
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lsta20

Communications in Statistics - Theory and Methods

ISSN: 0361-0926 (Print) 1532-415X (Online) Journal homepage: https://www.tandfonline.com/loi/lsta20

Adaptive estimation for varying coefficient models
with nonstationary covariates

Zhiyong Zhou & Jun Yu

To cite this article: Zhiyong Zhou & Jun Yu (2019) Adaptive estimation for varying coefficient
models with nonstationary covariates, Communications in Statistics - Theory and Methods, 48:16,
4034-4050, DOI: 10.1080/03610926.2018.1484483

To link to this article:  https://doi.org/10.1080/03610926.2018.1484483

© 2018 Informa UK Limited, trading as
Taylor & Francis Group

Published online: 29 Dec 2018.

Submit your article to this journal 

Article views: 491

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=lsta20
https://www.tandfonline.com/loi/lsta20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03610926.2018.1484483
https://doi.org/10.1080/03610926.2018.1484483
https://www.tandfonline.com/action/authorSubmission?journalCode=lsta20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lsta20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03610926.2018.1484483
https://www.tandfonline.com/doi/mlt/10.1080/03610926.2018.1484483
http://crossmark.crossref.org/dialog/?doi=10.1080/03610926.2018.1484483&domain=pdf&date_stamp=2018-12-29
http://crossmark.crossref.org/dialog/?doi=10.1080/03610926.2018.1484483&domain=pdf&date_stamp=2018-12-29


COMMUNICATIONS IN STATISTICS—THEORY AND METHODS
2019, VOL. 48, NO. 16, 4034–4050
https://doi.org/10.1080/03610926.2018.1484483

Adaptive estimation for varying coefficient models with non
stationary covariates
Zhiyong Zhou and Jun Yu

Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden

ABSTRACT
In this paper, the adaptive estimation for varying coefficient models
proposed by Chen, Wang, and Yao (2015) is extended to allowing for
non stationary covariates. The asymptotic properties of the estimator
are obtained, showing different convergence rates for the integrated
covariates and stationary covariates. The nonparametric estimator of
the functional coefficient with integrated covariates has a faster conver-
gence rate than the estimator with stationary covariates, and its asymp-
totic distribution is mixed normal. Moreover, the adaptive estimation is
more efficient than the least square estimation for non normal errors. A
simulation study is conducted to illustrate our theoretical results.

ARTICLE HISTORY
Received 13 April 2017
Accepted 28 May 2018

KEYWORDS
Varying coefficient model;
adaptive estimation; local
linear fitting; non stationary
covariates

1. Introduction

Nonstationarity is a very important empirical feature in many economic and financial time
series. Over the past decade, there has been great interests in nonparametric and semipara-
metric models with non stationary covariates, existing literature includes Cai, Li, and Park
(2009), Chan and Wang (2015), Chen, Fang, and Li (2015), Chen, Gao, and Li (2012), Dong,
Gao, and Tjøstheim (2016), Gu and Liang (2014), Gao and Phillips (2013), Juhl and Xiao
(2005), Karlsen, Myklebust, and Tjøstheim (2007), Karlsen and Tjostheim (2001), Liang,
Lin, and Hsiao (2015), Li et al. (2017), Sun, Cai, and Li (2013), Sun and Li (2011), Wang
(2014), Wang (2015), Wang and Phillips (2009a), Wang and Phillips (2009b), Wang and
Phillips (2016), Xiao (2009), Zhou and Lin (2018). As we know, compared with nonparametric
regression model, semiparametric regression models have the advantage of attenuating the
problem of “curse of dimensionality.” Among them, varying coefficient models proposed by
Hastie and Tibshirani (1993) have gained considerable attention due to their flexibility and
good interpretability. By allowing the functional coefficients to vary over a index variable, it is
an useful extension of the classical linear model. Thus, to study the varying coefficient models
with non stationary covariates is very meaningful from both theoretical and practical aspects.

In this paper, we focus on the varying coefficient models with the form:

Yt = XT
t β(Ut) + εt = XT

t,1β1(Ut) + XT
t,2β2(Ut) + εt , t = 1, 2, . . . , n (1)

where Xt = (XT
t,1, XT

t,2)
T , Xt,i is a di × 1 vector, i = 1, 2, d1 + d2 = d, Xt,1 is stationary,

Xt,2 is non stationary, specifically an integrated of order one time series (denoted by I(1), see
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Hamilton (1994) for details), β(·) = (β1(·)T , β2(·)T)T is a d-dimensional vector of unknown
smooth functions, Ut is a scalar stationary variable, and εt is a stationary error term. In what
follows, we assume E(εt|Xt , Ut) = 0, that is Xt and Ut are uncorrelated with εt . Note that Yt
is allowed to be stationary or non stationary in this model.

Cai, Li, and Park (2009) and Xiao (2009) have considered this model by using local liner
estimation method, which is based on the least squares type criteria. For ordinary least squares
based estimators, a well-known drawback is that the efficiency will be reduced when non-
Gaussian errors are present. Motivated by efficiency considerations, we adopt the adaptive
estimation procedure so that the new estimator can be adapted to different error distributions.
This approach has been introduced in nonparametric models (Linton and Xiao 2007; Jin, Su,
and Xiao 2015) and varying coefficient models (Chen, Wang, and Yao 2015). However, only
the cases where covariates are independent or stationary have been considered. In this paper,
we will extend the adaptive estimation procedure to the varying coefficient model Equation
(1) which involves both integrated (non stationary) covariates and stationary covariates. We
establish the asymptotic distributions of the proposed adaptive estimators and show different
convergence rates for the non stationary covariates and stationary covariates. The efficient EM
algorithm proposed by Chen, Wang, and Yao (2015) is applied to implement our adaptive
estimation procedure. Our simulation study illustrates that the adaptive estimator is more
efficient than the ordinary least squares estimator when the error distribution deviates from
normal.

