
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lsta20

Communications in Statistics - Theory and Methods

ISSN: 0361-0926 (Print) 1532-415X (Online) Journal homepage: https://www.tandfonline.com/loi/lsta20

Variance stabilizing filters#

Oskar Gustafsson & Pär Stockhammar

To cite this article: Oskar Gustafsson & Pär Stockhammar (2019) Variance stabilizing
filters#, Communications in Statistics - Theory and Methods, 48:24, 6155-6168, DOI:
10.1080/03610926.2018.1528369

To link to this article:  https://doi.org/10.1080/03610926.2018.1528369

© 2018 The Author(s). Published with
license by Taylor & Francis Group, LLC

Published online: 14 Apr 2019.

Submit your article to this journal 

Article views: 893

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=lsta20
https://www.tandfonline.com/loi/lsta20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03610926.2018.1528369
https://doi.org/10.1080/03610926.2018.1528369
https://www.tandfonline.com/action/authorSubmission?journalCode=lsta20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lsta20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03610926.2018.1528369
https://www.tandfonline.com/doi/mlt/10.1080/03610926.2018.1528369
http://crossmark.crossref.org/dialog/?doi=10.1080/03610926.2018.1528369&domain=pdf&date_stamp=2019-04-14
http://crossmark.crossref.org/dialog/?doi=10.1080/03610926.2018.1528369&domain=pdf&date_stamp=2019-04-14


Variance stabilizing filters#

Oskar Gustafssona and P€ar Stockhammarb

aDepartment of Statistics, Stockholm University, Stockholm, Sweden; bDepartment of Statistics,
Stockholm University and National Institute of Economic Research (NIER), Stockholm, Sweden

ABSTRACT
In this paper new filters for removing unspecified form of heterosce-
dasticity are proposed. The filters build on the assumption that the
variance of a pre-whitened time series can be viewed as a latent sto-
chastic process by its own. This makes the filters flexible and useful
in many situations. A simulation study shows that removing hetero-
scedasticity before fitting a model leads to efficiency gains and bias
reductions when estimating the parameters of ARMA models. A real
data study shows that pre-filtering can increase the forecasting preci-
sion of quarterly US GDP growth.
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1. Introduction

Economic and financial variables often behave in a non-stationary way (Granger 1966).
They might suffer from seasonality, unit roots, non-linearity and heteroscedasticity that
must be dealt with before, or at the same time as estimating a model. The first difference
of the logarithm (diff log) of a de-seasonalized series is often used as a standard filter to
transform a non-stationary time series into a stationary one (Box and Jenkins 1976). Most
of the times this is enough for the series to pass unit root tests, but they might still be het-
eroscedastic – a feature that is frequently neglected among practitioners. This is somewhat
surprising since it is well known that ordinary least squares (OLS) estimates are inefficient
and no longer best linear unbiased estimators (BLUE) in the presence of heteroscedasticity.
This paper offers a way to address this issue by introducing new filters that easily and
effectively remove heteroscedasticity of unspecified form.
There are not many ways of removing heteroscedasticity mentioned in the literature.

One way is to use a Box-Cox transformation (Box and Cox 1964) which include the
logarithmic and square root transformations as special cases. However, the Box-Cox
transformations only work well when the functional form of the variance does not
change throughout the series, rarely a realistic assumption in practice. Stockhammar

and €Oller (2012) developed a way to remove unspecified form of heteroscedasticity by

CONTACT Oskar Gustafsson oskar.gustafsson@stat.su.se Statistiska Institutionen 106 91 Stockholm, Sweden.
#We are grateful to anonymous referees and to seminar participants at Stockholm University for valuable comments on
this paper.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lsta.
� 2018 Taylor & Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS
2019, VOL. 48, NO. 24, 6155–6168
https://doi.org/10.1080/03610926.2018.1528369

http://crossmark.crossref.org/dialog/?doi=&domain=pdf
http://www.tandfonline.com/lsta
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.tandfonline.com


estimating the standard deviations in a moving lag-window and using a similar idea as
in generalized least squares (GLS) to scale the series.
In this paper, new variance stabilizing filters are suggested that improve on the filter

