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Quantifying the Impact of Unobserved Heterogeneity
on Inference from the Logistic Model

SALMA AYIS

Department of Social Medicine, University of Bristol,
Bristol, UK

While consequences of unobserved heterogeneity such as biased estimates of binary
response regression models are generally known; quantifying these and awareness
of situations with more serious impact on inference is however, remarkably lacking.
This study examines the effect of unobserved heterogeneity on estimates of the
standard logistic model. An estimate of bias was derived for the maximum likelihood
estimator [, and simulated data was used to investigate a range of situations that
influence size of bias due to unobserved heterogeneity. It was found that the position
of the probabilities, along the logistic curve, and the variance of the unobserved
heterogeneity, were important determinants of size of bias.

Keywords Biased estimate; Logistic model; Unobserved heterogeneity.

Mathematics Subject Classification Primary 62J12; Secondary 62P10.

1. Introduction

Theoretical models, such as health modes, generally conceptualize outcomes as
a result of interaction among a complex set of components including biological,
genetic, behavioral, and socio-economics (Mosley and Chen, 2003; World Health
Organization, 2001). In practical situations of data analysis, however, it is not
possible to account for all variables that result in an outcome by including these as
explanatory variables in a statistical model. Even in the richest model specification,
several factors would be unobserved, immeasurable or unknown, and some of
these would be of high importance to the resulting outcome (Lee and Lee, 2003;
Zohoori and Savitz, 1997). Nonetheless, it is not uncommon in many specialized
journals to find some conclusions that were reached on the basis of inference
from observed variables, assuming unobserved heterogeneity is of little relevance.
Economists were puzzled for nearly two decades by the spurious positive association
between drinking alcohol (medically known as drug with depressant properties and
is unlikely to positively affect productivity) and high wage, where drinkers were
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persistently found to earn more than alcohol abstainers, the association was reversed
by the introduction of individual specific fixed effect, which rid results of bias due
to time invariant unobserved heterogeneity (Peters, 2004).

Unobserved factors whether environmental or personal may have a large effect
on outcomes of relevance (for example, health, economics, social). Ignoring such
effects may lead to the identification of incorrect risk factors, in addition the
magnitude of the association of these may be so seriously biased and as a result
conclusions may be misleading.

The objectives of this study were to quantify bias of the maximum likelihood
(ML) estimate, of a standard logistic model due to un-modeled unobserved
heterogeneity, and to highlight situations where the impact of such bias was more
serious. Using Taylor series theory, an approximate estimate of bias was derived
then simulation was used to investigate situations that were thought to affect the
size of bias. The importance of higher-order terms of the derived approximation was
also examined under various situations, including different variance of unobserved
heterogeneity and differing positions for the probabilities of outcome within the
logistic curve. The estimation described was confined to the case of a single binary
explanatory variable x, a binary response y, and unobserved heterogeneity that was
linked to each individual.

It was found that in most situations the first-order approximation defined as
J,, provides an adequate approximation of bias due to unobserved heterogeneity.
At special situations with large variance and large difference between the two
probabilities, however, the first-order approximation becomes inadequate, and does
worse as the difference between the two probabilities increases.

2. Methods

2.1. Assumptions and Models

We consider a hypothetical simple example, i.e., lung cancer, as an outcome,
and smoking as the only explanatory variable. It was also assumed that there
are other factors that were likely to cause lung cancer but these were either
unobserved, difficult to measure, or were totally unknown. These may include
some genetic factors, personal differences in diet, childhood exposures, lifestyle,
or other individual specific factors. In a statistical model, the relationship may be
expressed as:

y=f(x, &), (2.0)

where y was the outcome, x was the observed binary explanatory variable, and &
was the unobserved variable or variables. The conditional expectation of y given x
and g, may be written as:

E(y[x, &) = h(By+ frx + &) = h(n). 2.1

Under the linear model assumptions, the estimates of ff; will be unbiased whether
g, was considered by the model or not. At other situations, where nonlinear models
such as the logistic regression model (Agresti, 2002) were used, the effect of the
omission of & on estimates was, however, different. The situation with a missing
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binary variable was described before (Gail et al., 1984). Here, we shall consider
the situation, where the omitted variable was continuous which is quite common in
many research areas, such as health. The probability of positive outcome (response)
in our example with one explanatory variable x, may be written as:

pi(x) =pY =1[X=1x) (2.2)
and the logit as:
logit[p; (x)] = log (fl—(")) — YB. 2.3)
1 —pi(x)