The paper is organized as follows. Section 2 introduces adaptive estimation method and the
EM algorithm. The asymptotic results for the estimators are given in Section 3. A simulation
study is presented in Section 4. Section 5 is devoted to the conclusion. Finally, the proofs are
postponed to Section 6.

2. Adaptive estimation

Suppose that {Xt , Ut , Yt , t = 1, 2, . . . , n} are the observations. Assuming that β(·) has second
order derivative, we have the Taylor expansion:

β(u) ≈ β(u0) + β ′(u0)(u − u0)

for u in a small neighborhood of u0. By adopting the local linear fitting method (Fan
and Gijbels 1996), the traditional least squares based local linear estimation of �(u0) =
(β(u0)

T , hβ ′(u0)
T)T is to minimize the weighted loss function (with respect to �):

n∑
t=1

{Yt − Xt(u0)
T�}2Kh(Ut − u0) (2)

where � is a 2d-dimensional vector, Xt(u0) =
( Xt

h−1(Ut − u0)Xt

)
, and Kh(·) = K(·/h)/h

with K(·) being the kernel function and h being the bandwidth. We use a Gaussian kernel for
K(·) throughout the paper for convenience.

As the efficiency for the resulting least squares based estimator in Equation (2) may be
reduced when the error is apart from normal, an estimation procedure which is adaptive
to error distributions (Chen, Wang, and Yao 2015; Linton and Xiao 2007; Jin, Su, and Xiao
2015) is adopted here. Specifically, with f (·) being the probability density function of the error
term and assuming to be known, the parameter vector �(u0) is estimated by maximizing the
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following local log-likelihood function (with respect to �):
n∑

t=1
log f {Yt − Xt(u0)

T�}Kh(Ut − u0) (3)

Notice that the error probability density function is generally unknown in practice and has
to be estimated beforehand. One can use a kernel density estimator, among others, based on
some initial error estimators. For example, applying least squares or median regression based
local linear estimator to obtain initial parameter estimator β̃(·), we can get an error estimator
ε̃s = Ys − β̃(Us)TXs, s = 1, 2, . . . , n. These residuals can then be used to attain the kernel
density estimator of f (·) as follows:

f̃ (εt) = 1
n

n∑
s �=t

Kh0(εt − ε̃s), for t, s = 1, 2, . . . , n (4)

where h0 is an appropriately chosen bandwidth. Here, the leave-one-out kernel density
estimator is used to wash off the estimation bias. Then the adaptive local linear estimator
for �(u0) is

�̂(u0) = arg max
�

Ln(�, u0) (5)

where Ln(�, u0) is the estimated local log-likelihood function:

Ln(�, u0) =
n∑

t=1
log f̃ {Yt − Xt(u0)

T�}Kh(Ut − u0)

=
n∑

t=1
log

⎛
⎝ 1

n

n∑
s �=t

Kh0{Yt − Xt(u0)
T� − ε̃s}

⎞
⎠ Kh(Ut − u0) (6)

Algorithm: At (k + 1)th step, the following E and M steps are operated:
E-step: Calculation of the classification probabilities p(k+1)

ts with

p(k+1)
ts = Kh0{Yt − Xt(u0)

T�̂(k)(u0) − ε̃s}
n∑

s �=t
Kh0{Yt − Xt(u0)T�̂(k)(u0) − ε̃s}

, 1 ≤ s �= t ≤ n

M-step: Update of the estimator �̂(k+1)(u0) with

�̂(k+1)(u0) = arg max
�

n∑
t=1

n∑
s �=t

{p(k+1)
st Kh0(Ut − u0) log

(
Kh0{Yt − Xt(u0)

T� − ε̃s}
)}

= arg min
�

n∑
t=1

n∑
s �=t

{p(k+1)
st Kh0(Ut − u0)[Yt − Xt(u0)

T� − ε̃s]2}

=
⎛
⎝ n∑

t=1

n∑
s �=t

p(k+1)
st Kh0(Ut − u0)Xt(u0)Xt(u0)

T

⎞
⎠

−1

n∑
t=1

n∑
s �=t

p(k+1)
st Kh0(Ut − u0)(Yt − ε̃s)Xt(u0)
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Compared to the estimation Equation (2) which has a solution with closed form (see Cai,
Li, and Park 2009), the estimation Equation (5) does not have an explicit solution. A modified
EM algorithm proposed in Chen, Wang, and Yao (2015) is applied here. That is, let �̂(0)(u0)
be an initial estimator of parameter �(u0), then we can update the parameter estimator
according to the Algorithm 2.1 in Chen, Wang, and Yao (2015). In order to be self-contained,
we list the algorithm as above.

Then, according to the Proposition 2.1 in Chen, Wang, and Yao (2015) (it still holds in our
settings as its proof procedure involves no conditions of dependence), the above EM algorithm
monotonically increases the estimated local log-likelihood Ln(� , u0) after each iteration, i.e.,
Ln(�̂(k+1)(u0), u0) ≥ Ln(�̂(k)(u0), u0). Thus, �̂(k+1)(u0) converges to �̂(u0) for large k.