suggested by Stockhammar and €Oller (2012) in a number of ways. In addition, the
properties of the new filters are investigated through both a real data exercise and a
simulation study. It is shown that the proposed filters remove different types of hetero-
scedasticity without changing the autocorrelation structure or other properties of the
series. The simulation study shows that stabilizing the series leads to more efficient esti-
mates of the ARMA parameters. The filtering approach proposed in this paper outper-
forms estimated GARCH models (Bollerslev 1986) when the variance follows three
different regimes and, interestingly, compare well even for simulated ARMA-GARCH
processes. Furthermore, it is shown that the filters does not color white noise and that
existing autocorrelation structures are preserved.
In a real data exercise the heteroscedastic and non-normal quarterly diff log US GDP

is filtered. After filtering the series is homoscedastic and closer to normal. Also, a
pseudo-out-of-sample forecast competition shows that forecast precision is elevated
using the filtering approach.
The coming section describes the methodological framework for the filtering and the

simulations. Section 3 contains a summary of the results and Section 4 concludes.

2. Methodology

In this section, the methodology is outlined. Specifically, the filtering approaches are
explained in detail, the biasedness of autoregressive parameter estimates is discussed
and the simulation models and the evaluation procedures are described.

2.1. The filters

2.1.1. The original filter

In the original filter suggested by Stockhammar and €Oller (2012) the idea is to divide the
time series by a smoothed moving standard deviation observed in the sample. The first
step is to make the series stationary by a suitable transformation, the standard deviations
are then calculated in a moving lag-window and are further smoothed using a HP-trend,
(Hodrick and Prescott 1997). The next step is to divide the mean-stationary and mean-
corrected series (ztÞ by the HP-trend to obtain a homoscedastic time series. Finally, the
time series is scaled back to have the same mean and variance as the original series.
The filter can be expressed in the following way:

~yt ¼ sy
zt

HP kð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXtþ�

s¼t��

z2s=2�

s8<
:

9=
;

2
664

3
775
þ y;

(1)

where ~yt is the filtered series, y and sy are the mean and standard deviation of the series
to be filtered respectively. 2�þ 1 denotes the length of the lag-window and HP(k)

denotes the Hodrick and Prescott filter where k controls the degree of smoothing. The
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suggested value for quarterly data k¼ 1600 is used in this study. The filter offers a fast
and simple way to remove heteroscedasticity of unspecified form. However, because of
the smoothed standard deviations, the heteroscedasticity filtering is not efficient in pres-
ence of rapidly changing volatility.

2.1.2. Modifications of the original filter

The modified filters suggested in this subsection all use (in contrast to the original fil-
ter) pre-whitening before the smoothed standard deviations are calculated. The reason
is that even a mean-stationary process which deviates from zero will only slowly return
to steady-state generating a cluster where the squared deviations from zero are high. If
no pre-whitening of the series is conducted in beforehand these deviations will be inter-
preted as an increased variance by the filters. This implies that the variance is scaled in
a time window where it actually behaves homoscedastic. On the other hand, if the
model is pre-whitened before, the effect from the autocorrelation is accounted for and
what is left as increased variance in the pre-whitened series would be isolated to the
underlying heteroscedasticity.
Another potential issue with the original approach is the use of the often criticized

(see e.g. Hamilton (2017)) HP-filter where the user subjectively chooses a level for the
degree of smoothing, k. A more flexible way is to estimate the degree of smoothing
automatically from a time series xt using the Kalman filter. For this purpose, the local
linear trend model (LLTM) is used (see e.g. Durbin and Koopman (2012)).
The LLTM has the following state-space representation:

xt ¼ at þ �t; �t � N 0; r2�
� �

(2)

atþ1 ¼ at þ bt þ gt; gt � N 0; r2g
� �

(3)

btþ1 ¼ bt þ nt; nt�N 0; r2n
� �

(4)

where the error terms, �t; gt and nt are independent white noise processes. at and bt
denote the “local level” and the “local linear trend” respectively and xt is the observed
time series. Ledolter (2008) shows in a simulation study that this type of smoothing
works well compared to for example local polynomial regressions where a moving lag
window is used. To achieve a smooth trend it is possible to restrict the variance of the
second equation to zero, which is sometimes referred to as “the smooth trend model”
(STM). The same effect can be achieved by replacing Equations (3) and (4) by
D2atþ1 ¼ gt () atþ1 ¼ 2at � at�1 þ gt; in this case we have an integrated random
walk (IRW) which together with the extension Dratþ1 ¼ gt; r > 2 has been recom-
mended for modeling trends in state space models (see Durbin and Koopman (2012)
and Young et al. (1991)). When the smoothing parameter of the HP-filter k¼ r2g=r

