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Goodness-of-fit tests for centralized Wishart processes

Gustav Alfelt, Taras Bodnar, and Joanna Tyrcha

Department of Mathematics, Stockholm University, Stockholm, Sweden

ABSTRACT
In this paper we present several goodness-of-fit tests for the central-
ized Wishart process, a popular matrix-variate time series model
used to capture the stochastic properties of realized covariance
matrices. The new test procedures are based on the extended
Bartlett decomposition derived from the properties of the Wishart
distribution and allows to obtain sets of independently and standard
normally distributed random variables under the null hypothesis.
Several tests for normality and independence are then applied to
these variables in order to support or to reject the underlying
assumption of a centralized Wishart process. In order to investigate
the influence of estimated parameters on the suggested testing pro-
cedures in the finite-sample case, a simulation study is conducted.
Finally, the new test methods are applied to real data consisting of
realized covariance matrices computed for the returns on six assets
traded on the New York Stock Exchange.

ARTICLE HISTORY
Received 18 October 2018
Accepted 18 April 2019

KEYWORDS
Wishart autoregressive
process; goodness-of-fit
test; Bartlett decomposition;
Wishart distribution;
parameter uncertainty

JEL CLASSIFICATION
C12; C32; C52; C58

1. Introduction

The ability to model and to predict covariance matrices of asset returns is a crucial aspect in
many financial applications, such as portfolio allocation, option pricing and risk manage-
ment. A classical discrete time modeling approach is based on the multivariate GARCH-type
models which were first introduced by Bollerslev et al. (1988) with the aim to capture the
conditional heteroscedasticity present in the daily data. Further modifications of the
multivariate GARCH processes were proposed by Engle and Kroner (1995); Engle (2002);
Aielli (2013) with Bauwens et al. (2006) providing a review of these types of models. Another
approach to model dynamics in the second moments of asset returns is based on the
multivariate stochastic volatility models reviewed by Asai et al. (2006).
Due to the rapid development of the computer industry, it has recently become pos-

sible to use high-frequency financial data, such as one-minute returns, five-minutes
returns, etc. to capture the dynamics in covariance matrices computed for daily fre-
quency (see, e.g., Barndorff-Nielsen and Shephard (2004); Bibinger et al. (2014, 2017)
and references therein). This has lead to the development of new approaches to model
the stochastic behavior of daily (conditional) covariance matrices based on high fre-
quency data, in which intraday returns are used to consistently estimate low frequency
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covariance matrices. A number of such models are based on the assumption that the
realized covariance matrices are driven by an underlying centralized Wishart process
(Golosnoy et al. 2012; Noureldin et al. 2012).
Wishart processes as models for the multivariate stochastic volatility were introduced by

Philipov and Glickman (2006); Gouri�eroux et al. (2009). They have recently been inten-
sively investigated in a number of studies, like Golosnoy et al. (2012); Noureldin et al.
(2012); Jin and Maheu (2013); Gorgi et al. (2019); Opschoor et al. (2018); Yu et al. (2017);
Anatolyev and Kobotaev (2018). This approach appears attractive since the conditional
distribution of realized covariance matrices is modeled by the Wishart distribution which
is a well-established model for almost surely positive definite matrices (see, e.g., Gupta and
Nagar 2000), an inherent property of realized covariance matrices.
In order to investigate how well the model fits observed data, a measure of forecast-

ing accuracy on out-of-sample data is commonly used. Golosnoy et al. (2012) evaluates
the fit of the conditional autoregressive Wishart (CAW) model by computing vectors of
standardized residuals which are tested for the presence of autocorrelation by applying
a univariate Ljung-Box test. This is a common approach used in econometric literature
which is based on the fact that the residuals in the misspecified model often are auto-
correlated (Johnston and DiNardo 1997). However, this diagnostic procedure does not
fully test the underlying assumption of a Wishart process, an assumption which must
be fulfilled if the model is to be reliably used as, for example, a forecasting tool. Its
main drawback is that it is based on the first two conditional moments of the Wishart
process only and, consequently, it cannot detect deviations that are present in the
moments of higher orders.
We contribute to the existent literature on the Wishart process by proposing new

goodness-of-fit tests on this stochastic matrix-variate model. In the derivation we use
the properties of the Wishart distribution to attain the extended Bartlett decomposition
from which the test statistics are obtained. The size and power properties of the new
test procedures are investigated by the means of a simulation study and they are then
compared to those obtained by the application of standardized residuals as suggested in
Golosnoy et al. (2012). An important difference between the new procedures and the
existent approach is that while the method presented in Golosnoy et al. (2012) controls
for the first two conditional moments of the Wishart process, the new procedures take
the full distribution into consideration. Moreover, the new method is applicable to any
model driven by a centralized Wishart process with known parameters, as well as in the
large sample case when the model parameters are consistently estimated. As such it can
be employed in a variety of areas, not restricted to cases of a particular model, such as
the conditional autoregressive Wishart process.
The paper is structured as follows. Section 2 introduces a centralized Wishart process

and presents its distributional properties. The extended Bartlett decomposition used in
the derivation of the test statistics is given in Theorem 1. The goodness-of-fit tests are
provided in Section 3, while their sizes and powers are investigated in Section 4 and
compared to the results obtained for the existent approach. In Section 5 the new testing
procedures are applied to real data consisting of six stocks traded on the New York
Stock Exchange. Section 6 concludes. Proofs and complementary tables with the results
of simulation study are moved to the Appendix.
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2. Centralized Wishart process and its stochastic properties

Let fRtg1�t�T be a time series of symmetric positive definite n� n matrices and let
F t�1 ¼ fRt�1;Rt�2; :::g denote a filtration determined by the observation matrices Rt�1;

Rt�2; :::: Then fRtg1�t�T follows a centralized Wishart process if

RtjF t�1�Wn �; Stð Þ (1)

where Wn denotes the n� n Wishart distribution, �>n�1; � 2 Rþ the scalar degrees of
freedom1 and St an n� n symmetric, positive definite scale matrix measurable with

respect to F t�1 at time t�1. Further, let S
1
2
t be the lower-triangular Cholesky root of St

and define Qt ¼ S
�1

2
t RtðS�

1
2

t Þ0: By Theorem 3.2.5 in Muirhead (1982) we then get

QtjF t�1�Wn �; Inð Þ (2)

Note that the conditional distribution of Qt given F t�1 does not depend on the
r–algebra F t�1 and, consequently, Qt is unconditionally Wishart distributed.
Thus, the random matrix Qt represents the underlying variability of the centralized

Wishart process at time t once the scaling has been removed. In Theorem 1, we present
an extension of Bartlett decomposition, presented in Bartlett (1934). While the decom-
position in Bartlett (1934) is derived for integer valued degrees of freedom only,
Theorem 1 allows for real valued degrees of freedom. This result will be later used in
Section 3 to derive goodness-of-fit tests for a centralized Wishart process. The proof of
Theorem 1 is similar to the proof of Theorem 3.2.14 in Muirhead (1982), and is given
in the Appendix.2

Theorem 1. (Extended Bartlett decomposition)
Let A�Wnð�; InÞ where �>n�1; � 2 Rþ and define A ¼ TT0 where T ¼ ðtijÞi;j¼1;:::;n is

a lower-triangular n� n matrix with positive diagonal elements. Then:

i. tij, 1 � j � i � n are mutually independent;
ii. tij�Nð0; 1Þ (standard normal distribution) for 1 � j � i � n;
iii. t2ii�Cð��iþ1

2 ; 2Þ (gamma distribution with shape ð��iþ 1Þ=2 and scale 2)
for i ¼ 1; :::; n:

With the aid of Theorem 1 we can decompose Qt in the following way:

Qt ¼ UtU
0
t (3)

where Ut is the lower-triangual Cholesky root whose squared diagonal elements u2ii;t; i ¼
1; :::; n; are distributed as Cð��iþ1

2 ; 2Þ; while all elements below the diagonal uij;t; 1 �
j<i � n; are standard normally distributed. Moreover, uij;t; 1 � j � i � n are independ-

ent. Then define eij ¼ uij; 1 � j<i � n and eii;t ¼ U�1ðFCð��iþ1
2 ;2Þðu2ii;tÞÞ for i ¼ 1; :::; n

where U denotes the cumulative distribution function (CDF) of the standard normal
distribution and FCð��iþ1

2 ;2Þ stands for the CDF of the Cð��iþ1
2 ; 2Þ-distribution.

1Following the discussion on p. 87 in Muirhead (1982), we use the extended definition of the Wishart distribution
allowing for any real valued degrees of freedom �>n�1:
2Simulation techniques based on this result have previously been considered in Ku and Bloomfield (2010) and Owen
(2009). In this paper we supply a formal proof.
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This integral transformation ensures that eii;t; i ¼ 1; :::; n; are standard normally distrib-
uted random variables (see e.g. Section 6.2.2 in Givens and Hoeting (2012)).
Now let

et ¼ e11;t; :::; en1;t; e22;t; :::; enn;tð Þ0 (4)

for 1 � t � T: Then, et�Nð0k; IkÞ (multivariate standard normal distribution) where
k ¼ nðnþ 1Þ=2; 0k is a k� 1 zero vector and Ik a k� k identity matrix. Finally, using that
the conditional distribution of Qt does not depend on F t�1 and that in the definition of
the vector et only the elements of matrix Qt are used, we get that the residual vectors et; t
¼ 1; :::;T are mutually independently distributed. It is remarkable that this result holds
independently of the equation used to model St and can be used to develop goodness-of-fit
tests on a centralized Wishart processes which are presented in Section 3.

3. Goodness-of-fit tests

In this section we use the findings of Theorem 1 to derive several goodness-of-fit tests
for centralized Wishart processes which in Section 4 are then applied to the special case
of the conditionally autoregressive Wishart process considered in Golosnoy
et al. (2012).
The null hypotheses of the considered tests are given by

H0 : Rt follows a centralized Wishart process with parameters � and St
against H1 : Rt does not follow a centralized Wishart process with parameters � and St:

(5)

Note that the null hypothesis in (5) is also rejected when Rt still has a centralized
Wishart process but with other parameters as specified under H0. Hence, it also controls
the validity of the model which is fitted to describe the dynamics in St: Another possi-
bility to reject H0 is when the true data generating process deviates from the family of
centralized Wishart processes.
In the derivation of the test statistics we employ the properties of centralized Wishart

processes discussed in the previous section. Namely, the application of extended Bartlett
decomposition with the integral transformation applied to the squared diagonal ele-
ments of the matrix Ut leads to the sequence of independent and multivariate standard
normally distributed random vectors et as given in (4). Then the null hypothesis in (5)
can be equivalently expressed in terms of the sequence et; t ¼ 1; :::;T; where its distri-
butional and time series properties are verified.

