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ABSTRACT
This paper considers the class of normal latent factor mixture models.
It presents a method for estimating the posterior distribution of the
parameters, derives analytical expressions for both the first and sec-
ond derivatives of the posterior kernel (the score and Hessian), and
provides posterior approximations that can be computed relatively
quickly.

1. Introduction

For the class of normal latent factor mixture models we present a method for estimating the
posterior distribution of the parameters, derive analytical expressions for the first derivative
(the score vector) and in particular for the second derivative (theHessianmatrix) of the poste-
rior kernel, and provide two posterior approximations that can be computed relatively quickly.
The explicit formulae for the Hessian matrix constitute the main theoretical contribution of
this paper.

There is a sizeable literature on mixture models; for overviews see McLachlan and Peel
(2000), Frühwirth-Schnatter (2006), and Rossi (2014). Our interest is in a sub-class of the
mixture models, namely normal latent factor mixture models. Closely related papers include
Ghahramani and Hinton (1996), McLachlan, Peel, and Bean (2003), McLachlan, Ng, and
Bean (2006), McLachlan, Bean, and Ben-Tovim Jones (2007), Boldea and Magnus (2009),
Baek, McLachlan, and Flack (2010), Andrews and McNicholas (2011), Murray, Browne, and
McNicholas (2014), and Magnus (2016).

Our paper is most closely related to Montanari and Viroli (2010), who examine essentially
the same model, which they call ‘heteroscedastic factor mixture analysis’. We extend their
analysis in two important ways.

First, as is common in the mixture modeling literature, Montanari and Viroli focus exclu-
sively on locating the posterior mode, and do not investigate posterior parameter uncertainty.
Locating the mode is done through the expectation maximization (EM) algorithm or one of
its variants such as alternating expectation conditional maximization (AECM). In contrast,
we do not use an EM-type algorithm, but locate the posterior kernel through gradient-
based numerical optimization. We study the full posterior distribution using a random
walk Metropolis-Hastings sampler, and examine two variance approximations that can be
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computed relatively quickly. Second, our model explicitly accounts for missing observations,
a feature absent from almost all related models studied in the literature.

We derive analytical expressions for the first and second derivatives (the score and
Hessian). The score vector helps us locate the posterior mode through numerical optimiza-
tion. Since we also know the Hessian matrix, we could utilize this knowledge in the optimiza-
tion process through Newton-Raphson type methods. In our experience, however, methods
based on only the score work as well or better.

The Hessian is, however, important in approximating the posterior variance. The expected
outer product of the score vector (the Information Matrix) and the negative of the inverse
Hessian matrix provide two approximations of the posterior variance. The first only uses the
score, while the second requires theHessian.Our numerical examples suggest that theHessian
approximation is superior to the Information Matrix approximation.

Although our approach is Bayesian, our analytical results are also relevant for frequentist
analysis, because the approximations to the posterior variance are valid approximations to
the variance of the maximum likelihood estimator. In our illustration we concentrate on the
Bayesian approach, and hence we do not investigate how accurate the approximations are in
a frequentist context.

The paper is organized as follows. Themodel is presented in Section 2. Identification issues
are discussed in Section 3. The score and the Hessian are derived in Sections 4 and 5, respec-
tively. Section 6 provides an empirical illustration and Section 7 concludes. There are two
mathematical appendices.

2. Themodel

We are interested in an n-dimensional vector of observables x, and we assume that x is a linear
function of a (much) smaller number of latent factors. Specifically, x can be decomposed as

x = Bz + ε, ε ∼ N(0, �). (1)

Them < n components of the random vector z are the latent factors, hence unobserved, and
the n × m matrix B contains the factor loadings. We assume that z and ε are independent,
and that� is diagonal.

The distribution of the factors collected in the m-dimensional vector z is a mixture
(weighted average) of g normal densities, so that

f (z) =
g∑

i=1

πi fi(z;m, μi,Vi), (2)

where

fi(z;m, μi,Vi) = (2π)−m/2|Vi|−1/2 exp
{
−1
2
(z − μi)

′V−1
i (z − μi)

}
(3)

and the πi are weights satisfying πi > 0 and
∑

i πi = 1.
Since linear combinations of normals are also normal, it is easy to see that the distribution

of x is also a mixture (with the same weights) of g normal densities, so that

f (x) =
g∑

i=1

πi fi(x; n,mi,Wi), (4)
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where

mi = Bμi, Wi = BViB′ +�. (5)

The assumption that E ε = 0 and the independence of z and ε can be relaxed. Also, the diag-
onality of � is made for simplicity only and is not essential. Even the normality assumption
can be relaxed; see Magnus (2016).

