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ABSTRACT
Small area estimation techniques have got a lot of attention during
the last decades due to their important applications in survey stud-
ies. Mixed linear models and reduced rank regression analysis are
jointly used when considering small area estimation. Estimates of
parameters are presented as well as prediction of random effects
and unobserved area measurements.
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1. Introduction

Small area estimation is an active research area in statistics with many applications. Today
there exist several approaches to deal with small area problems. For recent contributions to
the topic when considering discrete data (e.g. see Chandra et al. 2018), and for continuous
data (see Baldermann 2018). In both articles many works of other authors are presented
and discussed. For those who want to get a solid introduction to the subject the book (Rao
and Molina 2015) can be recommended. Usually a common basis for small area estimation
problems is that a survey study (finite population case) has been conducted and based on
the survey one intends to extract information concerning small domains by adding specific
local information which was not accounted for in the comprehensive survey.
In this article a case is considered where units of a survey sample are investigated several

times, leading to the existence of dependent observations. It is assumed that observed
background information exist which then is implemented via a linear model, giving a
model which includes variance components. Moreover, it is assumed that latent processes
exist which often show up when different types of systems are studied, for example when
weather impact is studied. In this case often a huge number of variables are studied but we
do not know the effects of the individual variables, for example we cannot directly relate
temperature to plant growth. This leads us to exploit reduced rank regression models.
Thus, the model which will be discussed in this article will include time dependent fix
effects, i.e. structured mean responses, random parameters and rank restrictions on
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parameters, which to our knowledge is a new type of model. In Section 2 more motivating
details are given, including basic references, and in Section 3 the assumptions are summar-
ized together with all technical details. Briefly, in Section 4 the estimation of all unknown
parameters is considered and finally two prediction results are presented in Section 5.

2. Background

In this section, via an example, we will introduce our way of thinking about extracting
information from a survey sample. In particular, a number of different sources of
uncertainty are presented which then will be included in a statistical model. It turns out
that the model will comprise three different types of uncertainty. Section 3 includes all
details of the model and in the subsequent section likelihood-based estimators are
derived. In the last section these estimators are utelized when finding predictors.

Example 2.1. Let there be a national survey which collects data about some specific
production from a certain type of companies. The survey is followed-up once per year
and it is repeated, say, five years.
Altogether there exist 20 regions and each region consists of 10 subregions. The sur-

vey sample (units) consists of four companies from each subregion. Thus, in the survey,
in total 800 companies are followed five years. With the models presented in this article
the aim is to obtain information about the companies in the subregions. Note that in
reality the companies should be classified into strata and then at least one company
should be sampled from each stratum and each subregion. To simplify the presentation
we will only have one stratum. However, in each subregion we assume that there is a
lot of background information which we would like to take into account when predict-
ing production in subregions or predicting production of unobserved units.
Small area models, also called small domain models, can be classified into two catego-

ries. One category is the area-level models category (Fay and Herriot 1979) and the
other category is the unit-level models category (Battese et al. 1988). Both model catego-
ries are discussed in detail in a well-written book (Rao and Molina 2015). In this article
we are thinking of area levels but if unit-level information would be available the pro-
posed model can also be used.

Example 2.1 indicates the following use of notation. Let

ĥij; i ¼ 1; ; :::;m; j ¼ 1; 2; :::; ni; n ¼
Xm
i¼1

ni

be the direct estimates from the survey for the jth subarea within the ith area. The esti-
mates are based on the survey design where units have been sampled on the subarea
level. Note that we will not discuss the underlying survey in this article, only use the
outcome of the survey, i.e. the direct estimators of the subareas.
Statistics is partly about quantifying uncertainty. Often this is carried out by assuming

that an estimate is a representation of an estimator which follows some distribution.
However, we also have cases where uncertainty is not described via distributions.
Examples are rounding errors, specific types of truncations, identification of influential
observations, outlier detection, model comparisons, the number of observations in a
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sample, etc. One choice of distribution for the estimator ĥij would be the one generated by
the survey design, i.e. how many and under what model the units have been sampled
would determine the distribution. However, for our purposes we have difficulties to work
with the probability space generated by the survey design. Instead, we now think of the