3. Asymptotic results

Before presenting the asymptotic results, we give some notations and assumptions. For j ≥
0, we define μj = ∫ ∞

−∞ rjK(r)dr and νj = ∫ ∞
−∞ rjK2(r)dr. Assume the I(1) vector Xt,2 =

Xt−1,2 + ηt (1 ≤ t ≤ n), where ηt is a strictly stationary α-mixing random vector process
with mean zero satisfying, for some p0 > 0,

E|ηt|2+p0 < ∞, and
∞∑

k=1
k(2+p0)/p0α(k) < ∞

where α(·) is the mixing coefficient. Here we adopt the condition (2.5) in Cai, Li, and Park
(2009) to ensure that

X[nr],2/
√

n ⇒ B(r)

where r ∈ [0, 1], [·] denotes the bracket function and B(r) is a d2-dimensional Brownian
motion on [0, 1] with covariance matrix 	η = lim

n→∞ Var(n−1/2 ∑n
t=1 ηt), see Cai, Li, and

Park (2009); Merlevède, Peligrad, and Utev (2006) for more details. Then, for k = 1, 2, we
have

1
n

n∑
t=1

(Xt,2/
√

n)⊗k d−→
∫ 1

0
B(r)⊗kdr =: 
k as n → ∞

where A⊗2 = AAT(A⊗1 = A) for a vector or matrix A, (see Berkes and Horváth (2006);
Billingsley (1999) for details). Define M�(u0) = E[X⊗�

t,1 |Ut = u0] for � = 1, 2. And, let

S(u0) =
(

M2(u0) M1(u0)

T
1


1M1(u0)
T 
2

)

Then, throughout the paper, we make the following assumptions:
• A1. M2(u0) is positive-definite. Moreover, M1(u) and M2(u) are continuous in a neighbor-

hood of u0.
• A2. Let ωt = (XT

t,1, ηT
t , εt)T . Assume that {(ωT

t , Ut)} is strictly stationary α-mixing process
with the p1-th moment (p1 > 2). E[|εtX2

t,1|p2 |Ut = u] ≤ C1 < ∞ with p2 > p1 and α(t) =
O(t−p3) for some p3 > min{p2p1/(p2 − p1), p5, 2p6/(2 − p6)}, where p5 = p4p1/(p4p1 −
p1 − p4) for some p4 satisfying p1/(p1 − 1) < p4 < 2. Also, ‖ηt‖q0 = [E|ηt|q0]1/q0 < ∞
with q0 = p4p6/(p4 − p6) for some 1 < p6 < p4. Further, supk E[η2

1ε
2
k+1|Uk+1 = u] ≤

C2 < ∞.
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• A3. Let ρ(·) = log f (·). Assume E[ρ′(εt)] = 0, E[ρ′′(εt)] = δ1 < 0, E[ρ′(εt)2] < ∞ and
ρ′′′(·) is bounded.

• A4. Ut has a compact support �. Its probability density function g(u) is positive and
bounded away from 0 and infinity, and has second order continuous derivative when u is in
�. Furthermore, the conditional density function of (U0, Us) given (X0,1 = x0, Xs,1 = xs),
g(u0, us|x0, xs, s), is bounded for all s ≥ 1.

• A5. The function β(u) has second order continuous derivatives when u is in the compact
support �.

• A6. As n → ∞, we have h → 0 and nh → ∞. Furthermore, n1/2−p1/4hp1/p2−1/2−p1/4 =
O(1).
These regularity conditions are adopted from Cai, Li, and Park (2009); Chen, Wang, and

Yao (2015) to facilitate the proofs of our main theoretical results. As is discussed in Cai, Li,
and Park (2009), the assumption A2 is fulfilled with some standard moment conditions if α(·)
decays geometrically and the assumption A6 is satisfied for the optimal bandwidths selection
(h = cn−γ for 0 < γ < 1 and some c > 0) under minor conditions, see Cai, Li, and
Park (2009) for details. These two technical conditions are assumed to ensure that our mixed
normal limiting results Equation (18) hold by adopting the existing results in Cai, Li, and
Park (2009). To obtain the mixed normal limiting results, these conditions might be relaxed
by using the weak convergence to stochastic integrals tool given in Liang et al. (2016). But we
do not pursue this extension here. With these notations and assumptions, we have obtained
the following asymptotic properties of the proposed adaptive estimator for parameter vector
�(u0).

Theorem 3.1. Suppose that the assumptions A1–A6 are satisfied. Then with probability
approaching 1, there exists a consistent local maximizer �̂(u0) of Equation (5) such that

�̂(u0) − �(u0) = Op

((√
nh

)−1 + h2
)

(7)

Theorem 3.1 gives us the consistency of the adaptive estimator �̂(u0). To present the

asymptotic distribution of �̂(u0), define Dn = diag{Id1 ,
√

nId2}, �n =
(

1 0
0 1

)
⊗ Dn, where

⊗ denotes the Kronecker product.

Theorem 3.2. Suppose that the assumptions A1–A6 hold. Then �̂(u0), given in Theorem 3.1,
has the following asymptotic distribution

√
nh�n

[
�̂(u0) − �(u0) − h2

2
R(u0)

−1
(

μ2
μ3

)
⊗

(
S(u0)β

′′(u0)
)
(1 + op(1))

]
d−→ MN(��(u0)) (8)

where R(u0) =
(

1 0
0 μ2

)
⊗S(u0), MN(��(u0)) is a mixed normal distribution with zero mean

and random covariance matrix ��(u0) = [E{ρ′(εt)2}]−1g(u0)
−1R(u0)

−1�(u0)R(u0)
−1

where �(u0) =
(

ν0 ν1
ν1 ν2

)
⊗ S(u0)
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Remark 1. When there is no integrated covariates (d2 = 0), this theorem reduces to the
Theorem 2.2 in Chen, Wang, and Yao (2015). As is presented, when non stationary covariates
are incorporated, the convergence rate involves an additional item �n compared to the
convergence rate

√
nh in the stationary case. This indicates that the convergence rate of the

estimator for non stationary part is n
√

h, which is faster than that of the estimator for the
stationary part. Moreover, it shows that the asymptotic distribution of the non stationary part
is mixed normal while that of the stationary part is normal.

Based on Theorem 3.2, we can immediately obtain the asymptotic distribution of the
parameter estimator β̂(u0) = (Id, 0d)�̂(u0) as presented in Theorem 3.3.

