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Testing for INAR effects

Rolf Larsson

Department of Mathematics, Uppsala University, Uppsala, Sweden

ABSTRACT
In this article, we focus on the integer valued autoregressive model,
INAR (1), with Poisson innovations. We test the null of serial independ-
ence, where the INAR parameter is zero, versus the alternative of a
positive INAR parameter. To this end, we propose different explicit
approximations of the likelihood ratio (LR) statistic. We derive the limit-
ing distributions of our statistics under the null. In a simulation study,
we compare size and power of our tests with the score test, proposed
by Sun and McCabe [2013. Score statistics for testing serial depend-
ence in count data. Journal of Time Series Analysis 34 (3):315–29]. The
size is either asymptotic or derived via response surface regressions of
critical values. We find that our statistics are superior to score in terms
of power and work just as well in terms of size. Another finding is
that the powers of our approximate LR statistics compare well with
the power of the numerical LR statistic. Power simulations are also per-
formed under an INAR(2) framework, with similar outcome.
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1. Introduction

In recent years, integer valued autoregressive (INAR) models have gained a lot of inter-
est. For overviews, see e.g. Weiss (2008) and Scotto, Weiss and Gouveia (2015).
The simplest integer valued autoregressive model, INAR(1), is described by the equation

Xt ¼ a � Xt�1 þ Rt; (1)

where 0 � a<1;X0 ¼ 0 and the error terms Rt are integer-valued and iid. The Rt may e.g. be
assumed to follow the Poisson distribution or, to allow for over dispersion, the negative bino-
mial distribution. The operator is called the binomial thinning operator. It is defined through

a � Xt ¼def
XXt

i¼1

Yit;

where, conditional on Xt, fYitgXt
i¼1 is a sequence of iid Bernoulli variables such that

P Yit ¼ 1ð Þ ¼ a ¼ 1�P Yit ¼ 0ð Þ:
Conditional on all Xt, the sequences fYitgXt

i¼1 are independent for different t.
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The parameters may be estimated by maximum likelihood, least squares or moment
based methods (Yule-Walker). See Al-Osh and Alzaid (1987) for further details.
Putting a¼ 0 in (1), we get a simple Poisson (or e.g. negative binomial) model.

Hence, it is of interest to test the hypothesis H0 : a ¼ 0 vs the alternative H1 : a>0. For
this purpose, Sun and McCabe (2013) derived explicit formulae for the score test statis-
tic under different forms of innovation distributions. They also performed simulation
studies to examine size and power.
Simulations regarding the score test, as well as alternative non parametric tests, were

performed already by Jung and Tremayne (2003). A modified version of the score test
was seen to compete very well with the non parametric tests in terms of size. Moreover,
under an INAR(1) alternative, it was seen to be superior in terms of power. They also
examined the power under the INAR(2) framework by Alzaid and Al-Osh (1990). Here,
they found a loss of power in the case of oscillatory behavior of the ACF.
In this paper, we assume Poisson innovations and discuss the corresponding likeli-

hood ratio (LR) test statistic. Unlike score, it does not have an explicit form. However,
in the style of Larsson (2014), we derive explicit approximations of the LR statistic. We
derive their asymptotic properties, and find that they need to be adjusted to become
asymptotically similar (not depending on the parameters of the innovation distribu-
tions). Then, in a simulation study, we compare the new tests with the score test in
terms of size and power. For size, we compare using asymptotic and response surface
regression based critical values. We find that our statistics perform better than the score
test in terms of power and work just as well in terms of size. Their powers also turn
out well in comparison with the numerical likelihood ratio test. We also simulate power
under the INAR(2) model, with similar conclusions.
The rest of the paper is as follows. In Sec. 2, we review the asymptotic properties of

the score test and give a new result under the test alternative. Moreover, we present the
new tests and derive the corresponding limit properties. Sec. 3 contains the simulation
study, while Sec. 4 concludes. Proofs are collected in the Appendix.

2. Theoretical results

2.1. The score test

Assume that we have observations x1; :::; xn, and that the Rt are Poisson distributed
with unknown parameter k.
We begin by reviewing some results about the score test statistic. The statistic is given

by (Freeland 1998; Sun and McCabe 2013)

Sn ¼def 1
�x

Xn
t¼1

xt�1 xt��xð Þ: (2)

Moreover, Theorem 1 of Sun and McCabe (2013) (see also Freeland 1998, p.116)
states that under H0 : a ¼ 0, as n ! 1,

n�1=2Sn!L U (3)

where U is standard normal and !L denotes convergence in distribution.
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To give some intuition for the asymptotics of the test under the alternative where a
is not fixed to zero, we have the following result (!p denotes convergence in
probability):

