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A classroom approach to the construction of Bayesian
credible intervals of a Poisson mean

Per G€osta Andersson

Department of Statistics, Stockholm University, Stockholm, Sweden

ABSTRACT
The Poisson distribution is here used to illustrate Bayesian inference
concepts with the ultimate goal to construct credible intervals for a
mean. The evaluation of the resulting intervals is in terms of
“mismatched” priors and posteriors. The discussion is in the form of an
imaginary dialog between a teacher and a student, who have met ear-
lier, discussing and evaluating the Wald and score confidence intervals,
as well as confidence intervals based on transformation and bootstrap
techniques. From the perspective of the student the learning process
is akin to a real research situation. The student is supposed to have
studied mathematical statistics for at least two semesters.
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1. Introduction

For illustration of statistical theory and practice the Poisson distribution has proved to
be of great value, due to its properties and simplicity, see e.g. Casella and Berger (2002)
and Hogg, McKean, and Craig (2005). This article addresses Bayesian issues by way of a
discussion between a teacher and a student. They meet on three occasions, when the
student is gradually introduced to basic concepts. This ultimately leads to an under-
standing of the construction of credible intervals and their properties for, in this
instance, a Poisson mean.
It is to be understood that during the meetings the teacher and student have access

to a whiteboard to facilitate the interaction between them.

2. The first meeting

Teacher: Once again we meet to discuss interval estimation and as before we are going
to make use of the Poisson distribution for illustrative purposes. This time however we
will not focus on confidence interval constructions, involving various types of approxi-
mations and transformations, but instead primarily deal with an altogether different
approach, involving Bayesian credible intervals.
Actually, we can start our investigation of Bayesian ideas by simply going back to our

previous example about passing vehicles on a specific road, which were modeled as
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impulses of a homogenous Poisson process (see Andersson 2015, 2017). We aimed at
the construction of a confidence interval for the intensity per hour of the process.

Student: I remember! First we made a theoretical comparison between the Wald, score
and other confidence intervals and then we compared these intervals for given data.

Reply: Yes, and after we have gone through the Bayesian methodology, we will get back
to this road example.

Student: I must admit that after our previous sessions I felt a certain weariness of confi-
dence intervals in combination with the Poisson distribution. Though when you men-
tion a Bayesian method, I become curious! Some of my recent courses included
Bayesian ideas, but not in a very deep and systematic way. Primarily we studied proce-
dures under normal distribution assumptions. As I understand it, the teachers were not
fully committed Bayesians.

Reply: I believe that some scholars have fully adapted the Bayesian methodology and
others consider themselves pragmatic and use Bayesian methods where they seem use-
ful. There are also the” anti-Bayesians” who believe that the concept is fundamentally
wrong, mostly due to its elements of subjectivity. A major complication for us now is
that comparisons with our previous results using the classical so called frequentist
approach are difficult to make, due to the fundamentally different interpretation of the
unknown Poisson parameter h from a Bayesian point of view.

Student: Well, that much I have understood. A Bayesian treats h as the outcome of a
random variable, say H, with a prior distribution, which is updated when we obtain
data, thus arriving at a posterior distribution. The resulting inference is then conditional
on observed data, but is that not always the case?

Reply: This is true enough, but a “frequentist” is of course not able to make a probabil-
istic statement about the resulting confidence interval in terms of h. Now, to get things
going, let us start with the fundamental idea of Bayesian inference, which is the follow-
ing application of Bayes’ rule:

p hjxð Þ ¼ f xjhð Þp hð Þ
g xð Þ

where gðxÞ represents the joint marginal distribution of X ¼ ðX1; :::;XnÞ; pðhÞ the prior
distribution of h, f ðxjhÞ the conditional distribution of X given h and pðhjxÞ the condi-
tional posterior distribution of h given x.

Student: So here we assume a random sample X1; :::;Xn; where Xi�PoiðhÞ; i ¼ 1; :::; n:
Thus

f xjhð Þ ¼
Yn
i¼1

hxi

xi!
exp �hð Þ ¼ 1Qn

i¼1
xi!

h
Xn
i¼1

xi exp �nhð Þ
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Reply: Yes, so far this is all we can say. But now we have the flexibility to choose a
prior pðhÞ: Actually, we can start with a situation where we want to be neutral.