Theorem 3.3. When the assumptions of Theorem 3.2 hold, β̂(u0) has the following asymptotic
distribution

√
nhDn

[
β̂(u0) − β(u0) − h2

2
μ2β

′′(u0)(1 + op(1))

]
d−→ MN(�β(u0)) (9)

where MN(�β(u0)) is a mixed normal distribution with zero mean and random covariance
matrix �β(u0) = [E{ρ′(εt)2}]−1ν0S(u0)

−1/g(u0).

Remark 2. Note that the proposed adaptive estimator and the traditional least squares
based local linear estimator by minimizing Equation (2) (see Theorem 2.1 in Cai, Li, and
Park (2009)) have the same asymptotic bias, but have slight different asymptotic variance
(the asymptotic variance for traditional local linear estimator is obtained just by replacing
[E{ρ′(εt)2}]−1 by E(ε2

t ) in �β(u0)). In fact, the adaptive estimator has always smaller asymp-
totic variance than the traditional local linear estimator for non-Gaussian errors. This can
be easily verified by using Cauchy-Schwarz inequality, since it holds that E(ε2

t )E{ρ′(εt)2} ≥
[E{εtρ′(εt)}]2 = 1 and the equality holds if and only if f (·) is a normal density. Therefore,
[E{ρ′(εt)2}]−1 ≤ E(ε2

t ). Thus, the adaptive estimator is more efficient than the least squares
based estimator when the error is not normal.

4. Simulation

In this section, a simulation study is carried out to compare the performance between the
adaptive estimator (adapt) and the least squares based local linear estimator (LS), for varying
coefficient models with non stationary covariates. In order to facilitate the comparison, we
first consider the independent and identically distributed (i.i.d) error with the following five
distributions in the simulation experiment which were also considered in Chen, Wang, and
Yao (2015):
(a) N(0, 1)

(b) t3
(c) 0.5N(−1, 0.52) + 0.5N(1, 0.52)
(d) 0.3N(−1.4, 1) + 0.7N(0.6, 0.42)
(e) 0.9N(0, 1) + 0.1N(0, 102)

Among these distributions, the standard normal distribution N(0, 1) is the baseline for
the comparison. t3 denotes the standard t-distribution with degree of freedom 3. The three
remaining distributions are all mixed normal, but own different characteristics: (c) is bimodal,
(d) is left skewed, while (e) is contaminated by some outliers.
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Table 1. Comparison of AMSE and its standard error in brackets for Case (i).
n = 200 n = 400

ε LS Adapt LS Adapt

a 0.0362(0.0196) 0.0355(0.0182) 0.0183(0.0089) 0.0180(0.0086)
b 0.0893(0.0620) 0.0708(0.0380) 0.0501(0.0311) 0.0437(0.0296)
c 0.0453(0.0256) 0.0394(0.0249) 0.0232(0.0108) 0.0180(0.0095)
d 0.0425(0.0249) 0.0339(0.0230) 0.0229(0.0114) 0.0160(0.0077)
e 0.3281(0.2881) 0.1572(0.1478) 0.1870(0.1363) 0.0867(0.1037)

Table 2. Comparison of AMSE and its standard error in brackets for Case (ii).
n = 200 n = 400

ε LS Adapt LS Adapt

a 0.0068(0.0034) 0.0069(0.0035) 0.0021(0.0011) 0.0021(0.0011)
b 0.0151(0.0305) 0.0111(0.0068) 0.0048(0.0063) 0.0037(0.0020)
c 0.0082(0.0049) 0.0074(0.0041) 0.0025(0.0015) 0.0022(0.0012)
d 0.0081(0.0053) 0.0067(0.0039) 0.0024(0.0016) 0.0019(0.0009)
e 0.0431(0.0474) 0.0226(0.0267) 0.0113(0.0079) 0.0051(0.0038)

For each of the above error distributions, we generate our data as follows:

Yt = XT
t β(Ut) + εt = Xt,1β1(Ut) + Xt,2β2(Ut) + εt , t = 1, 2, . . . , n (10)

where β1(u) = 2u(1 − u), β2(u) = sin(2πu), and Ut
i.i.d∼ U[0, 1]. For Xt = (Xt,1, Xt,2)T , we

consider the following two cases:

(i) {Xt} is generated by Xt =
(

0.5 0
0 1

)
Xt−1 + ηt

(ii) {Xt} is generated by Xt = Xt−1 + ηt

where ηt = (ηt,1, ηt,2)T i.i.d∼ N((0, 0)T , diag(1, 1)).
Case (i) assumes that Xt is a mixture of stationary and non stationary covariates, while Case

(ii) considers a non stationary Xt . In our simulation, we draw samples of sizes n = 200, 400
with N = 100 replications. Choose h = 4sU × n−2/5 and h0 = 2sε̃ × n−1/5 for both Cases (i)
and (ii), where sU and sε̃ are the standard errors of {Ut} and {ε̃t}, respectively. Based on the
theoretical result in Sun and Li (2011), the CV-selected bandwidth via the local linear method
is Op(n−2/5) when Xt contains I(1) components. But instead of using this data-driven optimal
bandwidth, we adopted this optimal order with a fixed constant 4sU . And for both cases, we
use the same bandwidth in order to facilitate the comparison. The performance of estimates
β̂(·) is assessed via the averaged mean squared errors:

AMSE = 1
N

N∑
j=1

MSEj, MSEj = 1
100

100∑
k=1

2∑
i=1

[
β̂i(uk, j) − βi(uk)

]2

where {uk, k = 1, 2, . . . , 100} are the grid points on the interval [0, 1].
Tables 1 and 2 summarize the results from our simulation experiments. It can be seen that

the AMSE and standard error of the adaptive estimator are smaller for all cases when the
error is i.i.d and non-Gaussian. The efficiency gain is substantial even for moderate sample
sizes. The corresponding results for normal errors are very similar for these two methods. It
has also been shown in Figure 1 that the biases of these two estimators are almost the same,
but the adaptive estimator owns narrower standard error curves than the least squares based
ones. These findings are largely consistent with our theoretical results. In addition, when the
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Figure 1. The averaged nonparametric estimators of β1(u) and β2(u) for Case (i) with n = 200, N = 100
and the error is the contaminated normal mixture (e). The red line is the true function. The blue line is LS
estimator, while the green line is our adaptive estimator. The dashed lines are the corresponding standard
error curves.

covariates vary from stationary to non stationary, our AMSE decreases. This largely illustrates
that the estimator with non stationary covariates enjoys faster convergence rate than that with
stationary covariates.