Proposition 1. For Sn as in (2), as n ! 1,

n�1Sn!p a:

Proof. See the Appendix. w

2.2. The likelihood ratio test

Introduce

p ujvð Þ ¼def P Xt ¼ ujXt�1 ¼ vð Þ:
Following Sun and McCabe (2013), the log likelihood, conditional on X0 ¼ x0, is

l a; kð Þ ¼def
Xn
t¼1

log p xtjxt�1ð Þ; (4)

where, writing

P Rt ¼ kð Þ ¼def r kð Þ ¼ kk

k!
e�k (5)

for k ¼ 0; 1; 2; :::;Dxt ¼def xt�xt�1 and defining a�b ¼ maxða; bÞ,

p xtjxt�1ð Þ ¼
Xxt

k¼0�Dxt

P a � Xt�1 ¼ xt�kjXt�1 ¼ xt�1ð Þr kð Þ

¼
Xxt

k¼0�Dxt

qk;t að Þr kð Þ;
(6)

with

qk;t að Þ ¼def xt�1

xt�k

� �
axt�k 1�að Þxt�1� xt�kð Þ

:

Since the log likelihood is a rather complicated function of a, it seems hard to derive
the likelihood ratio (LR) test, Qn say, explicitly. (We define Qn as the maximum likeli-
hood under the null divided by the maximum likelihood under the alternative hypoth-
esis.) However, it is possible to find its limiting distribution. This was done by Freeland
(1998), p.121, who stated that under H0: a¼ 0, for positive x,

P �2 logQn � xð Þ ! 1
2
þ 1
2
P Y � xð Þ;

as n ! 1, where Y is v2 distributed with one degree of freedom. (For a more general
setting, see also Silvapulle and Sen 2005, chap. 4.8.)
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We may reexpress this is terms of the standard normal variate U as

�2 logQn!L U2I U � 0f g; (7)

under H0: a¼ 0, as n ! 1, where IfU � 0g ¼ 1 if U � 0 and 0 otherwise.

2.3. Approximate likelihood ratio tests

In this section, we will derive approximations of �2 logQn based on a second order
Taylor expansion of the log likelihood with respect to a. We have the following result.

Proposition 2. For the log likelihood lða; kÞ as in (4),

l a; kð Þ ¼ V0 kð Þ þ V1 kð Þaþ 1
2
V2 kð Þa2 þ O a3ð Þ; (8)

where

V0 kð Þ ¼def
Xn
t¼1

log r xtð Þ� � ¼ log k
Xn
t¼1

xt�kn�
Xn
t¼1

log xt!ð Þ; (9)

V1 kð Þ ¼def �
Xn
t¼1

xt�1 þ k�1
Xn
t¼1

xtxt�1; (10)

V2 kð Þ ¼def �
Xn
t¼1

xt�1 þ 2k�1
Xn
t¼1

xtxt�1

�k�2
Xn
t¼1

x2t x
2
t�1 �

Xn
t¼2

xt xt � 1ð Þxt�1 xt�1 � 1ð Þ
( )

:

(11)

Proof. See the Appendix. w

In particular, observe that V1ð�xÞ is the score test given in (2).
We may use the approximation in (8) to derive an approximation of the LR test. To

this end, assume for a moment that k is known. Differentiating (8) yields

l0 a; kð Þ ¼ V1 kð Þ þ V2 kð Þaþ O a2ð Þ;
and so, the first order approximation to the solution of l0ða; kÞ ¼ 0 is

â ¼def �V1 kð Þ
V2 kð Þ : (12)

In the following, we will refer to (12) as the approximative MLE of a.
To obtain an approximation of �2 logQn, we have that

�2 logQn ¼ �2 l 0; kð Þ�l â; kð Þ� �
;

where (8) yields

l 0; kð Þ ¼ V0 kð Þ;
l â; kð Þ ¼ V0 kð Þ þ V1 kð Þâ þ OP â2ð Þ;

implying
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�2 logQn ¼ 2Zn kð Þ þ OP â2ð Þ;
where we have the approximative LR statistic, avoiding negative estimates â,

