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ABSTRACT
In this paper, we discuss the derivation of the first and secondmoments
for the proposed small area estimators under a multivariate linear
model for repeated measures data. The aim is to use these moments
to estimate the mean-squared errors (MSE) for the predicted small
area means as a measure of precision. At the first stage, we derive the
MSE when the covariance matrices are known. At the second stage, a
method based on parametric bootstrap is proposed for bias correction
and for prediction error that reflects the uncertaintywhen the unknown
covariance is replaced by its suitable estimator.

1. Introduction

Reliable information about various population characteristics of interest are needed by policy
and decision makers for planning. Therefore, there is a great need to estimate these charac-
teristics of interest via survey sampling, not only for the total target population, but also for
local sub-population units (domains). However, most sampling surveys are designed to target
much larger populations. Then, the derived direct survey estimators obtained using data only
from the target small domain of interest have been found to be with lack of precision due
to small sample size connected to this domain. The development of estimation techniques
that provide reliable estimates for such a small domain or small area and standard errors of
estimates have been a big concern in recent years. These techniques are commonly known as
Small Area Estimation (SAE) methods. For comprehensive reviews of SAE, one can refer to
Rao (2003); Rao and Isabel (2015); Pfeffermann (2002, 2013).

Longitudinal surveys with repeatedmeasures data over time are developed to study pattern
of changes and trends over time. The demand for SAE statistics is not only for cross-sectional
data, but also for repeated measures data. Ngaruye et al. (2017) have proposed a multivari-
ate linear model for repeated measures data within small area estimation settings which
accounts for grouped response units and random effects variations. One of the methods to
ensure the precision of model-based estimators is the assessment of its mean-squared error
(MSE). There is an extensive literature about the approaches used for the estimation of MSE
of model-based small area estimators. The second-order approximation of asymptotically
unbiased MSE based on Taylor series expansion has been considered by various authors such
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as Kackar and Harville (1984); Datta et al. (1999); Das (Jiang); Baillo and Molina (2009),
among others. However, as pointed out by Kubokawa and Nagashima (2012), the Taylor
series expansion is sometimes complicated to implement for complicated models with many
unknown parameters since it requires the computation of asymptotic bias and asymptotic
variance and covariance for estimators of unknown parameters.

In this paper, we aim to derive first and second moments of the proposed estimators for
unknownparameters in a special case of themodel considered byNgaruye et al. (2017) andwe
use these moments to derive the MSE for the predicted small area means. Further, following
Butar and Lahiri (2003); Kubokawa and Nagashima (2012) we propose an unbiased estimator
of MSE based on the parametric bootstrap method.

The article is organized as follows. In Section 2, the description of the considered model
is reviewed. In Section 3, the approach used for estimation and prediction is presented. In
Section 4, some preliminary basic results that are referred to in the next sections are provided.
The first and second moments of the proposed estimators are presented in Section 5 and in
Section 6 an unbiased estimator of MSE of predicted small area means under a multivariate
linear model for repeated measures data is derived.

2. Description of themodel

Consider the multivariate linear regression model for repeated measurements as defined in
Ngaruye et al. (2017). Assume that a p-vector of measurements over time for a finite popu-
lation of size N divided intom non-overlapping small areas of size Ni, i = 1, . . . ,m together
with r-vector of auxiliary variables are available for all units in the population. Suppose also
that the target population is composed of k group units and denote byNig the population size
of the g-th group units, g = 1, . . . , k such that

∑k
g=1 Nig = Ni and that themean growth of the

jth unit, j = 1, . . . ,Ni, in area i for each group to be a polynomial in time of degree q − 1.
Then, the unit level regression model for the j-th unit coming from the small area i at time t
which applies for each one of all k group units can be expressed by

yi jt = β0 + β1t + · · · + βqtq−1 + γ ′xi j + uit + ei jt ,
i = 1, . . . ,m; j = 1, . . . ,Ni; t = t1, . . . , tp,

where the random errors ei jt and random effects uit are independent and assumed to be
i.i.d. normal with mean zero and variance σ 2

e and σ 2
ut , respectively. The γ is a vector of

fixed regression coefficients representing the effects of auxiliary variables. The β0, . . . , βq are
unknown parameters. For all time points, the model can be written in matrix form as

yi j = Aβ + 1pγ
′xi j + ui + ei j, i = 1, . . . ,m; j = 1, . . . ,Ni;

where 1p is a p-vector of ones and ui is assumed to be multivariate normally distributed with
zero mean and unknown positive definite covariance matrix �u. In this article we assume
A = I p, meaning that we do not consider trends over time.