The set of parameters is thus given by

θ = {B, �, {πi, μi,Vi}gi=1}. (6)

Given a sample x1, . . . , xT of independent and identically distributed (iid) observations from
this distribution, we can write the log-likelihood as L(θ ) = ∑T

t=1 log f (xt ). In fact, however,
we may not have access to the complete xt vectors but only to nt-dimensional subsets x(t ) =
S′
t xt , where St is an n × nt selection matrix. The vectors x(t ) are now no longer iid, but they
are still independent. Hence the log-likelihood becomes

logL(θ ) =
T∑
t=1

logLt (θ ), (7)

where

Lt (θ ) = f (x(t )) =
g∑

i=1

πi fi(x(t ); nt , S′
tmi, S′

tWiSt ) =
g∑

i=1

πie−λit (θ )/2 (8)

and

λit (θ ) = nt log(2π)+ log |S′
tWiSt | + (xt − mi)

′St (S′
tWiSt )−1S′

t (xt − mi). (9)

We assume an improper prior distribution for all parameters, so that locating the poste-
rior mode corresponds with maximizing the log-likelihood logL(θ ). Before we present the
derivatives, we perform three transformations of the parameters. First, the mixture probabil-
ities πi need to be positive and sum to one. This is achieved by writing

πi = ξ 2i∑g
j=1 ξ

2
j

(i = 1, . . . , g), (10)

where we normalize, without loss of generality, ξ1 = 1. Next, each variance matrix Vi needs
to be symmetric and positive definite. We therefore let

Vi = ṼiṼ ′
i + κ1Im, (11)

where Ṽi is lower triangular and κ1 is a given small positive number. Finally, the diagonal
components of� must be strictly positive. We write

� = �̃2 + κ2In, (12)

where �̃ is diagonal and κ2 is a given small positive number. Optimization is performed with
respect to {{ξi}gi=2, {μi, Ṽi}gi=1,B, �̃}, in total

N = n(m + 1)+ g(m + 1)(m + 2)/2 − 1 (13)

parameters.
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3. Identification

As in any mixture model, the labeling of the g mixture components can be permuted in g!
ways without affecting the data-generation process, i.e. the likelihood function has g! sym-
metric modes. Put differently, the likelihood function is itself a mixture distribution with g!
components.

In Figure 1 we provide an example of what a likelihood for a mixture weight πi might look
like in a model with two mixture components (and thus two possible permutations). The
likelihood is shown by the black line. The twomixtureweights appear to be around (1/3, 2/3)
and for each weight there are twomodes, one for each permutation.We show the twomixture
components in blue and red. Ideallywewould like to focus on one of these components, ignore
the rest, and end upwith a unimodal likelihood surface. There is, however, no straightforward
method to achieve this.

We follow an approach commonly taken in the literature, and post-process (draws from)
the posterior distribution using an identifiability constraint on some parameter with a mix-
ture component label, in our case the parameters contained in {πi, μi, Ṽi}gi=1. Specifically, we
assume that π1 ≥ π2 ≥ · · · ≥ πg, see Titterington, Smith, and Makov (1985, Section 3.1).
(The result in our simple example above is given by the green line.) This does not separate
out one of the g! mixture components, and the resulting posterior will most likely still have
multiple modes (Stephens, 2000). Under such an identification scheme, an approximation
to the posterior distribution may be reasonably good around one of the g! modes, but this
does not necessarily mean that it is a good approximation when we impose the identifiability
constraints. This will be especially problematic when the mixture weights are close to each
another but the other mixture parameters are very different.

There are several other identification issues, namely concerning ξi, �̃ , Ṽi, and B, and we
shall discuss each in turn.

We don’t estimate the πi directly, but indirectly through the ξ 2i . The ξi are identified up to a
sign, and hence the corresponding posterior distribution is symmetric at zero. Of course, the
absolute value of the parameter is identified, and the posterior for the absolute value is simply
twice the posterior (at positive values) of the original parameter. For our approximations of

Figure . Identification with two mixture components.
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the posterior variance (discussed below) this lack of identification does not matter, since the
logarithm of the posterior kernel is unaffected by normalizing constants.

Regarding the diagonal elements of �̃ the same holds as for the ξi: they can be positive
or negative without affecting the data-generation process, and hence we can examine their
absolute values.