The maximum likelihood (ML) estimate equation for such a model may be
written as:

~

B =logn,p; —logn,(1 — p;) —lognyp, + log ny(1 — py), (24)

where n; and n, were the numbers of subjects exposed (X = 1) and unexposed
(X = 0), respectively, and the conditional probabilities, p; = p(Y = 1| X = 1) and
Do = p(Y = 1] X =0), are the probabilities of positive response, among the exposed
and unexposed subjects, respectively.

2.2. Estimation of Bias, Using Taylor Series Expansion:
The Uncorrelated Case

We consider the situation where sampled observations were identically
independently distributed (IID), expected value of y, E(Y) exists, X was a binary
variable (0/1), and & was a random variable that was unobserved but has an
influence on the response y. The unobserved term was assumed to follow a normal
distribution, with mean zero and a variance ¢2. The maximum likelihood estimator,
B for the logistic model, with one explanatory variable x, was first obtained
ignoring unobserved heterogeneity; the effect of unobserved heterogeneity, € on the
response was then brought in, and the expected value of the (ML) estimator was
evaluated again. Taylor series expansion was used and the estimates were compared
(ignoring unobserved heterogeneity and including the influence of the term on
the response y). The derivation showed that the (ML) estimator is biased due to
un-modeled unobserved heterogeneity and the bias may be approximated by a first
order term J,, of Taylor series as follows:

Ve e b

The bias may also be approximated by the first- and second-order terms, J, + 0,
and/or by first-, second-, and third-order terms, ¢, + o, + d;, where J; for i =1, 2,
and 3 together with details of the terms g,(p,) and g,(p,) were fully described in
Appendix A, was the derivation steps.

2.5)
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2.3. Simulation

Simulation was used to examine situations that were thought to affect the severity
of bias. Data was simulated from a logistic model with a response y, an explanatory
variable x, and an extra term representing unobserved heterogeneity. A Fortran
program was written to generate data from a logit function of the form:

log{ P }=ﬁo+x;ﬁ1+s,-, 2.6)
1 —p;

where X; is a vector of a binary variable for subjects j=1,2,...,n,
p; = p(y; = 1| x;) is the conditional probability, 8, and 8, are the logistic regression
parameters, and &; an extra term representing unobserved heterogeneity, assumed to
be normally distributed random variable with zero mean and a variance o2. Several
parameter values were considered, so that they cover a range of probabilities,
including situations where one of the probabilities was 0.5, the two probabilities
were lying on one side of 0.5, and where they were lying further apart on the two
sides of 0.5. We also considered a range of values for the variance of the unobserved
heterogeneity term. The standard logistic model was then fitted to predict the
response y, using x as the only explanatory variable, in order to detect the effect of
ignoring unobserved heterogeneity on the estimated parameter, . Estimates were
calculated from 100 simulations, each based on a sample of 1,000 of identically
independently distributed (IID) individuals.

3. Results

3.1. Theoretical Bias: The Effect of Position of the Two Probabilities

We examined the size of bias with focus on the importance of first-, second-,
and third-order terms in the overall bias approximation. Table 1 illustrates the
contribution of each term under varying situations. Different positions of the two

Table 1
Theoretical contribution of first-, second-, and third-order terms to
the approximation of bias due to unobserved heterogeneity, with
variance ¢2 = 1.0

Po> P1 0 0, 03
0.73, 0.82 —0.08 0.02 0.0
0.88, 0.99 —0.28 0.13 —0.03
0.73, 0.88 —0.15 0.04 —0.01
0.50, 0.38 —0.08 0.0 0.0
0.50, 0.73 —0.18 0.0 0.0
0.50, 0.82 —0.26 0.02 —0.01
0.50, 0.92 —0.39 0.09 —0.02
0.38, 0.62 —0.20 0.0 0.0
0.27, 0.73 —0.36 0.01 0.0

0.12, 0.88 —0.67 0.10 —0.03
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probabilities were examined, while the variance of unobserved heterogeneity was
kept fixed at 1.0. The positions considered include: (i) the two probabilities lie on
one side of 0.5 of the logistic curve; (ii) one of the probabilities is 0.5; and (iii) the
two probabilities lie on the opposite side of 0.5.