Hence, the associated multivariate linear regression model for all units coming from the
i-th small area belonging to the g-th group units can be expressed by

Y ig = βg1
′
Nig

+ 1pγ
′X ig + uiz′

ig + E ig, i = 1, . . . ,m, g = 1, . . . , k, (1)

and themodel at small area level for all k group units together, belonging to the i-th small area
can be expressed as

Y i = BCi + 1pγ
′X i + uiz′

i + E i, ui ∼ Np(0, �u), E i ∼ Np,Ni (0, �e, INi ), (2)
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where Y i = (Y i1, . . . ,Y ik); B = (β1, . . . , βk); X i = (X i1, . . . ,X ik); zi = 1√
Ni
1Ni ; E i =

(ei1, . . . , eik); and Ci = blkdiag(1′
Ni1

, . . . , 1′
Nik

), where the notation blkdiag(A1, . . . ,Ak) is a
block diagonal matrix with the given matrices Ai on the diagonal. The corresponding model
combining all disjoint m small areas and all N units divided into k non-overlapping group
units is given by

Y = BC + 1pγ
′X +UZ + E, (3)

where Y = (Y 1, . . . ,Ym); C = (1′
m ⊗ Ik)CD = (C1, . . . ,Cm); CD = blkdiag(C1, . . . ,Cm);

X = (X1, . . . ,Xm);U = (u1, . . . , um); E = (E1, . . . ,Em); Z = blkdiag(z′
1, . . . , z′

m) and

E ∼ Np,N (0, �e, IN ), U ∼ Np,m(0, �u, Im),

with p ≤ m and �u is an arbitrary positive definite matrix. The symbol ⊗ denotes the Kro-
necker product. It can be worth to point out that the matrixCD (indexD for diagonal) is used
later for an orthogonal transformation and partitioning of the model for estimation purpose.

The matrices Z,C,CD are of full row rank, C (Z′) ⊆ C (C′
D) and ZZ′ = Im, where where

C (A) denotes the column vector space generated by the columns of an arbitrary matrix A.
In model (3), Y : p× N is the data matrix, B : q × k is unknown parameter matrix,

CD : mk × N with rank(CD) + p ≤ N and p ≤ m is the between individual design matrix
accounting for group effects, the matrixU : p× m is a matrix of random effects, Z : m × N
is the design matrix for random effects and E is the error matrix. The matrixC is the between
individual designmatrix that captures all k group units.More details aboutmodel formulation
can be found in Ngaruye et al. (2017).

3. Estimation and prediction

Model (3) is considered as a random effects model with covariates. For a comprehensive
review of different considerations of the random effects model, see for e.g., Yokoyama and
Fujikoshi (1992); Yokoyama (1995); Nummi (1997); Pan, Fang, and Fang (2002). The esti-
mation and prediction are performed with a likelihood based approach. In what follows, for
an arbitrary matrix A, Ao stands for any matrix of full rank spanning C (A)⊥, i.e., C (Ao) =
C (A)⊥, whereC (A)⊥ is an orthogonal complement toC (A). Moreover,A− denotes an arbi-
trary generalized inverse of the matrix A such that AA−A = A. We also denote by PA =
A(A′A)−A′ and QA = I − PA the orthogonal projection matrices onto the column space
C (A) and onto its orthogonal complementC (A)⊥, respectively. Derivation of estimators and
predictors of model (3) are developed in Ngaruye et al. (2017).

We make an orthogonal transformation of model (3) and partition it into three indepen-
dent models. This partition is based on orthogonal diagonalization of the idempotent matrix
(CDC′

D)−1/2CDZ′ZC′
D(CDC′

D)−1/2 by � = (
�1 �2

)
, the orthogonal matrix of eigenvectors for

m and N − m elements. We use the following notations to shorten matrix expressions:

K i = CRi, Ri = C′
D(CDC′

D)−1/2�i, i = 1, 2. (4)

With this orthogonal transformation, we obtain the three independently distributed models

V 1 = YR1 ∼ Np,m(BK1 + 1pγ
′XR1, �u + �e, Im),

V 2 = YR2 ∼ Np,mk−m(BK2 + 1pγ
′XR2, �e, Imk−m),

V 3 = YC′
D
o ∼ Np,N−mk(1pγ

′XC′
D
o
, �e, IN−mk).
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In the following the estimation of mean and covariance is performed using a likeli-
hood based approach while the prediction of random effect is performed using Henderson’s
approach consisting of themaximization of the joint density f (Y ,U )with respect toU under
the assumption of known �e and �u (Henderson 1973). We now have the following theorem
for the estimators and predictor.

Theorem 3.1 (Ngaruye et al. (2017)). Consider the model (3). Assume that the matrices X and
Ko

2
′K1 are of full rank. Then the estimators for γ ,�u, the linear combinationBC and the predictor

ofU are given by

γ̂ = 1
p
(XP1X ′)−1XP1Y ′1p,

B̂C =
(
Y − 1

p
1p1′

pYP1X ′(XP1X ′)−1X
)
R2K ′

2(K2K ′
2)

−C +WK ′
1P2C,

where

P1 = C′
D
o
(C′

D
o
)
′ + R2QK ′

2
R′
2,

P2 = Ko
2(K

o
2
′K1K ′

1K
o
2)

−1Ko
2
′
,

W =
(
Y − 1

p
1p1′

pYP1X ′(XP1X ′)−1X
)
GR1,

G = IN − R2K ′
2(K2K ′

2)
−C.

and

�̂u = 1
m − 1

WQK ′
1K

o
2
W ′ − �e, assumed to be positive definite,

Û = (�e + �̂u)
−1�̂uWQK ′

1K
o
2
R′
1Z

′.

For the details of the proof we refer to Ngaruye et al. (2017). A particular case of model
(3) with empirical data analysis for p = q has been discussed by Ngaruye (von Rosen). Here
we have corrected the estimator �̂u to be an unbiased estimator for �u. We note that the esti-
mators given in Theorem 3.1 are unique. The following two lemmas discuss the uniqueness
of estimators B̂C and Û , the proof of the uniqueness of other estimators is straightforward.