Zn kð Þ ¼def â�0ð ÞV1 kð Þ ¼ �V1 kð Þ
V2 kð Þ�0

( )
V1 kð Þ; (13)

using (12).
Treating k as unknown, we need to plug in an estimator in (13). Preferrably, the

exact maximum likelihood estimator (MLE) under H1 should be inserted, but then we
loose the advantage with having an explicit expression. So instead, our idea is to insert
an approximate MLE.
We suggest two alternative ways to do this. The first, and simplest, is to replace k by

its MLE under H0, which is �x. From (13), we then get the statistic

Zn �xð Þ ¼ �V1 �xð Þ
V2 �xð Þ�0

� �
V1 �xð Þ; (14)

where V1ð�xÞ and V2ð�xÞ are found by inserting �x for k in Proposition 2.
The second alternative is to maximize the quadratic approximation of the log likeli-

hood given in (8) of Proposition 2 with respect to k, and use this as an approximation
of the MLE. Unfortunately, when putting the first derivative equal to zero, this results
in solving a non linear equation. Hence, a further approximation is needed. The idea
here is to write k ¼ �x þ d, Taylor expand around d¼ 0 and then solve for d. For these
details, we refer the reader to the Appendix. Here, we just give the resulting approxima-
tive MLE as

k̂ ¼ �x þ B1

B2
; (15)

where

B1 ¼def �x�x1 A2
1�A2

� 	
A1��xð Þ; (16)

B2 ¼def A2�2A1�x þ �x2
� 	2 þ �x�x1 A2

1�A2

� 	��x1 A2
1�A2

� 	
A1��xð Þ; (17)

with �x1 ¼def n�1 Pn
t¼1 xt�1,

A1 ¼def
Pn

t¼1 xtxt�1Pn
t¼1 xt�1

; (18)

A2 ¼def
Pn

t¼1 x
2
t x

2
t�1�

Pn
t¼2 xt xt�1ð Þxt�1 xt�1�1ð ÞPn
t¼1 xt�1

: (19)

We may then insert k ¼ k̂ in (13) to obtain the statistic

Zn k̂ð Þ ¼def �V1 k̂ð Þ
V2 k̂ð Þ�0

( )
V1 k̂ð Þ: (20)

As can be seen from the following proposition, �x and k̂ are not consistent for k
under H1.
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Proposition 3. As n ! 1, denoting by �X the mean of X1; :::;Xn generated by (1),

�X!p k
1� a

¼ kþ kaþ O a2ð Þ; (21)

k̂!p kþ 1þ 3kð Þa2 þ O a3ð Þ: (22)

Proof. See the Appendix. w

Note that for small a, k̂ has smaller asymptotic bias than �x.
The asymptotic distributions of Znð�xÞ and Znðk̂Þ are given in the following

proposition.

Proposition 4. As n ! 1, under H0 : a ¼ 0, with �X as in proposition 3,

Zn �Xð Þ!L kþ 1ð Þ�1U2I U � 0f g; (23)

Zn k̂ð Þ!L kþ 1ð ÞU2I U � 0f g; (24)

where U is standard normal.

Proof. See the Appendix. w

Observe that our limit distributions are of the same form as the limit distribution of
the “exact” LR test given in (7). Unfortunately however, they depend on k. This seems
to go against some general intuition. However, note that the tests are based on an
expansion (cf (8)) which is not asymptotic in the sense that the higher order terms are
of smaller order as n tends to infinity. They are just of smaller order in terms of the
“deviation” a from the null hypothesis.
To get rid of the asymptotic dependency on k in (23) and (24), we propose the

asymptotically similar alternative statistics

~Zn ¼def �x þ 1ð ÞZn �xð Þ (25)

and

Z�
n ¼def k̂ þ 1

� 	�1
Zn k̂ð Þ; (26)

which by the Slutsky theorem both converge in distribution to U2IfU � 0g as n ! 1.
In the remainder of the paper, we will concentrate on these statistics.
We may also derive asymptotic expectations of the test statistics, in the same style as

in Proposition 1.

Proposition 5. For the statistics defined in (25) and (26), as n ! 1,

n�1~Zn!p a2� a3

k
þ O a4ð Þ; (27)

n�1Z�
n!

p
a2� 1þ 4kþ 5k2

k 1þ kð Þ a3 þ O a4ð Þ: (28)

Proof. See the Appendix. w
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Observe that to first order, the asymptotic expectations of the modified statistics
(multiplied by n) are both a2, hence no functions of k. This should be expected, given
their asymptotic similarity. By Proposition 1, the same is true for the score test statistic,
where the asymptotic expectation is a. This also gives a hint that for very small a, the
power might be marginally higher for the score test than for the other two. However, to
compare the powers for larger a, we need to resort to simulations.