The matrices Ṽi are lower triangular. For identification there needs to be a one-to-one cor-
respondence between the matrices Ṽi and ṼiṼ ′

i . This can be achieved by choosing the diag-
onal elements of Ṽi to be positive, because for every positive definite matrix A there exists
a unique lower triangular matrix L with positive diagonal elements such that A = LL′. The
non-singularity of A is essential here. If A is singular and hence only positive semi-definite,
then there still exists a lower triangular matrix L with non-negative diagonal elements such
that A = LL′, but this matrix is not unique. For example, if

A =
(
0 0
0 1

)
, L =

(
0 0

sin θ cos θ

)
,

then A = LL′ and the diagonal elements of L are non-negative for every |θ | ≤ π/2, so that L
is not unique.

We do not impose positivity on the diagonal elements of Ṽi (just as we did not impose
positivity for the diagonal elements of �̃). To find an identified Ṽi matrix we transform any
‘non-identified’ Ṽi to an identified one as follows. Define diagonal matricesDi whose diagonal
elements are +1 or −1 depending on whether the corresponding diagonal element of Ṽi is
positive or negative. Then ṼiṼ ′

i = (ṼiDi)(ṼiDi)
′ and all diagonal elements of ṼiDi are now

positive. Notice that if a diagonal element of Ṽi changes sign from negative to positive, then
all elements of Ṽi in the corresponding column (below the diagonal) change sign as well, and
hence it is not correct to adjust only the diagonal elements of Ṽi. As with diag(�̃) and the ξi,
our posterior approximations are not affected when we examine the transformed Ṽi matrices.

The most important identification issue concerns the n × m matrix B of factor loadings
and, associated with B, the matrices {μi,Vi}gi=1. This is because for any invertible m × m
matrixM we can transform

B∗ = BM−1, μ∗
i = Mμi, V ∗

i = MViM′,

and retain the exact same data-generation process, since B∗μ∗
i = Bμi and B∗V ∗

i B∗′ = BViB′.
Jöreskog (1969) was among the first to provide a rule to restrict elements of B in order to
identify the matrix, but his rule did not in fact identify the matrix. Sufficient conditions we
given by Algina (1980).

One approach follows Geweke and Zhou (1996). We assume that the loadings matrix B
takes the form

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
b2,1 1 0 . . . 0
...

...
...

...
bm,1 bm,2 bm,3 . . . 1
bm+1,1 bm+1,2 bm+1,3 . . . bm+1,m

...
...

...
...

bn,1 bn,2 bn,3 . . . bn,m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This form clearly implies that B has full column-rank and it guarantees invariance under
invertible transformations. The specification assumes that the first m rows of B are linearly
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independent. This is not completely satisfactory. It is reasonable to assume that them columns
of B are linearly independent, and hence that there exists at least one set of m linearly inde-
pendent rows (usually many sets), but it is not reasonable to assume that the first m rows are
linearly independent.

One possible solution to this problem is to first locate a posterior mode without imposing
identification on B, then examine if there is anm × m sub-matrix that is invertible, and then
impose identification using this sub-matrix. This is not completely innocuous either, because
the fact that this matrix is invertible at the mode does not imply that a posteriori there is no
possibility that this matrix is singular.

In a non-identified model with an improper prior, the posterior distribution has a (high-
dimensional) ridge that traces out an unbounded set of maximum points, and individual
parameters have infinite variance. One may simply ignore this fact, simulate the posterior
of a non-identified model, and then investigate the posterior for identified parameters (i.e.
{mi,Wi}gi=1). In this paper, however, we examine approximations to the posterior variance,
and these approximations are not valid when there are likelihood ridges. We therefore
impose identification by assuming the structure of B described above, cognizant of the
caveats involved.

4. The score

We wish to obtain the first- and second derivatives of the log-likelihood logL(θ ): the score
vector and the Hessian matrix. First we need some more notation. For any matrix A, vec(A)
denotes the vector which stacks the columns ofA one underneath the other; whenA is square,
vech(A) is obtained from vecA by deleting all supra-diagonal elements ofA; and dg(A) is the
vector containing only the diagonal elements of A. We let ψ̃ = dg(�̃), so that ψ̃ contains the
n diagonal components of �̃ . Further, ei denotes the g × 1 vector all whose components are
zero except the ith which is one. We let ξ∗ = (ξ2, . . . , ξg)

′ and S∗ = (0 : Ig−1), and we recall
that ξ1 = 1. Then ξ = e1 + S′

∗ξ∗. Now let

μ =

⎛⎜⎝μ1
...
μg

⎞⎟⎠, v =

⎛⎜⎝ vech(Ṽ1)
...

vech(Ṽg)

⎞⎟⎠, (14)

so that the parameter vector can be written as θ = (ξ∗, θ∗), where

θ∗ = (μ, v, vecB, ψ̃ ). (15)

It will also prove useful to introduce the weights

π̄it = πie−λit (θ )/2∑g
j=1 π je−λ jt (θ )/2

, (16)

which can be interpreted as the posterior probabilities (after knowing the data at time t) cor-
responding to the prior probabilities πi.