direct estimates ĥij being misspecified quantities since the survey sample distribution does

not take into account those covariables we are going to use in the adjustment of ĥij: The
covariables can be used to correct for bias as well as diminish the uncertainty in the esti-
mate. For example, returning to our example, if the survey design does not take into
account the size of companies small companies can be overrepresented in the sample and
then hij is wrongly estimated.
In order to derive an applicable model lets start with

yij ¼ hij þ �ij (2.1)

where for notational convenience ĥij has been replaced by yij. The joint distribution for
f�ijg is specified via

��Nn 0;Vð Þ (2.2)

where � ¼ ð�11; :::; �1;n1 ; :::; �m;nmÞ is a row vector, V is supposed to be known and deter-
mined by the survey design. Often V is solely a function of the number of sampled
units. Moreover, � is defined on another probability space than the one generated by
the survey design. However, the uncertainty in the direct estimates, due to the survey, is
incorporated in the dispersion of �:
Furthermore, one basic assumption in this article is that some of the hij will be the

same, i.e. the survey estimators are the same for clusters of subregions. To make such
an assumption is often realistic but has to be checked in practise. Under this assump-
tion, instead of (2.1), the model can be written in matrix notation

y ¼ b0C þ � (2.3)

where y ¼ ðy11; :::; y1;n1 ; :::; ym;nmÞ; ðh11; :::; h1;n1 ; :::; hm;nmÞ ¼ b0C; and b : k� 1 consists
of unknown parameters and C: k� n is a usual design matrix describing the relations
among the elements fhijg: Usually C consists of blocks of one-vectors but in principle it
can be arbitrary as long as it fits together with the covariate structures which will be
presented later. For example, with three areas and four subareas in each area C equals

C ¼
1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1

0
@

1
A

The error in Equation (2.3) is defined by Equation (2.2). The model means that a

probability space is only connected to the modeling of fĥijg; i.e. the set of estimated hij,
but we include in the model extra variation due to the survey design.
In the introductory example it was stated that the survey was repeated five times.

When survey studies are repeated it will for this article be assumed that when there
exists a linear trend it is of the same form for all subareas. In this case there will be a
matrix Y where each row in the matrix follows Equation (2.3), besides an unknown sca-
lar multiplier. Thus, Equation (2.3) implies
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Y ¼ ABCþ E (2.4)

where A is a design matrix which models p repeated surveys (within subarea design
matrix), B is a matrix of unknown parameters and E�Np;nð0;R;VÞ; i.e. E is matrix nor-
mally distributed with a separable dispersion structure D½E� ¼ D½vecE� ¼ V � R; where
� stands for the Kronecker product and R is an unknown positive definite matrix. The
parameter R is used to model the dependency due to the repeated measurement which
exist because the observed units of the design have been repeatedly measured. No par-
ticular structure in R is assumed since it would only make sense if we would have pre-
cise knowledge about the mean structure, which is not the case in this article. For
example, it does not make sense to assume an autocorrelated structure if the mean has
not been established. The model in Equation (2.4) is often called Growth Curve model,
GMANOVA and recently bilinear regression model (see von Rosen 2018, for basic
results and references).
As an example of A we can have

A ¼

1 t1 t21
1 t2 t22
1 t3 t23
1 t4 t24
1 t5 t25

0
BBBBB@

1
CCCCCA

meaning that there is a second order trend which is observed over five years.
When expressing hij as a linear function of an unknown parameter vector b; as it was

done in Equation (2.3), we usually cannot say that the model is completely true for all
subareas. Instead we believe that there is some random variation around a true imagin-
ary model, i.e. we introduce a variance component. Thus, instead of Equation (2.4), the
following model is set up:

Y ¼ ABCþ UZþ E (2.5)

where U�Np;lð0;Ru; IlÞ is independent of E and Z is related to C because, in the model,
usually via C, the observations are linked to the subareas and Z helps to describe the
random variation (errors) in the subareas. Therefore, formally, CðZ0Þ � CðC0Þ; where
Cð�Þ denotes the column vector space. Additionally we will standardize these random
effects by assuming ZV�1Z0 ¼ Il; meaning that it has been adjusted for a different num-
ber of subareas within an area, taking into an account the uncertainty in the survey esti-
mates. This has two important implications. One is that it simplifies the mathematical
treatment of the model and the second is that it becomes easier to compare predicted
random effects.
Now observed covariables will be introduced in the model. There exist different types

of covariables but we are not going to distinguish between different types. For example
one type of covariables are those which are accounted for in the survey design (e.g. var-
iables defining different strata) and another type can be covariables observed in regis-
tries and a third type can be baseline data which were available when a survey study
with repeated measurements on units was initiated. The effect of the covariate will be
modeled by a term B1C1 where B1 stands for the unknown effect and C1 collects the
observed covariables leading to the model
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Y ¼ ABCþ B1C1 þ UZþ E (2.6)

Moreover, suppose that there are a number of latent variables. It can be large clusters
of variables, e.g. weather variables, socio-econometric variables, chemical characteristics
of soil and water, etc. A typical phenomena of these clusters are that one knows that
there should be an effect on the survey estimates but it is difficult to express this via
some functional relationship. Instead we will model the relationship via rank restrictions
on parameter matrices and will consider the following model:

Y ¼ ABCþ B1C1 þWF þ UZþ E (2.7)

where F: t� n is known and W is unknown of rank rðWÞ ¼ r 	 minðp; tÞ: The idea is
that all clustered variables appear in F and these variables are governed by r unobserved
latent variables (processes) which are incorporated in the model via the rank restrictions
on W: It is important to note that p has to be larger than r meaning that modeling the
number of underlying latent variables depends on how many times the survey has been
repeated. Thus, we really see an advantage of performing repeated surveys when latent
variables are supposed to exist, which indeed we believe is a common phenomena.

3. Detailed model specification

Let Y consist of the direct estimates of the subareas where each column corresponds to
a subarea including p estimators from the p repeated measurements. When performing
likelihood inference the direct estimates are used but in the presentation we will not
distinguish between estimators and estimates.

Definition 3.1. Let

Y ¼ ABCþ B1C1 þWF þ UZþ E

where A: p� q, C: k� n, C1: k1 � n; F: t� n, are all known matrices, CðF0Þ �
CðC0Þ; rðWÞ ¼ r<minðp; tÞ; Z: l� n, p 	 l<n;ZV�1Z0 ¼ I l;U�Np;lð0;Ru; IlÞ;E�Np;n

ð0;Re;VÞ where U and E are independently distributed. The parameters Ru and Re are
supposed to be unknown and positive definite whereas V is known and determined from
the survey.
When in Definition 3.1 B1C1 ¼ 0; WF ¼ 0 and UZ ¼ 0 then we have the classical

growth curve model (GMANOVA) (see Potthoff and Roy 1964; von Rosen 2018).
When WF ¼ 0 and UZ ¼ 0 then the growth curve model with covariate information
appears which sometimes is identified as a mixture of the GMANOVA and MANOVA
models. Some references to this model, as well as more general models (see Chinchilli
and Elswick 1985; Verbyla and Venables 1988; von Rosen 1989; and Bai and Shi 2007).
If B1C1 ¼ 0 and WF ¼ 0 we say that we have the growth curve model with random
effects (see Ip et al. 2007) whereas if only WF ¼ 0 holds (see Yokoyama and Fujikoshi
1992; Yokoyama 1995) where similar models are considered and where references to
earlier works can be found. However, usually in these works one puts structures on the
covariance matrices which will not be discussed in this article.
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4. Estimation of parameters

Let Q be a matrix of basis vectors such that CðQÞ ¼ CðV�1=2C0 : V�1=2C0
1 : V

�1=2Z0Þ;
where V1=2 is a symmetric square root of V in E�Np;nð0;R;VÞ: Further, let Qo be any

matrix of full rank satisfying CðQoÞ ¼ CðC0 : C0
1 : Z

0Þ?: We assume Q0Q ¼ Iv; where v ¼
rðC0 : C0

1 : Z
0Þ; v> l.