3. Finite sample simulation

3.1. Empirical size and response surface regression

For practical use, it is of course important to have reliable and easily accessed critical
values. Because of proposition 4, for large n, regarding ~Zn and Z�

n we may use the v2ð1Þ
distribution for this purpose. However, it turns out that the convergence to the asymp-
totic distribution is relatively slow, so there is a need for refinement. To this end, we
propose to use critical values obtained from response surface regression. (Cf Jung and
Tremayne 2003.)
All simulations are performed in Matlab R2014b.
As a basis of the response surface regression, we have run 10 000 000 replications

each to find empirical critical values for the tests using
n 2 f25; 50; 100; 200; 400; 800g and k 2 f0:5; 1; 2; 5; 10; 20g. Then, we have regressed

the so obtained critical values on various combinations of n�1 and k�1 or k. Based on
these, by trial and error, we estimated regressions of the type

kd ¼ a0 þ a1n
�1 þ a2n

�2 þ b1k
�1 þ b2k

�2 þ b3n
�1k�1 (29)

or

kd ¼ a0 þ a1n
�1 þ a2n

�2 þ b1kþ b2k
2 þ b3n

�1k; (30)

choosing the one with the highest coefficient of determination, where kd is the critical
value of a level d test. We incorporated either k�1 terms or k terms, depending on
which fit best. For the five different test statistics and d 2 f0:01; 0:05g, we give the esti-
mated coefficients of these regressions in Tables 1 and 2. Observe that we have used the
square root of the Z�

n statistic, since we got better fits for this one than for the non
transformed statistic. Also observe that the response surface regressions for score and
Z�
n
1=2 do not depend on the nuisance parameter k, which is advantegeous. A third

observation is that, for the asymptotically similar tests, the estimated intercepts a0
should be close to the corresponding asymptotic values. (For the score test and Z�1=2,
these are 2.33 and 1.64, respectively, whereas for ~Zn they are the squares of these values,
i.e. 5.41 and 2.71, respectively.)

Table 1. Coefficients for response surface regression, significance level 0.01. For b coefficients with a
†, we have fitted the model (30).
Statistic a0 a1 a2 b1 b2 b3
Score 2.312 �5.089 0 0 0 0
~Zn 4.417 �83.17 844.4 0:1761† �0:006558† 5:794†

Z�n
1=2 1.960 �60.17 1700 0 0 0
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In Tables 3–6, we give estimated sizes for the tests when using asymptotic critical val-
ues as well as critical values obtained from response surface regressions. We obtained
these from new simulations with 10 000 000 replications, n 2 f50; 200; 800g and
k 2 f2; 10g. The asymptotic critical value for the score test at level d is given by the
normal percentile, ud say, so that PðU>udÞ ¼ d. Observe that, to mimic the practical
situation, �x (for the score test and ~Zn) and k̂ (for Z�

n) are inserted replicate wise for k
in the response surface equations.
We find that, except for the score test in very large samples, tests based on asymp-

totic critical values are undersized. The size converges most rapidly for the score test,
and the convergence is decent for ~Zn. For Z�

n
1=2, the asymptotic critical values converge

very slowly with n. Our finding that the score test is undersized corroborates with the
simulation study of Jung and Tremayne (2003).
With only a few exceptions, the response surface based critical values work well.

3.2. Size adjusted power under an INAR(1) alternative

In this section, we compare the size adjusted powers of the tests by means of simula-
tion. We also compare to the numerical LR test.
We have chosen to study size adjusted power, and not raw power, for the following rea-

sons: Comparisons of raw power often end up by saying that the most oversized test has
the highest power, and this is a very non surprising and non informative conclusion. Also,
one may imagine that size distortions already have been taken care of one way or another,
for example by response surface regression (as in the previous subsection) or by bootstrap.
We simulated the size adjusted power of the three tests that we have discussed. The

sample sizes are n 2 f50; 200g and the Poisson parameter k 2 f2; 10g. The number of
replications is 5 000. The critical value comes from a simulation under the null hypoth-
esis with the same random seed as for the simulations under all entertained alternatives.
The results are given in Figures 1–4. Except for very close to the null hypothesis, where

all tests perform about equally well, we find that ~Zn works best closer to the null, but fur-
ther out it is outperformed by Z�

n. Moreover, as expected from propositions 1 and 5, close
to the null hypothesis the score test is slightly better than the other tests (although this is
hardly visible from the graphs). However, further away it is overall comparatively worse
than ~Zn and Z�

n. The performance difference is more pronounced for small n and large k.
Also, note that in terms of power, the approximate LR tests perform very similar to

the numerical LR test, and in fact, clearly better for small n and large k.