2
� , it

is equivalent to the IRW. For completeness, both the case with r2g¼0 and the unre-

stricted case will be investigated in the coming analysis.
In addition to the original filter of Stockhammar and €Oller (2012), we consider three

modified heteroscedasticity filters which all build on the pre-whitened, mean-corrected
and possibly heteroscedastic series, zt , which absolute value we denote by xt.
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� “HP variance filter” uses the HP-filter on xt to estimate the standard deviation.
� “LLTM variance filter” uses the LLTM on xt to estimate the standard deviation.
� “STM variance filter” uses the STM on xt to estimate the standard deviation.

All filters are likely to produce a good degree of smoothing if the volatility smoothly
evolves over time. However, if there are jumps or more rapid changes in the variance
process, then the LLTM is expected to adjust faster than the others since it does not
force smoothness on the states to the same extent.
The filtered version of the original series is obtained by dividing the mean-corrected series

by the moving standard deviation. The series is then scaled back to have the same overall

variance and mean as yt . We define y�t ¼ yt�y
r̂e
t
, where r̂e

t is the low-frequency evolution of the

standard deviation estimated by inserting xt into (2)–(4). The filtered series is then given by:

~yt ¼ sy
y�t�y�

s�

� �
þ y (5)

where y and sy are the sample mean and standard deviation of yt respectively, and y�

and s� denote the mean and standard deviation of y�t . If we want to recover the original
series we may reverse the filter according to:

yt ¼ r̂e
t
s�
sy

~yt�yð Þ þ y�
� �

þ y (6)

where we already have the information needed to go back from (5). The same approach can be
used to transfer back fitted values with confidence intervals (as is later shown in the real data
exercise). In the case of forecasting and forecast intervals, we can proceed in a similar way. The
only difference is that we do not have access to r̂e

tþh, i.e. future values of the low-frequency
volatility, but it might be approximated by simply rolling the Kalman filter forward.

2.2. Biasedness of OLS

It is known that the OLS and ML estimates of AR-coefficients are consistent but biased
(e.g. Hamilton 1994). When conditioning an AR(1)-process on the whole realization of
the series, the bias of the estimator is given by:

E /̂jy1; y2; :::; yn
h i

� / ¼
Xn
t¼2

E
yt�1Pn

t¼2
y2t�1

�tjy1; y2; :::; yn
2
4

3
5 (7)

where / is the AR(1) parameter and �t is the error term. The bias of the estimator (7)
is non-zero. We may note that E½yt�1�tjy1; y2; :::; yn� ¼ 0, but the errors are not uncorre-
lated with the sum in the denominator. Intuitively this can be seen since a high absolute
value of the error term today increases the value of y2 in future periods, thus the bias
will be negative for /> 0 and positive for /< 0. This means that the OLS (as well as
the conditional likelihood) estimates will be drawn toward zero, but that the bias
decrease with the sample size. See e.g. Rai et al. (1995) for a discussion and a simulation
study of the bias in small samples. Later, in the results, we will see that filtering has a
dampening effect on the attenuation bias in the presence of heteroscedasticity.
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2.3. The simulated processes

In this section, 10 000 realizations are simulated from four different processes to evaluate
the influence of the above filtering procedures. All of the series are chosen to be of length
200, the approximate length of many quarterly macroeconomic time series. For the
ARMA model, two different sample sizes are investigated. The first two series are simula-
tions from homoscedastic white noise- and ARMA processes in order to see that the fil-
ters do not change structures intended to be preserved. In addition, two heteroscedastic
processes are simulated to see whether the filters can achieve homoscedasticity.
In the first heteroscedastic process, the error term follows the frequently used

GARCH structure (Bollerslev 1986) and in the second the variance evolves according to
three different volatility periods. In both cases, the mean-process will be ARMA(1,1)
with arbitrarily chosen parameters, /¼ 0.7 and h¼ 0.5.1

That is, we simulate from the ARMA-GARCH process given by:

yt ¼ 0:7yt�1 þ at þ 0:5at�1; at ¼ rt�t; r2t ¼ 1þ 0:12at�1 þ 0:82r2t�1 (8)

which clearly satisfies the conditions for the variance to be positive and finite, see e.g.
Tsay (2010).
In the second heteroscedastic process (“the switching variance model”) the volatility

changes according to pre-specified regimes:

yt ¼ 0:7yt�1 þ at þ 0:5at�1; at � N 0; r2t
� �

;

r2t ¼ 4� I 0;40ð � tð Þ þ 1� I 41;140½ � tð Þ þ 16� I 141;200½ � tð Þ (9)

where I denotes an indicator variable which divides the series into three arbitrary
chosen volatility periods of different length. It can be seen as a threshold model with
three distinct regimes and with time as the regime-controlling variable.