For all three situations, the first term 6, was dominant, the second-order
term is of less importance, and the third-order term has a very small contribution
that may be safely ignored at almost all situations. There are, however, special
situations where the second-order term becomes more important, for example, as
one probability approaches 0.9.

Table 2
A comparison between theoretical bias and numerical (simulation) bias, for the
(MLH) estimator f, of the logistic model, for various probabilities, and for a range
of variance (0.01-1.0) for the unobserved heterogeneity term &

Theoretical bias Simulation bias
Variance
o> 5, 5, 5,  Total Bias f—8 95% C.1 Rej%  (po. p1)
1.0 -0.12 0.0 0.0 —0.12 -0.12 —0.15, —0.09 13 0.62, 0.73
0.75 —-0.07 0.01 0.0 —0.06 -0.07 —0.10, —0.04 12
0.5 —-0.04 0.0 0.0 —-0.05 —0.05 —0.06, 0.0 7
0.1 —-0.01 0.0 0.0 —0.01 —0.01 —0.04,0.02 6
0.01 0.0 0.0 0.0 0.0 0.01 —0.03,0.03 3
1.0 -0.39 0.11 -0.03 -0.31 -0.33 -0.36, —0.30 36 0.62, 0.95
0.75 -0.29 0.06 -0.01 -0.24 -0.23 -0.27, -0.19 17
0.5 -0.19 0.02 0.0 —0.17 —0.15 -0.19, —0.11 15
0.10 —-0.03 0.0 0.0 —-0.03 -0.04 —0.09, 0.01 6
0.01 0.0 0.0 0.0 0.0 0.05 0.0, 0.10 4
1.0 —-0.09 0 0 -0.10 —0.08 —0.10, —0.06 12 0.5, 0.62
0.75 -0.07 0 0 -0.07 —0.06 —0.08, —0.04 8
0.5 -0.05 0 0 —0.05 —0.05 —0.07, —0.03 5
0.1 -0.01 0 0 —0.01 0 —0.03,0.03 4
0.01 0.0 0 0 0.0 0.01 —0.02, 0.02 2
1.0 -0.34 0.05 -0.01 -0.30 -0.29 -0.32, -0.26 49 0.5, 0.88
0.75 -0.27 0.03 -0.01 -0.24 -0.23 -0.27, —0.21 27
0.5 -0.18 0.01 0 -0.17 -0.16 -0.19, —0.13 14
0.1 -0.04 0 0 —-0.04 —0.03 —0.06, 0.0 4
0.01 0 0 0 0.0 -0.01 —0.02,0.02 3
1.0 —-048 0.11 —-0.03 —-0.40 -0.39 -0.43, —0.35 49 0.5, 0.95
0.75 -0.36  0.04 -0.01 -0.32 -0.31 —0.35, -0.27 32
0.5 -0.25 0.04 0 -0.21 -0.20 —-0.24, —0.16 21
0.1 -0.05 0 0 —0.04 -0.03 -0.08, 0.02 7
0.01 0.0 0 0 0 0.06 0.01, 0.11 5
1.0 -020 0 0 -0.20 -0.17 -0.19, —0.15 20 0.38, 0.62
0.75 -0.15 0 0 —0.15 -0.14 -0.17, —-0.11 18
0.5 -0.10 0 0 -0.10 -0.10 —0.13, —0.07 13
0.10 -0.02 0 0 -0.02 —0.03 —0.06, 0.0 10
0.01 0 0 0 0 .03 —0.01, 0.04 3

Note: 95% C.1 : upper and lower 95% confidence intervals for the simulated bias.
Rej%: the number of times, in percentage that the true parameter f, lied outside the 95%
confidence intervals of the simulated estimator f5.
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3.2. Simulation Results: Theoretical and Numerical Bias