Lemma 3.1. The estimator B̂C given in Theorem 3.1 is invariant with respect to the choice of
generalized inverse.

Proof. By replacingW with its expression in the Theorem 3.1, we can rewrite B̂C as

B̂C =
(
Y − 1

p
1p1′

pYP1X ′(XP1X ′)−1X
)

(R2K ′
2(K2K ′

2)
− + GR1K ′

1P2)C

=
(
Y − 1

p
1p1′

pYP1X ′(XP1X ′)−1X
)

(R2K ′
2(K2K ′

2)
−(Ik − K1K ′

1P2) + R1K ′
1P2)C.

We can put

K1K ′
1P2 = K1K ′

1K
o
2(K

o
2
′K1K ′

1K
o
2)

−1Ko
2
′

= Ik − K2(K ′
2(K1K ′

1)
−1K2)

−K ′
2(K1K ′

1)
−1. (5)
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Therefore,

B̂C =
(
Y − 1

p
1p1′

pYP1X ′(XP1X ′)−1X
)

(R2K ′
2(K2K ′

2)
−K2(K ′

2(K1K ′
1)

−1K2)
−

×K ′
2(K1K ′

1)
−1 + R1K ′

1P2)C

is unique, which completes the proof of the lemma. �
Lemma 3.2. The predictor Û given in Theorem 3.1 is invariant with respect to the choice of
generalized inverse.

Proof. From the expression of Û in Theorem 3.1, inserting the value of �̂u yields

Û = (�e + �̂u)
−1�̂uWQK ′

1K
o
2
R′
1Z

′ = (I p − (m − 1)σ 2
e

(
WQK ′

1K
o
2
W ′)−1

)WQK ′
1K

o
2
R′
1Z

′.

First observe that

WQK ′
1K

o
2
=

(
Y − 1

p
1p1′

pYP1X ′(XP1X ′)−1X
)
R1QK ′

1K
o
2

−
(
Y − 1

p
1p1′

pYP1X ′(XP1X ′)−1X
)
R2K ′

2(K2K ′
2)

−K1QK ′
1K

o
2

and also note that K ′
1P2K1 = PK ′

1K
o
2
. From relation (5), it follows that

K1QK ′
1K

o
2
= K1 − K1PK ′

1K
o
2
= (Ik − K1K ′

1P2)K1

= K2(K ′
2(K1K ′

1)
−1K2)

−K ′
2(K1K ′

1)
−1K1.

Thus,WQK ′
1K

o
2
does not depend on a choice of a generalized inverse and the uniqueness of

WQK ′
1K

o
2
implies the uniqueness of Û . �

3.1. Prediction of small areameans

The prediction of small area means is based on the prediction approach to finite population
under model-based theory. By this approach, the target population under study is consid-
ered as a random sample from a larger population characterized by a suitable model and the
predictive distribution of the values for non sampled units is obtained given the realized val-
ues of sampled units (Bolfarine and Zacks 1992). The model (3) considered in this paper
belongs to the extensions of unit level model, often known as nested linear regression model
which was originally proposed by Battese, Harter and Fuller (1988) for prediction of mean
per-capital income in small geographical areas within counties in the United States. Following
these authors, the estimation of a population mean from the sample returns to the prediction
of a mean of non-sampled values.

For k group units in all small areas, we consider the partition of Ni units into Nig, g =
1, . . . , k, and ni sampled units into nig such that Ni = ∑k

g=1 Nig and ni = ∑k
g=1 nig and simi-

larly forY i such thatY i = [Y i1, . . . ,Y ik]. Then the corresponding target small area means at
each time point for each group unit are given by

μ̂ig = 1
Nig

(
Y (s)

ig 1nig + Ŷ (r)
ig 1Nig−nig

)
, (6)

where Y (s)
i = (yi1, . . . , yini ) : p× ni, standing for the sampled ni observations from the i-th

small area and Ŷ (r)
i = (yini+1

, . . . , yiNi
) : p× (Ni − ni), corresponds to the predicted values

for non-sampled (Ni − ni) units from the i-th small area. The first term of the expression
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(6) on the right side is known from the sampled observations and the second term is the
prediction of non-sampled observations obtained using the considered model (Henderson
1975) and is given by

Ŷ (r)
ig 1Nig−nig =

(
1 − nig

Nig

)
β̂g + 1

Nig
1p1′

Nig−nigX
(r)′
ig γ̂ +

√
Nig − nig
Nig

ûi, (7)

whereX (r)
ig stands for thematrix of auxiliary information of non-sampled units in the i-th area

belonging to the group units g.
Note that β̂g is the estimator ofβg which is the g-th column of the estimatedmatrix B̂ and ûi

is the i-th column of the predicted matrix Û . Throughout this article, we are interested in the
estimation of mean-squared errors (MSE) for the predicted small area means given in above
relation (7). Therefore, we need to calculate the moments of the proposed estimators in order
to derive an estimate of the MSE.