Proposition 1 (Score). We have

d logLt =
g∑

i=1

π̄it

(
dπi

πi
− dλit

2

)
,
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and hence

∂ logLt

∂ξ∗
=

g∑
i=1

π̄itα
(1)
i ,

∂ logLt

∂μi
= π̄itα

(2)
it ,

∂ logLt

∂ vech Ṽi
= π̄itα

(3)
it ,

∂ logLt

∂ vecB
=

g∑
i=1

π̄itα
(4)
it ,

∂ logLt

∂ψ̃ j
=

g∑
i=1

π̄itα
(5)
it ,

where

α
(1)
i = (2/ξ 2i )S∗ (ξiei − πiξ ) , α

(2)
it = B′pit , α

(3)
it = − vech(B′PitBṼi),

α
(4)
it = vec

(
pitμ′

i − PitBVi
)
, α

(5)
it = − dg(�̃Pit ),

and

Pit = St (S′
tWiSt )−1S′

t − pit p
′
it , pit = St (S′

tWiSt )−1(x(t ) − S′
tmi).

Summing over t gives the required score vector.

Proof. Taking differentials in (8) we obtain

dLt =
g∑

i=1

(
(dπi)e−λit /2 − 1

2
πie−λit /2(dλit )

)
(17)

and hence

d logLt = dLt

Lt
=

g∑
i=1

π̄it

(
dπi

πi
− dλit

2

)
. (18)

The first differentials of πi and λit are given in Appendices A and B, respectively, from which
we see that

dπi/πi = α
(1)′
i dξ∗, (19)

and

− dλit/2 = α
(2)′
it dμi + α

(3)′
it d vech(Ṽi)+ α

(4)′
it d vecB + α

(5)′
it dψ̃. (20)

Since λit and dλit do not depend on μ j and vech(Ṽj) ( j �= i), we obtain

− dλit/2 = a′
itdθ∗, ait =

⎛⎜⎜⎝
ei ⊗ α

(2)
it

ei ⊗ α
(3)
it

α
(4)
it
α
(5)
it

⎞⎟⎟⎠. (21)

Inserting (19) and (21) into (18), the result follows. �

5. The Hessian

The Hessian matrix is more difficult. Our starting point is the equality

d2 logLt = −
(
dLt

Lt

)2

+ d2Lt

Lt
. (22)
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Now, dLt/Lt is given in (18). Differentiating (17) gives

d2Lt

Lt
=

g∑
i=1

π̄it

(
d2πi

πi
− (dπi)(dλit )

πi
+ (dλit )2

4
− d2λit

2

)
. (23)

We know dπi/πi and −dλit/2 from (19) and (20). Hence we need to find d2πi/πi and d2λit .
This is achieved in Appendices A and B. In fact,

d2πi/πi = −(dξ∗)′A(11)i (dξ∗) (24)

and

d2λit/2 = (dθ∗)′Ait (dθ∗), (25)

where A(11)i is defined in Appendix A and Ait in Appendix B. Thus we obtain the following
result.

Proposition 2 (Hessian). The Hessian matrix H is given by H = ∑
t Ht , where

−Ht =
(

Ā(11)t −Ā(1∗)t

−Ā(1∗)
′

t Ā(∗∗)
t

)
+
(
ā(1)t ā(1)

′
t ā(1)t ā(∗)

′
t

ā(∗)t ā(1)
′

t ā(∗)t ā(∗)
′

t

)
,

with

Ā(11)t =
g∑

i=1

π̄itA(11)i , Ā(1∗)t =
g∑

i=1

π̄itα
(1)
i a′

it , Ā(∗∗)
t =

g∑
i=1

π̄it (Ait − aita′
it )

and

ā(1)t =
g∑

i=1

π̄itα
(1)
i , ā(∗)t =

g∑
i=1

π̄itait .