A one-one transformation of the model in Definition 3.1, using Q, yields

YV�1=2Q ¼ ABCV�1=2Qþ B1C1V
�1=2QþWFV�1=2Q

þ UZV�1=2Qþ EV�1=2Q;
(4.8)

YV�1=2Qo ¼ EV�1=2Qo (4.9)

The matrix G ¼ Q0V�1=2Z0ZV�1=2Q of size v� v is idempotent since CðV�1=2Z0Þ �
CðQÞ and ZV�1Z0 ¼ I; and therefore

G ¼ C
Il 0
0 0

� �
C0

where C : v� v is a known orthogonal matrix. The identity in Equation (4.8) is post-
multiplied by C leading to the model

YV�1=2QC ¼ ABCV�1=2QCþ B1C1V
�1=2QCþWFV�1=2QC

þUZV�1=2QCþ EV�1=2QC:
(4.10)

However, since C0Q0V�1=2Z0ZV�1=2QC ¼ I;

D UZV�1=2QC
� �

¼ Il 0
0 0

� �
� Ru

and this leads to that the model in Equation (4.10) will be split into two models. Let
C ¼ ðC1 : C2Þ : v� l; v� ðv�lÞ: Then we have three models which will be used when
finding estimators:

(i) YV�1=2QC1 ¼ ABCV�1=2QC1 þ B1C1V�1=2QC1 þWFV�1=2QC1

þUZV�1=2QC1 þ EV�1=2QC1;
UZV�1=2QC1 � Np;lð0;Ru; IlÞ; EV�1=2QC1 � Np;lð0;Re; IlÞ; (4.11)

(ii) YV�1=2QC2 ¼ ABCV�1=2QC2 þ B1C1V�1=2QC2 þWFV�1=2QC2

þ EV�1=2QC2; EV�1=2QC2 � Np;v�lð0;Re; Iv�lÞ; (4.12)
(iii) YV�1=2Qo ¼ EV�1=2Qo; EV�1=2Qo�Np;n�vð0;Re; In�vÞ: (4.13)

The idea is to utilize Equations (4.12) and (4.13) when estimating B, B1;W and Re:

To estimate Ru these estimators are inserted in Equation (4.11). Suppose that the esti-

mators B̂; B̂1; Ŵ and R̂e have been obtained, and let

Y0 ¼ XV�1=2QC1�AB̂CV�1=2QC1�B̂1C1V
�1=2QC1�ŴFV�1=2Q;

X ¼ Ru þ Re:
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Under the assumption of no randomness in B̂; B̂1 and Ŵ;

Y0 ¼ ~E; ~E�Np;l 0;X; Ilð Þ
Thus, if p 	 l; X̂ ¼ 1

l Y0Y 0
0, implying

R̂u ¼ 1
l
Y0Y

0
0�R̂e:

Here it is assumed that the difference is positive definite. If R̂u is not positive defin-
ite, which should occur with some positive probability, this indicates that data does not
support the model presented in Definition 3.1 or the estimation procedure has some
deficiencies. It can be noted that the problem with negative variance components in
mixed linear models has a long history and an early reference is Nelder (1954). A more
recent contribution to the discussion of the problem is provided by Molenberghs and
Verbeke (2011). If we would start with the model in Equation (2.5) and only consider
D½Y� ¼ ZZ0 � Ru þ V � Re we could avoid to assume Ru to be positive definite.
However, in our model derivation, via U�Np;lð0;Ru; IlÞ; Ru has to be positive definite.