3.3. Size adjusted power under an INAR(2) alternative

To see how our tests perform under higher order INAR models, we also simulated size-
adjusted power under an INAR(2) assumption. The INAR(2) model may be formulated as

Table 2. Coefficients for response surface regression, significance level 0.05. For b coefficients with a
†, we have fitted the model (30).
Statistic a0 a1 a2 b1 b2 b3
Score 1.619 �9.592 57.83 0 0 0
~Zn 2.298 �43.45 450.0 0:05901† �0:002126† 2:507†

Z�n
1=2 1.417 �28.38 485.8 0 0 0
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Xt ¼ a1 � Xt�1 þ a2 � Xt�2 þ Rt; (31)

where the � operation and Rt is as before. As in Jung and Tremayne (2003), we use the
INAR(2) specification of Alzaid and Al-Osh (1990), whereða1 � Xn; a2 � XnÞ given Xn ¼
xn is trinomial with parameters ða1; a2; xnÞ. The trinomial assumption introduces a

Table 3. Estimated sizes in per cent, nominal size 0.01, k¼ 2.
Statistic n Asymptotic Response surface

Score 50 0.8 1.0
200 0.9 1.0
800 0.9 1.0

~Zn 50 0.3 1.2
200 0.6 1.1
800 0.8 1.2

Z�n
1=2 50 0.5 1.6

200 0.0 1.0
800 0.2 1.2

Table 4. Estimated sizes in per cent, nominal size 0.05, k¼ 2.
Statistic n Asymptotic Response surface

Score 50 3.4 5.0
200 4.3 5.0
800 4.7 5.0

~Zn 50 2.6 5.4
200 3.7 5.2
800 4.3 5.4

Z�n
1=2 50 0.8 6.6

200 1.2 4.8
800 2.7 5.6

Table 5. Estimated sizes in per cent, nominal size 0.01, k¼ 10.
Statistic n Asymptotic Response surface

Score 50 0.7 1.0
200 0.8 0.9
800 0.9 1.0

~Zn 50 1.0 1.0
200 0.9 0.9
800 0.9 0.9

Z�n
1=2 50 0.1 0.6

200 0.0 0.7
800 0.2 1.1

Table 6. Estimated sizes in per cent, nominal size 0.05, k¼ 10.
Statistic n Asymptotic Response surface

Score 50 3.3 5.0
200 4.2 4.9
800 4.6 5.0

~Zn 50 4.4 5.1
200 4.4 4.8
800 4.6 4.8

Z�n
1=2 50 0.3 4.6

200 1.0 4.3
800 2.5 5.4
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moving average type of dependency that makes the partial autocorrelation function
(PACF) behave like for a standard ARMA process. Without this restriction, the PACF
cuts off after lag two like that of an AR(2) process, see further Du and Li (1991) and
Alzaid and Al-Osh (1990).
Jung and Tremayne (2003) plot the power vs a1 þ a2. They distinguish between two

cases. The first case is when a2<a1�a21, corresponding to an autocorrelation function
(ACF) that decays exponentionally to zero with increasing lag order. In the second case,
where a2>a1�a21, the ACF damps out in an oscillatory manner. For a modified version
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Figure 1. Simulated power, 5000 replicates, k¼ 2, n¼ 50.
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Figure 2. Simulated power, 5000 replicates, k¼ 10, n¼ 50.
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of the score test, they find that the power is good in the first case. In the second case,
the power is lower, and for a large range of parameter values, some of the non paramet-
ric tests have better power.
However, it is not clear how a1 and a2 were choosen to get a specific value of

a1 þ a2. In our study, we introduce a parameter

c ¼ a1�a2�a21
a1 þ a2

:

α

Figure 3. Simulated power, 5000 replicates, k¼ 2, n¼ 200.
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Figure 4. Simulated power, 5000 replicates, k¼ 10, n¼ 200.
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This means that c>0 corresponds to the first case above and c<0 corresponds to the
second case. Letting a ¼ a1 þ a2, we need to solve a non linear system to get a1 and a2.
One solution is given by

a1 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a 1þ cð Þ

p
; a2 ¼ a�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a 1þ cð Þ

p
:

In our simulations, we have coosen c ¼ 60:2 and 0<a1 þ a2 � 0:8. This corresponds
to 0<a1<0:8 for c ¼ 0:2 and 0<a1<0:4 for c ¼ �0:2. Hence, in the latter case, a2 ¼
a�a1 is larger in general and powers for tests desinged to be optimal for INAR(1)
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Figure 5. Simulated power, INAR(2), 20000 replicates, k¼ 2, n¼ 50, c¼ 0.2.
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Figure 6. Simulated power, INAR(2), 20000 replicates, k¼ 2, n¼ 50, c¼�0.2.
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alternatives are expected to be lower. This was also what was found by Jung and
Tremayne (2003) in their simulations.
The reported results, given in Figures 5–8, are from simulations with n¼ 50 and

k 2 f2; 10g. The number of replicates is 20 000. We also ran simulations for n¼ 200,
giving similar results. As expected, the power is lower for negative c. Apart from this,
much the same pattern as in the INAR(1) case is seen.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

α

po
w

er

Z
~

n

Zn
*

score

Figure 7. Simulated power, INAR(2), 20000 replicates, k¼ 10, n¼ 50, c¼ 0.2.
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Figure 8. Simulated power, INAR(2), 20000 replicates, k¼ 10, n¼ 50, c¼�0.2.
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4. Concluding remarks