Next, in order to make comparisons, we conduct simulations for the cases that the error
term εt is weakly dependent, and that ηt is weakly dependent. Specially, we consider the case
that the error is AR(1) sequence: εt = 0.5εt−1 + st with st

i.i.d∼ N(0, 0.75), and the case that the
error is MA(1) sequence: εt = st +

√
3

3 st−1 with st
i.i.d∼ N(0, 0.75). Both cases ensure that the

errors are weakly dependent and have a N(0, 1) stationary distribution. Comparing to Tables 1
and 2, it is as expected that the week dependences of εt (AR(1) or MA(1) processes) don’t
have much impact on the performance of the estimates from Table 3. And the corresponding
results for normal errors are also quiet similar for these two methods in the dependent cases.
Besides, we consider the cases that ηt is weakly dependent, AR(1) or MA(1) processes, while
assuming that the error is i.i.d with the previous five different distributions. It is shown that
the weak dependences of ηt don’t have much impact on the performance of the estimates for
both cases either from Tables 4 and 5. The observed simulation results are largely consistent
with our theoretical results.

5. Discussion

In this paper, we extended the adaptive estimation method to varying coefficient models with
non stationary covariates. We derived the asymptotic properties of the proposed estimators.
The proposed estimation procedure can be applied to situations when the errors departure
from normal. It provides a more efficient estimator than the least squares based estimation
procedure. Simulation studies confirmed our theoretical results.
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Table 3. Performance of the estimates when the error term εt is weakly dependent.

AR(1): εt = 0.5εt−1 + st with st
i.i.d∼ N(0, 0.75)

n = 200 n = 400

Case LS Adapt LS Adapt

Case (i) 0.0392(0.0203) 0.0390(0.0204) 0.0192(0.0094) 0.0192(0.0106)
Case (ii) 0.0077(0.0050) 0.0079(0.0050) 0.0026(0.0016) 0.0028(0.0028)

MA(1): εt = st +
√

3
3 st−1 with st

i.i.d∼ N(0, 0.75)

n = 200 n = 400

Case LS Adapt LS Adapt

Case (i) 0.0407(0.0212) 0.0395(0.0201) 0.0204(0.0094) 0.0200(0.0091)
Case (ii) 0.0069(0.0040) 0.0070(0.0041) 0.0020(0.0008) 0.0020(0.0008)

Table 4. Performance of the estimates when ηt is weakly dependent for Case (i).

AR(1): ηt = 0.2ηt−1 + rt with rt = (rt,1, rt,2)T i.i.d∼ N((0, 0)T , diag(0.96, 0.96))

n = 200 n = 400

ε LS Adapt LS Adapt

a 0.0314(0.0155) 0.0315(0.0161) 0.0159(0.0071) 0.0161(0.0087)
b 0.0745(0.0563) 0.0611(0.0345) 0.0432(0.0278) 0.0398(0.0297)
c 0.0385(0.0214) 0.0348(0.0213) 0.0198(0.0090) 0.0162(0.0082)
d 0.0369(0.0217) 0.0310(0.0212) 0.0197(0.0094) 0.0171(0.0273)
e 0.2888(0.2789) 0.1412(0.1533) 0.1563(0.1118) 0.0713(0.0839)

MA(1): ηt = rt + 2√
96

rt−1 with rt = (rt,1, rt,2)T i.i.d∼ N((0, 0)T , diag(0.96, 0.96))

n = 200 n = 400

ε LS Adapt LS Adapt

a 0.0331(0.0162) 0.0329(0.0160) 0.0178(0.0100) 0.0176(0.0100)
b 0.0762(0.0565) 0.0663(0.0422) 0.0429(0.0282) 0.0366(0.0244)
c 0.0399(0.0198) 0.0364(0.0201) 0.0198(0.0079) 0.0159(0.0075)
d 0.0435(0.0241) 0.0369(0.0236) 0.0181(0.0080) 0.0134(0.0073)
e 0.2852(0.3169) 0.1223(0.0956) 0.1309(0.0694) 0.0636(0.0448)

However, there are still some interesting future research topics left. Firstly, it may be
possible to generate our model to allow Ut is non stationary or both Ut and Xt are non
stationary. Secondly, it would be important to investigate the bandwidth selection method. In
addition, it will be interesting to consider the hypothesis tests for the functional coefficients
with the adaptive estimators. Finally, the idea of the adaptive estimation might also be
extended to many other semiparametric models with non stationary regressors, such as semi-
varying coefficient models (Li et al. 2017), single-index and partially linear single-index
integrated models (Dong, Gao, and Tjøstheim 2016), and varying coefficient partially non
linear models (Zhou and Lin 2018).

6. Proofs

By the adaptive nonparametric regression result of Linton and Xiao (2007), we conjecture
that the asymptotic results of �̂(u0) are the same whether the true density function f (·) is
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Table 5. Performance of the estimates when ηt is weakly dependent for Case (ii).