4. Preparations for moments calculation

In this section a lemma is given for some technical results that are referred to later on for the
moment derivations and other calculations. The following standard definition of the covari-
ance between two random matrices, will be used:

cov(X,Y ) = E[vecXvec′Y ] − E[vecX]E[vec′Y ],

where vec is the usual columnwise vectorization. Note that the dispersion matrix D[X] is
defined by D[X] = cov(X,X ).

To simplify our calculations later we present the next technical results.

Lemma 4.1. From the definition of the matrices K1,K2,R1 and R2 given in (4) together with
the fact that C (Z′) ⊆ C (C′

D) and ZZ′ = Im, the following identities hold:
(i) R′

1R1Z = Z,
(ii) Z′ZR1 = R1,
(iii) K1K ′

1 = CZ′ZC′,
(iv) R′

2R1 = R′
2Z

′ = 0 and hence P1Z′ = 0, where P1 is defined in Theorem 3.1, and
(v) CP1 = 0.

Proof. We prove the first three identities, the others are obtained by straightforward calcula-
tions. From the orthogonal diagonalization

(CDC′
D)−1/2CDZ′ZC′

D(CDC′
D)−1/2 = �D�′ = (�1 �2 )

(
Im 0
0 0

)(
�′
1

�′
2

)
.

It follows that

�1(CDC′
D)−1/2CDZ′ZC′

D(CDC′
D)−1/2�′

1 = R′
1Z

′ZR1 = Im.

Furthermore, since ZZ′ = R′
1R1 = Im, it follows that ZZ′Z = R′

1R1Z = Z. Similarly, from
R′
1Z

′ZR1 = R′
1R1, we deduce that Z′ZR1 = R1. Moreover, since K1 is a full row rank, then

K1K ′
1 = K1R′

1Z
′ZR1K ′

1 = CR1R′
1Z

′ZR1R′
1C

′ = CZ′ZC′. �

5. Moments of proposed estimators

In this section, we present the first and secondmoments of the proposed estimators. All proofs
will be given in the end of this article in an Appendix.
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5.1. Theoretical moments with known�u

For the purpose of moment calculations, from now on, we suppose that we have complete
knowledge on the covariance matrix �u or it has been estimated previously so that it is taken
to be as known. In that regard, we use the following predictor ofU

Ũ = (�e + �u)
−1�uWQK ′

1K
o
2
R′
1Z

′. (8)

Theorem 5.1. Given the estimators in Theorem 3.1. Then, Ŷ = B̂C + 1pγ̂
′X + ŨZ is an unbi-

ased predictor, i.e., E[Ŷ ] = E[Y ].

The following two theorems give the main results of the paper about moments of the pro-
posed estimators.

Theorem 5.2. Given the estimators in Theorem 3.1. The dispersion matrices D[̂γ], D[̂BC] and
D[Ũ ] are given by

D[̂γ] = σ 2
e

p
(XP1X ′)−1,

D[̂BC] = C′P2C ⊗ (�u + �e) + (C′(Ik − P2K1K ′
1)(K2K ′

2)
−

× (Ik − K1K ′
1P2)C) ⊗ �e + σ 2

e

p
C′((K2K ′

2)
−K2R′

2 + P2K1R′
1G

′)

×X ′(XP1X ′)−1X (R2K ′
2(K2K ′

2)
− + GR1K ′

1P2)C ⊗ 1p1′
p,

D[Ũ ] = ZR1QK ′
1K

o
2
(Im + K1(K2K ′

2)
−K1)QK ′

1K
o
2
R′
1Z

′ ⊗ �u(�e + �u)
−1�u

+ σ 2
e

p
ZR1QK ′

1K
o
2
R′
1G

′X ′(XP1X ′)−1XGR1QK ′
1K

o
2
R′
1Z

′

⊗ �u(�e + �u)
−11p1′

p(�e + �u)
−1�u.

In Theorem 5.2 the dispersion matrices for the estimators and predictor are given. How-
ever, for prediction purposes, it is also of interest to derive the covariances between them.

Theorem 5.3. Consider the estimators given in Theorem 3.1. Then, the covariances cov[Ũ , γ̂],
cov[̂BC, Ũ ] and cov[̂BC, γ̂] are given by

cov[Ũ , γ̂] = −σ 2
e

p
ZR1QK ′

1K
o
2
R′
1G

′X ′(XP1X ′)−1 ⊗ �u(�e + �u)
−11p,

cov[̂BC, Ũ ] = σ 2
e

p
C′((K2K ′

2)
−K2R′

2 + P2K1R′
1G

′)X ′(XP1X ′)−1XGR1QK ′
1K

o
2
R′
1Z

′

⊗ 1p1′
p(�e + �u)

−1�u,

cov[̂BC, γ̂] = −σ 2
e

p
C′((K2K ′

2)
−K2R′

2 + P2K1R′
1G

′)X ′(XP1X ′)−1 ⊗ 1p.

In the next section we will use Theorem 5.2 and Theorem 5.3 to derive the mean-squared
errors of predicted small area means.

5.2. Simulation studywith the empirical moments

To put some light on the moment expressions in Section 5.1 we provide a simulation study
comparing the first and secondmoments of B̂ and γ̂ . Assumewe have 8 small areas, i.e,m = 8
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with k = 3 groups and given sample sizes

n11 = 2, n12 = 3, n13 = 6,
n21 = 7, n22 = 9, n23 = 13,
n31 = 10, n32 = 4, n33 = 5,
n41 = 3, n42 = 9, n43 = 7,
n51 = 4, n52 = 6, n53 = 2,
n61 = 10, n62 = 11, n63 = 18,
n71 = 7, n72 = 4, n73 = 4,
n81 = 6, n82 = 9, n83 = 5.