In this paper, we have proposed likelihood based alternatives to the score test by Sun
and McCabe (2013) to test for no serial dependence in the INAR(1) model with
Poisson innovations. In our simulation study, we find that when using likelihood ratio
based statistics, we may gain power compared to score.
It should not be too difficult to extend our study to other types of innovation distri-

butions that allow for over dispersion, such as negative binomial, binomial or more gen-
eral distribution families like the Katz system. See further Sun and McCabe (2013) for
the score test. Extensions to higher order INAR models or multivariate models would
also be interesting.
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Appendix: Proofs and derivations

According to Weiss (2008), INAR(1) processes fXtg may be given initial distributions
such that they are strictly stationary, implying that all Xt are distributed as some ran-
dom variable X, say. Define the moments of this stationary distribution by mk ¼ EðXkÞ.
For subsequent proofs and derivations, the following lemma will be useful. Observe that
the lemma may be applied to general forms of innovation distributions, not
just Poisson.

Lemma 1. Let Xt be as in (1), where the Rt are integer-valued and iid.
Let l ¼ EðRtÞ and r2 ¼ VðRtÞ. Moreover, let mk ¼ EðXkÞ where X is distributed

according to the stationary distribution of fXtg, with a suitable choice of initial distribu-
tion. As n ! 1,

n�1
Xn
t¼1

Xt!p m1; (32)

n�1
Xn
t¼1

Xt�1!p m1; (33)

n�1
Xn
t¼1

XtXt�1!p lm1 þ am2; (34)

n�1
Xn
t¼1

XtX
2
t�1!

p
lm2 þ am3; (35)

n�1
Xn
t¼1

X2
t Xt�1!p l2 þ r2

� 	
m1 þ a 1�aþ 2lð Þm2 þ a2m3: (36)

Proof. Corollary 1 of Elton (1987) implies that the mean of any continuous function of
a stationary Markov process with arbitrary initial distribution converges almost surely
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to the corresponding expectation of the stationary distribution. This implies that (32)
holds. It is a trivial fact that this extends to (33).
To prove (34), at first write

Yt ¼def Xt�aXt�1�l: (37)

Consequently,

n�1
Xn
t¼1

XtXt�1 ¼ n�1
Xn
t¼1

YtXt�1 þ an�1
Xn
t¼1

X2
t�1 þ ln�1

Xn
t¼1

Xt�1: (38)

Here, since E XtjXt�1ð Þ ¼ aXt�1 þ l, we have

E YtXt�1ð Þ ¼ E E YtXt�1jXt�1ð Þ� � ¼ E Xt�1E YtjXt�1ð Þ� � ¼ 0:

Since YtXt�1 is a Markov process, it follows as above from corollary 1 of Elton (1987)
that n�1 Pn

t¼1 YtXt�1!p 0. Similarly, n�1 Pn
t¼1 X

2
t�1!

p
m2, and so, via (33), (38) implies

that (34) holds. The proof of (35) is similar.
Finally, from (37),

n�1
Xn
t¼1

X2
t Xt�1

n�1
Xn
t¼1

Y2
t Xt�1 þ 2an�1

Xn
t¼1

YtX
2
t�1 þ 2ln�1

Xn
t¼1

YtXt�1

þa2n�1
Xn
t¼1

X3
t�1 þ 2aln�1

Xn
t¼1

X2
t�1 þ k2n�1

Xn
t¼1

Xt�1:

(39)

Here, since

E Y2
t jXt�1

� 	 ¼ V YtjXt�1ð Þ ¼ a 1�að ÞXt�1 þ r2;

it follows as above that

E Y2
t Xt�1

� 	 ¼ a 1�að Þm2 þ r2m1;

implying

n�1
Xn
t¼1

Y2
t Xt�1!p a 1�að Þm2 þ r2m1:

It is then analogous to above to derive (36) from (39). w

The rest of the appendix only concerns the Poisson case.