2.4. Evaluation procedure

One of the most important parts of filtering is that it does what it is intended to do
without changing other properties of the time series. This is investigated in two ways;
first, the filters are tested on simulated white noise to see whether the first four moments
remain unchanged. This is done by calculating the means and (empirical) standard devi-
ations for the simulated moments. The series are also tested for non-normality using the
Jarque-Bera test (Jarque and Bera 1980) and for autocorrelation using the Ljung-Box test
(Ljung and Box 1978) to make sure that no spurious autocorrelations are imposed.
This is complemented using the probability integral transform (PIT), see e.g. Diebold

et al. (1998), which is defined as:

vt ¼
Ð yt
�1 pt uð Þdu (10)

where yt are realizations of a time series and ptðuÞ is the assumed density. If ptðuÞ is
the true density we have vt � Uð0; 1Þ, so deviations from the uniform distribution

1Similar results are obtained with other parameter values.
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indicate model misspecification. For the PIT exercises, only one simulated time series of
length 10 000 is used.
The outlined tests will be made on the simulated series as well as when the series are

run through each of the filters. It is also investigated whether it preserves existing auto-
correlations structures in simulated (homoscedastic) ARMA-processes.
After investigations on homoscedastic data, we study whether the filters offer

improvements compared to unfiltered ARMA- and the less parsimonious ARMA-
GARCH models on heteroscedastic data. The focus is on the efficiency for estimating
the ARMA parameters and whether there is remaining heteroscedasticity in the model
residuals. We make use of the ARCH-LM test (Engle 1982) to test for constancy of the
residual variance and an F-test for checking whether the variance is stable in sub-peri-
ods of the series (see e.g. Durbin and Koopman (2012), p. 39). Also the probability inte-
gral transform is used to graphically see how well the residuals fit a normal
distribution.
When evaluating the filter on the log diff US GDP the above tests are complemented

with the Ljung-Box test on the squared residuals when testing for heteroscedasticity.
The normality tests are complemented with the (Royston 1982) extension of the
Shapiro-Wilk test (Shapiro and Wilk 1965) and the Kolmogorov-Smirnov test
(Smirnov 1948).

3. Results

This section summarizes the results from the simulation studies and the forecasting
competitions of the heteroscedastic US GDP.

3.1. Simulation studies

3.1.1. White noise

Table 1 shows how the filters affect the properties of white noise in terms of the first
four moments, the Jarque-Bera test for normality and the Ljung-Box test for autocorrel-
ation. It is of highest importance that the filters do not impose false autocorrelation
structures and/or cause other spurious patterns in the time series.

Table 1. Summary of simulation results for white noise processes.

Type White Noise S&€O HP LLTM STM

Mean 0.000 (0.071) 0.000 (0.071) 0.000 (0.071) 0.000 (0.071) 0.000 (0.071)
Variance 0.999 (0.100) 0.999 (0.100) 0.999 (0.100) 0.999 (0.100) 0.999 (0.100)
Skewness 0.003 (0.170) 0.001 (0.136) 0.001 (0.156) 0.001 (0.167) 0.001 (0.168)
Kurtosis 2.942 (0.330) 2.655 (0.230) 2.776 (0.296) 2.904 (0.329) 2.923 (0.330)
Jarque-Bera 465 101 219 394 422
Ljung-Box, 1 lags 534 424 649 553 548
Ljung-Box, 6 lags 529 343 475 500 517
Ljung-Box, 12 lags 606 380 513 580 582
Ljung-Box, 24 lags 675 554 656 644 643