Furthermore, let p = q = 2 with

B =
(
8 10 12
9 11 13

)
, γ = ( 1 2 3 )

′
, �u =

(
2 1
1 2

)
,

�e = I p, i.e., σ 2
e = 1, and the design matrix X is chosen randomly as xi j ∼ U [0, 1]. Given

model (3) we simulate the observation matrixY for different sample sizes, where we multiply
the sample sizes above with the factors 1, 2, 4, 8, 12, 16, 20, i.e., we have n11 = 2, 4, 8, 16,
24, 32, 40, and so on. For 10 000 replicates, for each set up of sample sizes, we calculate the
estimates B̂ and γ̂ , respectively. Based on these simulated estimates we derive the empirical
moments and the Frobenius norm of the difference between the empirical (Ê[·] and D̂[·])
and true moments (E[·] andD[·]) given in Section 5.1. As we can see in Table 1, the estimates
are close to the true values and getting better when the sample sizes increases (i.e., estimators
seems to be consistent).

6. Mean-squared errors of predicted small areameans

6.1. Derivation ofMSE(̂τ ig)

In this section, following Butar and Lahiri (2003) we estimate the mean squared error for pre-
dicted small area means in two steps. At the first step, under the assumption of known covari-
ance matrices�e and�u, the derivation of MSE is presented. At the second step, a parametric
bootstrap approach is proposed for bias correction and approximation of the uncertainty due
to the estimation of �u. Put

K =
(
1 − nig

Nig

)
I, L = 1

Nig
1p1′

Nig−nigX
(r)′
ig , M =

√
Nig − nig
Nig

I p,

i = 1, . . . ,m, g = 1, . . . , k. (9)

Table . Frobenius normof the difference between the empirical (Ê[·] and D̂[·]) and truemoments (E[·] and
D[·]).
Factor ||B − Ê[̂B]||F ||D[̂B] − D̂[̂B]||F ||γ − Ê[̂γ]||F ||D[̂γ] − D̂[̂γ]||F
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .

COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 2067



Then, the linear prediction and empirical linear prediction quantities from small area means
given in (7) can be written by

τ̃ ig = Kβ̂g + Lγ̂ + Mũi, i = 1, . . . ,m, g = 1, . . . , k

τ̂ ig = Kβ̂g + Lγ̂ + Mûi, i = 1, . . . ,m, g = 1, . . . , k. (10)

Let eg : k × 1 and f i : m × 1 be the unit basis vectors, i.e., k andm vectors with 1 in the gth and
ith position, respectively, and 0 elsewhere. Putαg = C′(CC′)−1eg so that β̂g = B̂Cαg, ũi = Ũ f i
and ûi = Û f i.

Furthermore, let us write τ̂ ig − τ ig = (̂τ ig − τ̃ ig) + (̃τ ig − τ ig) and the MSE of τ̂ ig can be
obtained by

MSE(̂τ ig) = MSE(̃τ ig) + 2E[(̂τ ig − τ̃ ig)(̃τ ig − τ ig)
′] + E[(̂τ ig − τ̃ ig)(̂τ ig − τ̃ ig)

′]. (11)

The first term of the right hand side of (11) has the form

MSE(̃τ ig) = E[(̃τ ig − τ ig)(̃τ ig − τ ig)
′]

= E[(K (̂βg − βg) + L(̂γ − γ ) + M(̃ui − ui))

× (K (̂βg − βg) + L(̂γ − γ ) + M(̃ui − ui))
′]

= KD[̂βg]K
′ + Kcov[̂βg, γ̂]L

′ + Kcov[̂βg, ũi]M′ + LD[̂γ]L′

+ Lcov[̂γ, ũi]M′ + MD[̃ui, β̂g]K
′ + Lcov[̂γ, B̂]K ′

+Mcov[̃ui, γ̂]L′ + MD[̃ui − ui]M′. (12)

Observe that, from the definitions given to β̂g = B̂Cαg, ũi = Ũ f i and ûi = Û f i the covari-
ances presented in Equation (12) are expressed by

cov[̂βg, ũi] = cov[̂BCαg, Ũ f i] = (α′
g ⊗ I p)cov[̂BC, Ũ ]( f i ⊗ I p),

cov[̃ui, γ̂] = cov[Ũ f i, γ̂] = ( f ′
i ⊗ I p)cov[Ũ , γ̂],

cov[̂βg, γ̂] = cov[̂BCαg, γ̂] = (α′
g ⊗ I p)cov[̂BC, γ̂].

Similarly, the dispersion matrices presented in Equation (12) are expressed by

D[̂βg] = D[̂BCαg] = (α′
g ⊗ I p)D[̂BC](αg ⊗ I p),

D[̃ui] = D[Ũ f i] = ( f ′
i ⊗ I p)D[Ũ ]( f i ⊗ I p),

and

D[̃ui − ui] = ( f ′
i ⊗ I p)D[Ũ −U ]( f i ⊗ I p)

= ( f ′
i ⊗ I p)(D[Ũ ] − 2cov(Ũ ,U ) + D[U ])( f i ⊗ I p)

= ( f ′
i ⊗ I p)(D[U ] − D[Ũ ])( f i ⊗ I p).