3.1. Noise matrix and its partitions

Using the transformation described after Theorem 1, we define the k�T noise matrix
E, again k ¼ nðnþ 1Þ=2 being the number of components in the vector et; as

E ¼ e1; :::; eTð Þ ¼ eij;tf g1�j�i�n;t¼1;:::;T
(6)

which is the collection of the vectors given in (4). As a result, the matrix E consists of
Tnðnþ 1Þ=2 independent and standard normally distributed random variables under
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the null hypothesis in (5). Hence goodness-of-fit tests evaluating these properties can be
applied directly to E in order to test the validity of the Wishart process.
However, the independence and identical distribution of elements in E also allows for

tests on any suitable partition of E. Such a procedure can be informative about what
parts of the matrix process that invalidates the null hypothesis, if any. Given that
fRtg1�t�T is a discrete time process, it can be of interest to investigate if Rt at each t
follows a centralized Wishart distribution, or if a sequence Rtþ1; :::;Rtþs follows a cen-
tralized Wishart process from time tþ 1 to t þ s; for example during a selected week
or month.
To this end, let T ¼ ms and consider the column-block partition EB given as

E ¼ E1; :::;Emð Þ with El ¼ el s�1ð Þþ1; :::; elsð Þ (7)

Again note that following Theorem 1, the elements of El for l ¼ 1; :::;m are inde-
pendently and standard normally distributed. Now let dl be a goodness-of-fit test statis-
tic calculated for El and define d ¼ ðd1; :::; dmÞ0: Then the components of d are
independently distributed and each of them is used to test the validity of a centralized
Wishart process during the corresponding time period. Finally, one can base the deci-
sion of the validity of a centralized Wishart process for each submatrix El; l ¼ 1; :::;m
on the vector of p-values p ¼ ðp1; :::; pmÞ0; where pl is the p-value associated with dl,
instead of d. In contrast to d, the univariate marginal distributions of the vector p are
uniform distributions on ½0; 1� and consequently they are independent of the dimen-
sionality of matrices El; l ¼ 1; :::;m:

Similarly, appropriate goodness-of-fit tests can also be applied to each of the k compo-
nent of the vectors et for t ¼ 1; :::;T: To this end, consider the row partition EC given as

E ¼ ~e11; :::; ~en1; ~e22; :::; ~ennð Þ0 with ~eij ¼ eij;1; :::; eij;Tð Þ0 (8)

where 1 � j � i � n: In this case, the aim is to investigate which components of the
vector et are responsible for the violation of the null hypothesis in (5). Note that in gen-
eral when several tests are performed simultaneously the multiplicity correction on the
significance level should be kept in mind.
The construction of E together with appropriate partitions of E allows us to perform

goodness-of-fit tests on any centralized Wishart process aiming to model observed series
of symmetric positive definite matrices. When the null hypothesis of a centralized
Wishart process is true, any given test statistic assessing independent standard normal-
ity, computed on the elements in E or on the elements in any matrix or vector of its
partitions, will follow the corresponding null distribution.

3.2. Tests based on standard normality

Since the elements of E are independent and standard normally distributed under the
null hypothesis in (5), a goodness-fit-test on a centralized Wishart process with known
values of � and St can be performed by testing if

H0 : eij;t is normally distributed
against H1 : eij;t is not normally distributed

(9)
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based on an independent sample eij;t for 1 � j � i � n and t ¼ 1; :::;T:
The testing problem (9) is well studied in statistics with a number of existing

approaches. For example, the test can be performed by using the Kolmogorov-Smirnov
statistic (Massey 1951), the Anderson-Darling test (Anderson and Darling 1954), the
Shapiro-Wilk approach (Shapiro and Wilk 1965), the Lilliefors test (Lilliefors 1967).
Similarly we can perform tests on the mean and the variance of the components of

E. Namely, in using the t-test we will test if

H0 : E eij;1ð Þ ¼ 0 against H1 : E eij;1ð Þ 6¼ 0 (10)

The statistic of the t-test is given by

Tmean ¼
ffiffiffiffiffiffi
kT

p �e
se

(11)

where

�e ¼ 1
kT

X
j�i

XT
t¼1

eij;t and s2e ¼
1

kT � 1

X
j�i

XT
t¼1

eij;t��eð Þ2

are the sample mean and the sample variance obtained from feij;tg1�j�i�n;t¼1;:::;T : Under

the null hypothesis, it holds that Tmean is asymptotically standard normally distributed.
Finally, a test on the equality of the variance to one can be applied as well with the

hypotheses given by

H0 : Var eij;tð Þ ¼ 1 against H1 : Var eij;tð Þ 6¼ 1 (12)

and the test statistic expressed as

Tvar ¼ kT�1ð Þs2e (13)

which has a v2kT�1-distribution under H0.
Correspondingly, the above tests can be applied to each matrix in the partition EB

and to each vector in the partition EC in order to test for standard normality in differ-
ent time periods and for different components of et; respectively.

3.3. Tests based on autocorrelations

If a time series model is misspecified, then the residuals obtained from this model often
appear to be autocorrelated (see, e.g., Tsay 2010). As a result, testing for the presence of
autocorrelation in the residuals is a common way to validate the model in practice.
Following this procedure and using the matrix E, in this section we construct several
goodness-of-fit tests for a centralized Wishart process, designed to verify the presence
of autocorrelated vectors in E. The testing hypotheses are given by

H0 : No autocorrelation is present up to lag L
against H1 : Auto correlation is present up to lag L

(14)

This test is performed by employing the multivariate Ljung-Box test (see, Tsay 2010)
whose asymptotic null distribution was derived by Hosking (1980). The test is applied
to E, treating its columns as observation vectors.
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Alternatively, a collection of univariate Ljung-Box tests can be applied to verify the
presence of autocorrelations in each vector of the partition EC: This approach ignores
the cross-sectional dependencies in the residuals, while reducing the degrees of freedom
of the limiting v2-distribution and thus increasing the power of each individual test.
Finally, the test for autocorrelation in residuals is usually performed not only to the ori-
ginal residuals but also to their corresponding squared values.
While the test on the autocorrelations in the residuals and their squared values check

the properties of their first two moments, the goodness-of-fit tests of Section 3.2 moni-
tor the whole distribution function. Consequently, the tests based on the Ljung-Box sta-
tistics seems to be a better choice if the fit of St is of interest, while the approach of
Section 3.2 might be more useful to check if the Wishart distribution is an appropriate
assumption for the standardized process Qt as given in (3).

3.4. Specification of m and St

The tests in Sections 3.2 and 3.3 are designed under the assumption that both quantities
� and St are known precisely. The violation of this assumption could have a large effect
on the performance of the suggested tests. The parameter � is usually fitted in practice
by the maximum likelihood estimator and, consequently, it is consistent and asymptot-
ically normal distributed under some regularity conditions.
The situation of the specification of St is more involved. By its definition, the matrix

St is measurable with respect to filtration F t�1: In practice, however, several approaches
could be applied to model St with the conditional autoregressive Wishart (CAW) pro-
cess considered in Golosnoy et al. (2012) and the HEAVY model introduced by
Noureldin et al. (2012) to be the most popular ones. In both cases St is modeled by its
previous realizations, the realizations of the process Rt up to time t – 1, and some par-
ameter matrices. Noureldin et al. (2012) used the maximum likelihood method to esti-
mate the parameter matrices and proved that these estimators are consistent and
asymptotically normally distributed. As a result, if the sample size is relatively large
with respect to the process dimension, then the impact of the estimation error is
expected to be small and it can be ignored in practice. On the other side, if the sample
size is not large enough, then it has to be taken into account, which could be achieved
via bootstrap (Davison and Hinkley 1997; Horowitz et al. 2003; Efron and Hastie 2016).

4. Finite sample performance

In order to investigate the size and power properties of the proposed test procedures
under parameter uncertainty when the sample size T is finite, two simulation studies of
the conditional autoregressive Wishart process of Golosnoy et al. (2012) are conducted
in this section. The first study, found in Section 4.3, investigates the power when the
autoregressive structure of a Wishart process is violated, i.e., the model equation for St
is misspecified. The second study, found in Section 4.4, investigates the size and the
power when both the autoregressive structure of the Wishart process as well as the
assumption of the Wishart distribution are violated.
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4.1. Conditional autoregressive Wishart process

Given a filtration of past observations F t�1 ¼ fRt�1;Rt�2; :::g the conditionally autore-
gressive Wishart process of order (p, q) denoted by CAW(p, q) is specified as

RtjF t�1�Wn �; St=�ð Þ (15)

with

St ¼ CC0 þ
Xp
i¼1

BiSt�iB
0
i þ

Xq
i¼1

AiRt�iA
0
i (16)

Golosnoy et al. (2012) derive the maximum likelihood estimators for the parameters of
this model, while Noureldin et al. (2012) provided the conditions under which these
estimators are consistent when the sample size T tends to infinity. In our simulation
study we deal with the case of finite T with the aim to investigate the influence of par-
ameter uncertainty on the performance of the suggested goodness-of-fit tests. We also
compare the new procedures with the existent approach for model diagnostics which is
proposed in Golosnoy et al. (2012) and is described in Section 4.2 as a bench-
mark procedure.
In the simulation study, we use the diagonal CAW(p, q) model (here denoted by

DCAW(p, q)), as suggested in Golosnoy et al. (2012) of sizes n¼ 2, 4, 6. The DCAW
model entails that each parameter matrix A1; :::;Aq;B1; :::Bp in (15) and (16) is diagonal
with n unknown parameters. The diagonal CAW model is chosen over the full CAW
model in order to reduce parameter estimation time.
The simulations are performed by generating a series fRtg1�t�T of T matrices that

are conditionally Wishart distributed according to (15) where St in (16) is computed
with the starting values R0;R�1; S0; S�1 and parameters hp;q ¼ fA1; :::;Aq;B1; :::Bp;C; �g
as given in Table 1. Then the parameters of the model are estimated by the maximum

likelihood method in each simulation, and a scale matrix series fŜtg1�t�T is computed

given the estimated parameters. Using both fRtg1�t�T and fŜtg1�t�T the noise matrix E

is then computed according to (2)-(6). Finally, the proposed tests of Section 3 are
applied first to E, then to the matrices of the partition EB and then to the vectors of the
partition EC:

4.2. Benchmark procedure

As a benchmark method to the tests on the vector partition EC proposed in Section 3,
we consider the testing procedure presented in Golosnoy et al. (2012). Let

vt ¼ Var rtjF t�1½ ��1
2 rt�E rtjF t�1½ �ð Þ (17)

where rt ¼ vechðRtÞ with vechð:Þ denote the vech operator which transforms a symmet-
ric matrix to a vector (see, e.g., Harville (1997)). For the conditional mean vector and

Table 1. Parameters and start values used in the simulation study.
Parameter A1 A2 B1 B2 C � R0 S0 R�1 S�1
Value 1

2 In
2
5 In

1
2 In

2
5 In In 20 In In In In
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covariance matrix, Golosnoy et al. (2012) uses, in accordance with the Wishart distribu-
tion,

E RtjF t�1½ � ¼ St (18)

and

Cov rij;t; rlm;tjF t�1
� � ¼ 1

�
sil;tsjm;t þ sim;tsjl;tð Þ (19)

where St ¼ fsij;tgi;j¼1;:::;n for t ¼ 1; :::;T:

As for the testing procedures of Section 3, we also define the corresponding noise
matrix as

V ¼ v1; :::; vTð Þ ¼ vij;tf g1�j�i�n;t¼1;:::;T
(20)

with, for the k components of vt; the partition VC given as

V ¼ ~v11; :::; ~vn1; ~v22; :::; ~vnnð Þ0 with ~v ij ¼ vij;1; :::; vij;Tð Þ0 (21)

Thus, under the null hypothesis the elements of each vector ~v ij will be serially uncor-
related. As such, the approach presented in Golosnoy et al. (2012) applies the univariate
Ljung-Box test to each of these vectors as a model diagnostic.
Note that the benchmark procedure involves only the first two conditional moments

of an autoregressive Wishart process. As such, we expect that it will be able to detect
violations from the model assumptions related to this, like a misspecification of the con-
ditional model for St; while it might have some difficulties if the departures from the
model assumptions are present in the dynamics of higher moments.