AR(1): ηt = 0.2ηt−1 + rt with rt = (rt,1, rt,2)T i.i.d∼ N((0, 0)T , diag(0.96, 0.96))

n = 200 n = 400

ε LS Adapt LS Adapt

a 0.0057(0.0026) 0.0061(0.0033) 0.0017(0.0008) 0.0019(0.0020)
b 0.0115(0.0215) 0.0088(0.0051) 0.0036(0.0044) 0.0029(0.0015)
c 0.0065(0.0035) 0.0062(0.0030) 0.0020(0.0011) 0.0022(0.0035)
d 0.0066(0.0039) 0.0058(0.0030) 0.0019(0.0011) 0.0018(0.0021)
e 0.0309(0.0338) 0.0168(0.0195) 0.0081(0.0056) 0.0038(0.0026)

MA(1): ηt = rt + 2√
96

rt−1 with rt = (rt,1, rt,2)T i.i.d∼ N((0, 0)T , diag(0.96, 0.96))

n = 200 n = 400

ε LS Adapt LS Adapt

a 0.0057(0.0030) 0.0059(0.0032) 0.0017(0.0006) 0.0017(0.0006)
b 0.0100(0.0068) 0.0098(0.0067) 0.0033(0.0022) 0.0032(0.0023)
c 0.0067(0.0040) 0.0065(0.0039) 0.0019(0.0009) 0.0021(0.0025)
d 0.0066(0.0034) 0.0059(0.0030) 0.0019(0.0010) 0.0031(0.0086)
e 0.0337(0.0398) 0.0237(0.0351) 0.0096(0.0080) 0.0047(0.0037)

used or not. The rigorous proofs are left for future work. Therefore, we will mainly show the
consistence and asymptotic distribution of �̂(u0) assuming f (·) is known.

Adopting the same arguments given in Proof of Theorem 3.1 in Wang and Phillips (2009a),
it holds that under a suitable probability space {	,F , P}, there exists an equivalent process X∗

t,2

of Xt,2 (i.e., X∗
t,2

d= Xt,2, 1 ≤ t ≤ n) such that

sup
0≤r≤1

‖X∗[nr],2 − B(r)‖ = op(1) (11)

by using the fact that X[nr],2 ⇒ B(r) and the Skorohod–Dudley–Wichura representation
theorem. Therefore, because of the consistency result in Theorem 3.1 and the asymptotic
distribution result in Theorem 3.2 to be proved involves only weak convergence, without loss
of generality we assume that Xt,2 satisfies Equation (11), and Xt , Ut and εt , 1 ≤ t ≤ n are
defined on the same probability space {	,F , P}.

Proof of Theorem 3.1. Denote Kt = Kh(Ut − u0), r(Ut , Xt) = XT
t β(Ut) − Xt(u0)

T�(u0) =
XT

t [β(Ut) − β(u0) − β ′(u0)(Ut − u0)] and an = (
√

nh)−1 + h2. We assume the objective
function is

Q(�) = 1
n

n∑
t=1

Ktρ(Yt − XT
t (u0)�) (12)

To prove that with probability approaching 1, there exists a consistent local maximizer �̂(u0)
of Equation (12) such that

�̂(u0) − �(u0) = Op(an)

it is sufficient to show that for any given γ > 0, there exists a large constant c such that

P

(
sup

‖μ‖=c
Q(�(u0) + anμ) < Q(�(u0))

)
≥ 1 − γ
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where μ has the same dimension as �(u0), see Proof of Theorem 1 in Fan and Li (2001). By
using Taylor expansion, it follows that

Q(�(u0) + anμ) − Q(�(u0))

= 1
n

n∑
t=1

Kt
[
ρ(Yt − Xt(u0)

T(�(u0) + anμ)) − ρ(Yt − Xt(u0)
T�(u0))

]

= 1
n

n∑
t=1

Kt
[
ρ(εt + r(Ut , Xt) − anXt(u0)

Tμ) − ρ(εt + r(Ut , Xt))
]

= − 1
n

n∑
t=1

Ktρ
′(εt + r(Ut , Xt))anXt(u0)

Tμ

+ 1
2n

n∑
t=1

Ktρ
′′(εt + r(Ut , Xt))a2

n(Xt(u0)
Tμ)2

− 1
6n

n∑
t=1

Ktρ
′′′(Zt)a3

n(Xt(u0)
Tμ)3

=: I1 + I2 + I3

where Zt lies between εt + r(Ut , Xt) − anXt(u0)
Tμ and εt + r(Ut , Xt). Since

ρ′(εt + r(Ut , Xt)) = ρ′(εt) + ρ′′(εt)r(Ut , Xt) + 1
2
ρ′′′(εt)r2(Ut , Xt)(1 + o(1))

then we have

I1 = −an
n

n∑
t=1

Ktρ
′(εt)Xt(u0)

Tμ − an
n

n∑
t=1

Ktρ
′′(εt)r(Ut , Xt)Xt(u0)

Tμ

− an
2n

n∑
t=1

Ktρ
′′′(εt)r2(Ut , Xt)Xt(u0)

Tμ(1 + o(1))

As for j = 0, 1, 2,

√
h
n

n∑
t=1

Ktρ
′(εt)

(
Ut − u0

h

)j
D−1

n Xt =

⎛
⎜⎜⎝

√
h
n

n∑
t=1

Ktρ′(εt)
(

Ut−u0
h

)j
Xt,1√

h
n

n∑
t=1

Ktρ′(εt)
(

Ut−u0
h

)j
Xt,2/

√
n

⎞
⎟⎟⎠

d−→ MN(E{ρ′(ε)2}g(u0)νjS(u0)) = Op(1)

then

−an
n

n∑
t=1

Ktρ
′(εt)Xt(u0)

Tμ = −μT an
n

n∑
t=1

Ktρ
′(εt)