Altogether we can give the following theorem.

Theorem 6.1. The MSE of the linear prediction from small area means τ̃ ig is given as

MSE(̃τ ig) = K(α′
g ⊗ I p)D[̂BC](αg ⊗ I p)K ′ + K(α′

g ⊗ I p)cov[̂BC, γ̂]L′

+K(α′
g ⊗ I p)cov[̂BC, Ũ ]( f i ⊗ I p)M′ + LD[̂γ]L′

+ Lcov[Ũ , γ̂]′( f i ⊗ I p)M′ + M( f ′
i ⊗ I p)cov[̂BC, Ũ ]′(αg ⊗ I p)K ′

+ Lcov[̂BC, γ̂]′(αg ⊗ I p)K ′ + M( f ′
i ⊗ I p)cov[Ũ , γ̂]L′

+M�uM′ − M( f ′
i ⊗ I p)D[Ũ ]( f i ⊗ I p)M′, (13)
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where the dispersion matrices D[̂γ], D[̂BC], D[Ũ ] and the covariance matrices cov[Ũ , γ̂],
cov[̂BC, Ũ ], cov[̂BC, γ̂] are presented in Theorem 5.2 and Theorem 5.3, respectively.

6.2. Estimation ofMSE(̂τ ig)

The second two terms of the right hand side of Equation (11) are intractable and need to be
approximated. It is important to note that in practice, the covariance matrix �u is unknown.
As pointed out by different authors (see for example Das (Jiang)), a naive estimator of MSE
obtained by replacing the unknown covariance matrix �u by its estimator �̂u in (13) that
ignores the variability associated with �̂u can lead to underestimation of the trueMSE. There-
fore, we propose a parametric bootstrap method to estimate the MSE when �u is replaced by
its estimator.

The approximate estimator of MSE(̂τ ig) given in Equation (11) can be decomposed as

MSE(̂τ ig) = G1i(�u) + G2i(�u) + G3i(�u), (14)

where

G1i(�u) + G2i(�u) = MSE(̃τ ig)

G3i(�u) = 2E[(̂τ ig − τ̃ ig)(̃τ ig − τ ig)
′] + E[(̂τ ig − τ̃ ig)(̂τ ig − τ̃ ig)

′].

For known�u, the quantityG1i(�u) + G2i(�u) is given in Equation (13).When�u is replaced
by its estimator, the quantity G1i(�̂u) + G2i(�̂u) introduces an additional bias related to �̂u,
i.e., E[�̂u] − �u (see Datta and Lahiri (2000)). Following Butar and Lahiri (2003); Kubokawa
and Nagashima (2012), we propose a parametric bootstrap method to estimate the first two
terms of (14) by correcting the bias ofG1i(�̂u) + G2i(�̂u)when�u is replaced by its estimator
�̂u in Equation (13) and secondly for estimating the third term G3i(�u) of Equation (14).

Consider the bootstrap model

Y ∗
i | u∗

i ∼ Np,ni

(
B̂Ci + 1pγ̂

′X i + u∗
i z

′
i, �e, Ini

)
, i = 1, . . . ,m, (15)

where u∗
i ∼ Np(0, �̂u). If we put

τ̂ ig(Y i; β̂g, γ̂, �̂u) = Kβ̂g + Lγ̂ + Mũi, (16)

τ̂ ig(Y i; β̂
∗
g , γ̂

∗, �̂u) = Kβ̂
∗
g + Lγ̂∗ + Mũ∗

i , (17)

τ̂ ig(Y i; β̂
∗
g , γ̂

∗, �̂
∗
u) = Kβ̂

∗
g + Lγ̂∗ + Mû∗

i , i = 1, . . . ,m, g = 1, . . . , k. (18)

then the quantity G1i(�u) + G2i(�u) can be estimated by

G1i(�̂u) + G2i(�̂u) − E∗
[
G1i(�̂

∗
u) + G2i(�̂

∗
u) − G1i(�̂u) − G2i(�̂u)

]
and the quantity G3i(�u) estimated by

2E∗[(̂τ ig(Y i; β̂
∗
g , γ̂

∗, �̂
∗
u) − τ̂ ig(Y ∗

i ; β̂
∗
g , γ̂

∗, �̂u))(̂τ ig(Y i; β̂
∗
g , γ̂

∗, �̂u) − τ̂ ig(Y i; β̂g, γ̂, �̂u))
′]

+E∗[(̂τ ig(Y i; β̂
∗
g , γ̂

∗, �̂
∗
u) − τ̂ ig(Y i; β̂

∗
g , γ̂

∗, �̂u))()
′],

where E∗ is the expectation with respect to model (15), and the calculation of γ̂∗, β̂
∗
g , �̂

∗
u is

performed similarly to that of γ̂, β̂g, �̂u except that γ̂∗, β̂
∗
g , �̂

∗
u are calculated based on Y ∗

i
instead ofY i.

Thus, when the unknown covariance �u is replaced by its estimator in MSE(̂τ ig) of Equa-
tion (14), we obtain the proposed estimator of MSE whose results are summarized in the
following theorem.
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Theorem6.2. Consider themodel (3) and assume that thematricesX andKo
2
′K1 are of full rank.