4.3. Violation of autoregressive structure

The model from which Rt; t ¼ 1; :::;T are drawn is a DCAW(2,2) model with parame-
ters and starting values as listed in Table 1. In each simulation run, we consider several
values for the model dimension n 2 f2; 4; 6g and generate 2100 random matrices. In
order to remove the effect of the initial values, the first 100 observations are discarded,
leaving the sample of size T¼ 2000 in each series.
The violation of the autoregressive structure in the equation for St is captured by fit-

ting DCAW(0,0), DCAW(0,1), DCAW(1,1), DCAW(1,2), DCAW(2,1) models to the
generated data by applying the maximum likelihood method.3 We also fit DCAW(2,2)
process to the generated data in order to study the size of the suggested tests whose
nominal level is set to be equal to 5%.

The set of estimated parameters for a DCAW(p, q) model is denoted ĥp;q ¼
fÂ1; :::; Âq; B̂1; :::B̂p; Ĉ; �̂g; and the associated conditional scale matrix series as fŜt;p;qg
for t ¼ 1; :::;T: We further use the notation Ep;q and Vp;q for the noise matrices E and

V obtained from fRtg; fŜt;p;qg; t ¼ 1; :::;T and the estimator �̂ : Finally, let EB
p;q and EC

p;q

3The DCAW(1,0) model is not included in the simulation study, since it is not influenced by the observed data series
fRtg1�t�T and the performance of the considered tests is similar to the ones obtained for the DCAW(0,0) model.
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be the block and component partitions of Ep;q and VC
p;q the component partition of Vp;q:

In EB
p;q; a block size of 20 columns is used.

The complete simulation procedure for each n¼ 2, 4, 6 is summarized as follows:

1. Simulate a matrix series of size 2100 using (15) and (16) given the starting values
S�1; S0;R�1 and R0 and a parameter set h2;2 ¼ fA1;A2;B1;B2;C; �g which are
provided in Table 1. The first 100 values of the series is discarded in order to
remove the effect of starting values. The resulting series is denoted by fRtg1�t�T :

2. Estimate parameters sets ĥ0;0; ĥ0;1; ĥ1;1; ĥ1;2; ĥ2;1 and ĥ2;2 of the models
DCAW(0,0), DCAW(0,1), DCAW(1,1), DCAW(1,2), DCAW(2,1), and
DCAW(2,2) respectively.

3. Given the estimated parameters and the series fRtg1�t�T ; compute the corre-
sponding scale matrix series fŜt;p;qg1�t�T corresponding to each of the models of
different lag orders (p, q) as in the previous step.

4. For each order (p, q), calculate the noise matrices Ep;q and Vp;q as well as their
partitions EB

p;q;E
C
p;q; and VC

p;q:

5. Apply the following tests, and record their resulting p-values:
� To Ep;q : Anderson-Darling test on normality, Lilliefors test on normality, t-

test for the equality of mean to 0, v2-test for the equality of variance 1,
multivariate Ljung-Box test to the columns of Ep;q as well as to their the
squared values;4,5

� To each column block of partition EB
p;q : Anderson-Darling test on normal-

ity, Lilliefors test on normality, Shapiro-Wilks test on normality, t-test for
the equality of mean to 0, v2-test for the equality of variance to 1;

� To each vector of partition EC
p;q : Anderson-Darling test on normality,

Lilliefors test on normality, Shapiro-Wilks test on normality, t-test for the
equality of mean to 0, v2-test for the equality of variance 1, univariate
Ljung-Box test to each vector as well as to their squares;

� To each vector of the partition VC
p;q : univariate Ljung-Box test.

6. Repeat the steps (1)–(5) 1000 times and compute the relative number of rejec-
tions for each goodness-of-fit test with the nominal significance level of a ¼ 5%:

The rejection rates in the case of Ep;q are reported in Table 2 for n¼ 2, 4, 6, while

the corresponding results in the case of the component-wise partitions EC
p;q and VC

p;q are

given in Table 3 for n¼ 2. Additional results for the component-wise partitions EC
p;q

and VC
p;q for n¼ 4 and n¼ 6 as well as for the block partition EB

p;q can be found in the

Appendix (see, Tables A1–A4 and Table A5, respectively). In the case of the block parti-
tion the average rejection rates with respect to the blocks are provided. The Ljung-Box
tests on squared residuals are denoted” Ljung-Box sq.” in the tables. Note that while all
tests asymptotically have the nominal rejection rate under the correct model, this does
not necessarily hold in the finite-sample case.

4In all Ljung-Box tests the number of lags in the null hypothesis is set to 8, i.e., the closest integer to ln ð2000Þ:
5Since the number of elements in Ep;q extends 5000, the Shapiro-Wilks test for normality is not applied to this set, in
line with Mahibbur Rahman and Govindarajulu (1997).
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Further, in order to determine if the empirical rejection rates obtained via simulations
are larger than the nominal level a ¼ 0:05 with statistical significance, we apply a bino-
mial test.6 For a fixed model, sample size and test, let w denote the probability of a
resulting p-value being below a ¼ 0:05: As such, for k independent simulations, the
number of rejections will follow a binomial distribution with k trials and success prob-
ability w. We employ this to test the hypothesis H0 : w � a against H1 : w>a; where the
number of rejections will follow a binomial distribution with k¼ 1000 trials and success
probability w¼ 0.05 under the null hypothesis. As such, each rejection rate based on a
number of rejections that are equal to or exceeds the 99% quantile of this distribution
is reported in bold, indicating that they are significantly larger (on the 1%-level) than
the nominal level a ¼ 0:05: In the case of the block partition EB

p;q; the null distribution

is binomial with trials equal to k times the number of blocks.
In Table 2 we observe that all tests on the noise matrix Ep;q possess rejection rates of

around or below 0.05 for all dimensions n¼ 2, 4, and 6 under the true model
DCAW(2,2), as expected. However, similar rejection rates are also present under the
alternative model DCAW(1,2), indicating that the tests cannot distinguish between these
two models. The specific reason for this have not been studied in detail, but it is likely
that the second lag order, q, is able to capture the majority of the autoregressive struc-
ture, and that the DCAW(1,2) model thus is able to describe dynamics of the
DCAW(2,2) model to a sufficiently large extent, for the given sample size and process

Table 2. Rejection rates of the goodness-of-fit tests based on Ep;q in the case of n¼ 2, 4, 6.
n ¼ 2

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 0.86 0.21 0.06 0.06 0.06 0.06
Lilliefors 0.68 0.15 0.05 0.04 0.05 0.05
Mean 0 0.00 0.00 0.00 0.00 0.00 0.00
Variance 1 0.00 0.00 0.00 0.00 0.00 0.00
Multivariate Ljung-Box 1.00 1.00 0.35 0.04 0.35 0.02
Multivariate Ljung-Box sq. 1.00 0.55 0.06 0.06 0.06 0.06

n ¼ 4

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 0.95 0.27 0.06 0.05 0.06 0.06
Lilliefors 0.82 0.15 0.04 0.04 0.04 0.04
Mean 0 0.00 0.00 0.00 0.00 0.00 0.00
Variance 1 0.00 0.00 0.00 0.00 0.00 0.00
Multivariate Ljung-Box 1.00 1.00 0.36 0.04 0.35 0.03
Multivariate Ljung-Box sq. 1.00 0.70 0.07 0.07 0.07 0.06

n ¼ 6

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 1.00 0.49 0.04 0.04 0.04 0.04
Lilliefors 0.92 0.26 0.02 0.03 0.03 0.03
Mean 0 0.00 0.00 0.00 0.00 0.00 0.00
Variance 1 0.00 0.00 0.00 0.00 0.00 0.00
Multivariate Ljung-Box 1.00 1.00 0.38 0.04 0.38 0.03
Multivariate Ljung-Box sq. 1.00 0.83 0.04 0.05 0.04 0.05

Data is simulated from a DCAW(2,2) model, and then estimated for DCAW model of order (0,0), (0,1), (1,1), (1,2), (2,1),
(2,2). Rejection rates are reported for each test applied to each model fit. Rejection rates significantly larger than the
nominal level of 5% are emphasized in bold.

6Similar methods are presented in e.g. Oliveira and Ferreira (2010), Batsidis and Zografos (2013) and Batsidis et al.
(2014). We would like to thank the anonymous referee for suggesting this type of approach.
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dimension. In the case of DCAW(1,1) and DCAW(2,1), the rejection rates of multivari-
ate Ljung-Box test are around 0.3, while the other tests have rejection rates of around
or below 0.05 as for the true model. For DCAW(0,1) and DCAW(0,0), both the normal-
ity tests and multivariate Ljung-Box tests have high rejection rates. The tests based on
the mean and the variance has a rejection rate of zero for all models, indicating that the
first two moments are well captured by each of the estimated models. In general, the
Ljung-Box tests on squared residuals produce similar or lower rejection rates than the
ordinary Ljung-Box test.
Table 3 shows similar results for the component-wise partitions EC

p;q and VC
p;q in case

n¼ 2. Corresponding results for n¼ 4, 6 are found in Tables A1–A4 in the Appendix.
The tests on components of DCAW(0,0) DCAW(0,1) exhibit rejection rates well above
nominal level for a number of the considered tests. The univariate Ljung-Box test pro-
duces rejection rates of around 0.35 on components of DCAW(1,1) and DCAW(2,1),
while rejection rates for components of DCAW(1,2) are around nominal level for all
tests. Comparing the univariate Ljung-Box tests on the vector components of EC

p;q

derived in Section 3 and on the vector components of VC
p;q derived in the benchmark

method in Section 4.2, equivalent rejection rates are produced.

Table 3. Rejection rates for the goodness-of-fit tests based on the component-wise partitions EC
p;q

and VC
p;q in the case of n¼ 2.

e11 e12 e22 e11 e12 e22
Set: EC

p;q: Test: Anderson-Darling. Set: EC
p;q: Test: Variance 1.

DCAW(0,0) 0.74 0.20 0.69 DCAW(0,0) 0.15 0.15 0.21
DCAW(0,1) 0.16 0.06 0.18 DCAW(0,1) 0.02 0.04 0.03
DCAW(1,1) 0.07 0.06 0.05 DCAW(1,1) 0.02 0.02 0.01
DCAW(1,2) 0.07 0.06 0.06 DCAW(1,2) 0.01 0.01 0.02
DCAW(2,1) 0.07 0.06 0.05 DCAW(2,1) 0.02 0.02 0.02
DCAW(2,2) 0.07 0.06 0.06 DCAW(2,2) 0.01 0.02 0.02

Set: EC
p;q: Test: Lilliefors. Set: EC

p;q: Test: Ljung-Box.