Proof. Given all the ingredients presented above, we have

dLt

Lt
=

g∑
i=1

π̄it
dπi

πi
−

g∑
i=1

π̄it
dλit
2

=
g∑

i=1

π̄itα
(1)′
i dξ∗ +

g∑
i=1

π̄ita′
itdθ∗ = ā(1)

′
t dξ∗ + ā(∗)

′
t dθ∗ (26)

and

d2Lt

Lt
=

g∑
i=1

π̄it

(
d2πi

πi
− (dπi)(dλit )

πi
+ (dλit )2

4
− d2λit

2

)

= −
g∑

i=1

π̄it (dξ∗)′A(11)i (dξ∗)+ 2
g∑

i=1

π̄it (dξ∗)′α(1)i a′
it (dθ∗)

+
g∑

i=1

π̄it (dθ∗)′aita′
it (dθ∗)−

g∑
i=1

π̄it (dθ∗)′Ait (dθ∗)

= −(dξ∗)′Ā(11)t (dξ∗)+ 2(dξ∗)′Ā(1∗)t (dθ∗)− (dθ∗)′Ā(∗∗)
t (dθ∗). (27)
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Hence,

− d2 logLt = (dLt/Lt )
2 − d2Lt/Lt

= (dξ∗)′ā(1)t ā(1)
′

t (dξ∗)+ 2(dξ∗)ā(1)t ā(∗)
′

t (dθ∗)+ (dθ∗)ā(∗)t ā(∗)
′

t (dθ∗)
+ (dξ∗)′Ā(11)t (dξ∗)− 2(dξ∗)′Ā(1∗)t (dθ∗)+ (dθ∗)′Ā(∗∗)

t (dθ∗)

=
(
dξ∗
dθ∗

)′( Ā(11)t + ā(1)t ā(1)
′

t −Ā(1∗)t + ā(1)t ā(∗)
′

t

−Ā(1∗)
′

t + ā(∗)t ā(1)
′

t Ā(∗∗)
t + ā(∗)t ā(∗)

′
t

)(
dξ∗
dθ∗

)
,

(28)

and the result follows. �

6. Empirical illustration

We demonstrate the model and the usefulness of explicit Hessian formulae with two sets of
four examples. In each example we use randomly generated parameters and data. We choose
T = 200 as our sample size and g = 2 as the number of mixture components for each model,
but the dimensions vary, as shown in Table 1. In Models 1 the ratio of dimension reduction
(m/n) is 1/2 for n = 4, 6, 8, 10. One could argue, however, that this ratio is typically smaller
in the commonly used latent factor mixture models, and hence we also study Models 2 by
fixingm = 5 and letting n = 20, 30, 40, 50, respectively.

We let 15% of the data be randomly missing. We set κ1 = κ2 = 10−10, ξ = (1, 2, . . . , g)′,
and ψ̃i = 0.5 (i = 1, . . . , n). For the free elements of B we use a truncated standard normal
distribution, excluding parameters that are less than 0.1 in absolute value. For the elements of
μi and Ṽi (i = 1, . . . , g) we use draws from a N(0, i2) distribution, with the same truncation
as for B. We find the posterior mode through numerical optimization, using the Broyden-
Fletcher-Goldfarb-Shanno algorithm as provided by the optim function in R. The optimiza-
tion step takes 8.4 seconds (Model 1a) to 7 minutes (Model 2d) to complete.

Next we calculate two approximations to the posterior variance; see Berger (1985,
pp. 224–225). The first is the information matrix:

IM = EX |θ̄ [q(X |θ̄ ) q′(X |θ̄ )],
where q(X |θ̄ ) denotes the score vector evaluated at the mode θ̄ for random data X . We calcu-
late this expectation by simulating random data 20,000 times, which takes about 35 minutes.
The second approximation is the negative of the Hessian:

−H[(Xobs|θ̄ )],
evaluated at the observed data Xobs, also at the mode. Our variance approximations are the
inverses of these two matrices. It is also possible to numerically approximate the Hessian
matrix. However, except for models of fairly small dimension, the computational time is pro-
hibitive. An analytical Hessian is thus both more accurate and faster to compute.

We estimate the model using 100,000 draws of a random walk Metropolis-Hastings
sampler, with proposal variance proportional to the inverse Hessian. At iteration r, the

Table . Dimensions of the eight models.

a b c d a b c d

n        
m        
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Table . Comparison of posterior variance with two approximations, models .

Model a Model b Model c Model d

Standard deviations −H . . . .
IM . . . .
ratio . . . .

Correlations −H . . . .
IM . . . .
ratio . . . .

Table . Comparison of posterior variance with two approximations, models .

Model a Model b Model c Model d

Standard deviations −H . . . .
IM . . . .
ratio . . . .