Lemma 2. For a stationary INAR(1) process with Poisson innovations defined as in (1),
the first three moments are

m1 ¼ k
1� a

;

m2 ¼ k
1� a

1þ k
1� a

� �
;

m3 ¼ k
1� a

1þ 3
k

1� a
þ k2

1�að Þ2
( )

:
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Proof. Weiss (2008) (example 3.3) states that if the innovations Rt are PoðkÞ and if X0

follows a Pofk=ð1�aÞg distribution, then this is also the stationary distribution. The
lemma then follows from simple moment formulae for the Poisson distribution. w

Proof of proposition 1. Rewrite (2) as

Sn ¼ �
Xn
t¼1

Xt�1 þ �X�1
Xn
t¼1

XtXt�1:

Then, from lemma 2 and 3 and simplifications,

n�1Sn!p �m1 þm�1
1 km1 þ am2ð Þ ¼ a:

w

Proof of proposition 2. Introduce the notation (observe that xt�k � 0�Dxt is equivalent
to xt � k and xt�1 � k for all k � 0)

s0t ¼def r xtð ÞI xt � 0�Dxtf g ¼ r xtð Þ; (40)

s1t ¼def r xt�1ð ÞI xt�1 � 0�Dxtf g
¼ r xt�1ð ÞI xt � 1f gI xt�1 � 1f g; (41)

s2t ¼def r xt�2ð ÞI xt�2 � 0�Dxtf g
¼ r xt�2ð ÞI xt � 2f gI xt�1 � 2f g; (42)

where IfAg is the indicator function of the event A. Now, spelling out the terms of the
sum in (6) “backwards” and using binomial expansion,

p xtjxt�1ð Þ
¼ 1�að Þxt�1s0t þ xt�1a 1�að Þxt�1�1s1t

þ xt�1

2

� �
a2 1�að Þxt�1�2s2t þ O a3ð Þ

¼ 1� xt�1aþ xt�1

2

� �
a2

� �
s0t þ xt�1a 1� xt�1 � 1ð Þa� �

s1t

þ xt�1

2

� �
a2s2t þ O a3ð Þ

¼ p0t þ p1taþ p2ta2 þ O a3ð Þ;
where

p0t ¼def s0t;
p1t ¼def �xt�1 s0t�s1tð Þ;
p2t ¼def xt�1

2

� �
s0t�2s1t þ s2tð Þ:

Hence, inserting into (4), we find

l að Þ ¼
Xn
t¼1

log p0t þ p1taþ p2ta
2 þ O a3ð Þ� �

¼
Xn
t¼1

log p0t þ
Xn
t¼1

log 1þ u1taþ u2ta
2 þ O a3ð Þ� �

;
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where uit ¼def pit=p0t for i¼ 1, 2. Next, Taylor expanding according to
logð1þ xÞ ¼ x�x2=2þ Oðx3Þ, and defining wit ¼def sit=s0t for i¼ 0, 1, 2,

v1t ¼def u1t ¼ �xt�1 þ w1txt�1; (43)

v2t ¼def 2u2t�u21t ¼ �xt�1 þ 2w1txt�1�w2
1tx

2
t�1 þ w2txt�1 xt�1�1ð Þ; (44)

we get

l að Þ ¼ V0 kð Þ þ V1 kð Þaþ 1
2
V2 kð Þa2 þ O a3ð Þ; (45)

where V0ðkÞ ¼def
Xn

t¼1
log p0t ¼

Xn

t¼1
log s0t and ViðkÞ ¼def

Xn

t¼1
vit for i¼ 1, 2.

Using (5), it is easy to see that (9) follows. Furthermore, we have via (40), (41) and
(5) that

w1t ¼ s1t
s0t

¼ r xt�1ð ÞI xt � 1f gI xt�1 � 1f g
r xtð Þ ¼ xt

k
I xt�1 � 1f g: (46)

Thus, via (43), we obtain (10). Similarly, from (40), (42) and (5),

w2t ¼ xt xt�1ð Þ
k2

I xt � 2f gI xt�1 � 2f g;

implying via (44) and (46) that (11) holds. w

Derivation of (15)-(19). Via (12), write

g kð Þ ¼def V0 kð Þ þ V1 kð Þâ þ 1
2
V2 kð Þâ2 ¼ V0 kð Þ� 1

2
V1 kð Þ2
V2 kð Þ : (47)

It follows from (10) and (11) that

V1 kð Þ2
V2 kð Þ ¼ �

Xn
t¼1

xt�1
1�A1k

�1
� 	2

1� 2A1k
�1 þ A2k

�2 ;

where A1 and A2 are as in (18) and (19), respectively. Hence, inserting (9) and differen-
tiating,

g 0 kð Þ ¼ n �xk�1 � 1þ �x1
A2
1�A2

� 	
A1�kð Þ

A2�2A1kþ k2
� 	2

( )
:

Hence, the equation g0 kð Þ ¼ 0 implies

0 ¼ A2�2A1kþ k2
� 	2

�x�kð Þ þ �x1 A2
1�A2

� 	
k A1�kð Þ: (48)

This equation does not seem to have simple explicit solutions. However, since k is
estimated by �x under the null hypothesis, it seems natural to put k ¼ �x þ d, expand the
right hand side of (48) to first order in d and then solve for d. This results in the equa-
tion