Note: The HP-filter is used with k¼ 1600 to smooth the absolute value of the pre-whitened series, while LLTM uses the
local linear trend model and STM the smooth trend model. S&€O corresponds to the filter of Stockhammar and €Oller
(2012). The top part of the table presents the means of the empirical moments with standard deviations in parenthe-
ses and the bottom part shows the number of rejections at the 5%-level out of the 10 000 draws.
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There is no major distortion of the true white noise process and the first two
moments are identical for all filters by construction. The filtered series remain symmet-

ric, however, the kurtosis is somewhat distorted for both the Stockhammar and €Oller
filter and the HP variance filter (but it is still within two standard deviations from 3).
The lower part of Table 1 shows that normality is rejected less often for the filtered

series. The distortion of the normality tests is again worst for the Stockhammar and
€Oller- and the HP variance filters even though there is a tendency for all filters to make
the data more normal. This could be due to that the filters fade out outliers since these
are interpreted as increased variance. The distortion of normality is, however, hard to
detect from the PITs in Figure A1 in Appendix A.
When it comes to the autocorrelation tests the rejection rates look similar to those of

the true processes for all but the filter of Stockhammar and €Oller. This means that the
newly proposed filters do not impose false autocorrelation structures.

3.1.2. ARMA processes

Table 2 shows a summary of the simulation study where 10 000 ARMA processes were
simulated for two different time series lengths. Each of these series were filtered and the
parameters were estimated using an ARMA model.
Contrary to the Stockhammar and €Oller filter, the modified filters seem to preserve

the underlying autocorrelation structure. In addition, the LLTM- and the STM filters
have equally low standard errors as the true unfiltered ARMA for the sample size of
200. For the sample size of 80, there are only slight differences. The PITs look close to
identical to those in the white noise case and are therefore not included (but are avail-
able from the authors upon request).

3.1.3. ARMA-GARCH processes

Table 3 shows the results from 10000 simulated series from the ARMA-GARCH(1,1)(1)
model, see Equation (8).
As judged by the ARCH-LM tests it appears that when the time series follow a

GARCH process the filters are not able to fully clean out the heteroscedasticity. A
plausible reason for this is that the volatility is switching too rapidly such that the
smoothing filters do not react fast enough. However, the LLTM filter does a decent job
and the null hypothesis of homoscedasticity is typically rejected in less than 10% of the
simulations. Looking at the F-tests for constancy of the variance over sub-periods we
can see that the three modified filters effectively remove this type of heteroscedasticity.
This is not the case for the other approaches, not even for the GARCH model which
generated the data.
Looking at the parameter estimates we can see that, compared to the standard

ARMA model, the filters reduce the bias of the AR-coefficient in all cases except for the

filter of Stockhammar and €Oller. The moving average estimates are close to the true in
all cases. In addition, all specifications except for the original filter produce smaller
standard errors for the parameters compared to the unfiltered series.
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Figure A1 in Appendix A shows that the residuals of the true model, the

Stockhammar and €Oller- and the STM filter are close to normally distributed whereas
the errors from the unfiltered approach are leptokurtic. The residuals from the HP- and
LLTM filters seem to be slightly platykurtic.

3.1.4. Switching variance model

In Table 4 the simulated processes are created with three different variance regimes. In
the first regime (observations 1–40), r¼ 2, in the second regime (41–140) r¼ 1 and in
the third regime (141–200) r¼ 4, see Equation (9).
It is clear that also under this form of heteroscedasticity the modified filtering approaches

offers both bias reductions and efficiency gains compared to regular ARMA models. The fil-
tered models also yield lower standard deviations of the empirical distribution (and smaller
bias) than the GARCH model, which in turn is still to prefer compared to the ARMA.2

The LLTM filter succeeds best in eliminating ARCH effects while the HP variance fil-
ter most efficiently even out the variance according to the F-test. The original filter
does not perform particularly well and the GARCH model works fairly well for ARCH
effects but not according to the F-test.

3.1.5. Bias reduction

According to the simulations, the filtering appears to give less biased estimates for the
AR-parameters than the non-filtered approach for heteroscedastic data. This phenom-
enon is further investigated in this section. In Section 2 it was shown that the estimates

Table 2. Summary of simulation results for ARMA processes.