Correlations −H . . . .
IM . . . .
ratio . . . .

proposal parameter vector is drawn according to θ prop = θ r + η, where η ∼ N(0,−γH−1).
The appropriate value of γ depends on the specific application. In our application we set
γ = 0.10 for Models 1 and γ = 0.01 for Models 2. The posterior sampler takes between 80
and 269 minutes to complete.

Nextwe compare the estimated posterior variancematrixwith our two approximations.We
distinguish between two aspects of the variance matrix: the standard deviations (the square
roots of the diagonal elements), and the correlations (the off-diagonal elements, but trans-
formed from covariances to correlations).

Tables 2 and 3 present the results. The standard deviations are scale-dependent, and hence
we consider the average absolute log-differences between the approximation and the true pos-
terior. The correlations are scale-independent, and hence we consider the average absolute
differences. The ratios between these averaged differences are well below one for all (except
one) of the sixteen reported cases, in fact about 0.65 (on average) for the standard deviations
and 0.73 for the correlations. This means that the Hessian approximation is about one and a
half times as accurate as the Information Matrix approximation.

7. Conclusions

Within the class of normal latent factormixturemodels we presented amethod for estimating
the posterior distribution of the parameters, and we derived analytical expressions for the
score vector and the Hessian matrix of the posterior kernel. The latter derivation is the main
theoretical contribution of the paper.

We showed that the Hessian is important in approximating the posterior variance. The
expected outer product of the score vector and the negative of the inverse Hessian matrix
provide two approximations of the posterior variance. The first only uses the score, while the
second requires theHessian. Our numerical examples suggest that theHessian approximation
is about one and a half times as accurate as the Information Matrix approximation.
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Appendix A: Derivatives of πi

Writing (10) as

πi = (ξ ′ξ )−1(e′iξ )
2,

we obtain

dπi = −(ξ ′ξ )−2(dξ ′ξ )(e′iξ )
2 + 2(ξ ′ξ )−1(e′iξ )(e

′
idξ )

= 2(ξ ′ξ )−1(e′iξ )(e
′
idξ )− 2(ξ ′ξ )−2(e′iξ )

2(ξ ′dξ )
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and

d2πi = −8(ξ ′ξ )−2(ξ ′dξ )(e′iξ )(e
′
idξ )+ 2(ξ ′ξ )−1(e′idξ )(e

′
idξ )

+ 8(ξ ′ξ )−3(ξ ′dξ )(e′iξ )
2(ξ ′dξ )− 2(ξ ′ξ )−2(e′iξ )

2(dξ )′(dξ )
= −4(dξ )′(ξ ′ξ )−2ξi(ξe′i + eiξ ′)(dξ )+ 2(dξ )′(ξ ′ξ )−1eie′i(dξ )

+ 8(dξ )′(ξ ′ξ )−3ξ 2i ξξ
′(dξ )− 2(dξ )′(ξ ′ξ )−2ξ 2i (dξ ).

This implies that

dπi

πi
= 2
ξ 2i

(
ξie′i − πiξ

′) dξ = α
(1)′
i dξ∗,

where α(1)i is defined in Proposition 1, and

d2πi

πi
= −(dξ∗)′A(11)i (dξ∗),

where

A(11)i = 2S∗
[
ξ 2i Ig + 2ξi(ξe′i + eiξ ′)− 4πiξξ

′ − (ξ ′ξ )eie′i
]
S′

∗
ξ 2i (ξ

′ξ )
.

Appendix B: Derivatives of λit

With λit given in (9), using the definitions of Pit and pit in Proposition 1, and the matrix
differential theory of Magnus and Neudecker (1988), we obtain

dλit = tr Pit (dWi)− 2p′
it (dmi).

Also, given (5), we find the differentials ofmi andWi as

dmi = (dB)μi + B(dμi)

and

dWi = (dB)ViB′ + B(dVi)B′ + BVi(dB)′ + d�
= (dB)ViB′ + B(dṼi)Ṽ ′

i B
′ + BṼi(dṼi)

′B′ + BVi(dB)′ + 2�̃(d�̃).

Combining terms gives

−dλit/2 = p′
itB(dμi)− tr Ṽ ′

i B
′PitB(dṼi)

+ tr
(
μi p′

it −ViB′Pit
)
(dB)− tr Pit�̃(d�̃)

= α
(2)′
it dμi + α

(3)′
it d vech(Ṽi)+ α

(4)′
it d vecB + α

(5)′
it dψ̃,

where α(2)
′

it , α(3)it , α(4)it , and α(5)it are defined in Proposition 1, and we have used the facts that
trA′dṼi = (vechA)′(vech dṼi) and trA′d�̃ = (dgA)′(dg d�̃) for any square matrix A.