DCAW(0,0) 0.57 0.12 0.53 DCAW(0,0) 1.00 1.00 1.00
DCAW(0,1) 0.11 0.04 0.12 DCAW(0,1) 1.00 1.00 1.00
DCAW(1,1) 0.06 0.05 0.06 DCAW(1,1) 0.28 0.32 0.27
DCAW(1,2) 0.05 0.05 0.05 DCAW(1,2) 0.02 0.04 0.02
DCAW(2,1) 0.06 0.05 0.06 DCAW(2,1) 0.28 0.31 0.27
DCAW(2,2) 0.05 0.05 0.05 DCAW(2,2) 0.01 0.02 0.01

Set: EC
p;q: Test: Shapiro-Wilks. Set: EC

p;q: Test: Ljung-Box sq.

DCAW(0,0) 0.84 0.28 0.79 DCAW(0,0) 1.00 1.00 1.00
DCAW(0,1) 0.24 0.07 0.24 DCAW(0,1) 0.40 0.48 0.36
DCAW(1,1) 0.07 0.06 0.06 DCAW(1,1) 0.06 0.05 0.05
DCAW(1,2) 0.06 0.06 0.06 DCAW(1,2) 0.04 0.04 0.02
DCAW(2,1) 0.07 0.06 0.06 DCAW(2,1) 0.06 0.05 0.05
DCAW(2,2) 0.06 0.06 0.06 DCAW(2,2) 0.06 0.04 0.04

Set: EC
p;q: Test: Mean 0. Set: VC

p;q: Test: Ljung-Box. v11 v12 v22
DCAW(0,0) 0.00 0.00 0.00 DCAW(0,0) 1.00 1.00 1.00
DCAW(0,1) 0.00 0.00 0.00 DCAW(0,1) 1.00 1.00 1.00
DCAW(1,1) 0.00 0.00 0.00 DCAW(1,1) 0.29 0.31 0.28
DCAW(1,2) 0.00 0.00 0.00 DCAW(1,2) 0.02 0.04 0.01
DCAW(2,1) 0.00 0.00 0.00 DCAW(2,1) 0.29 0.31 0.27
DCAW(2,2) 0.00 0.00 0.00 DCAW(2,2) 0.01 0.03 0.01

Data are simulated from a DCAW(2,2) model, and then estimated for DCAW models of order (0,0), (0,1), (1,1), (2,1), (1,2)
and (2,2). Rejection rates are reported for each test applied to each model fit. Rejection rates significantly larger than
the nominal level of 5% are emphasized in bold.
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Finally, Table A5 in the Appendix show the rejection rates from the column block
partition EB

p;q with 20 columns in each block. Here high rejection rates for DCAW(0,1)

and DCAW(0,0) is observed, mainly for the tests on mean and variance.
To summarize, concerning the tests on Ep;q; the models DCAW(0,0) and DCAW(0,1)

are rejected by the multivariate Ljung-Box test in 100% of the simulations, and rejected
by the normality tests to some extent. The models DCAW(1,1) and DCAW(2,1) are
rejected by the multivariate Ljung-Box in about 35% of the simulations. The
DCAW(1,2) model does not exhibit a rejection rate above nominal levels for any of the
tests. Regarding the univariate Ljung-Box method, the procedure proposed in Section 3
and the benchmark approach produce similar results. In general, a good performance
by the tests for serial autocorrelation is not surprising, since the violations are present
in the autoregressive structure in the introduced alternative models.

4.4. Violation of autoregressive structure and Wishart distribution

This study closely follows the study presented in Section 4.3 but a further violation of
the true model is present in the data generating process. Given a filtration of past obser-
vations F t�1 ¼ fRt�1;Rt�2; :::g we define

~Rt ¼ d�2
gt

Rt (22)

RtjF t�1�Wn �; St=�ð Þ (23)

gt�v2d (24)

St ¼ CC0 þ
Xp
i¼1

BiSt�iB
0
i þ

Xq
i¼1

Ai~Rt�iA
0
i (25)

where RtjF t�1 and gt are independent; the parameters and starting values are given

again in Table 1. Thus, although E½~RtjF t�1� ¼ E½RtjF t�1�; ~Rt does not follow a central-
ized Wishart process, since the conditional distribution is not longer a Wishart distribu-
tion. In order to assess the rejection rates of the considered testing procedures based on
this model, the steps 1-6 of the simulation study presented in Section 4.3 are repeated

with the series fRtg1�t�T replaced by f~Rtg1�t�T for d¼ 10, 20, 30. Note that the case

d ! 1 produces the models presented in 4.3. Again, the procedure is repeated 1000
times and the rejection rates are computed for the noise matrix Ep;q (see, Table 4), the

component-wise partitions EC
p;q and VC

p;q (see, Table 5 and Tables A6–A7 in the

Appendix) as well as for the block partition7 EB
p;q (see, Table A8 in the Appendix) at

nominal significance level a ¼ 5%: Note that all of the considered models deviate from
the process specified under H0.
For n¼ 2 and each value d¼ 10, 20, 30, Table 4 displays rejection rates equal to 1 for

all normality tests applied to Ep;q for each model DCAW(p, q). The multivariate Ljung-
Box tests possess similar rejection rates to those presented in the simulation study of

7Again with column block size 20.
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Section 4.3 for all models. Also, similarly to the study in the previous section, the tests
on mean and variance produce low rejection rates.
Table 5 shows the rejection rates for the component-wise partitions EC

p;q and VC
p;q in

the case of d¼ 30. The results for d¼ 10 and d¼ 20 are found in Tables A6 and A7 in
the Appendix, respectively. The rejection rates are similar for each simulation study
independently of d¼ 10, 20, 30, although they tend to drop with increasing d, regarding
most tests. This is expected since larger values of d correspond to smaller violations to
the assumption of the true DCAW(2,2) model. For each model, the tests on normality
and variance produce high rejection rates regarding most of the components. Rejection
rates for the mean tests and tests on the off-diagonal component e12 tend to be lower in
general. However, rejection rates on the mean tend to be substantially higher than for
the study in the previous subsection, see e.g. Table A6. The univariate Ljung-Box tests
show similar patterns as those observed in the previous simulation study for both the
tests proposed in Section 3 and the benchmark approach, with rejection rates close to 1
for DCAW(0,0) and DCAW(0,1); around 0.2–0.3 for DCAW(1,1) and DCAW(2,1); and
rejection rates at nominal levels for DCAW(1,2) and DCAW(2,2). As such, given a cor-
rectly specified autoregressive structure, applying the benchmark method described in
Section 4.2 will not detect violations to the distributional assumption, while applying
the procedures presented in Section 3 will detect such violations.
Table A8 presents the rejection rates from the block partition EB

p;q with 20 columns

in each block. In general, each test has a rejection rate of 0.09 or above, for every model

Table 4. Rejection rates of the goodness-of-fit tests based on Ep;q in the case of n¼ 2 and d¼ 10,
20, 30.
d ¼ 10

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 1.00 1.00 1.00 1.00 1.00 1.00
Lilliefors 1.00 1.00 1.00 1.00 1.00 1.00
Mean 0 0.00 0.00 0.00 0.00 0.00 0.00
Variance 1 0.00 0.00 0.00 0.00 0.00 0.00
Multivariate Ljung-Box 1.00 1.00 0.32 0.07 0.32 0.06
Multivariate Ljung-Box sq. 1.00 0.96 0.11 0.10 0.11 0.10

d ¼ 20

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 1.00 1.00 1.00 1.00 1.00 1.00
Lilliefors 1.00 1.00 1.00 1.00 1.00 1.00
Mean 0 0.00 0.00 0.00 0.00 0.00 0.00
Variance 1 0.00 0.00 0.00 0.00 0.00 0.00
Multivariate Ljung-Box 1.00 1.00 0.33 0.03 0.33 0.03
Multivariate Ljung-Box sq. 1.00 0.90 0.07 0.07 0.07 0.07

d ¼ 30

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 1.00 1.00 1.00 1.00 1.00 1.00
Lilliefors 1.00 1.00 1.00 1.00 1.00 1.00
Mean 0 0.00 0.00 0.00 0.00 0.00 0.00
Variance 1 0.00 0.00 0.00 0.00 0.00 0.00
Multivariate Ljung-Box 1.00 1.00 0.34 0.04 0.33 0.02
Multivariate Ljung-Box sq. 1.00 0.83 0.07 0.06 0.07 0.06

Data is simulated from (22), and then estimated for DCAW model of order (0,0), (0,1), (1,1), (1,2), (2,1), (2,2). Rejection
rates are reported for each test applied to each model fit. Rejection rates significantly larger than the nominal level
of 5% are emphasized in bold.
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and value of d. As mentioned previously, the rejection rates decrease as d increases and
the violation of the assumption of a pure Wishart distribution becomes smaller.
To summarize, the normality tests on Ep;q presented in Section 3 are able to reject

each of the tested models when the data are generated as in (22) with the values d¼ 10,
20, 30 in 100% of the simulations. The tests on the block and component partitions
similarly produce rejection rates above nominal levels. This is in contrast to the bench-
mark method based on (20) presented in Golosnoy et al. (2012) which is not able to
detect the violations in the DCAW(2,2) model.

5. Empirical application

5.1. Data

The goodness-of-fit testing procedures suggested in Section 3 are applied to evaluate the
CAW model fitted to a series of realized covariance matrices for six stocks traded on
the New York Stock Exchange: American Express Inc. (AXP), Citigroup (C), General
Electric (GE), Home Depot Inc. (HD), International Business Machines (IBM) and
JPMorgan Chase & Co. (JPM). This is the same data set as presented in Chiriac and

Table 5. Rejection rates for the goodness-of-fit tests based on the component-wise partitions EC
p;q

and VC
p;q in the case of n¼ 2 and d¼ 30.

e11 e12 e22 e11 e12 e22
Set: EC

p;q: Test: Anderson-Darling. Set: EC
p;q: Test: Variance 1.

DCAW(0,0) 1.00 0.77 1.00 DCAW(0,0) 1.00 1.00 0.85
DCAW(0,1) 1.00 0.33 1.00 DCAW(0,1) 1.00 1.00 0.98
DCAW(1,1) 1.00 0.17 1.00 DCAW(1,1) 1.00 1.00 1.00
DCAW(1,2) 1.00 0.18 1.00 DCAW(1,2) 1.00 1.00 1.00
DCAW(2,1) 1.00 0.17 1.00 DCAW(2,1) 1.00 1.00 1.00
DCAW(2,2) 1.00 0.18 1.00 DCAW(2,2) 1.00 1.00 1.00

Set: EC
p;q: Test: Lilliefors. Set: EC

p;q: Test: Ljung-Box.