Consider the bootstrap model (15) and the estimated quantities (16)-(18). Then the estimator of
MSE for predicted small area means given in (10) can be expressed by

M̂SE(̂τ ig) = 2[G1i(�̂u) + G2i(�̂u)] − E∗[G1i(�̂
∗
u) + G2i(�̂

∗
u)]

+ 2E∗[(̂τ ig(Y i; β̂
∗
g , γ̂

∗, �̂
∗
u) − τ̂ ig(Y ∗

i ; β̂
∗
g , γ̂

∗, �̂u))

× (̂τ ig(Y i; β̂
∗
g , γ̂

∗, �̂u) − τ̂ ig(Y i; β̂g, γ̂, �̂u))
′]

+E∗[(̂τ ig(Y i; β̂
∗
g , γ̂

∗, �̂
∗
u) − τ̂ ig(Y i; β̂

∗
g , γ̂

∗, �̂u))()
′], (19)

whereG1i(�̂u) + G2i(�̂u) andG1i(�̂
∗
u) + G2i(�̂

∗
u) are given by Equation (13) with�u replaced

by �̂u and �̂
∗
u, respectively. In addition, the dispersion matrices D[̂γ], D[̂BC], D[Ũ ] and the

covariancematrices cov[Ũ , γ̂], cov[̂BC, Ũ ], cov[̂BC, γ̂] involved in Equation (13) are presented
in Theorem 5.2 and Theorem 5.3, respectively.
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Appendix

In this Appendix the proofs for the theorems in Section 5 are presented.

Proof of Theorem 5.1. First we show that γ̂ is an unbiased estimator. We have

E[̂γ] = 1
p
(XP1X ′)−1XP1E[Y ′]1p = 1

p
(XP1X ′)−1XP1(C′B′ + X ′γ1′

p)1p

= 1
p
(XP1X ′)−1XP1X ′γ1′

p1p = γ .

Therefore, E[1pγ̂
′X] = 1pγ

′X . Moreover, from the expression of B̂C given in Theorem 3.1
and (5), it follows that

E[̂BC] =
(
E[Y ] − 1

p
1p1′

pE[Y ]P1X ′(XP1X ′)−1X
)

(R2K ′
2(K2K ′

2)
− + GR1K ′

1P2)C

=
(
BC + 1pγ

′X − 1
p
1p1′

p(BC + 1pγ
′X )P1X ′(XP1X ′)−1X

)
× (R2K ′

2(K2K ′
2)

− + GR1K ′
1P2)C

= BC
(
R2K ′

2(K2K ′
2)

− + GR1K ′
1P2

)
C

= B(K2K ′
2(K2K ′

2)
− + K1K ′

1P2 − K2K ′
2(K2K ′

2)
−K1K ′

1P2)C
= B(K2K ′

2(K2K ′
2)

− + Ik − K2(K ′
2(K1K ′

1)
−1K2)

−K ′
2(K1K ′

1)
−1

−K2K ′
2(K2K ′

2)
− + K2K ′

2(K2K ′
2)

−K2(K ′
2(K1K ′

1)
−1K2)

−K ′
2(K1K ′

1)
−1)C

= BC.

Hence, also B̂C is an unbiased estimator. Finally, we have for Ũ given in (8) the mean

E[ŨZ] = (�e + �u)
−1�uE[W ]QK ′

1K
o
2
R′
1Z

′Z

= (�e + �u)
−1�uB(Ik − K2K ′

2(K2K ′
2)

−)K1QK ′
1K

o
2
R′
1Z

′Z, (A.1)

since from the expression ofW , it follows that

E[W ] = BCGR1 = B(Ik − K2K ′
2(K2K ′

2)
−)K1.

Recall that from the proof of Lemma 3.2, we have

K1QK ′
1K

o
2
= K2(K ′

2(K1K ′
1)

−1K2)
−K ′

2(K1K ′
1)

−1K1

and plugin this expression into E[ŨZ], given in (A.1), leads to

E[ŨZ] = (�e + �u)
−1�uB(Ik − K2K ′

2(K2K ′
2)

−)

×K2(K ′
2(K1K ′

1)
−1K2)

−K ′
2(K1K ′

1)
−1K1R′

1Z
′Z = 0.

Hence, it is straightforward to see that

E[Ŷ ] = E[̂BC + 1pγ̂
′X + ŨZ] = BC + 1pγ

′X = E[Y ],

which completes the proof of the theorem. �
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In what follows, we use the notation (A)Q()′ instead of (A)Q(A)′ when it is possible and
no confusions, in order to shorten the matrix expressions.