The second differential of λit is more difficult. Let Lm denotes the 1
2m(m + 1)× m2 ‘elim-

ination’ matrix defined by the property that L′
m vech(A) = vecA for every lower triangu-

lar m × m matrix A, and �n the n × n2 matrix defined by the property that �′
n dg(A) =

vecA for every diagonal n × n matrix A; see Magnus (1988). We shall prove the following
proposition.

Proposition 3. The symmetric (N − g + 1)× (N − g + 1)matrix Ait defined implicitly by

d2λit/2 = (dθ∗)′Ait (dθ∗),
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takes the form

Ait =

⎛⎜⎜⎝
eie′i ⊗ A(22)it eie′i ⊗ A(23)it L′

m ei ⊗ A(24)it ei ⊗ A(25)it �′
n

eie′i ⊗ LmA(32)it eie′i ⊗ LmA(33)it L′
m ei ⊗ LmA(34)it ei ⊗ LmA(35)it �′

n
e′i ⊗ A(42)it e′i ⊗ A(43)it L′

m A(44)it A(45)it �′
n

e′i ⊗�nA(52)it e′i ⊗�nA(53)it L′
m �nA(54)it �nA(55)it �′

n

⎞⎟⎟⎠,
where the relevant blocks are given by

A(22)it = B′QitB,
A(23)it = p′

itBṼi ⊗ B′QitB + B′QitBṼi ⊗ p′
itB,

A(24)it = (μi +ViB′pit )′ ⊗ B′Qit − (Im − B′QitBVi)⊗ p′
it ,

A(25)it = 2p′
it ⊗ B′Qit�̃,

A(33)it = (Im − Ṽ ′
i B

′PitBṼi)⊗ B′QitB − (Im − Ṽ ′
i B

′QitBṼi)⊗ B′pit p′
itB

+ (
Ṽ ′
i B

′pit p′
itB ⊗ B′QitBṼi + Ṽ ′

i B
′QitB ⊗ B′pit p′

itBṼi
)
Kmm

− (
Ṽ ′
i B

′QitB ⊗ B′QitBṼi
)
Kmm,

A(34)it = (Ṽ ′
i − Ṽ ′

i B
′QitBVi)⊗ B′Pit + Ṽ ′

i B
′pit (μi +ViB′pit )′ ⊗ B′Qit

+ (
Ṽ ′
i B

′Pit ⊗ (Im − B′QitBVi)+ Ṽ ′
i B

′Qit ⊗ B′pit (μi +ViB′pit )′
)
Knm,

A(35)it = 2Ṽ ′
i B

′Qit�̃ ⊗ B′pit p′
it − 2Ṽ ′

i B
′Pit ⊗ B′Qit�̃,

A(44)it = (μi +ViB′pit )(μi −ViB′pit )′ ⊗ Qit + (Vi −ViB′QitBVi)⊗ Pit
+ (

(μi +ViB′pit )p′
it ⊗ QitBVi +ViB′Qit ⊗ pit (μi +ViB′pit )′

)
Knm

− (ViB′Qit ⊗ QitBVi)Knm,

A(45)it = 2(μi +ViB′pit )p′
it ⊗ Qit�̃ − 2ViB′Qit ⊗ Pit�̃,

and

A(55)it = Pit ⊗ In + 2Qit ⊗ �̃pit p′
it�̃ − 2Pit ⊗ �̃Qit�̃,

where Qit = St (S′
tWiSt )−1S′

t = Pit + pit p′
it and Knm denotes the nm × nm ‘commutation’ matrix

defined by the property that Knm vecA = vecA′ for every n × mmatrix A.

Proof. Since

dmi = (dB)μi + B(dμi)

and

dWi = (dB)ViB′ + B(dṼi)Ṽ ′
i B

′ + BṼi(dṼi)
′B′ + BVi(dB)′ + 2�̃(d�̃),

we obtain

dQit = −Qit (dWi)Qit

= −QitB(dṼi)Ṽ ′
i B

′Qit − QitBṼi(dṼi)
′B′Qit − Qit (dB)ViB′Qit

−QitBVi(dB)′Qit − 2Qit�̃(d�̃)Qit ,

dpit = −Qit (dWi)pit − Qit (dmi)