DCAW(0,0) 1.00 0.52 1.00 DCAW(0,0) 1.00 1.00 1.00
DCAW(0,1) 1.00 0.18 0.99 DCAW(0,1) 1.00 1.00 1.00
DCAW(1,1) 0.96 0.10 0.96 DCAW(1,1) 0.27 0.33 0.25
DCAW(1,2) 0.96 0.11 0.95 DCAW(1,2) 0.02 0.06 0.02
DCAW(2,1) 0.96 0.09 0.96 DCAW(2,1) 0.27 0.33 0.25
DCAW(2,2) 0.95 0.12 0.96 DCAW(2,2) 0.01 0.04 0.01

Set: EC
p;q: Test: Shapiro-Wilks. Set: EC

p;q: Test: Ljung-Box sq.

DCAW(0,0) 1.00 0.87 1.00 DCAW(0,0) 1.00 1.00 1.00
DCAW(0,1) 1.00 0.53 1.00 DCAW(0,1) 0.53 0.61 0.66
DCAW(1,1) 1.00 0.32 1.00 DCAW(1,1) 0.06 0.04 0.05
DCAW(1,2) 1.00 0.32 1.00 DCAW(1,2) 0.05 0.04 0.05
DCAW(2,1) 1.00 0.32 1.00 DCAW(2,1) 0.06 0.04 0.05
DCAW(2,2) 1.00 0.32 1.00 DCAW(2,2) 0.05 0.04 0.05

Set: EC
p;q: Test: Mean 0. Set: VC

p;q: Test: Ljung-Box. v11 v12 v22
DCAW(0,0) 0.01 0.00 0.50 DCAW(0,0) 1.00 1.00 1.00
DCAW(0,1) 0.00 0.00 0.22 DCAW(0,1) 1.00 1.00 1.00
DCAW(1,1) 0.00 0.00 0.07 DCAW(1,1) 0.24 0.30 0.23
DCAW(1,2) 0.00 0.00 0.08 DCAW(1,2) 0.02 0.06 0.02
DCAW(2,1) 0.00 0.00 0.07 DCAW(2,1) 0.24 0.30 0.23
DCAW(2,2) 0.00 0.00 0.06 DCAW(2,2) 0.01 0.05 0.01

Data are simulated from (22), and then estimated for DCAW models of order (0,0), (0,1), (1,1), (2,1), (1,2) and (2,2).
Rejection rates are reported for each test applied to each model fit. Rejection rates significantly larger than the nom-
inal level of 5% are emphasized in bold.
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Voev (2011), that also describe how the realized covariance matrices have been com-
puted. The series consists of daily realized covariance matrices in time period from the
1st of January, 2000 to the 30th of July, 2008 resulting in 2156 daily observations. The
realized variance development of each stock over the considered time period is dis-
played in Figure 1. Higher volatilities are present during the period from 2000 to 2003
with a further increase observed at the end of the considered period.

5.2. Fitting the CAW models to data

Using the maximum likelihood method, CAW(p, q) models (as described by (15) and
(16)) of orders p; q � 2 are fitted to the data described in Section 5.1. Since the consid-
ered CAW models employ up to two lagged values, the first two observations are used
for S�1; S0;R�1 and R0: The remaining T�2 ¼ 2154 data points are used to estimate
the parameters. The estimating procedure is conducted first for the lowest lag order

Figure 1. Realized variances of the six stocks traded on the New York Stock Exchange: American
Express Inc. (AXP), Citigroup (C), General Electric (GE), Home Depot Inc. (HD), International Business
Machines (IBM) and JPMorgan Chase & Co. (JPM) for the period from the 1st of January, 2000 to the
30th of July, 2008. The values are obtained as the corresponding diagonal elements rii;t; i ¼ 1; :::; 6 of
the realized covariance matrices Rt for t ¼ 1; :::; T:
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model. Models with higher order lags then use the estimates of the lower order model
as starting values in the numerical maximization of the likelihood function.
Additionally, for each model, a set of several different starting values is considered in
order to control for local maximums. The testing procedures used in Section 4 are
then conducted.
Table 6 presents the p-values of the tests applied to the noise matrix Ep;q derived

from each of the estimated CAW(p, q) models with p; q � 2:8 For almost all of the con-
sidered tests with the exception of the t-test on mean, the null hypothesis of an CAW
model is rejected at significance level a ¼ 0:05 (even 0.01).
Tables A9 and A10 in the Appendix show the p-values for the tests performed on the

component-wise partitions EC
p;q and VC

p;q: Here, the null hypothesis is rejected in most

cases when the tests on normality are employed. However, as the model lag order
increases, fewer tests reject the null hypothesis in general. Note that the univariate
Ljung-Box test based on the partition VC

p;q as in (21) and (17) rejects fewer components

than the same test based on the partition EC
p;q: Such a result can be explained by the

fact that the elements of the vectors in EC
p;q are independent by construction, while the

elements of the vectors in VC
p;q are just uncorrelated. This could influence the power of

the test suggested in Golosnoy et al. (2012).
Furthermore, Table A11 displays the rejection rates of the proposed goodness-of-fit

tests applied to the block partition EB
p;q with block size equal to 20 (resulting in 107

blocks), as described in Section 4. The tests for normality, namely Anderson-Darling
test, Lilliefors test, and Shapiro-Wilk test, possess the average rejection rates of roughly
1 for all of the considered models, while the test on the mean, the test on the variance,
and the test on autocorrelation are less powerful for the lag orders above (0,0). No
rejection rate is however close to 5%, which would support the null hypothesis of each
block having i.i.d standard normal elements.
Further, let p ¼ ðp1; :::; p107Þ0; where pl; l ¼ 1; :::; 107 is the p-value associated with a

specific test applied to column block l. In accordance with the discussion in Section 3.1,
the elements of p will be independent and will each follow a uniform distribution on
½0; 1� under the null hypothesis. In order to illustrate the model fit in different time
periods, the vector p for p-values of the various tests on the block partition of the

Table 6. The p-values of the proposed goodness-of-fit tests on the validity of CAW(p,q) models with
p; q � 2 based on Ep;q:

Test CAW(0,0) CAW(0,1) CAW(1,1) CAW(1,2) CAW(2,1) CAW(2,2)

Anderson-Darling 0.00 0.00 0.00 0.00 0.00 0.00
Lilliefors 0.00 0.00 0.00 0.00 0.00 0.00
Mean 0 0.00 0.61 0.21 0.16 0.14 0.11
Variance 1 0.00 0.00 0.00 0.00 0.00 0.00
Multivariate Ljung-Box 0.00 0.00 0.00 0.00 0.00 0.00
Multivariate Ljung-Box sq. 0.00 0.00 0.00 0.01 0.00 0.01

The data consist of the realized covariance matrices calculated for the six stocks traded on the New York Stock
Exchange: American Express Inc. (AXP), Citigroup (C), General Electric (GE), Home Depot Inc. (HD), International
Business Machines (IBM) and JPMorgan Chase & Co. (JPM) for the period from the 1st of January, 2000 to the 30th of
July, 2008. Bold values indicate that the null hypothesis of a CAW model is rejected at significance level of 5%.

8The lag order (1,0) is again excluded with the same motivation as in Section 4.
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CAW(2,2) model is plotted in Figure 2. The dotted line represents the nominal signifi-
cance level of 5% and as such, a value below this line mean that the null hypohtesis for
the corresponding block, which in turn represents 20 trading days,9 is rejected at signifi-
cance level 5%. The three tests for normality rejects basically every block, with a few
exceptions which takes place mainly in the middle of the time period, namely around
2003–2006. According to Figure 1 this is a period where the realized stock variances are
relatively low. The p-values from the test on the mean is relatively evenly spread over
the time period, while the p-values obtained from the test on the variance tend to be
somewhat clustered for low p-values.

Figure 2. The p-values of the proposed goodness-of-fit tests on the validity of the CAW(2,2) model
based on the column block partition EB

p;q with the block size equal to 20, plotted over time. The data
consist of the realized covariance matrices calculated for the six stocks traded on the New York Stock
Exchange: American Express Inc. (AXP), Citigroup (C), General Electric (GE), Home Depot Inc. (HD),
International Business Machines (IBM) and JPMorgan Chase & Co. (JPM) for the period from the 1st of
January, 2000 to the 30th of July, 2008. The dotted line represents the nominal significance level
of 5%.

9The last block represents 34 trading days.
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In general the suggested testing procedures do not support the statement that the
supplied data can be well fitted with a CAW model of the lag order (2,2) or lower.

6. Conclusion

Model diagnostics plays an important role when a time series model is fitted to
real data. When the model is misspecified, then residuals calculated are usually
autocorrelated. As a result, the classical way to validate the model’s ability to fit
real data is based on an autocorrelation test which is usually done by using the
Ljung-Box test.
Recently, modeling and analyzing high-frequency data have become very popular

topics in financial econometrics (see, e.g., Andersen et al. 2003; Hautsch 2011). Owning
to developments of computer techniques, it is today possible to store and analyze huge
data sets with the aim of improving the performance of holding portfolio. As a result,
the usage of the realized covariance matrix in portfolio theory has become a popular
topic in finance (Hautsch et al. 2015; Callot et al. 2017).
The Wishart autoregressive process has recently been introduced to capture the

dynamics in realized covariance matrices (see, e.g., Gouri�eroux et al. 2009; Golosnoy
et al. 2012; Noureldin et al. 2012; Gorgi et al. 2019; Opschoor et al. 2018; Yu et al.
2017). In order to validate the fit of the model, the Ljung-Box test was considered in
Golosnoy et al. 2012). However, this approach relies only on the first two conditional
moments of the autoregressive Wishart process and, consequently, it cannot detect vio-
lations from the model in higher moments.
In this paper, we suggest an alternative procedure for validating the assumption of

a centralized Wishart process which is based on the extended Barlett decomposition
of a random matrix that has a Wishart distribution. As a result, several procedures
for testing goodness-of-fit for centralized Wishart processes are derived. Since the
model depends on unknown parameters which are estimated by employing the max-
imum likelihood method, the parameter uncertainty should be kept in mind when
the testing procedures are applied to real data of small and moderate sizes. We
investigate this point through simulations and find that the suggested goodness-of-fit
tests are relatively robust to this issue. Finally, an application to a real data set con-
sisting of six stock traded on the New York Stock Exchange is provided. Here, we
found that the conditional autoregressive Wishart process does not provide a good
fit to real data due to deviations from the model assumptions which are present in
higher moments.
Regarding the test methods presented in this paper, one suggestion for future

research include combining several of the suggested tests into one sequential test, for
example in the spirit of Lin and Wu (2017). Another approach is to investigate the per-
formance as process dimensionality increases from moderate to very high.
Moreover, our empirical finding motivates further research in the topic of modeling

the dynamics in the realized covariance matrices which should take into account not
only the conditionally heteroscedastic behavior of the scale matrix of the Wishart distri-
bution, but also possess the ability to capture the dynamics in higher moments.
Although this is a very important topic in financial engineering, the issue remain
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unresolved and require further methodological development and empirical investigation
in the future.
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Appendix

Proof of Theorem 1

The density function of A is given by

f Að Þ ¼ 1

2n�=2Cn
�
2

� � etr �1
2Að ÞjAj ��n�1ð Þ=2dA (26)

where dA is the volume element of A. Following the proof of Theorem 3.2.14 in Muirhead
(1982), we get

tr Að Þ ¼
Xn
j�i

t2ij

jAj ¼
Yn
i¼1

t2ii

dA ¼ 2n
Yn
i¼1

tnþ1�i
ii

n̂

j�i

dtij

Substituting these equalities into (26) leads to

f Að Þ ¼ 1
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or, equivalently,

f Að Þ ¼
Yn
j<i

1ffiffiffiffiffi
2p

p e�
t2
ij
2 dtij
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i¼1

1

2 ��iþ1ð Þ=2C ��iþ1
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which is the joint density of independent random variables tij�Nð0; 1Þ and t2ii�Cð��iþ1
2 ; 2Þ; 1 �

j<i � n: Finally, the support of shape-parameter of the univariate gamma distribution imposes
the condition �>n�1:
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Table A1. Rejection rates for the goodness-of-fit tests based on the component-wise partition EC
p;q

in the case of n¼ 4.
e11 e12 e13 e14 e22 e23 e24 e33 e34 e44

Set: EC
p;q: Test: Anderson-Darling.