Type Unfiltered S&€O HP LLTM STM

n ¼200 /¼ 0.7 Mean 0.692 (0.058) 0.631 (0.066) 0.693 (0.060) 0.692 (0.058) 0.692 (0.058)
h¼ 0.5 Mean 0.505 (0.071) 0.500 (0.080) 0.505 (0.073) 0.505 (0.071) 0.505 (0.071)

n¼ 80 /¼ 0.7 Mean 0.681 (0.095) 0.630 (0.108) 0.681 (0.098) 0.681 (0.097) 0.681 (0.096)
h¼ 0.5 Mean 0.514 (0.121) 0.509 (0.135) 0.512 (0.125) 0.514 (0.123) 0.513 (0.122)

Note: Estimates of the means and empirical std. deviations (in parentheses) of the ARMA parameters. The HP-filter is
used with k¼ 1600 to smooth the absolute value of the pre-whitened series, while LLTM uses the local linear trend
model and STM the smooth trend model. S&€O corresponds to the filter of Stockhammar and €Oller (2012).

Table 3. Summary of simulation results for ARMA-GARCH processes.

Model/Parameter Unfiltered S&€O HP LLTM STM GARCH(1,1)

/1¼ 0.7 0.689 (0.066) 0.629 (0.069) 0.694 (0.062) 0.695 (0.062) 0.692 (0.063) 0.695 (0.061)
h1¼ 0.5 0.505 (0.082) 0.504 (0.078) 0.503 (0.077) 0.506 (0.077) 0.506 (0.077) 0.501 (0.076)
ARCH-LM, p¼ 1 3813 1839 677 664 1205 71
ARCH-LM, p¼ 3 5266 2165 894 703 1460 286
ARCH-LM, p¼ 6 5559 2166 1424 777 1425 364
ARCH-LM, p¼ 12 5255 2091 2345 837 1212 430
ARCH-LM, p¼ 24 4517 1866 3063 1009 1064 512
F-test 6300 4552 53 161 455 3595

Note: Estimates of the means and empirical std. deviations (in parentheses) of the ARMA parameters. The HP-filter is
used with k¼ 1600 to smooth the absolute value of the pre-whitened series, while LLTM uses the local linear trend
model and STM the smooth trend model. S&€O corresponds to the filter of Stockhammar and €Oller (2012). Bottom
part contains the number of rejections out of the 10 000 draws for the respective test where p denotes the lag
length of the ARCH-LM test.

2The PITs (available from the authors upon request) look similar to those of the ARMA-GARCH.
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of autoregressive components are biased toward zero. The size of the bias is determined
by the correlation between the error term and the sum of squares, which violates the
least squares assumption of strict exogeneity.
The switching volatility model from (9) will be used to evaluate the effect of filtering

on the estimation bias. 10 000 time series are simulated for a grid of sample sizes rang-
ing from 25 to 500. For each sample size, the empirical means and standard deviations
of the estimated AR coefficients are calculated for the unfiltered series and the ones fil-
tered using the LLTM. The results are illustrated in Figure 1.
It is clear that the LLTM approach (represented by the blue dashed line) is both less

biased and has smaller standard errors than the unfiltered (solid black line). This is true
for all sample sizes investigated even though the numerical differences get smaller as
the sample size increases.

3.2. A real data study

In this section, the filtering approach is applied to the heteroscedastic quarterly diff log
US GDP series 1947Q2-2017Q1. No matter which filtering method used, the heterosce-
dasticity is removed after the filtering, see Table B1 in Appendix B. It is investigated
how the filtering affect the statistical properties as well as the forecast accuracy when
modeling the series.

Table 4. Summary of simulation results for switching variance processes.

Model/Parameter Unfiltered S&€O HP LLTM STM GARCH(1,1)

/1¼ 0.7 0.683 (0.084) 0.636 (0.071) 0.698 (0.066) 0.699 (0.066) 0.696 (0.067) 0.693 (0.071)
h1¼ 0.5 0.496 (0.106) 0.482 (0.086) 0.487 (0.079) 0.491 (0.078) 0.485 (0.081) 0.489 (0.090)
ARCH-LM, p¼ 1 6984 1665 515 544 921 714
ARCH-LM, p¼ 3 8928 1808 586 578 1010 890
ARCH-LM, p¼ 6 9420 1783 781 607 953 871
ARCH-LM, p¼ 12 9591 1644 1168 606 759 793
ARCH-LM, p¼ 24 9618 1489 1594 629 587 637
F-test 10000 4645 868 1575 2851 9971

Note: Estimates of the means and empirical std. deviations (in parentheses) of the ARMA parameters from the switching
variance model. The HP-filter is used with k¼ 1600 to smooth the absolute value of the pre-whitened series, while
LLTM uses the local linear trend model and STM the smooth trend model. S&€O corresponds to the filter of
Stockhammar and €Oller (2012). The bottom part of the table contains the number of rejections out of the 10 000 sim-
ulations for each test where p denotes the lag length of the ARCH-LM test.

