[−.,.] . . . . . . .
�[−.,.] . . . . . . .

(b) Mean . . . . . . .
Median . . . . − . . .
Mode . . . . − . . − .
SD . . . . . . .
RMSE . . . . . . .
MAD . . . . . . .
�[,�) . . . . . . .
�[−.,.] . . . . . . .
�[−.,.] . . . . . . .

(c) Mean . . . . . . .
Median . . . . . . .
Mode . . . . . . .
SD . . . . . . .
RMSE . . . . . . .
MAD . . . . . . .
�[,�) . . . . . . .
�[−.,.] . . . . . . .
�[−.,.] . . . . . . .

(d) Mean . . . . . . .
Median . . . . . . .
Mode . . . . . . .
SD . . . . . . .
RMSE . . . . . . .
MAD . . . . . . .
�[,�) . . . . . . .
�[−.,.] . . . . . . .
�[−.,.] . . . . . . .

GARCH(,) with t() innovations: (e) ρ = , n= , , (f ) ρ = , n= 

AR()-GARCH(,) with t() innovations: (g) ρ = ., n= , (h) ρ = ., n= 

ρ̂ML ρ̂ ρ̂B ρ̂MP ρ̂H ρ̂1 ρ̂3

(e) Mean − . − . − . − . − . − . − .
Median − . − . − . − . − . − . − .
Mode − . − . − . − . − . − . .
SD . . . . . . .
RMSE . . . . . . .
MAD . . . . . . .
�[,�) . . . . . . .
�[−.,.] . . . . . . .
�[−.,.] . . . . . . .

(f ) Mean − . − . − . − . . − . − .
Median . − . − . − . − . . .
Mode . − . . − . − . . .
SD . . . . . . .
RMSE . . . . . . .
MAD . . . . . . .
�[,�) . . . . . . .
�[−.,.] . . . . . . .
�[−.,.] . . . . . . .

(Continued on next page)
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Table . (Continued).

GARCH(,) with t() innovations: (e) ρ = , n= , , (f ) ρ = , n= 

AR()-GARCH(,) with t() innovations: (g) ρ = ., n= , (h) ρ = ., n= 

ρ̂ML ρ̂ ρ̂B ρ̂MP ρ̂H ρ̂1 ρ̂3

(g) Mean . . . . . . .
Median . . . . . . .
Mode . . . . . . .
SD . . . . . . .
RMSE . . . . . . .
MAD . . . . . . .
�[,�) . . . . . . .
�[−.,.] . . . . . . .
�[−.,.] . . . . . . .

(h) Mean . . . . . . .
Median . . . . . . .
Mode . . . . . . .
SD . . . . . . .
RMSE . . . . . . .
MAD . . . . . . .
�[,�) . . . . . . .
�[−.,.] . . . . . . .
�[−.,.] . . . . . . .

in particular the negative side effects of bias correction and the suitability of the estimators
based on the truncated Cauchy distribution for financial data. For example, comparing ρ̂ and
ρ̂MP in scenario (c), where ρ = 0.8 and n= 25, we see that bias correction increases the mean
from 0.74 to 0.81 but also the mode from 0.82 to 0.89 and thereby reduces the probability
that the estimate lies within the interval [0,7,0.9] from 0.59 to 0.48. The probability that the
estimate is greater than one increases from 0.00 to 0.05. Finally, also the RMSE and the MAD
increase (see Table 1.c). For financial applications, a scenario such as (h) is more relevant,
where the observations come from a GARCH(1,1) process with t(3) innovations. In this case,
the bias is not an issue because ρ = 0. Conditional heteroscedasticity and extreme observa-
tions are much bigger problems. Using the simple robust estimator ρ̂3 instead of the LS esti-
mator ρ̂ increases the probability that the estimate lies within the interval [−0.1,0.1] from 0.43
to 0.53. The RMSE and the MAD decrease from 0.20 and 0.15 to 0.14 and 0.11, respectively
(see Table 1.f).

5. Concluding remarks

We have explored novel estimators of the first-order autocorrelation ρ that are based on
ratios of successive observations. By construction, they are robust against (conditional) het-
eroscedasticity. Moreover, a suitable transformation makes sure that the denominator is
always greater than the numerator, which eliminates the danger of extreme values either due
to large numerators or small denominators. In the Gaussian case, this transformation allows
to change from aCauchy distribution, which does not have any finitemoments, to a truncated
Cauchy distribution, which is defined over a finite interval and therefore has all its moments.
Thus, the new estimators are best suited for the case where both outliers and clusters of high
volatility are present. Indeed, the results of a simulation study show that they outperform
conventional estimators in this case provided that the sample size is not too small. A major
advantage of our estimators is their simplicity, which obviates the need for numerical opti-
mization.
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The results of the simulation study also corroborateMacKinnon and Smith’s (1998) finding
that bias correction is not necessarily a good thing because it may increase theMSE. Including
also bias-corrected versions of the LS estimator in our simulation study and looking at the
whole sampling distribution rather than only at its MSE, we observed that bias correction
may also move the mode of the sampling distribution further away from ρ towards the edge
of the stable region, which increases the probability of obtaining an estimate greater than 1
and reduces the probability of obtaining an estimate reasonably close to the true value.

Tasks for future research include the application to financial data, the further investigation
of the properties of the new estimators, the extension to higher-order autocorrelation as well
as to cross-correlation.
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