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ABSTRACT
Profile monitoring is defined as the act of utilizing regression and
quality control techniques to monitor the functional relationship
between a response variable and one or more regressors. Most of
the previous studies focused either on parametric modeling of pro-
files or assumed the response variable followed a normal distribu-
tion, but that is an unrealistic scenario in most cases. In this study, a
Haar wavelet approach is applied for profile monitoring of Poisson
data. We showed via simulation that, Haar wavelet can outperform
parametric models when there is a sudden jump in the profile and
concluded with a case study.
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1. Introduction

Profile monitoring is a relatively new technique in statistical process control (SPC).
Kang and Albin (2000) defined a profile as the functional relationship between a
response variable and one or more regressors. Depending on the type of this relation-
ship, linear and nonlinear profiles can be utilized. Profile monitoring is defined as the
act of using statistical methods to monitor the changes in a process or product.
One common assumption in the literature is that the relationship between the response

variable and the explanatory variables can be expressed by a certain function. However, in
some real world problems it is hard to find a certain parametric model that can describe
the aforementioned relationship. This issue has been addressed by several authors such as
H€ardle (1992), Fan and Gijbels (1996), Green and Silverman (1994), Kim, Mahmoud, and
Woodall (2003), Mahmoud and Woodall (2004), and Mahmoud et al. (2007). In their
works, they provided data examples which could not be modeled via parametric models
and utilized nonparametric regression techniques to monitor those profiles. Works done by
Reis and Saraiva (2006), Jeong, Lu, and Wang (2006) and Chicken, Pignatiello, and
Simpson (2009) presented other nonparametric regression profile monitoring techniques.
A popular tool used to fit the nonparametric regression models are smoothers which

depending on the type of data can be applied. For handling sparse data, smoothing
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splines are recommended while polynomial smoothers are preferred for handling dense
deigns. Popular smoothers through out the literature are local polynomial smoothers
which were used by Fan and Gijbels (1996), regression splines, smoothing splines
Wahba (1990), Green and Silverman (1994), Mays and Birch (2002), Mays et al. (2001),
Mays et al. (2000), Wang (2011) and penalized splines Ruppert et al. (2003).
Wavelets can be used as a nonparametric regression to model profiles with sudden

changes. Wavelet has proved to be a popular tool by researchers when the profile data
cannot be described by simple models. It is usually recommended when the shape of
the profile is too complicated to be modeled by a linear or nonlinear model (Woodall
(2007)). Nonparametric wavelet models have been used in the works of Reis and
Saraiva (2006), Jeong, Lu, and Wang (2006), Zou, Wang, and Tsung (2007), and
Chicken, Pignatiello, and Simpson (2009) and control charts were made based on a sub-
set of wavelet estimates. In the work by Reis and Saraiva (2006), a multi scale frame-
work based on wavelets was introduced for the monitoring of of both roughness and
waviness of paper surface. Jeong, Lu, and Wang (2006) presented a SPC procedure that
adaptively determines which wavelet coefficients to monitor and showed that their
method performed effectively in detecting many types of process changes. Chicken,
Pignatiello, and Simpson (2009) suggested a method based on semi-parametric wavelets
for monitoring the changes in sequences of nonlinear profiles. Based on a likelihood
ratio test which incorporated a change point model, their method used the spatial adap-
tivity characteristics of wavelets to appropriately detect profile changes. Chang and
Yadama (2010) applied a Discrete wavelet transformation (DWT) to separate variation
or noise from profile contours and also by using B-splines which generate critical points
they defined the shape of profiles. The novelty of their work was that, it enabled users
to divide a profile into multiple segments and monitor them simultaneously. Nikoo and
Noorossana (2013) used approximate wavelet coefficients for profile monitoring of
Vertical Density Profiles and introduced an ANOVA based method to find the perfect
resolution level for wavelet estimates.
Normality assumption of the response variable is a very common assumption among