Figure 1. Average point estimates (left panel) and empirical standard deviations (right panel) for / in
the 10 000 draws. The dashed blue lines show the results from the LLTM filtered series and the solid
black lines from the unfiltered ARMA.
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A benefit of being able to recover the original scale from the filtered series is illustrated
by calculating 95% confidence intervals for the filtered series and transfer them back to the
original scale. Figure 2 shows how the properties of the intervals are improved.
The filtering approach lets the width of the confidence bands to vary over time which

improves the coverage rates in both the first and second half of the sample. In this example
with an intended coverage rate of 95%, the unfiltered approach yields a coverage of 93%
for the full sample while the filtered approach yields a 95% coverage. If the full sample is
divided into two halves the regular approach yields 87% and 99% coverage respectively for
the first and second half, while the filtering approach generates a 95% and 96% coverage.
For the data study, we first fit the best ARIMA model which is identified by minimizing

the AIC and BIC while the conditions that we have no unit root and no remaining autocor-
relation in the residuals hold. This approach showed that the best fit was accomplished by
an AR(1) for the unfiltered series and an ARMA(2,1) model for both the STM- and LLTM
variance filters. The best GARCH model was GARCH(1,1) with an ARMA(1,1) part.
Table B1 in Appendix B shows that the filters remove the heteroscedasticity of the

diff log US GDP series and brings the residuals closer to normality.
To further assess the usefulness of the filters a forecast competition was conducted between

the unfiltered-, STM, LLTM, and ARMA-GARCH approach. The comparison was con-
structed such that the data was divided into a training period (first half of the sample) and an
evaluation period (second half). For the training period, the best ARMA model was identified
in the same way as for the full sample above. When the best model was identified (which
turned out to be ARMA(2,1) for the mean equation for all models) recursive pseudo out of
sample forecasts where calculated in three different settings. First, an expanding estimation
window was used such that one observation at a time was added after each forecast during
the evaluation period. In the second and third setting, rolling windows of size 50 and 100
observations were used to estimate the models. Each time the window rolled forward new
forecasts and root mean squared forecast errors (RMSFE) for 1-12 quarter ahead were calcu-
lated. The RMSFEs relative to those of a random walk benchmark are shown in Table 5.
According to the Diebold and Mariano (1995) test, all models perform significantly bet-

ter (in both statistical and practical sense) on most forecast horizons than the naive fore-
cast. For small samples (n¼ 50) the modeling of the variance stabilized series, and
especially those from the STM, yield smaller RMSFEs than the unfiltered ARMA at all fore-
cast horizons and in some cases significantly better. When the sample size becomes larger

Figure 2. Diff log US GDP (red solid), fitted values of ARMA(2,1) (black solid) and 95% confidence
intervals (blue dashed). Unfiltered series (left panel) and LLTM-filtered series (right panel).
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the advantage of the filtering somewhat declines although both STM and LLTM still pro-
duce smaller RMSFEs at most horizons using a rolling window with 100 observations.

4. Conclusion/discussion

This paper suggests a new way of removing unspecified form of heteroscedasticity from
time series. A simulation study shows that the local linear trend- and smooth trend fil-
ters reduce or completely remove heteroscedasticity which yields more efficiently esti-
mated parameters. It is also found that the well-known bias in the autoregressive
coefficients is reduced by first filtering the time series. The filtering approach compares
well with an ARMA-GARCH in terms of both efficiency and for removing heterosce-
dasticity from the model residuals.
In a real data exercise, we find that if the diff log US GDP series, which is signifi-

cantly heteroscedastic and non-normal, is filtered it turns homoscedastic and gets closer
to normality. In addition, in small samples, the pseudo out of sample forecast precision
of the US GDP growth is typically significantly improved using the filtering approach.
In this paper, the effects of removing heteroscedasticity has only been investigated for

univariate specifications. This does not imply that pre-filtering cannot be useful before
multivariate modeling and co-movement studies. In multivariate modeling the dimen-
sionality quickly becomes a problem and a parsimonious model is even more important
than in the univariate case. If the series can be stabilized and normalized before joint
modeling with other series, complex volatility models are not needed to the same extent.
Since the model residuals can be made normal and homoscedastic, relationships
between e.g. economic variables and evaluation of theories can be done more credible if

Table 5. RMSFEs of the real data forecasting comparison.