(
1

Ut−u0
h

)
⊗ Xt

= −μTDn
an√
nh

·
√

h
n

n∑
t=1

Ktρ
′(εt)

(
1

Ut−u0
h

)

⊗ D−1
n Xt = Op

(
can√

h

)
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Since r(Ut , Xt) = XT
t (β(Ut)−β(u0)−β ′(u0)(Ut − u0)) = 1

2 XT
t β ′′(u0)(Ut − u0)

2(1 + o(1)),
then

− an
n

n∑
t=1

Ktρ
′′(εt)r(Ut , Xt)Xt(u0)

Tμ

= −h2

2
μT an

n

n∑
t=1

Ktρ
′′(εt)

(
(Ut−u0

h )2

(Ut−u0
h )3

)
⊗ (XT

t β ′′(u0)Xt)(1 + o(1))

= −h2

2
μTan

(
1 0
0 1

)
⊗ D2

n

[
1
n

n∑
t=1

Ktρ
′′(εt)

(
(Ut−u0

h )2

(Ut−u0
h )3

)
⊗ (D−1

n XT
t β ′′(u0)D−1

n Xt)

]

(1 + o(1))

= Op(cannh2)

Similarly, we have − an
2n

∑n
t=1 Ktρ′′′(εt)r2(Ut , Xt)Xt(u0)

Tμ(1 + o(1)) = Op(cann3/2h4).
Therefore, I1 = Op(

can√
h
) + Op(cannh2) + Op(cann3/2h4) = Op(cna2

n).

In addition,

I2 = 1
2n

n∑
t=1

Ktρ
′′(εt + r(Ut , Xt))a2

n(Xt(u0)
Tμ)2

= a2
n

2n

n∑
t=1

Ktρ
′′(εt)a2

n(Xt(u0)
Tμ)2(1 + o(1))

= a2
n

2
μT

(
1 0
0 1

)
⊗ D2

n

[
1
n

n∑
t=1

Ktρ
′′(εt)

(
1

Ut−u0
h

)⊗2
⊗ (D−1

n Xt)
⊗2

]
μ

= Op(na2
nδ1g(u0)μ

TR(u0)μ)

Similarly, I3 = − 1
6n

n∑
t=1

Ktρ′′′(Zt)a3
n(Xt(u0)

Tμ)3 = Op(na3
n). As δ1 < 0, ‖μ‖ = c and R(u0)

is a positive-definite matrix, we can choose c large enough such that I2 dominates both I1 and
I3 with probability at least 1−γ . Thus P

(
sup‖μ‖=c Q(�(u0) + anμ) < Q(�(u0))

)
≥ 1−γ .

The proof is completed.

Proof of Theorem 3.2. Now we provide the asymptotic distribution for such consistent esti-
mator �̂(u0). The proof procedure largely follows from the arguments in Proof of Theorem
2.1 of Cai, Li, and Park (2009).

Since �̂(u0) maximize Q(�), then we have Q′(�̂(u0)) = 0. By using Taylor expansion, we
have

0 = Q′(�̂(u0)) = Q′(�(u0))+Q′′(�(u0))(�̂(u0)−�(u0))+1
2

Q′′′(�̃(u0))(�̂(u0)−�(u0))
2

where �̃(u0) is a value between �̂(u0) and �(u0). Then with �n defined as �n =
(

1 0
0 1

)
⊗

Dn and using the consistency result of �̂(u0) in Theorem 3.1, we have
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�n(�̂(u0) − �(u0)) =
(

1
n
�−1

n Q′′(�(u0))�
−1
n

)−1 (
− 1

n
�−1

n Q′(�(u0))

)
(1 + op(1))

=: Sn(u0)
−1Tn(u0)(1 + op(1)) (13)

For Sn(u0), we have

Sn(u0) = 1
n
�−1

n Q′′(�(u0))�
−1
n

= 1
n

(
1 0
0 1

)
⊗ D−1

n

[ n∑
t=1

Ktρ
′′(Yt − Xt(u0)

T�(u0))Xt(u0)Xt(u0)
T
](

1 0
0 1

)
⊗ D−1

n

= 1
n

n∑
t=1

Ktρ
′′(Yt − Xt(u0)

T�(u0))

(
1

Ut−u0
h

)⊗2
⊗ (D−1

n Xt)
⊗2

=:
(

Sn,0(u0) Sn,1(u0)
Sn,1(u0) Sn,2(u0)

)

where for j = 0, 1, 2,

Sn,j = 1
n

n∑
t=1

Ktρ
′′(Yt − Xt(u0)

T�(u0))

(
Ut − u0

h

)j
(D−1

n Xt)
⊗2

=:
(

Fn,j,0(u0) Fn,j,1(u0)
Fn,j,1(u0)

T Fn,j,2(u0)

)

with

Fn,j,0(u0) = 1
n

n∑
t=1

Ktρ
′′(Yt − Xt(u0)

T�(u0))

(
Ut − u0

h

)j
Xt,1XT

t,1

Fn,j,1(u0) = 1
n

n∑
t=1

Ktρ
′′(Yt − Xt(u0)

T�(u0))

(
Ut − u0

h

)j
Xt,1XT

t,2/
√

n

and

Fn,j,2(u0) = 1
n

n∑
t=1

Ktρ
′′(Yt − Xt(u0)

T�(u0))

(
Ut − u0

h

)j
(Xt,2/

√
n)⊗2

We define

F∗
n,j,�(u0) = 1

n

n∑
t=1

Ktρ
′′(εt)

(
Ut − u0

h

)j
X⊗�

t,1

for � = 1, 2. Then by using the strong stationary property of {XT
t,1, Ut , εt} and simple

calculation, we have

E[F∗
n,j,�(u0)] = E

[
Ktρ

′′(εt)

(
Ut − u0

h

)j
X⊗�

t,1

]