Thus, if obtaining a non-positive definite R̂u we have to either reformulate the model

or change the estimator. One way to modify R̂u is to work with the eigenvalues of R̂u:

If there are a few “small” (by absolute value) non-positive eigenvalues these eigenvalues
can be replaced by small positive quantities. This should of course take place with cau-
tion and common sense but as far as we know there is no general recipe of how to han-

dle a non-positive definite R̂u:

To estimate B̂; B̂1; Ŵ and R̂e Equations (4.12) and (4.13) are merged:

YV�1=2 QC2 : Q
oð Þ ¼ AB CV�1=2QC2 : 0

� �
þ B1 C1V

�1=2QC2 : 0
� �

þW FV�1=2QC2 : 0
� �

þ ~E;
(4.14)

where ~E�Np;n�lð0;Re; In�lÞ: Put
X ¼ YV�1=2 QC2 : Q

oð Þ : p� n�lð Þ;
D1 ¼ CV�1=2QC2 : 0

� �
: k� n�lð Þ;

D2 ¼ C1V
�1=2QC2 : 0

� �
: k1 � n�lð Þ;

D3 ¼ FV�1=2QC2 : 0
� �

: t � n�lð Þ:
Equation (4.14) is identical to

X ¼ ABD1 þ B1D2 þWD3 þ ~E (4.15)

which is an extended Growth Curve model (GMANOVAþMANOVA) with a reduced
rank regression component. Furthermore, the likelihood function which corresponds to
the model in Equation (4.15) equals

L B;B1;W;Reð Þ ¼ 2pð Þ�1
2p n�lð ÞjRej�

1
2 n�lð Þ

� exp � 1
2
tr R�1

e X � ABD1 � B1D2 �WD3ð ÞðÞ0� 	� �
;

(4.16)
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where we have used the convention that instead of ðHÞðHÞ0 it is written ðHÞðÞ0 for any
arbitrary matrix expression H. Our first observation is that the likelihood in Equation
(4.16) is smaller or equal to

2pð Þ�1
2p n�lð ÞjRej�

1
2 n�lð Þ

� exp � 1
2
tr R�1

e X � ABD1ð Þ I � PD0
2

� ��WD3 I � PD0
2

� �ðÞ0
 �n o� � (4.17)

with equality if and only if

B1D2 ¼ XPD0
2
�ABD1PD0

2
�WD3PD0

2

which, under some full rank conditions on D2; determines B1 as a function of B and
W: Thus, if B and W can be estimated the covariate effect described by B1D2 can be
estimated. The density in Equation (4.17) corresponds to the model

X I�PD0
2

� � ¼ ABD1 I�PD0
2

� �þWD3 I�PD0
2

� �þ ~E;

~E�Np;n�l 0;Re; In�lð Þ
(4.18)

which is a Growth Curve model with latent variables (reduced rank effect). The model
has been considered (Reinsel and Velu 1998; von Rosen and von Rosen 2017), where
also other references can be found. Now it is shortly described how B and W can be
estimated. For notational conveniences the model in Equation (4.18) is written

X1 ¼ AB~D1 þW~D3 þ ~E; ~E�Np;n�l 0;Re; In�lð Þ (4.19)

Note that Cð~D0
3Þ � Cð~D0

1Þ because CðF0Þ � CðC0Þ which is essential for being able to
obtain explicit estimators.
Let

W ¼ X1�AB~D1�W~D3

� �
ðÞ0

and then the likelihood function for model Equation (4.19) equals

L B;W;Reð Þ ¼ 2pð Þ� n�lð Þp=2jRej� n�lð Þ=2 exp � 1
2
tr R�1

e W
� 	� �

(4.20)

The upper bound of the likelihood function in Equation (4.20) is well known (see
Srivastava and Khatri 1979, Theorem 1.10.4):