Table 2, reports the average estimates of 100 simulations, each based on a sample
of size 1,000. The table examined various positions for the two probabilities, and a
range of variance for unobserved heterogeneity (1.0-0.01) including the special case
where unobserved heterogeneity, was almost constant (¢ = 0.01). Three situations
regarding the position of the two probabilities were covered as described earlier.
A comparison was then drawn between the theoretical bias, and the numerical bias,
which was calculated from the simulation. The 95% confidence intervals for the
simulated bias were reported and the number of times the confidence intervals of
the estimate f, fail to cover the true parameter § was reported as percentage rejected
(Rej%). The main findings may summarized as:

1. The bias was well approximated by the first-order term at most of the situations
considered.

2. The bias becomes more serious as the difference between the two probabilities
gets larger, especially as one probability gets closer to 0.9 (the situation with one
probability approaching 0.1 is identical) or where the two probabilities lie further
apart at the two sides of the logistic curve.

3. The bias was more serious for relatively large variance of unobserved
heterogeneity, 1.0 and 0.75, from the range of values considered.

4. Contributions from the second-order term to the bias approximation become
of some importance at special situation where the difference between the two
probabilities was large, and the variance of unobserved heterogeneity was
relatively large.

5. For small variance of unobserved heterogeneity, the bias was small and the
percentage of rejections was modest.

6. For the special case of unobserved heterogeneity with variance = 0.01, the bias
either disappeared or became negligible, and the percentage of estimates outside
the coverage property of § was particularly small, less than 5% in most cases.

4. Discussion

Much attention in the 1980’s, and after, was given to the asymptotic bias of the
maximum likelihood (ML) estimators of binary response regression models, that
are widely used to describe associations between binary outcome and explanatory
variables in trials and surveys. In general, ML estimators may not hold in small and
finite samples, as shown by Anderson and Richardson (1979) where a simulation
was used to investigate bias of the logistic model estimates, the study found that
bias can be substantial if the sample size is small, a formulae for correction was
developed. Another similar study (Griffiths et al., 1987) examined the bias and other
sample properties such as mean square error based on three alternative covariance
matrix estimators for the Probit model, also reached the same conclusion with
regard to the bias. A simpler formula using Taylor series expansion for correction
of bias in logistic ML estimate was also developed by Copas (1988). For exponential
family such as the logistic model, the bias was of order O(1/n) suggesting that for
large samples it was negligible relative to the standard errors of the estimates, the
bias was treated by Jeffery’s priors’ as reported in McCullagh and Nelder (1989)
and Firth (1992). A set of GLIM macros was developed to reduce bias (Firth, 1993;
Steyerberg and Eijkemans, 2004), but the reduction achieved was reported to be
small.
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Another issue of importance to the (ML) estimation was the deviation of data
from the assumed identical independent distribution, that was addressed in survey
methodology and procedures for correction of estimates were developed (Skinner
and Smith, 1989).

Of no less importance was the problem of unobserved heterogeneity, although
awareness of the problem has recently increased (Aprahamian et al., 2007; Arana
and Leon, 2006; Cramer, 2007), but still many influential articles continue to
report important findings ignoring the possibility of any impact of unobserved
heterogeneity on these findings. In practice, in almost any biological investigation,
there are factors (exogenous or endogenous, independent of a biological process,
or part of it, time varying or time invariant, personal or contextual) that would be
unobserved. Using nonlinear models under such situations lead to biased estimates
of population parameters.

Here we present the case with unobserved heterogeneity that was linked
to individuals (for example, taste, charisma, emotions), another scenario is
where unobserved heterogeneity was correlated, that may occur with repeated
measurements within individual, or due to clusters such as household (family related
gene, for example), more details on the correlated case were reported in an earlier
study (Ayis, 1995) where it was shown that the leading term of bias approximation
for the correlated case was the same as that for the non correlated. An extra term,
due to replications, however, becomes important if the number of clusters was small,
and where the two probabilities lie further apart within the logistic curve.