Proof of Theorem 5.2. Recall that γ̂ = 1
p (XP1X ′)−1XP1Y ′1p. Hence, it follows that

D[̂γ] = 1
p2

(1′
p ⊗ (XP1X ′)−1XP1)D[Y ′]()′

= 1
p2

(1′
p ⊗ (XP1X ′)−1XP1)(�u ⊗ Z′Z + �e ⊗ IN )()′

= σ 2
e

p
⊗ ((XP1X ′)−1XP1X ′(XP1X ′)−1) = σ 2

e

p
(XP1X ′)−1,

since P1Z′ = 0. Moreover, replacingW by its expression in the Theorem 3.1, we can rewrite
B̂C by

B̂C =
(
Y − 1

p
1p1′

pYP1X ′(XP1X ′)−1X
)

(R2K ′
2(K2K ′

2)
− + GR1K ′

1P2)C

and therefore, the dispersion matrix D[̂BC] is given by

D[̂BC] =
(
C′((K2K ′

2)
−K2R′

2 + P2K1R′
1G

′) ⊗ I p

− 1
p
C′((K2K ′

2)
−K2R′

2 + P2K1R′
1G

′)X ′(XP1X ′)−1XP1 ⊗ 1p1′
p

)
× (Z′Z ⊗ �u + IN ⊗ �e)()

′.

Using the results from Lemma 4.1, we obtain

D[̂BC] = C′P2C ⊗ (�u + �e) + (C′(Ik − P2K1K ′
1)(K2K ′

2)
−

× (Ik − K1K ′
1P2)C) ⊗ �e + σ 2

e

p
C′((K2K ′

2)
−K2R′

2 + P2K1R′
1G

′)

×X ′(XP1X ′)−1X (R2K ′
2(K2K ′

2)
− + GR1K ′

1P2)C ⊗ 1p1′
p.

Moreover, from Ũ = �u(�e + �u)
−1WQK ′

1K
o
2
R′
1Z

′, and replacingW by its expression, we can
rewrite

Ũ = �u(�e + �u)
−1

(
Y − 1

p
1p1′

pYP1X ′(XP1X ′)−1X
)
GR1QK ′

1K
o
2
R′
1Z

′.
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Given this, the dispersion matrix D[Ũ ] has the form

D[Ũ ] =
(
ZR1QK ′

1K
o
2
R′
1G

′ ⊗ �u(�e + �u)
−1 − 1

p
ZR1QK ′

1K
o
2
R′
1G

′X ′(XP1X ′)−1XP1

⊗ �u(�e + �u)
−11p1′

p

)
(Z′Z ⊗ �u + IN ⊗ �e)()

′

= ZR1QK ′
1K

o
2
(Im + K1(K2K ′

2)
−K1)QK ′

1K
o
2
R′
1Z

′ ⊗ �u(�e + �u)
−1�u

+ σ 2
e

p
ZR1QK ′

1K
o
2
R′
1G

′X ′(XP1X ′)−1XGR1QK ′
1K

o
2
R′
1Z

′

⊗ �u(�e + �u)
−11p1′

p(�e + �u)
−1�u. �

Proof of Theorem 5.3. By using the results from Lemma 4.1, we get

cov[Ũ , γ̂] =
(
ZR1QK ′

1K
o
2
R′
1G

′ ⊗ �u(�e + �u)
−1 − 1

p
ZR1QK ′

1K
o
2
R′
1G

′X ′(XP1X ′)−1XP1

⊗ �u(�e + �u)
−11p1′

p

)
(Z′Z ⊗ �u + IN ⊗ �e)

(
1
p
P1X ′(XP1X ′)−1 ⊗ 1p

)

= −σ 2
e

p
ZR1QK ′

1K
o
2
R′
1G

′X ′(XP1X ′)−1 ⊗ �u(�e + �u)
−11p,

and

cov[̂BC, Ũ ] =
(
C′((K2K ′

2)
−K2R′

2 + P2K1R′
1G

′) ⊗ I p

− 1
p
C′((K2K ′

2)
−K2R′

2 + P2K1R′
1G

′)X ′(XP1X ′)−1XP1 ⊗ 1p1′
p

)

× (Z′Z ⊗ �u + IN ⊗ �e)

(
GR1QK ′

1K
o
2
R′
1Z

′ ⊗ �u(�e + �u)
−1

− 1
p
P1X ′(XP1X ′)−1XGR1QK ′

1K
o
2
R′
1Z

′ ⊗ 1p1′
p(�e + �u)

−1�u

)

= σ 2
e

p
C′((K2K ′

2)
−K2R′

2 + P2K1R′
1G

′)X ′(XP1X ′)−1XGR1QK ′
1K

o
2
R′
1Z

′

⊗ 1p1′
p(�e + �u)

−1�u.

Similarly we have the last covariance as

cov[̂BC, γ̂] =
(
C′((K2K ′

2)
−K2R′

2 + P2K1R′
1G

′) ⊗ I p

− 1
p
C′((K2K ′

2)
−K2R′

2 + P2K1R′
1G

′)X ′(XP1X ′)−1XP1 ⊗ 1p1′
p

)

× (Z′Z ⊗ �u + IN ⊗ �e)

(
1
p
P1X ′(XP1X ′)−1 ⊗ 1p

)

= −σ 2
e

p
C′((K2K ′

2)
−K2R′

2 + P2K1R′
1G

′)X ′(XP1X ′)−1 ⊗ 1p.
�

COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 2073


	Abstract
	1.Introduction
	2.Description of the model
	3.Estimation and prediction
	3.1.Prediction of small area means

	4.Preparations for moments calculation
	5.Moments of proposed estimators
	5.1.Theoretical moments with known 
	5.2.Simulation study with the empirical moments

	6.Mean-squared errors of predicted small area means
	6.1.Derivation of 
	6.2.Estimation of 

	References
	Appendix