L B;W;Reð Þ 	 2pð Þ� n�lð Þp=2e �1
2 n�lð Þpf g

���� 1
n� l

W

����
� n�lð Þ=2

(4.21)

and in Equation (4.21) equality holds if and only if ðn�lÞRe ¼ W: Hence, if B and W
are estimated then Re is also estimated. Maximizing the log-likelihood function is
equivalent to minimizing the determinant jWj which now will take place.
It is worth noting that it is used, since rðWÞ ¼ r; that the matrix W can be factored

into two terms, i.e. W ¼ W1W2; where W1 and W2 are of size p� r and size r� t,
respectively. Depending on the knowledge about the model W1 and W2 can be inter-
preted but there are also cases where the factorization has no clear interpretation.
In the subsequent, let PQ ¼ QðQ0QÞ�Q0 and PQ;V ¼ QðQ0V�1QÞ�Q0V�1 with ð�Þ�

denoting an arbitrary generalized inverse.
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Following the approach presented in (Kollo and von Rosen 2005, Chapter 4) we have

jWj 
 jS1 þ T1 XP~D
0
1
�W1W2 ~D3


 �
XP~D

0
1
�W1W2 ~D3


 �0
T0
1j (4.22)

where

S1 ¼ X1 In�l�P~D
0
1


 �
X0
1; (4.23)

T1 ¼ Ip�PA;S1 (4.24)

and equality in Equation (4.22) holds if and only if AB~D1 ¼ PA;S1ðXP~D
0
1
�W1W2 ~D3Þ:

Throughout the article it is supposed that S1 is positive definite which holds with prob-
ability 1. Thus, B as a function of W ¼ W1W2 can be obtained. Moreover,

jS1 þ T1 XP~D
0
1
�W1W2 ~D3


 �
XP~D

0
1
�W1W2 ~D3


 �0
T0
1j


 jS2 þ T2T1XP~D
0
3
X0T0

1T
0
2j;

(4.25)

where
S2 ¼ S1 þ T1X P~D

0
1
�P~D

0
3


 �
X0T0

1;

T2 ¼ Ip�PT1W1;S2 ;
(4.26)

and the equality in Equation (4.25) holds if and only if

T1W1W2 ~D3 ¼ PT1W1;S2XP~D
0
3

(4.27)

Given W1; the linear system of equations in Equation (4.27) is consistent and hence
W2 can always be estimated as a function of W1 :

W2 ¼ W0
1T

0
1S

�1
2 T1W1

� ��1
W0

1T
0
1S

�1
2 X ~D

0
3

~D3 ~D
0
3


 ��1

; (4.28)

under the assumption that rð~D3Þ ¼ k1 and CðAÞ \ CðW1Þ ¼ f0g: The only parameter in
the right-hand side of Equation (4.25) which is left to estimate is W1: The right-hand
side of Equation (4.25) can be factored as

jS2 þ T2T1XP~D
0
3
X0T0

1T
0
2j ¼ jS2jjRjjM0UMj;

where

R ¼ In þ P ~D
0
3
X0T0

1S
�1
2 T1XP~D

0
3
;

M ¼ H0W1 W0
1HH0W1

� ��1=2
;

U ¼ Ip�r Að Þ�H0XP~D
0
3
R�1P~D

0
3
X0H;

with H : p� rðAÞ is such that T 0
1S

�1
2 T1 ¼ HH0; M : ðp�rðAÞÞ � r is semi-orthogonal of

rank r and U is a positive definite matrix. The square root in M is supposed to be sym-
metric. Due to the Poincar�e separation theorem (see Rao 1979)

jS2jjRjjM0UMj 
 jS2jjRj
Yr
i¼1

kp�r Að Þ�rþi;

where k1 
 � � � 
 kp�rðAÞ are the eigenvalues of U which do not depend on any
unknown parameter. The lower bound is then attained if M consists of the
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corresponding eigenvectors v1; :::; vr: Let ~M ¼ ðv1; :::; vrÞ: Therefore, a maximum likeli-
hood estimator of W1 is found if we can find W1 satisfying the following equality:

H0W1 W0
1HH0W1

� ��1=2 ¼ ~M: (4.29)

Since ~M
0 ~M ¼ Ir; the following choice of W1 is appropriate:

Ŵ1 ¼ H H0Hð Þ�1 ~M: (4.30)

There remains an unresolved problem of presenting all solutions to Equation (4.29),
but this is not considered here.

Together with Equation (4.28) this yields that Ŵ ~D3 ¼ Ŵ1Ŵ0
1T

0
1S

�1
2 XP~D 0

3
: Now, the

obtained results will be stated in the following theorem.