While there are situations where estimates from the logistic model may be fairly
robust to unobserved heterogeneity, there are others where the problem deserves
more attention. For situations with outcomes such as fertility or incidence of disease,
where all of the probabilities were on the same side of 0.5, the potential for bias
was there, but perhaps not as bad as where extreme probabilities occur in both tails,
for example (p, < 0.2, p, > 0.8). The work by Copas (1988) is also relevant to the
latter situation of extreme probabilities, although the assumption was that extreme
values occur due to mis-recording, that is where the values of the response “y” was
being transposed in error between 0 and 1, rather than due to the nature of the
association between the response and the explanatory variable we present. Mont
Carlo simulation was used to examine the sensitivity of different binary response
models to such extreme values of probabilities, a model was proposed to allow for
robust estimation where a small number of outcomes was being mis-recorded, and
techniques for diagnostics where developed. For situations like the one we present
in this study, extreme values will be more common, but detection of such values
may help in assessing the quality of the estimates and possibly in whether to use
alternative methods at situations were the bias is serious.

The misspecification bias of the logistic model, due to unobserved heterogeneity
described in this study, is similar to the misspecification bias due to incorrectly
assuming the error term was logistically distributed when it was not, as described
in Horowitz (1993), where the effect on estimates was measured using simulation.
The bias was found to be small as long as the assumed error distribution has
the same qualitative shape as the true distribution (unimodal for the logistic case
considered) and more serious when the true distribution of the error term was
bimodal or heteroskedastic. These findings suggest the need to explore the effect of
other forms of distribution on the bias derived in this study. Similar findings were
shown by Arana and Leon (2005) where a Monte-Carlo simulation was used to test
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the performance of a Bayesian mixture normal distribution (semi parametric model),
with other parametric models (including the logit) and nonparametric models, using
alternative assumptions for the error distribution and using different sample sizes,
when data exhibit unobserved heterogeneity. The mean square error (MSE) in
all models and for all sample sizes was found to be considerably large reflecting
the difficulty in modeling this type of data. The Bayesian specification, however,
performed better than the competing models for small as well as for large samples,
and substantially reduces the bias and the MSE, the improvements in bias was larger
for small samples.

Misspecification bias due to unobserved heterogeneity can seriously affect
estimates from the logistic model as well as other binary regression models. Using
panel data and suitable random effect models that allow for individual fixed
effect adjustment is a solution, but obtaining such data may not always be easy.
Attempting other semiparametric models such as Bayesian normal mixture model
seems to be an appealing approach, especially as suitable software are rapidly
developing. Further work is needed to examine the impact on estimates in real
situations where there are several explanatory variables often correlated. Methods
of detection may also be developed to assess the need for alternative more flexible
models, at situations where unobserved heterogeneity is likely to have more serious
impact on the estimates due to data structure, before drawing inference that might
be misleading.

Appendix A

Consider a MLH estimator, [3 for a logistic model with binary response y and a
single binary explanatory variable x,

B =logn,p; —logn (1 — p;) — log nypy + log ng(1 — py). (A.1)

We may rewrite the first term of the right-hand side (R.H.S) of Eq. (A.1) as follows:

logn,p, = lognlpl{l + %} (A2)
1

Using Taylor series expansion, we rewrite Eq. (A.2) as follows:

A 1(5 — 2 4 (p — 3
logn,p, = logn,p, + LA G 2 S 4} 4= h=n +...HO.T.
P 2 D1 3 P1 (A.3)

I IT II1

The symbols, I, I, and III were introduced to make referral to the original, more
complex terms simpler, each term will be manipulated by algebraic procedures
separately, (H.O.T. stands for higher-order terms). We first consider term I; we
rewrite it in a form that involves the response y;

{M}ZLZ{YU_IH}_ lplzyu—l. "

P n P1 ny
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To appreciate the effect of unobserved heterogeneity defined by term &, we consider
the conditional expectation of the response y,; given &, we evaluate the expectation
of each of the three terms, I, I, and III, and then collecting terms with common
powers of ¢,. Some preliminary results are needed for the expectation and these
will be described in this section. We first consider the expectation of the response y,
given unobserved heterogeneity &,

E(ylj) =E, {Ez()’lj le)}, (A.5)

where E,, is the expectation over &, and E, is the expectation given &

Ez(ij le) = {lf—lmes}/{l + lf—lmes}. (A.6)

We introduce a function f(g), such that

f(a)zilflples}/{u lflplef}. (A7)