Model/Horizon STM LLTM Unfiltered GARCH(1,1)

n¼ 50
H¼ 1 0.846�� 0.858� 0.918 0.890
H¼ 2 0.872�� 0.878� 0.975 0.892
H¼ 4 0.806�� 0.810� 0.885 0.814
H¼ 6 0.758� 0.765 0.821 0.776
H¼ 8 0.741 0.746 0.785 0.759
H¼ 12 0.746� 0.746� 0.802 0.761
n¼ 100
H¼ 1 0.837 0.834 0.840 0.863
H¼ 2 0.834 0.839 0.839 0.826
H¼ 4 0.766 0.768 0.774 0.749�
H¼ 6 0.735 0.736 0.745 0.730
H¼ 8 0.723 0.721 0.722 0.727
H¼ 12 0.726 0.726 0.732 0.734
Expanding
H¼ 1 0.840� 0.838 0.837 0.840
H¼ 2 0.838 0.837 0.833 0.843
H¼ 4 0.773 0.771 0.768 0.771
H¼ 6 0.743 0.741 0.740 0.740
H¼ 8 0.732 0.730 0.730 0.729
H¼ 12 0.730 0.730� 0.726 0.730�
Note: The table shows RMSFEs relative to those of a random walk. Bold numbers indicate the lowest RMSFE in each
row, underlined numbers show that the RMSFE is not significantly different from that of a random walk according to
the Diebold-Mariano test.�,��,���denote significantly different RMSFEs compared to the unfiltered ARMA on the 10, 5 and 1% significance levels
respectively of the Diebold-Mariano test.
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the filters suggested in this paper are used. The filtering techniques proposed in this
paper may thus be used as a standard tool for analysts, practitioners, policy makers etc.
no matter the application and the properties of the time series data.
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Appendix B. List of tables

Table B1. P-values of diagnostics tests.

Model/Horizon Unfiltered LLTM STM GARCH(1,1)

LB (1 lag) 0.564 0.961 0.978 0.542
LB (2 lag) 0.133 0.998 0.999 0.421
LB (4 lag) 0.321 0.990 0.994 0.656
LB (6 lag) 0.221 0.931 0.888 0.531
LB (8 lag) 0.364 0.959 0.922 0.698
LB (12 lag) 0.192 0.569 0.504 0.385
LB (24 lag) 0.181 0.480 0.615 0.256
ARCH-LM (1 lag) 0.030 0.210 0.050 0.778
ARCH-LM (2 lag) 0.005 0.448 0.104 0.949
ARCH-LM (4 lag) 0.005 0.770 0.228 0.733
ARCH-LM (6 lag) 0.022 0.633 0.351 0.556
ARCH-LM (8 lag) 0.033 0.760 0.426 0.501
ARCH-LM (12 lag) 0.002 0.931 0.500 0.789
ARCH-LM (24 lag) 0.023 0.407 0.287 0.772
LB-squared (1 lag) 0.030 0.208 0.048 0.778
LB-squared (2 lag) 0.003 0.423 0.081 0.949
LB-squared (4 lag) 0.001 0.750 0.136 0.731
LB-squared (6 lag) 0.004 0.576 0.255 0.539
LB-squared (8 lag) 0.005 0.680 0.356 0.493
LB-squared (12 lag) 0.001 0.835 0.388 0.578
LB-squared (24 lag) 0.007 0.577 0.518 0.770
F-test 0.000 0.999 0.479 0.000
Jarque-Bera 0.000 0.005 0.000 0.000
Shapiro-Wilks 0.000 0.117 0.000 0.005
Kolmogorov-Smirnov 0.006 0.176 0.050 0.810

Note: Numbers are p-values according to respective test in the real data study. The top part of the table shows
Ljung-Box tests for whiteness of the residuals, the middle parts shows ARCH-LM and Ljung-Box tests on the squared
residuals together with an F-test for equal variances. The bottom part contains tests for normality. Bold fonts indicate
statistical significance on the 5% level.
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