Theorem 4.1. Let the direct estimates of a survey follow the model given in Definition
3.1. Moreover, all matrices in the statements have earlier been defined in this section.

(i) Ŵ1 ¼ HðH0HÞ�1 ~M1;
(ii) If CðAÞ \ CðWÞ ¼ f0g; Ŵ ~D3 ¼ Ŵ1Ŵ

0
1T

0
1S

�1
2 X1P~D

0
3
;

If additionally rð~D0
3Þ ¼ t; Ŵ ¼ Ŵ1Ŵ

0
1T

0
1S

�1
2 X1 ~D

0
3ð~D3 ~D

0
3Þ�1;

(iii) If CðAÞ \ CðWÞ ¼ f0g; AB̂ ~D1 ¼ AðA0S�1
1 AÞ�A0S�1

1 ðX1P~D
0
1
�Ŵ ~D3Þ;

If additionally rð~D1Þ ¼ k and rðAÞ ¼ q

B̂ ¼ A0S�1
1 A

� ��1
A0S�1

1 Y1 ~D
0
1

~D1 ~D
0
1


 ��1

�Ŵ ~D3 ~D
0
1

~D1 ~D
0
1


 ��1
� �

;

(iv) B̂D2 ¼ XPD0
2
�AB̂1D1PD0

2
�ŴD3PD0

2
;

If additionally rðD2Þ ¼ k2

B̂1 ¼ XD0
2 D2D

0
2

� ��1�AB̂D1D
0
2 D2D

0
2

� ��1�ŴD3D
0
2 D2D

0
2

� ��1
;

(v) ðn�lÞR̂e ¼ S2 þ T̂2T1Y1P~D
0
3
Y 0
1T

0
1T̂

0
2; where

T̂2 ¼ Ip�T1Ŵ1 Ŵ
0
1T

0
1S

�1
2 T1Ŵ1


 ��
Ŵ

0
1T

0
1S

�1
2 ;

(vi) Suppose 1
l Y0Y 0

0�R̂e is positive definite. Then

R̂u ¼ 1
l
Y0Y

0
0�R̂e:

5. Prediction

Small area estimation is very often about prediction of unobserved units (subareas). For
our model, due to normality assumptions, it is relatively straight forward to construct
predictors, in particular if the explicit estimators of the previous section are utilized.
The strategy will be to first predict U which will be based on the observed data and
thereafter the unobserved units are predicted.
For prediction of U the conditional mean E½U jY� is crucial and thus the joint distri-

bution of U and Y will be derived. According to Definition 3.1, U and E are independ-
ently distributed ðvecU ; vecYÞ is normally distributed, i.e.
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vecU
vecY

� �
�Np nþlð Þ E �½ �;D �½ �ð Þ;

where

E �½ � ¼ 0; vec0 ABCþ B1C1 þWFð Þ� �0
;

D �½ � ¼ I � Ru Z � Ru

Z0 � Ru Z0Z � Ru þ V � Re

 !
:

Thus,

E vecU jvecY½ � ¼ Z � Ruð Þ Z0Z � Ru þ V � Reð Þ�1vec Y�ABC�B1C1�WFð Þ
and the next proposition can be stated.

Proposition 5.1. Let the model be given in Definition 3.1 and use the notation intro-
duced earlier in Section 4.

i. The predicted value Û is given by

vecÛ ¼ Z � R̂u

� �
Z0Z � R̂u þ V � R̂e

� ��1
vec Y�AB̂C�B̂1C1�ŴF
� �

;

where R̂u; R̂e; AB̂C; B̂1C1 and ŴF are presented in Theorem 4.1 and Y consists
of subarea estimates.

ii. Let Yo consist of the unobserved direct estimates, corresponding to the non-sampled units.
The corresponding covariables are available which are denoted Co;C1o; Fo and Zo: Then

vecŶ o ¼ vec AB̂Co þ B̂1C1o þ ŴFo

� �
þ Z0

o � I
� �

vecÛ ;

where vecÛ is given in (i).
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