Taylor, series theorem, was then used to expand the function about zero, the
expansion may be written as:

2 3 n—1
f(e) = f0) + OO + OO 5 + FOOF + o+ VO g HHOT,
(A.8)
where fO, f@ .., =D are the first, second, ..., (n — 1)th, derivatives of the
function, and the derivatives for f(g), are as follows;
2
) =Pl [l P (A.9)
1—p 1—p
1 £ 2 & £ 2 &
£0(e) = {1+ e ) {2 e} = 2{ e} {1 + )
{1+ 2ef
Ppe)[] P e
_ {lfpl }{ 171;1 } (AIO)
1+ el
{Les}[l _4{Lee} +{ J2 es}z]
T—p T—p T—p;
fOe) = —F P : (A.11)

To simplify notation, define g = {lf—‘mee}; accordingly, (&) may be written as:

[1-49+4’]

O
f(e) = ita7 (A.12)
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and, the fourth, fifth, and sixth’s derivatives as:

q{(1+ ¢)*(1 —8q +3¢%) — 4q(1 —4q + ¢*)(1 + q)*}

@ (o) —
qg(1—11g+ llq2 — q3)
_ A3
(1+¢g)° A.13)
1+
1—-26 66¢* — 264> 4
=61{( q + 66¢g ¢ +q%) (A14)
(1+¢)¢
q{(1+ q)°(1 — 52 + 1984> — 1044° + 5¢*)
FO(e) = = 6q(1 — 26¢ + 664> — 264° + ¢H)(1 + ¢°)}
(1+¢)"
1-57 302¢% — 302¢° + 57¢* — ¢°
Zq{( q +302¢ q* +57q q)}_ (AL5)
(1+q)’
Accordingly, the functions about zero are:
f(0) = p, (A.16)
F0) = p,(1=p)) (A.17)
fP(0) = p,(1=p)(1—2p) (A.18)
fP(0) = p,(1 = p))(1 — 6p, + 6p7) (A.19)
SP0) = pi(1 = p)(1 — 14p, + 36p; —24p}) (A.20)
FO(0) = p,(1 = p))(1 = 30p, + 150p] — 240p] + 120p}) (A21)

FO%0) = p;(1 — p))(1 — 62p, + 540p — 1560p; + 1800pT — 720p7)  (A.22)

Based on the normality assumption of &, the odd moments would be equal to zero,
the even moments were: E(g?) = o2, E(e*) = 30?, E(¢°) = 1565 ... etc. Hence, if we
consider the first six derivatives of f(¢), and if terms up to and including ¢ were
involved, we may rewrite the expectations of Term I as:

E, [Ez()’u le)]
? 3g* ) 5
=p + 5171(1 —p)(1=2py) + Tpl(l — p)(1 = 14p, + 36p; — 24py)

1508

+6!

pi(1 = p)(1 — 62p, + 540p? — 1560p; + 1800pT — 720p7). (A.23)
For the convenience of notations, we define Eq. (A.23) as:

El[Ez()’1j|8)] =g1(p);



2174 Ayis

hence,
P =D
ale ("))
_ gl(pl)—pl} A
_{—P1 (A.24)

Ui 3‘7§ 2 3

(= 2p) + (1 = 1py 43657 — 24p))
=(1-p) 150 . (A.25)
g (1 —62p, + 540p1 - 1560p1 + 1800p1 720pf)

Corollary A.1. Consider the expectations of corresponding terms of logn,(1 — p,) of
Eq. (A.1). These may be written as:

s ()|

o’ 3o¢ 3
?pl(l 2py) + p1(1 — 14p, + 36p; — 24p})
=— 1509 (A.26)
+5 $p (1 — 62p1 + 540p? — 1560p; + 1800p; — 720p3)
a(p) —p }
—penftl At (A.27)
{ (1 -1

We apply the same procedures for terms associated with p, and 1 — p,, from
Eq. (A.1) and define similar functions of p, at this stage.
Now consider Term 11,

A 2
PL—P| _ )
{ pi } (n p1)? 2o = np Z(yu) +1 (A.28)
—_— 2
= (n1p1)22 l/‘FZZ()’;lJ;IJ)Z szlj' (A.29)