Student: I guess that a natural candidate as a prior of h would then be a uniform con-
tinuous distribution, but in that case I must decide on an upper bound for the support.

Reply: Already we have another decision to make! But, as it turns out, pðhÞ does not
have to be a proper probability density function (pdf).

Student: In that case, I simply let pðhÞ ¼ c; 0<h<1ðc>0Þ:

Reply: This will work! We can furthermore note that f ðxjhÞpðhÞ represents the so called
mixed discrete continuous joint pdf f ðx; hÞ: Also, pðhÞ is an example of a flat and
improper prior.

Student: But will pðhjxÞ be a proper pdf if pðhÞ is not a proper pdf? Do not say any-
thing, I will check it!

f xjhð Þp hð Þ ¼ 1Qn
i¼1 xi!

h
Xn
i¼1

xi exp �nhð Þ � c

and

g xð Þ ¼
ð1
0
f xjhð Þp hð Þ dh ¼

Xn
i¼1

xi ¼ k

 !
¼ cQn

i¼1
xi!

ð1
0
hk exp �nhð Þ dh

I can integrate hk exp ð�nhÞ by parts repeatedly. I recall from a math course on
Fourier series something called the Kronecker lemma, which leads toð1

0
hk exp �nhð Þ dh ¼ �hk

exp �nhð Þ
n

�khk�1 exp �nhð Þ
n2

� � � � �k!
exp �nhð Þ

nkþ1

� �1
0

¼ k!
nkþ1

So

g xð Þ ¼ cQn
i¼1 xi!

Pn
i¼1 xi

� �
!

n
Pn

i¼1
xiþ1

Thus

p hjxð Þ ¼ n
Pn

i¼1
xiþ1Pn

i¼1 xi
� �

!
h

Pn
i¼1

xi
exp �nhð Þ

From the integration just performed I can see that this is indeed a proper poster-
ior pdf!

Reply: Good! Do you recognize the posterior distribution?
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Student: Not immediately, but let me see (checking a list of distributions). It is a gamma
Cða; bÞ with a ¼ kþ 1 ¼Pn

i¼1 xi þ 1 and b ¼ 1=n:

Reply: Correct. By the way, you used Kronecker’s lemma (Berlin sitzungsberichte 1885
and 1889!) for the integration, but you might instead have considered manipulating the
pdf of a gamma distribution.

Student: Of course, that old trick!ð1
0

1
C að Þba x

a�1 exp �x=bð Þdx ¼ 1

If I convert the notation to our situation: x ¼ h; a ¼ kþ 1; b ¼ 1=n; soð1
0
hk exp �nhð Þdh ¼ C kþ 1ð Þ 1

n

� �kþ1

� 1 ¼ k!
nkþ1

Reply: You can well imagine that integration to obtain a density soon gets really com-
plicated for more complex situations, such as when we construct so called hierarchical
models, where priors for hyperparameters, like a and b for a gamma distribution, are
taken into account. Computer intensive methods like MCMC (Markov Chain Monte
Carlo) to simulate samples from distributions are then of great help.
If we continue to consider the gamma distribution, what happens if we let

pðhÞ�Cða; bÞ? (a and b are assumed to be known.)

Student: When pðhÞ was flat, the result was a gamma distribution, so a not very wild
guess would be that a gamma prior leads to a gamma posterior!

Reply: Correctly “guessed”! What are the resulting gamma parameters?

Student: If I start with the prior pðhÞ�Cða; bÞ;

f xjhð Þp hð Þ ¼ 1Qn
i¼1 xi!

hk exp �nhð Þ 1
C að Þba ha�1 exp �h=bð Þ

¼ 1Qn
i¼1 xi!