DCAW(0,0) 0.73 0.18 0.20 0.21 0.71 0.17 0.17 0.66 0.18 0.63
DCAW(0,1) 0.18 0.06 0.07 0.06 0.16 0.05 0.05 0.15 0.06 0.13
DCAW(1,1) 0.05 0.05 0.05 0.06 0.04 0.06 0.04 0.05 0.06 0.05
DCAW(1,2) 0.05 0.05 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.05
DCAW(2,1) 0.05 0.05 0.05 0.06 0.04 0.06 0.04 0.05 0.06 0.05
DCAW(2,2) 0.06 0.05 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.05

Set: EC
p;q: Test: Lilliefors.

DCAW(0,0) 0.56 0.13 0.13 0.14 0.55 0.11 0.12 0.48 0.12 0.44
DCAW(0,1) 0.13 0.05 0.05 0.05 0.12 0.04 0.04 0.12 0.04 0.10
DCAW(1,1) 0.05 0.04 0.06 0.04 0.03 0.05 0.05 0.05 0.05 0.05
DCAW(1,2) 0.05 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.05
DCAW(2,1) 0.05 0.04 0.06 0.04 0.03 0.05 0.05 0.05 0.04 0.05
DCAW(2,2) 0.05 0.04 0.06 0.05 0.04 0.04 0.04 0.05 0.04 0.05

Set: EC
p;q: Test: Shapiro-Wilks.

DCAW(0,0) 0.83 0.29 0.28 0.30 0.80 0.26 0.27 0.76 0.25 0.71
DCAW(0,1) 0.25 0.08 0.10 0.08 0.24 0.07 0.07 0.20 0.07 0.20
DCAW(1,1) 0.05 0.05 0.06 0.06 0.05 0.05 0.05 0.06 0.05 0.05
DCAW(1,2) 0.05 0.04 0.06 0.07 0.05 0.05 0.05 0.05 0.05 0.05
DCAW(2,1) 0.06 0.05 0.06 0.07 0.04 0.05 0.05 0.06 0.05 0.05
DCAW(2,2) 0.05 0.04 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05

Set: EC
p;q: Test: Mean 0.

DCAW(0,0) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DCAW(0,1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DCAW(1,1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DCAW(1,2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DCAW(2,1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DCAW(2,2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Data are simulated from a DCAW(2,2) model, and then estimated for DCAW models of order (0,0), (0,1), (1,1), (2,1), (1,2)
and (2,2). Rejection rates are reported for each test applied to each model fit. Rejection rates significantly larger than
the nominal level of 5% are emphasized in bold.
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Table A2. Rejection rates for the goodness-of-fit tests based on the component-wise partitions EC
p;q

and VC
p;q in the case of n¼ 4.

e11 e12 e13 e14 e22 e23 e24 e33 e34 e44
Set: EC

p;q: Test: Variance 1.

DCAW(0,0) 0.34 0.30 0.32 0.33 0.20 0.18 0.19 0.29 0.31 0.58
DCAW(0,1) 0.08 0.07 0.08 0.07 0.07 0.05 0.07 0.08 0.07 0.12
DCAW(1,1) 0.04 0.03 0.03 0.03 0.04 0.03 0.04 0.05 0.03 0.04
DCAW(1,2) 0.04 0.03 0.03 0.03 0.04 0.03 0.04 0.05 0.02 0.04
DCAW(2,1) 0.04 0.03 0.03 0.03 0.04 0.03 0.04 0.05 0.03 0.04
DCAW(2,2) 0.04 0.03 0.03 0.03 0.04 0.03 0.04 0.05 0.02 0.04

Set: EC
p;q: Test: Ljung-Box.

DCAW(0,0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DCAW(0,1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DCAW(1,1) 0.32 0.34 0.33 0.31 0.27 0.32 0.28 0.27 0.26 0.23
DCAW(1,2) 0.04 0.04 0.03 0.04 0.03 0.05 0.03 0.04 0.03 0.03
DCAW(2,1) 0.33 0.33 0.33 0.31 0.28 0.30 0.27 0.27 0.26 0.24
DCAW(2,2) 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02

Set: EC
p;q: Test: Ljung-Box sq.

DCAW(0,0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DCAW(0,1) 0.41 0.46 0.47 0.46 0.38 0.42 0.44 0.33 0.38 0.31
DCAW(1,1) 0.06 0.07 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05
DCAW(1,2) 0.07 0.07 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05
DCAW(2,1) 0.06 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
DCAW(2,2) 0.07 0.07 0.05 0.05 0.05 0.04 0.05 0.06 0.05 0.05

Set: VC
p;q: Test: Ljung-Box. v11 v12 v13 v14 v22 v23 v24 v33 v34 v44

DCAW(0,0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DCAW(0,1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DCAW(1,1) 0.33 0.34 0.32 0.30 0.31 0.32 0.31 0.30 0.30 0.28
DCAW(1,2) 0.03 0.04 0.04 0.04 0.03 0.05 0.04 0.03 0.03 0.03
DCAW(2,1) 0.34 0.33 0.31 0.30 0.31 0.31 0.31 0.31 0.29 0.29
DCAW(2,2) 0.01 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02

Data are simulated from a DCAW(2,2) model, and then estimated for DCAW models of order (0,0), (0,1), (1,1), (2,1), (1,2)
and (2,2). Rejection rates are reported for each test applied to each model fit. Rejection rates significantly larger than
the nominal level of 5% are emphasized in bold.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 5083



Ta
bl
e
A
3.

Re
je
ct
io
n
ra
te
s
fo
r
th
e
go

od
ne
ss
-o
f-
fit

te
st
s
ba
se
d
on

th
e
co
m
po

ne
nt
-w
is
e
pa
rt
iti
on

E
C p;
q
in

th
e
ca
se

of
n
¼
6.

e 1
1

e 1
2

e 1
3

e 1
4

e 1
5

e 1
6

e 2
2

e 2
3

e 2
4

e 2
5

e 2
6

e 3
3

e 3
4

e 3
5

e 3
6

e 4
4

e 4
5

e 4
6

e 5
5

e 5
6

e 6
6

Se
t:
E
C p;
q
Te
st
:A

nd
er
so
n-
D
ar
lin
g.

D
CA

W
(0
,0
)

0.
77

0.
18

0.
20

0.
21

0.
20

0.
20

0.
71

0.
17

0.
17

0.
18

0.
18

0.
67

0.
18

0.
17

0.
16

0.
66

0.
15

0.
14

0.
61

0.
14

0.
57

D
CA

W
(0
,1
)

0.
19

0.
08

0.
07

0.
06

0.
07

0.
07

0.
26

0.
07

0.
06

0.
06

0.
09

0.
19

0.
06

0.
05

0.
06

0.
17

0.
06

0.
07

0.
15

0.
06

0.
14

D
CA

W
(1
,1
)

0.
04

0.
04

0.
04

0.
06

0.
05

0.
06

0.
05

0.
05

0.
06

0.
04

0.
06

0.
04

0.
05

0.
04

0.
05

0.
05

0.
05

0.
05

0.
05

0.
06

0.
04

D
CA

W
(1
,2
)

0.
05

0.
04

0.
04

0.
05

0.
05

0.
05

0.
06

0.
05

0.
05

0.
04

0.
05

0.
04

0.
05

0.
04

0.
05

0.
05

0.
05

0.
05

0.
05

0.
06

0.
04

D
CA

W
(2
,1
)

0.
04

0.
04

0.
04

0.
06

0.
05

0.
06

0.
05

0.
05

0.
06

0.
04

0.
06

0.
04

0.
05

0.
04

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

D
CA

W
(2
,2
)

0.
05

0.
03

0.
04

0.
06

0.
05

0.
05

0.
06

0.
05

0.
06

0.
04

0.
06

0.
04

0.
05

0.
04

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

0.
04

Se
t:
E
C p;
q
Te
st
:L
ill
ie
fo
rs
.

D
CA

W
(0
,0
)

0.
61

0.
12

0.
12

0.
13

0.
13

0.
12

0.
55

0.
12

0.
10

0.
10

0.
12

0.
51

0.
10

0.
12

0.
11

0.
47

0.
08

0.
11

0.
43

0.
09

0.
40

D
CA

W
(0
,1
)

0.
16

0.
07

0.
04

0.
05

0.
05

0.
05

0.
21

0.
05

0.
05

0.
05

0.
07

0.
17

0.
05

0.
04

0.
05

0.
12

0.
06

0.
05

0.
12

0.
04

0.
08

D
CA

W
(1
,1
)

0.
04

0.
03

0.
03

0.
05

0.
06

0.
05

0.
04

0.
04

0.
05

0.
04

0.
05

0.
04

0.
04

0.
04

0.
06

0.
04

0.
05

0.
05

0.
04

0.
04

0.
05

D
CA

W
(1
,2
)

0.
04

0.
04

0.
03

0.
05

0.
05

0.
05

0.
05

0.
04

0.
06

0.
04

0.
05

0.
03

0.
04

0.
04

0.
05

0.
05

0.
05

0.
04

0.
05

0.
05

0.
04

D
CA

W
(2
,1
)

0.
04

0.
03

0.
03

0.
05

0.
06

0.
05

0.
04

0.
04

0.
05

0.
04

0.
05

0.
04

0.
04

0.
03

0.
06

0.
04

0.
05

0.
05

0.
04

0.
04

0.
04

D
CA

W
(2
,2
)

0.
04

0.
04

0.
04

0.
05

0.
05

0.
06

0.
04

0.
05

0.
05

0.
04

0.
05

0.
03

0.
04

0.
04

0.
05

0.
04

0.
05

0.
04

0.
05

0.
05

0.
04

Se
t:
E
C p;
q
Te
st
:S
ha
pi
ro
-W

ilk
s.