Since y,;, is binary, the conditional expectation is:
E, {Ez(Y%j | 3)} = El{Ez(yU | 8)} (A.30)
El{Ez(YijU' |8j8j’)} = {ElEz(yU|8)}2- (A.31)
Assuming conditional independence of y;;, we may then write:
—p 1 n(n; —1 2
B a2 ) o D) mO D= 2. A
P n (n,py) P

where 0(%) includes all terms of order (n;)~', which are zero based on the
asymptotic theory assumption, hence the R.H.S of Eq. (A.32) may be written as:

e R e REC N
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by including corresponding terms of logn,(1 — p,), from Eq. (A.1) these give:

ale (i) )=
We also consider Term III, and apply similar procedures; we write:
{f’l_pl}3: {Zy—_lr (A.35)
P1 (nypy)
1

:—{Zylj}3_(n—;)z{zylj}z"‘i{zylj}—1 (A.36)
(np)a{zyl/+3zzy1,)ﬁ, + X ZZ)’u)’],ym}

I JEI#T

(np)z{zyh‘l-;Z)’l,yu} (np){Zyl,} 1; (A37)

therefore,
A 3
P1r— P n(n —1)(n, —2) 3 3ny(n — 1) 2
E\E = ap)p ——————1&p
1{ 2( D ) } (npy)’? { e } (n,py)? { : l)}
3 1
+—ap) -1+ 0<—) (A.38)
P m
3
— 1
_ {gl(pl) Py } +0(_>_ (A.39)
P n
If we similarly consider the corresponding terms of log n,(1 — p;) of Eq. (A.1), that
gives:
pr—pi\’ gqi(p)—n |’
El{E2<—> }:-{—1 ‘ ‘} (A.40)
1—p (1—py)

Proof. We first restrict the bias to include only the first-order terms. The proof
comes directly by substituting in Eq. (A.1), terms from I, from Egs. (A.24), and
complementary terms from (A.27), plus other similar terms for, log(n,p,) and
log(n,(1 — py)), the later terms are identical to the functions of p, and (1 — p,),
but they are functions of p, and (1 — p,) and they take different signs as Eq. (A.1)
showed. The expectation of i? may then be written as:

1 gi(p)—p 81(po) — o |,
EdE() =P+ { Pll(ll_Pl)l } - { Plo(lo_ Po)o}’ (A4

therefore,

o g1(p1) — p 21(py) — Po
= — =0 A.
bias (£) { pi(1—=py) } { Po(1 = pg) } : (A.42)
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if the second-order term II of Eq. (A.3) was also considered by bringing its relevant
components from Egs. (A.33) and (A.34), and the corresponding terms related to p,
and (1 — p), and substitute all in Eq. (A.1), then we may rewrite the expectations
of f as:

EES(D)) = p+6, - l[{w}za —2p) - {w}za - 2p0)].

2l p(A=p) po(l = po) A3)
To simplify we write:
E({Ey(B)} = B+ 6, + 6, (A44)
where
52=—%[{‘5;1((”1‘)—_;f’)1}2(1 —2py) - {%}2(1 —2p0):|. (A45)

If term III was also considered, components from Egs. (A.39) and (A.40), and
similar terms relevant to p, and (1 — p,), were also brought and substituted in
Eq. (A.1), by procedures similar to those used in manipulating and including I and
I, the expected value E,{E,(S)} may be written as:

EEND) = f+5, - l[{w}za ~2p) - {w}z(l =

2 p(1=py) Po(1 = py)
+l|:{gl(P1)_P1}3(l_3p +3pz)_{gl(Po)_Po}3(1_3p +3p2)]
3 pi(L=py) 1 ! Po(1 = py) ! vl
(A.46)
where
_1 81(191)_171}3 2 {81(1’70)_190}3 2i|
0= =|]>—"—— — — =1 (1-3 3 .
i) KRR R R bviemrrsd KRR ORE

To simplify, we may write:
E(E,(B)} = B+ 0, + 0, + s (A.47)
and
bias (B) = 8, + &, + 0. (A.48)

By substituting, the actual components of g,(p;) and g,(p,), in Egs. (A.41), (A.43),
and (A.46), we may evaluate bias, including first-, second-, and third-order terms.
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