= −QitB(dμi)− QitB(dṼi)Ṽ ′
i B

′pit − QitBṼi(dṼi)
′B′pit

−Qit (dB)(μi +ViB′pit )− QitBVi(dB)′pit − 2Qit�̃(d�̃)pit ,
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and

dPit = dQit − (dpit )p′
it − pit (dpit )′

= QitB(dμi)p′
it + pit (dμi)

′B′Qit − QitB(dṼi)Ṽ ′
i B

′Pit
+ pit p′

itB(dṼi)Ṽ ′
i B

′Qit − PitBṼi(dṼi)
′B′Qit + QitBṼi(dṼi)

′B′pit p′
it

−Pit (dB)ViB′Qit + Qit (dB)(μi +ViB′pit )p′
it − QitBVi(dB)′Pit

+ pit (μi +ViB′pit )′(dB)′Qit − 2Qit�̃(d�̃)Pit + 2pit p′
it (d�̃)�̃Qit .

We then prove the proposition in four steps. In step 1 we obtain

−dα(2)it = −d(B′pit ) = −(dB)′pit − B′(dpit )
= B′QitB(dμi)+ B′QitB(dṼi)Ṽ ′

i B
′pit + B′QitBṼi(dṼi)

′B′pit
+ B′Qit (dB)(μi +ViB′pit )+ B′QitBVi(dB)′pit − (dB)′pit
+ 2B′Qit�̃(d�̃)pit

= A(22)it dμi + A(23)it d vec Ṽi + A(24)it d vecB + A(25)it d vec �̃.

In step 2 we note that

−dα(3)it = d vech(B′PitBṼi) = Lmd vecB′PitBṼi.

Then, setting dμi = 0, we have

d(B′PitBṼi) = (dB)′PitBṼi + B′(dPit )BṼi + B′Pit (dB)Ṽi + B′PitB(dṼi)

= B′QitB(dṼi)(Im − Ṽ ′
i B

′PitBṼi)− B′pit p′
itB(dṼi)(Im − Ṽ ′

i B
′QitBṼi)

+B′pit p′
itBṼi(dṼi)

′B′QitBṼi + B′QitBṼi(dṼi)
′B′pit p′

itBṼi

−B′QitBṼi(dṼi)
′B′QitBṼi

+B′Pit (dB)(Ṽi −ViB′QitBṼi)+ B′Qit (dB)(μi +ViB′pit )p′
itBṼi

+ (Im − B′QitBVi)(dB)′PitBṼi + B′pit (μi +ViB′pit )′(dB)′QitBṼi

− 2B′Qit�̃(d�̃)PitBṼi + 2B′pit p′
it (d�̃)�̃QitBṼi,

which implies that

d vecB′PitBṼi = A(33)it d vec Ṽi + A(34)it d vecB + A(35)it d vec �̃.

The starting point for step 3 is

−dα(4)it = −d vec(pitμ′
i − PitBVi).

Setting dμi and dṼi both equal to zero, we have

d(pitμ′
i − PitBVi) = d(pit )μ′

i − (dPit )BVi − Pit (dB)Vi

= −Qit (dB)(μi +ViB′pit )(μ′
i − p′

itBVi)− Pit (dB)(Vi −ViB′QitBVi)

−QitBVi(dB)′pit (μi +ViB′pit )′ − pit (μi +ViB′pit )′(dB)′QitBVi

+QitBVi(dB)′QitBVi + 2Pit�̃(d�̃)QitBVi − 2Qit�̃(d�̃)pit
(
μi +ViB′pit

)′
,

and hence

−d vec(pitμ′
i − PitBVi)

= (
(μi +ViB′pit )(μi −ViB′pit )′ ⊗ Qit + (Vi −ViB′QitBVi)⊗ Pit

)
d vecB

+ (
(μi +ViB′pit )p′

it ⊗ QitBVi +ViB′Qit ⊗ pit (μi +ViB′pit )′
)
Knmd vecB

− (ViB′Qit ⊗ QitBVi)Knmd vecB
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+ 2
(
(μi +ViB′pit )p′

it ⊗ Qit�̃ −ViB′Qit ⊗ Pit�̃
)
d vec �̃

= A(44)it d vecB + A(45)it d vec �̃.

Finally, in step 4, we set dμi, dṼi, and dB all equal to zero. Then,

−dα(5)it = dg d(�̃Pit )

and

d(�̃Pit ) = (d�̃)Pit + �̃(dPit )
= (d�̃)Pit − 2�̃Qit�̃(d�̃)Pit + 2�̃pit p′

it�̃(d�̃)Qit

so that

d vec(�̃Pit ) = A(55)it d vec �̃.

This concludes the proof. �
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