= E[ρ′′(εt)] · E

[
Kt

(
Ut − u0

h

)j
X⊗�

t,1

]

= δ1g(u0)μjM�(u0) + o(1)
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Adopting the similar arguments in Theorem 1 of Cai, Fan, and Yao (2000), one can show that
Var[F∗

n,j,�(u0)] = O( 1
nh ) = o(1). Hence, it holds that, for � = 1, 2,

F∗
n,j,�(u0) = E[F∗

n,j,�(u0)] + Op(
√

Var[F∗
n,j,�(u0)]) = δ1g(u0)μjM�(u0) + op(1) (14)

Therefore, we have

Fn,j,0(u0) = 1
n

n∑
t=1

Ktρ
′′(εt + r(Ut , Xt))

(
Ut − u0

h

)j
Xt,1XT

t,1

= 1
n

n∑
t=1

Ktρ
′′(εt)

(
Ut − u0

h

)j
Xt,1XT

t,1(1 + op(1))

= F∗
n,j,2(u0)(1 + op(1))

= δ1g(u0)μjM2(u0) + op(1)

As for Fn,j,1(u0), with the similar procedure to obtain (A.11) in Proof of Theorem 2.1 of Cai,

Li, and Park (2009), we denote by et = Ktρ′′(εt)
(

Ut−u0
h

)j
Xt,1 − E

[
Ktρ′′(εt)

(
Ut−u0

h

)j
Xt,1

]
,

which gives that 1
n

n∑
t=1

(XT
t,2/

√
n)et = op(1). As a consequence,

Fn,j,1(u0) = 1
n

n∑
t=1

Ktρ
′′(εt)

(
Ut − u0

h

)j
Xt,1XT

t,2/
√

n(1 + op(1))

=
(
E

[
Ktρ

′′(εt)

(
Ut − u0

h

)j
Xt,1

]
· 1

n

n∑
t=1

XT
t,2/

√
n + 1

n

n∑
t=1

(XT
t,2/

√
n)et

)
(1 + op(1))

= δ1g(u0)μjM1(u0)

T
1 + op(1)

Similarly,

Fn,j,2(u0) = δ1g(u0)μj
2 + op(1)

Then, we have

Sn,j(u0) = δ1g(u0)μjS(u0) + op(1) (15)

By noting that μ0 = 1 and μ1 = 0, then it immediately follows that

Sn(u0) = δ1g(u0)

(
1 0
0 μ2

)
⊗ S(u0) + op(1) = δ1g(u0)R(u0) + op(1) (16)

For Tn(u0), we can divide it into two parts:

Tn(u0) = − 1
n
�−1

n Q′(�(u0))

= 1
n

(
1 0
0 1

)
⊗ D−1

n

[ n∑
t=1

Ktρ
′(Yt − Xt(u0)

T�(u0))Xt(u0)

]

= 1
n

n∑
t=1

Ktρ
′(εt + r(Ut , Xt))

(
1

Ut−u0
h

)
⊗ (D−1

n Xt)
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= 1
n

n∑
t=1

Ktρ
′(εt)

(
1

Ut−u0
h

)
⊗ (D−1

n Xt)

+
[

1
n

n∑
t=1

Ktρ
′′(εt)r(Ut , Xt)

(
1

Ut−u0
h

)
⊗ (D−1

n Xt)

]
(1 + o(1))

=: Tn,1(u0) + Tn,2(u0)(1 + o(1))

Since r(Ut , Xt) = XT
t (β(Ut) − β(u0) − β ′(u0)(Ut − u0)) = h2

2 XT
t β ′′(u0)(

Ut−u0
h )2(1 + o(1)),

then

�−1
n Tn,2(u0) =

(
1 0
0 1

)
⊗ D−1

n

[
1
n

n∑
t=1

Ktρ
′′(εt)r(Ut , Xt)

(
1

Ut−u0
h

)
⊗ (D−1

n Xt)

]

= h2

2

[
1
n

n∑
t=1

Ktρ
′′(εt)

(
(Ut−u0

h )2

(Ut−u0
h )3

)
⊗ (D−1

n XT
t β ′′(u0)D−1

n Xt)

]
(1 + o(1))

= h2

2
δ1g(u0)

(
μ2
μ3

)
⊗ (S(u0)β

′′(u0))(1 + op(1)) (17)

where the last equation follows from the proof of Equation (15). Moreover, for Tn,1(u0) which
determines the asymptotic distribution, we have

√
nhTn.1(u0) =

√
h
n

n∑
t=1

Ktρ
′(εt)

(
1

Ut−u0
h

)
⊗ (D−1

n Xt)

=

⎛
⎜⎜⎝

√
h
n

n∑
t=1

Ktρ′(εt)D−1
n Xt√

h
n

n∑
t=1

Ktρ′(εt)
(

Ut−u0
h

)
D−1

n Xt

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
h
n

n∑
t=1

Ktρ′(εt)Xt,1√
h
n

n∑
t=1

Ktρ′(εt)Xt,2/
√

n√
h
n

n∑
t=1

Ktρ′(εt)
(

Ut−u0
h

)
Xt,1√

h
n

n∑
t=1

Ktρ′(εt)
(

Ut−u0
h

)
Xt,2/

√
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

d−→ MN(�(u0)) (18)

where �(u0) = E{ρ′(ε)2}g(u0)�(u0). The proof of the last expression concerning the mixed
normal limit results follows from the similar arguments for the proof of (A.22), (A.24) and
(A.25) in Cai, Li, and Park (2009). The details are omitted here. Therefore, as a consequence
of

√
nh�n

[
�̂(u0) − �(u0) − �−1

n Sn(u0)
−1Tn,2(u0)(1 + op(1))

]
= √

nhSn(u0)
−1Tn,1(u0)(1 + op(1))

Theorem 3.2 follows immediately.
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