D
CA

W
(0
,0
)

0.
85

0.
29

0.
30

0.
27

0.
29

0.
29

0.
81

0.
26

0.
25

0.
25

0.
26

0.
77

0.
27

0.
23

0.
25

0.
75

0.
21

0.
24

0.
70

0.
22

0.
68

D
CA

W
(0
,1
)

0.
26

0.
11

0.
10

0.
08

0.
07

0.
09

0.
32

0.
09

0.
09

0.
09

0.
10

0.
26

0.
09

0.
09

0.
09

0.
24

0.
08

0.
08

0.
21

0.
07

0.
18

D
CA

W
(1
,1
)

0.
05

0.
05

0.
04

0.
06

0.
05

0.
06

0.
05

0.
05

0.
06

0.
05

0.
05

0.
04

0.
05

0.
05

0.
05

0.
05

0.
05

0.
06

0.
04

0.
05

0.
06

D
CA

W
(1
,2
)

0.
04

0.
04

0.
05

0.
06

0.
05

0.
05

0.
05

0.
04

0.
06

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

0.
06

0.
04

0.
05

0.
06

D
CA

W
(2
,1
)

0.
04

0.
05

0.
04

0.
06

0.
05

0.
05

0.
05

0.
05

0.
06

0.
05

0.
05

0.
04

0.
05

0.
05

0.
05

0.
05

0.
05

0.
06

0.
04

0.
05

0.
07

D
CA

W
(2
,2
)

0.
04

0.
04

0.
05

0.
06

0.
04

0.
05

0.
05

0.
04

0.
06

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

0.
06

0.
06

0.
05

0.
05

0.
06

Se
t:
E
C p;
q
Te
st
:M

ea
n
0.

D
CA

W
(0
,0
)

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
02

0.
00

0.
01

0.
00

0.
01

0.
01

0.
01

0.
01

0.
02

0.
17

D
CA

W
(0
,1
)

0.
02

0.
00

0.
00

0.
00

0.
00

0.
00

0.
12

0.
02

0.
01

0.
02

0.
02

0.
07

0.
00

0.
01

0.
01

0.
01

0.
00

0.
00

0.
03

0.
00

0.
08

D
CA

W
(1
,1
)

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

D
CA

W
(1
,2
)

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

D
CA

W
(2
,1
)

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

D
CA

W
(2
,2
)

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

D
at
a
ar
e
si
m
ul
at
ed

fr
om

a
D
CA

W
(2
,2
)
m
od

el
,a

nd
th
en

es
tim

at
ed

fo
r
D
CA

W
m
od

el
s
of

or
de
r
(0
,0
),
(0
,1
),
(1
,1
),
(2
,1
),
(1
,2
)
an
d
(2
,2
).
Re
je
ct
io
n
ra
te
s
ar
e
re
po

rt
ed

fo
r
ea
ch

te
st

ap
pl
ie
d
to

ea
ch

m
od

el
fit
.R

ej
ec
tio

n
ra
te
s
si
gn

ifi
ca
nt
ly
la
rg
er

th
an

th
e
no

m
in
al
le
ve
lo

f
5%

ar
e
em

ph
as
iz
ed

in
bo

ld
.

5084 G. ALFELT ET AL.



Ta
bl
e
A
4.

Re
je
ct
io
n
ra
te
s
fo
r
th
e
go

od
ne
ss
-o
f-
fit

te
st
s
ba
se
d
on

th
e
co
m
po

ne
nt
-w
is
e
pa
rt
iti
on

s
E
C p;
q
an
d
V

C p;
q
in

th
e
ca
se

of
n
¼
6.

e 1
1

e 1
2

e 1
3

e 1
4

e 1
5

e 1
6

e 2
2

e 2
3

e 2
4

e 2
5

e 2
6

e 3
3

e 3
4

e 3
5

e 3
6

e 4
4

e 4
5

e 4
6

e 5
5

e 5
6

e 6
6

Se
t:
E
C p;
q
Te
st
:V

ar
ia
nc
e
1.

D
CA

W
(0
,0
)

0.
53

0.
51

0.
49

0.
48

0.
49

0.
49

0.
28

0.
22

0.
22

0.
26

0.
23

0.
20

0.
20

0.
22

0.
21

0.
36

0.
40

0.
36

0.
65

0.
67

0.
87

D
CA

W
(0
,1
)

0.
12

0.
12

0.
14

0.
10

0.
11

0.
13

0.
20

0.
09

0.
08

0.
08

0.
07

0.
14

0.
08

0.
09

0.
08

0.
18

0.
13

0.
12

0.
22

0.
21

0.
33

D
CA

W
(1
,1
)

0.
04

0.
05

0.
04

0.
03

0.
04

0.
04

0.
04

0.
04

0.
04

0.
04

0.
04

0.
05

0.
04

0.
04

0.
04

0.
04

0.
04

0.
04

0.
04

0.
03

0.
03

D
CA

W
(1
,2
)

0.
04

0.
05

0.
04

0.
03

0.
04

0.
04

0.
04

0.
04

0.
04

0.
04

0.
04

0.
05

0.
04

0.
04

0.
04

0.
05

0.
03

0.
04

0.
04

0.
04

0.
04

D
CA

W
(2
,1
)

0.
04

0.
05

0.
04

0.
03

0.
04

0.
04

0.
04

0.
04

0.
04

0.
04

0.
04

0.
05

0.
04

0.
04

0.
04

0.
05

0.
04

0.
04

0.
04

0.
03

0.
04

D
CA

W
(2
,2
)

0.
04

0.
05

0.
03

0.
03

0.
04

0.
04

0.
04

0.
04

0.
04

0.
04

0.
04

0.
05

0.
04

0.
04

0.
04

0.
05

0.
03

0.
04

0.
04

0.
04

0.
04

Se
t:
E
C p;
q
Te
st
:L
ju
ng

-B
ox
.

D
CA

W
(0
,0
)

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

D
CA

W
(0
,1
)

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

D
CA

W
(1
,1
)

0.
31

0.
34

0.
32

0.
32

0.
32

0.
31

0.
30

0.
32

0.
29

0.
31

0.
32

0.
25

0.
25

0.
26

0.
27

0.
24

0.
23

0.
24

0.
20

0.
23

0.
18

D
CA

W
(1
,2
)

0.
04

0.
04

0.
05

0.
05

0.
05

0.
04

0.
03

0.
08

0.
05

0.
05

0.
06

0.
03

0.
06

0.
05

0.
04

0.
04

0.
05

0.
04

0.
05

0.
05

0.
04

D
CA

W
(2
,1
)

0.
32

0.
34

0.
31

0.
32

0.
32

0.
31

0.
30

0.
32

0.
29

0.
30

0.
31

0.
25

0.
24

0.
25

0.
26

0.
25

0.
23

0.
24

0.
20

0.
23

0.
18

D
CA

W
(2
,2
)

0.
02

0.
03

0.
03

0.
03

0.
03

0.
02

0.
02

0.
05

0.
03

0.
03

0.
03

0.
02

0.
04

0.
03

0.
04

0.
03

0.
04

0.
04

0.
03

0.
04

0.
03

Se
t:
E
C p;
q
Te
st
:L
ju
ng

-B
ox

sq
.

D
CA

W
(0
,0
)

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
99

D
CA

W
(0
,1
)

0.
48

0.
52

0.
51

0.
49

0.
50

0.
51

0.
46

0.
50

0.
47

0.
50

0.
51

0.
43

0.
43

0.
45

0.
46

0.
38

0.
37

0.
40

0.
34

0.
36

0.
29

D
CA

W
(1
,1
)

0.
05

0.
05

0.
04

0.
05

0.
05

0.
05

0.
06

0.
06

0.
05

0.
04

0.
06

0.
06

0.
05

0.
05

0.
06

0.
06

0.
05

0.
05

0.
06

0.
06

0.
06

D
CA

W
(1
,2
)

0.
05

0.
06

0.
05

0.
06

0.
05

0.
06

0.
05

0.
06

0.
05

0.
04

0.
05

0.
05

0.
05

0.
05

0.
06

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

D
CA

W
(2
,1
)

0.
05

0.
05

0.
03

0.
05

0.
05

0.
05

0.
06

0.
06

0.
05

0.
04

0.
06

0.
05

0.
05

0.
05

0.
06

0.
06

0.
05

0.
05

0.
06

0.
06

0.
06

D
CA

W
(2
,2
)

0.
05

0.
06

0.
04

0.
05

0.
05

0.
05

0.
06

0.
05

0.
04

0.
04

0.
05

0.
06

0.
05

0.
06

0.
06

0.
05

0.
05

0.
04

0.
05

0.
05

0.
05

v 1
1

v 1
2

v 1
3

v 1
4

v 1
5

v 1
6

v 2
2

v 2
3

v 2
4

v 2
5

v 2
6

v 3
3

v 3
4

v 3
5

v 3
6

v 4
4

v 4
5

v 4
6

v 5
5

v 5
6

v 6
6

Se
t:
V

C p;
q
Te
st
:L
ju
ng

-B
ox
.

D
CA

W
(0
,0
)

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

D
CA

W
(0
,1
)

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

D
CA

W
(1
,1
)

0.
33

0.
34

0.
32

0.
31

0.
32

0.
31

0.
33

0.
34

0.
31

0.
33

0.
34

0.
30

0.
29

0.
30

0.
28

0.
32

0.
31

0.
29

0.
28

0.
26

0.
29

D
CA

W
(1
,2
)

0.
04

0.
04

0.
04

0.
04

0.
05

0.
04

0.
03

0.
06

0.
04

0.
05

0.
06

0.
04

0.
05

0.
04

0.
04

0.
03

0.
05

0.
04

0.
03

0.
04

0.
04

D
CA

W
(2
,1
)

0.
34

0.
34

0.
32

0.
30

0.
31

0.
31

0.
34

0.
33

0.
30

0.
33

0.
34

0.
30

0.
28

0.
29

0.
27

0.
32

0.
30

0.
28

0.
28

0.
26

0.
29

D
CA

W
(2
,2
)

0.
02

0.
03

0.
03

0.
03

0.
03

0.
02

0.
02

0.
04

0.
03

0.
03

0.
05

0.
02

0.
03

0.
04

0.
03

0.
02

0.
04

0.
04

0.
02

0.
03

0.
03

D
at
a
ar
e
si
m
ul
at
ed

fr
om

a
D
CA

W
(2
,2
)
m
od

el
,a

nd
th
en

es
tim

at
ed

fo
r
D
CA

W
m
od

el
s
of

or
de
r
(0
,0
),
(0
,1
),
(1
,1
),
(2
,1
),
(1
,2
)
an
d
(2
,2
).
Re
je
ct
io
n
ra
te
s
ar
e
re
po

rt
ed

fo
r
ea
ch

te
st

ap
pl
ie
d
to

ea
ch

m
od

el
fit
.R

ej
ec
tio

n
ra
te
s
si
gn

ifi
ca
nt
ly
la
rg
er

th
an

th
e
no

m
in
al
le
ve
lo

f
5%

ar
e
em

ph
as
iz
ed

in
bo

ld
.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 5085



Table A5. Rejection rates for the goodness-of-fit tests based on the column block partition EB
p;q in

the case of n¼ 2, 4, 6.
n ¼ 2

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 0.07 0.05 0.05 0.05 0.05 0.05
Lilliefors 0.06 0.05 0.05 0.05 0.05 0.05
Shapiro-Wilks 0.07 0.05 0.05 0.05 0.05 0.05
Mean 0 0.40 0.19 0.05 0.05 0.05 0.05
Variance 1 0.22 0.08 0.05 0.05 0.05 0.05

n ¼ 4

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 0.09 0.05 0.05 0.05 0.05 0.05
Lilliefors 0.08 0.05 0.05 0.05 0.05 0.05
Shapiro-Wilks 0.10 0.06 0.05 0.05 0.05 0.05
Mean 0 0.39 0.19 0.05 0.05 0.05 0.05
Variance 1 0.29 0.10 0.05 0.05 0.05 0.05

n ¼ 6

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 0.11 0.06 0.05 0.05 0.05 0.05
Lilliefors 0.09 0.05 0.05 0.05 0.05 0.05
Shapiro-Wilks 0.13 0.07 0.05 0.05 0.05 0.05
Mean 0 0.38 0.18 0.05 0.05 0.05 0.05
Variance 1 0.33 0.12 0.05 0.05 0.05 0.05

Data are simulated from a DCAW(2,2) model, and then estimated for DCAW models of order (0,0), (0,1), (1,1), (2,1), (1,2)
and (2,2). Rejection rates are reported for each test applied to each model fit. Rejection rates significantly larger than
the nominal level of 5% are emphasized in bold.