studies done by researchers. Although, this assumption can be correct in some cases,
there are many cases that the variable of interest is not continuous but is a count or fre-
quency, such as the number of defects in a manufacturing process or the number of
customers who visited a webpage (Poisson distribution). Ignoring other distributions
can cause misleading results Noorossana et al. (2008). Several authors have addressed
this in their studies Nelder and Jacob Baker (1972), McCullagh and Nelder (1989),
McCulloch and Searle (2001), Schabenberger and Pierce (2001), Hastie and Tibshirani
(1990), Ruppert et al. (2003), Yeh et al. (2009) and Amiri et al. (2011). Although, litera-
ture on profile monitoring for non-normal responses, especially binary ones, is rich, few
works have been done on profile monitoring for Poisson responses. Amiri et al. (2011)
examined two of the five proposed T2 methods by Yeh et al. (2009) and proved that
when the T2 is derived from sample average and intra-profile, pooling it can perform
better in detecting two type of shifts: step and drifts. Sharafi et al. (2013) introduced an
Maximum Likelihood Estimator (MLE) estimator to detect the the time of a step change
in profile monitoring of Poisson data in phase II and showed through simulation that
the estimator was effective in detecting step shifts. Asgari et al. (2014) proposed a new
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method to monitor a two stage process where the second stage had Poisson variable.
They combined the logarithm and the square root link functions and, instead of using
deviance residuals which was used in the r method of Skinner et al. (2003), a standar-
dized residual (SR) statistic was used.
Amiri et al. (2015) developed, modified, and compared three methods: one was based

on T2, the second was based on likelihood ratio test (LRT), and the last was an F
method. Performance of the three methods were compared when applied to Poisson
response data. Their results showed that, for detecting two types of shifts (step and
drift); the model based on likelihood ratio test (LRT) outperformed the others, and the
method based on T2 had the poorest performance. In terms of detecting outliers, F
method proved to be the best and LRT had the poorest performance compared to the
others. In the end, they applied these three methods to a real-world profile monitoring
with profiles describing the relationship between the size and number of agglomerates
emitted from a volcano in consecutive days and demonstrated that they were successful
in distinguishing the out of control situations.
This study focuses on the phase I analysis, where we are interested in understanding

the variation and stability of the process and removing any outlying sample via analyz-
ing a historical data set. The purpose is to setup the control limits for phase II analysis.
In this paper, addressing two novel issues; firstly profile monitoring for the Generalized
exponential distribution where the Poisson is considered as the distribution of the
response variable instead of the common normality assumption. Second, profiles are not
always easily modeled by parametric approaches and there is a need for a data driven
approach (wavelet) that would capture the shape of the profiles, especially those with
abrupt changes. The performance of parametric and wavelet approach in profile moni-
toring of Poisson data with sudden jump via comprehensive simulation studies. In the
end, a real case scenario utilize to compare the performance of the proposed approach
with some state-of-the-arts. In the rest of the paper, Sec. 2 describes the parametric,
wavelet methods and their applications in profile monitoring of Poisson data in detail.
Section 3 presents the simulation study and provides a comparison on the performance
of these models in different situations. Section 4, concludes the application of proposed
models by showing their performance in a real- world case study.

2. Methodology

In this section, we explain the parametric and wavelet models with their applications in
profile monitoring of Poisson data.

2.1. Parametric approach

Parametric profile monitoring assumes that, the relationship between the response vari-
able and the covariates can be represented by a certain linear or nonlinear function.
The basic idea of parametric profile monitoring involves two steps. First, an appropriate
statistical model is used to characterize the profile. The choice of that model depends
on the characteristics of the profile data. Second, regression parameters’ estimates are
monitored by using multivariate control charts such as Hotelling’s T2 or Exponential
Weighted Moving Average (EWMA) Noorossana et al. (2008).
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In simplest case, observations in the ith profile can be modeled via a simple regres-
sion model as follows:

yij ¼ bi0 þ bi;1Xi;j þ �i;j; i ¼ 1; 2; :::;m; j ¼ 1; 2; :::; ni (1)

Where yij is the jth observation in the ith profile, Xi;j is the jth value of the explanatory
variable for ith profile and �i;j is the random variable of jth observation in ith profile.
Suppose there are n independent observations in a profile where each of them follows

a Poisson distribution with a mass probability function as follows:

f Yið Þ ¼ e�kikiYi

Yi!
; i ¼ 1; 2; ::::::; n;Yi>0 (2)

Hence, EðYiÞ ¼ ki and VarðYiÞ ¼ ki. In addition, let gi ¼ b0 þ b1xi. With Log link
transformation, ki can be described as a function of gi. Therefore,

g kið Þ ¼ log kið Þ ¼ b0 þ b1xi (3)

where b0 and b1 are regression parameters. Based on Eq. (3) the following equation can
be obtained:

ki ¼ exp gið Þ; i ¼ 1; 2; ::::::; n (4)

Given that the observations are independent from each other, the joint likelihood
function of Y1;Y2; :::;Yn is as follows:

L ki; yið Þ ¼
Yn
i¼1

e�ki kið ÞYi

Yi!
¼ e

�
Pn
i¼1

kið ÞQn
i¼1 kið ÞYi

Qn
i¼1 Yi!