0 ¼ B1�B2dþ O d2ð Þ;
where B1 and B2 are given by (16) and (17), respectively. Thus, the approximative solu-
tion d ¼ B1=B2 follows. w
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Proof of proposition 3. Lemma 1 and 2 immedeately give (21). Equation (22) follows
from (15)–(19), rewriting (19) as

A2 ¼ �Pn
t¼1 xtxt�1 þ

Pn
t¼1 xtx

2
t�1 þ

Pn
t¼1 x

2
t xt�1Pn

t¼1 xt�1
;

Lemma 1 and 2 and some tedious algebra. w

Proof of proposition 4. To find the asymptotic distribution of Znð�XÞ, we already know
the asymptotic properties of V1ð�XÞ ¼ Sn. Moreover, inserting k ¼ �X into (11), we get
after some simplification

V2 �Xð Þ ¼ �
Xn
t¼1

Xt�1 þ 2�X�1
Xn
t¼1

XtXt�1

��X�2
Xn
t¼1

XtX
2
t�1 þ

Xn
t¼1

X2
t Xt�1 �

Xn
t¼1

XtXt�1

( )
:

(49)

Lemma 1 and 2 with a¼ 0 the Slutsky theorem and simplifications yield

n�1V2 �Xð Þ!p � kþ 1ð Þ: (50)

Thus, by the fact that V1ð�XÞ equals the score statistic Sn, (3), (14) and the Slutsky
theorem,

Zn �Xð Þ!L kþ 1ð Þ�1U2I U � 0f g;
which proves (23).
Our next task is to find the asymptotic distribution of Znðk̂Þ. To this end, it follows

from (18) and lemma 1 and 2 that

A1 ¼ n�1 Pn
t¼1 XtXt�1

n�1
Pn

t¼1 Xt�1
!p k2

k
¼ k

and similarly, (19) implies

A2!p 2k2 þ k:

This, in turn, yields

A1��X!p 0;
A2
1�A2!p � k2 þ kð Þ;

A2�2A1�X þ �X2!p k2 þ k;

(51)

and inserting into (16) and (17) and simplifying, we find

B1 !p 0; (52)
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B2!p kþ 1ð Þk2: (53)

Via (15), this proves that

k̂!p k; (54)

and in particular we note that under H0, k̂ and �x are both consistent. (This may also be
seen directly from proposition 3.)
To go further, we need to focus on the limit of n1=2B1. To this end, via (18) and (2),

we at first note the simplification

A1��X ¼
Pn

t¼1 XtXt�1�n�1 Pn
t¼1 Xt

Pn
t¼1 Xt�1Pn

t¼1 Xt�1
¼

�X
n�X1

Sn: (55)

Now, because of (54), the limit of V2ðk̂Þ is as the limit of V2ð�xÞ in (50). Moreover,
observe that from (16), (15) and (55),

�X�k̂ ¼ �B1

B2
¼ �

�X �X1 A2
1�A2

� 	
B2

A1��Xð Þ ¼ �
�X2 A2

1�A2

� 	
nB2

Sn:

Hence, since

V1 k̂ð Þ ¼ �
Xn
t¼1

Xt�1 þ k̂
�1Xn

t¼1

XtXt�1

¼ k̂
�1 Xn

t¼1

XtXt�1 � �X
Xn
t¼1

Xt�1 þ �X � k̂ð ÞXn
t¼1

Xt�1

( )

¼ k̂
�1

1�
�X A2

1�A2
� 	
nB2

Xn
t¼1

Xt�1

( )
�xSn;

it follows via (51) and (53) that

n�1=2V1 k̂ð Þ!L k�1 1þ kð ÞkU ¼ kþ 1ð ÞU: (56)

Hence, via (20) and (50), we finally have

Zn k̂ð Þ!L kþ 1ð Þ U�0ð ÞU ¼ kþ 1ð ÞU2I U � 0f g;
which proves (24). w

Proof of proposition 5. Inserting k ¼ �X in (11), applying lemma 1 and 2 and simplifying,
we get

n�1V2 �Xð Þ!p � 1
1� að Þk a 1�að Þ2 þ 1� að Þ 1þ 2að Þkþ k2

n o
:

Now, observing that the right hand side is non positive for all 0 � a<1, using
V1ð�XÞ ¼ Sn, proposition 1, (14) and the Slutsky theorem, we get

n�1Zn �Xð Þ!p a2 1�að Þk
a 1�að Þ2 þ 1� að Þ 1þ 2að Þkþ k2

¼ a2

1þ k
� a3

k 1þ kð Þ þ O a4ð Þ;

and (27) follows by the Slutsky theorem, applying (25).
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Eq. (28) follows similarly, in combination with arguments from the proof of propos-
ition 4. w
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