Table A6. Rejection rates for the goodness-of-fit tests based on the component-wise partitions EC
p;q

and VC
p;q in the case of n¼ 2 and d¼ 10.

e11 e12 e22 e11 e12 e22
Set: EC

p;q: Test: Anderson-Darling. Set: EC
p;q: Test: Variance 1.

DCAW(0,0) 1.00 1.00 1.00 DCAW(0,0) 1.00 1.00 1.00
DCAW(0,1) 1.00 1.00 1.00 DCAW(0,1) 1.00 1.00 1.00
DCAW(1,1) 1.00 0.97 1.00 DCAW(1,1) 1.00 1.00 1.00
DCAW(1,2) 1.00 0.97 1.00 DCAW(1,2) 1.00 1.00 1.00
DCAW(2,1) 1.00 0.97 1.00 DCAW(2,1) 1.00 1.00 1.00
DCAW(2,2) 1.00 0.97 1.00 DCAW(2,2) 1.00 1.00 1.00

Set: EC
p;q: Test: Lilliefors. Set: EC

p;q: Test: Ljung-Box.

DCAW(0,0) 1.00 1.00 1.00 DCAW(0,0) 1.00 1.00 1.00
DCAW(0,1) 1.00 0.94 1.00 DCAW(0,1) 1.00 1.00 1.00
DCAW(1,1) 1.00 0.80 1.00 DCAW(1,1) 0.24 0.35 0.22
DCAW(1,2) 1.00 0.80 1.00 DCAW(1,2) 0.01 0.12 0.02
DCAW(2,1) 1.00 0.81 1.00 DCAW(2,1) 0.24 0.35 0.23
DCAW(2,2) 1.00 0.80 1.00 DCAW(2,2) 0.01 0.10 0.01

Set: EC
p;q: Test: Shapiro-Wilks. Set: EC

p;q: Test: Ljung-Box sq.

DCAW(0,0) 1.00 1.00 1.00 DCAW(0,0) 1.00 1.00 1.00
DCAW(0,1) 1.00 1.00 1.00 DCAW(0,1) 0.67 0.77 0.84
DCAW(1.1) 1.00 0.99 1.00 DCAW(1,1) 0.08 0.06 0.07
DCAW(1,2) 1.00 0.99 1.00 DCAW(1,2) 0.07 0.05 0.06
DCAW(2,1) 1.00 0.99 1.00 DCAW(2,1) 0.08 0.06 0.07
DCAW(2,2) 1.00 0.99 1.00 DCAW(2,2) 0.07 0.06 0.06

Set: EC
p;q: Test: Mean 0. Set: VC

p;q: Test: Ljung-Box. v11 v12 v22
DCAW(0,0) 1.00 0.05 1.00 DCAW(0,0) 1.00 1.00 1.00
DCAW(0,1) 1.00 0.00 1.00 DCAW(0,1) 1.00 1.00 1.00
DCAW(1,1) 1.00 0.00 1.00 DCAW(1,1) 0.15 0.23 0.14
DCAW(1,2) 1.00 0.00 1.00 DCAW(1,2) 0.02 0.11 0.01
DCAW(2,1) 1.00 0.00 1.00 DCAW(2,1) 0.16 0.23 0.14
DCAW(2,2) 1.00 0.00 1.00 DCAW(2,2) 0.01 0.10 0.01

Data are simulated from (22), and then estimated for DCAW models of order (0,0), (0,1), (1,1), (2,1), (1,2) and (2,2).
Rejection rates are reported for each test applied to each model fit. Rejection rates significantly larger than the nom-
inal level of 5% are emphasized in bold.
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Table A7. Rejection rates for the goodness-of-fit tests based on the component-wise partitions EC
p;q

and VC
p;q in the case of n¼ 2 and d¼ 20.

e11 e12 e22 e11 e12 e22
Set: EC

p;q: Test: Anderson-Darling. Set: EC
p;q: Test: Variance 1.

DCAW(0,0) 1.00 0.94 1.00 DCAW(0,0) 1.00 1.00 0.98
DCAW(0,1) 1.00 0.66 1.00 DCAW(0,1) 1.00 1.00 1.00
DCAW(1,1) 1.00 0.40 1.00 DCAW(1,1) 1.00 1.00 1.00
DCAW(1,2) 1.00 0.41 1.00 DCAW(1,2) 1.00 1.00 1.00
DCAW(2,1) 1.00 0.39 1.00 DCAW(2,1) 1.00 1.00 1.00
DCAW(2,2) 1.00 0.41 1.00 DCAW(2,2) 1.00 1.00 1.00

Set: EC
p;q: Test: Lilliefors. Set: EC

p;q: Test: Ljung-Box.

DCAW(0,0) 1.00 0.79 1.00 DCAW(0,0) 1.00 1.00 1.00
DCAW(0,1) 1.00 0.36 1.00 DCAW(0,1) 1.00 1.00 1.00
DCAW(1,1) 1.00 0.19 1.00 DCAW(1,1) 0.26 0.34 0.25
DCAW(1,2) 1.00 0.18 1.00 DCAW(1,2) 0.02 0.08 0.02
DCAW(2,1) 1.00 0.19 1.00 DCAW(2,1) 0.27 0.33 0.25
DCAW(2,2) 1.00 0.18 1.00 DCAW(2,2) 0.01 0.06 0.01

Set: EC
p;q: Test: Shapiro-Wilks. Set: EC

p;q: Test: Ljung-Box sq.

DCAW(0,0) 1.00 0.98 1.00 DCAW(0,0) 1.00 1.00 1.00
DCAW(0,1) 1.00 0.82 1.00 DCAW(0,1) 0.58 0.66 0.75
DCAW(1,1) 1.00 0.60 1.00 DCAW(1,1) 0.06 0.06 0.07
DCAW(1,2) 1.00 0.60 1.00 DCAW(1,2) 0.04 0.05 0.06
DCAW(2,1) 1.00 0.60 1.00 DCAW(2,1) 0.06 0.06 0.07
DCAW(2,2) 1.00 0.60 1.00 DCAW(2,2) 0.05 0.05 0.06

Set: EC
p;q: Test: Mean 0. Set: VC

p;q: Test: Ljung-Box. v11 v12 v22
DCAW(0,0) 0.30 0.00 0.97 DCAW(0,0) 1.00 1.00 1.00
DCAW(0,1) 0.02 0.00 0.98 DCAW(0,1) 1.00 1.00 1.00
DCAW(1,1) 0.00 0.00 0.95 DCAW(1,1) 0.23 0.27 0.22
DCAW(1,2) 0.00 0.00 0.93 DCAW(1,2) 0.01 0.08 0.02
DCAW(2,1) 0.00 0.00 0.95 DCAW(2,1) 0.23 0.27 0.22
DCAW(2,2) 0.00 0.00 0.93 DCAW(2,2) 0.01 0.06 0.01

Data are simulated from (22), and then estimated for DCAW models of order (0,0), (0,1), (1,1), (2,1), (1,2) and (2,2).
Rejection rates are reported for each test applied to each model fit. Rejection rates significantly larger than the nom-
inal level of 5% are emphasized in bold.

Table A8. Rejection rates for the goodness-of-fit tests based on the column block partition EB
p;q for

the block size 20, n¼ 2, and d¼ 10, 20, 30.
d ¼ 10

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 0.31 0.33 0.36 0.36 0.36 0.36
Lilliefors 0.24 0.26 0.28 0.28 0.28 0.28
Shapiro-Wilks 0.34 0.39 0.41 0.41 0.41 0.42
Mean 0 0.52 0.30 0.12 0.12 0.12 0.12
Variance 1 0.52 0.33 0.25 0.25 0.25 0.25

d ¼ 20

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 0.16 0.16 0.16 0.16 0.16 0.16
Lilliefors 0.13 0.12 0.12 0.12 0.12 0.12
Shapiro-Wilks 0.19 0.20 0.21 0.21 0.21 0.21
Mean 0 0.49 0.27 0.10 0.10 0.10 0.10
Variance 1 0.38 0.20 0.14 0.14 0.14 0.14

d ¼ 30

Test DCAW(0,0) DCAW(0,1) DCAW(1,1) DCAW(1,2) DCAW(2,1) DCAW(2,2)

Anderson-Darling 0.12 0.11 0.11 0.11 0.11 0.11
Lilliefors 0.10 0.09 0.09 0.09 0.09 0.09
Shapiro-Wilks 0.14 0.14 0.14 0.14 0.14 0.14
Mean 0 0.48 0.26 0.09 0.09 0.09 0.09
Variance 1 0.32 0.16 0.10 0.10 0.10 0.12

Data are simulated from (22), and then estimated for DCAW models of order (0,0), (0,1), (1,1), (2,1), (1,2) and (2,2).
Rejection rates are reported for each test applied to each model fit. Rejection rates significantly larger than the nom-
inal level of 5% are emphasized in bold.
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Table A11. Average rejection rates of the proposed goodness-of-fit tests on the validity of CAW(p,q)
models with p; q � 2 based on the column block partition EB

p;q with the block size equal to 20.
Test CAW(0,0) CAW(0,1) CAW(1,1) CAW(1,2) CAW(2,1) CAW(2,2)

Anderson-Darling 1.00 0.97 0.98 0.98 0.97 0.97
Lilliefors 1.00 0.94 0.95 0.96 0.96 0.95
Shapiro-Wilks 1.00 0.99 0.98 0.98 1.00 0.98
Mean 0 0.95 0.63 0.30 0.31 0.32 0.34
Variance 1 0.93 0.72 0.70 0.69 0.72 0.69
Multivariate Ljung-Box 0.95 0.52 0.55 0.59 0.56 0.58
Multivariate Ljung-Box sq. 0.86 0.34 0.37 0.36 0.36 0.38

The data consist of the realized covariance matrices calculated for the six stocks traded on the New York Stock
Exchange: American Express Inc. (AXP), Citigroup (C), General Electric (GE), Home Depot Inc. (HD), International
Business Machines (IBM) and JPMorgan Chase & Co. (JPM) for the period from the 1st of January, 2000 to the 30th of
July, 2008. Rejection rates significantly larger than 5% is emphazised in bold.
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