(5)

Taking logarithm of both sides of Eq. (5) and using Eq. (4) the following equation
can be obtained:

log L ki; yið Þ½ � ¼
Xn
i¼1

Yi log exp gið Þð Þ�
Xn
i¼1

exp gið Þ�
Xn
i¼1

log Yi!ð Þ (6)

Taking the derivative of Eq. (6) with respect to b the following equation will be
obtained where li ¼ ki and Xi ¼ ½1xi�:

@ log L ki; yið Þ½ �
@b

¼
Xn
i¼1

XiYi�
Xn
i¼1

Xili ¼
Xn
i¼1

Yi � lið ÞXi (7)

Based on (7), the MLE estimator of b can be found by solving the following equation
where 0 ¼ ð0; :::; 0ÞT and l ¼ ðl1; ::::; lnÞ:

XT y�lð Þ ¼ 0 (8)

Using iterative weighted least squares (IRWLS) the MLE estimators of b0s can be cal-
culated following the algorithm below:

Step (1): Let b̂
½0�

be the initial estimate of b which can be obtained using ordinary
least squares (OLS), set R ¼ 0.
Step (2): Using b̂

ðRÞ
estimate, compute gi

ðRÞ and kiðRÞ using Eqs. (3) and (4)
Step (3): Define matrix W using Eq. (9)
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W Rð Þ ¼ diag ki
Rð Þ� �

(9)

where W is an n � n matrix
Step (4): Compute adjusted dependent variate qi where

q Rð Þ
i ¼ g Rð Þ

i þ W Rð Þð Þ�1
yi�lið Þ (10)

Step (5): Update b estimates using Eq. (10)

b Rð Þþ1ð Þ
i ¼ XTW Rð ÞXð Þ�1

XTW Rð Þq Rð Þ
i (11)

Set R ¼ Rþ 1
Step (6): Repeat steps 2 through 5 for k times till algorithm converges. We say the

algorithm converges when jjb̂ ½K��b̂
½K�1�jj

jjb̂ ½K�1�jj
� a. jjxjj is defined as the Euclidean norm of a

vector x and we chose a to be a sufficient small constant (e.g, a ¼ 10�5). b̂ ¼ b̂
½K�

would then be the optimum estimator of b.
Yeh et al. (2009) proposed 5 different control charts, the below method below is one

of the top ones among them. Using the equation below, one can compute the T2 values
for each profile.

T2
P;i ¼ b̂i��b

� �T

SD
�1 b̂i��b
� �

; i ¼ 1; 2; ::::::;m (12)

where m is the number of profile, b̂ is the regression coefficient estimate for each pro-
file and �b and SD can be calculated with the following equations:

�b ¼ 1
m

Xm
i¼1

b̂i (13)

SD ¼ 1
2 m� 1ð Þ

Xm�1

i¼1

b̂iþ1 � b̂i

� �
b̂iþ1�b̂i

� �T
(14)

Successive differences, SD, which is an estimator proposed by Williams et al. (2006) is
very practical for detecting the step shift in profiles.
It is desired from the T2 control chart to give a signal whenever the values of T2

P;i
exceeds the UCL, Upper Control Limit, which is defined as an approximated chi-square
distribution with a degree of freedom equal to number of parameters used to compute
the T2. A signal is given whenever T2

P;i � v2dfP;a where dfP represents degrees of free-
dom and a represents the significance level. In the case of parametric profile monitor-
ing, the dfP equals to two given that simple regression is being used and a is assumed
to be 0.05.

2.2. Wavelet approach

There are various wavelet families available for nonparametric regression. In this work,
we are using Haar wavelet. The process of approximating a function via wavelets is
quite straightforward. First, a wavelet from family of wavelets is chosen to transform
the function into wavelet components. Second, the wavelet components are thresholded
using different policies and methods. Third, threshold wavelet components are
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reconstructed via pyramid algorithm. Every wavelet basis is made from a mother wave-
let and a scaling function also known as the father wavelet. When approximating func-
tions via Haar wavelet, there are certain assumptions that need to be met. First, the
number of observations should be a power of two. Second, the function’s range should
be defined on [0,1) interval. A function can be estimated with a Haar wavelet that is
constructed from a mother and a father wavelet:

y tð Þ ¼
X2j0�1

k¼0

cj0k/j0k tð Þ þ
XJ

j¼j0

X2j�1

k¼0

djkwjk tð Þ (15)

In Eq. (15), /j0k is the father wavelet which is made from the father wavelet basis
defined as /j0kðxÞ ¼ 2j0=2/ð2j0x�kÞ and cj0k are father/approximate wavelet coefficient.
wjk is the mother wavelet which is made from the mother wavelet base defined as
wj;kðxÞ ¼ 2j=2wð2jx�kÞ and djk are detail/mother wavelet coefficients. As the value of J
increases the quality of this approximation improves as well and J can range from 0 to
ðp�1Þ where p is the log 2ðnÞ and n is the length of the data vector. For instance, if a
data vector of size n¼ 128 is to be estimated by Haar wavelet, then p ¼ log2ð128Þ ¼ 7
and the levels for J can range from J¼ 0 to J¼ 6. One of the advantages of using

Figure 1. Mean for Step Data.
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wavelets, as a nonparametric method is using thresholding as a way to clean noisy coef-
ficients. Thresholding helps clean unimportant coefficients and results in describing a
noisy function with relatively small number of wavelet coefficients. When a noisy func-
tion is transformed with a wavelet, some detail coefficients, dJk, capture the noise of the
function and therefore removing them will not damage the overall fit of the function.
In this work, we used a soft policy and compared the detail coefficients to k, threshold-
ing value, and removed those that met the conditions. The value of k was calculated via
universal thresholding. The soft policy and k value are shown in Eq. (16):

rSk d̂jk

� �
¼

0 if jd̂jkj � k;

d̂jk�k if d̂jk>k;

d̂jk þ k if d̂jk<�k:

kU ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log n

p
r̂

8><
>:

(16)

where r̂ ¼ MADðdn�1;i; i ¼ 1; N2Þ and ðn�1Þ is the highest level. MAD is median abso-
lute deviation.

3. Simulation study

Since there is no study has been done on comparing the performance of parametric and
wavelet approach on profile monitoring for a Poisson data, based on our best of know-
ledge, we decided to study this via a simulation. In this study, we compared the per-
formances of these models when the underlying function is a step function which a
sudden jump can be seen in it. In order to conduct a through simulation, a function
was created in R which took into account the number of profiles, m¼ 3060, number of
observations, n ¼ 16; 32, size of the shift in location of the jumps for small, moderate
and big changes, c (0, 0.125, 0.25, 0.5) and the last but not the least the magnitude of
the jumps for small, moderate and big changes c(0, 0.125, 0.25, 0.5). We expected that
this function would be very hard to estimate with parametric, because of its sudden
jump, but relatively easy for Haar wavelet. The k of the step function was 2 for the first
half and 10 for the second half of observations for each profile. A shift of 0.5 in jump
location and its magnitude is shown in Figure 1. Tables 1 and 2 support our

Table 1. m¼ 30 n¼ 16 for Step Function (Based on 1000 Replication Simulation Results).
IMSE P(Signal)

m n shift height Par Wave Par Wave

30 16 0 0 6.21 3.00 0.051 0.055
30 16 0.125 0 5.77 2.86 0.073 0.089
30 16 0.25 0 5.34 2.73 0.123 0.197
30 16 0.5 0 4.93 2.47 0.291 0.607
30 16 0 0.125 7.01 3.19 0.080 0.080
30 16 0.125 0.125 6.46 3.04 0.060 0.079
30 16 0.25 0.125 5.93 2.89 0.074 0.156
30 16 0.5 0.125 5.40 2.61 0.197 0.581
30 16 0 0.25 7.91 3.40 0.164 0.151
30 16 0.125 0.25 7.23 3.26 0.098 0.109
30 16 0.25 0.25 6.57 3.06 0.071 0.164
30 16 0.5 0.25 5.95 2.72 0.123 0.577
30 16 0 0.5 9.97 3.83 0.393 0.354
30 16 0.125 0.5 9.00 3.67 0.278 0.264
30 16 0.25 0.5 8.05 3.40 0.179 0.250
30 16 0.5 0.5 7.19 3.00 0.065 0.588

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 531



assumptions. As shown in Table 1 the Haar estimate does a much better approximation
than the parametric model. Of interest is the behavior of the models when the location
of the jump is shifted to the right. The SIMSE of both models start to decrease as the
jump starts shifting to the right since this allows the models to approximate a function
that is mostly a straight line. As expected, the SIMSE and probability of signal of both
models increased as the jump magnitude increased. Adding more observations to the
profiles will result in a better fit for models and higher probability of signal, but adding
more profiles will have no significant effect. The simulation studies show the superiority
of the Haar wavelet approach to the parametric approach.

4. Case study

Now that we showed the superiority of the semi-parametric model over the parametric
and nonparametric in our simulation study, it is time to assess these methods’ perform-
ance in a real-world profile monitoring situation. We decided to test the methods dis-
cussed in this study in profile monitoring on a volcano data set that was used in Amiri
et al. (2015). The data was taken from a volcano in successive days. Profiles were
defined as the relationship between the number of ejected agglomerates and agglomerate
diameter. In this scenario, number of ejected agglomerates were a function of agglomer-
ate diameter, which were counted by space images taken from the volcano each day.
The first 10 profiles are shown in Figure 2.
Looking at the Figure 3, the reader can see the obvious advantage of the 3rd order

parametric model over the 1st order parametric and wavelet. The IMSE for 1st order
parametric, 3rd order parametric and wavelet, are 4,227, 692, and 982 respectively and
the T2 for 1st order parametric, 3rd order parametric and wavelet are 0.16, 0.15, and
0.15 respectively. Figure 4 shows the T2 control chart, where the T2 values for profiles
are shown and the red dashed line represents the upper control limit. The control chart
for 1st order parametric, 3rd order parametric and wavelet give 11, 10, and 10 signals
respectively which are quite close. However, the 3rd order parametric model captures

Table 2. m¼ 30 n¼ 32 for Step Function (Based on 1000 Replication Simulation Results).
IMSE P(Signal)

m n shift height Par Wave Par Wave

30 32 0 0 5.78 1.49 0.051 0.051
30 32 0.125 0 5.35 1.45 0.092 0.120
30 32 0.25 0 4.94 1.36 0.189 0.310
30 32 0.5 0 4.57 1.25 0.486 0.768
30 32 0 0.125 6.57 1.60 0.112 0.106
30 32 0.125 0.125 6.02 2.87 0.066 0.099
30 32 0.25 0.125 5.51 1.45 0.097 0.251
30 32 0.5 0.125 5.05 1.31 0.327 0.745
30 32 0 0.25 7.43 1.69 0.260 0.230
30 32 0.125 0.25 6.76 3.28 0.146 0.167
30 32 0.25 0.25 6.13 1.54 0.089 0.248
30 32 0.5 0.25 5.57 1.38 0.191 0.735
30 32 0 0.5 9.45 1.92 0.597 0.542
30 32 0.125 0.5 8.49 2.92 0.455 0.499
30 32 0.25 0.5 7.58 1.72 0.287 0.667
30 32 0.5 0.5 6.79 1.52 0.079 0.750
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Figure 2. Volcano Profiles.

Figure 3. Real Data and Parametric Estimates.
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the shape of the profiles much better than the 1st order parametric and wavelet and
therefore can be more reliable in monitoring the changes in volcano profiles.

5. Conclusion and discussion

In this work, we compared first order and wavelet approaches for profile monitoring of
Poisson data. These models were compared in a situation where there was a sudden
jump in the profile. The simulation study showed that, the Haar wavelet would be a
better option for fitting step changes in profiles for detecting changes than the misspeci-
fied parametric approach. In addition, the volcano case study showed that when the
shape of the profiles are smooth and no sudden shift is happening, the proposed Haar
wavelet is Superior than the parametric approach. The distribution of response was
Poisson in this study, but other distribution of exponential family of distribution can be
considered in future works.
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