1
C að Þba hkþa�1 exp � nþ 1=bð Þhð Þ

I do not need to evaluate gðxÞ; since it does not depend on h and is therefore not con-
tributing to information about the parameters. The posterior is
then Cðkþ a; 1=ðnþ 1=bÞÞ:

Reply: You have illustrated that the family of gamma distributions is the conjugate family
of distributions for the Poisson distribution. It is not unproblematic though to choose
values or prior distributions of a and b for a gamma prior, unless we have vast experience
and/or access to a great amount of previous data. A compromise between the flat and

gamma priors is given by pðhÞ / 1=
ffiffiffi
h

p
: This could be reasonable if we tend to believe

more in lower than in higher values of h. Furthermore, we do not have to choose specific
values of parameters. What is the posterior distribution given this prior?
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Student:

f xjhð Þp hð Þ / 1Qn
i¼1 xi!

h

Pn
i¼1

xi
exp �nhð Þ 1ffiffiffi

h
p ¼ 1Qn

i¼1 xi!
h
Xn
i¼1

xi � 1=2 exp �nhð Þ

I trust that this is enough, verifying that we once again arrive at a gamma distribution,
this time with a ¼Pn

i¼1 xi þ 1=2 and b ¼ 1=n; a result close to our first case with the
flat prior.

Reply: I agree! Actually, this prior belongs to the class of Jeffreys’s priors, where pðhÞ /ffiffiffiffiffiffiffiffi
IðhÞp

; and where IðhÞ is the Fisher information number. Check that!

Student: All right, IðhÞ ¼ Eðð@ log f ðXjhÞ@h Þ2Þ; but since the Poisson distribution belongs to

an exponential family of distributions, we also have that IðhÞ ¼ �Eð@ log f ðXjhÞ
@h2

Þ: Here

log f ðXjhÞ ¼ X log h� logXi!�h; which means that @
@h2

log f ðXjhÞ ¼ �X=h2 and IðhÞ ¼
1=h; so

ffiffiffiffiffiffiffiffi
IðhÞp ¼ 1=

ffiffiffi
h

p
!

Reply: Good! Furthermore we can observe that the class of Jeffreys’s priors belongs to a
type of priors which are said to be noninformative, in the sense that we have invariance
under reparameterization.

Student: You say that the prior does not need to be flat in order to be called noninfor-
mative? What does the invariance property signify here?

Reply: Yes and the invariance property means that if we let s ¼ uðhÞ; where u is a one-

to-one function, then pðhÞ / ffiffiffiffiffiffiffiffi
IðhÞp

implies pðsÞ / ffiffiffiffiffiffiffiffi
IðsÞp

: Can you show this?
Student: The density for pðsÞ; according to the general transformation” formula”,

should be pðhÞj @h@s jðh ¼ u�1ðsÞÞ and IðsÞ ¼ Eðð@logf ðXju�1ðsÞÞ
@s Þ2Þ: A lot of brackets!

Reply: Well, you need all of them!

Table 1. Empirical inclusion probabilities for credible intervals of a Poisson mean
given p¼ 0.95 for the uniform (0, 100) prior combined with the” wrong” gamma
prior Cða;bÞ; where a � b ¼ 50:
n¼ 10

a¼ 5, b¼ 10: 0.944
a ¼ 2:5; b¼ 20: 0.949
a ¼ 0:25; b¼ 200: 0.949

n¼ 50

a¼ 5, b¼ 10: 0.948
a ¼ 2:5; b¼ 20: 0.950
a ¼ 0:25; b¼ 200: 0.950

n¼ 100

a¼ 5, b¼ 10: 0.949
a ¼ 2:5; b¼ 20: 0.950
a ¼ 0:25; b¼ 200: 0.949
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Student: Then, using the chain rule I get IðsÞ ¼ Eðð@logf ðXjhÞdh
@h
@sÞ2Þ ¼ ð@h@sÞ2IðhÞ and since

pðhÞ / ffiffiffiffiffiffiffiffi
IðhÞp

; I am done!

Reply: Excellent. We have not yet discussed the issue of constructing credible intervals
for h, but before doing that, let us briefly look at the expected value EðHjxÞ for the
three posterior distributions that you have derived.

Student: Generally for a Cða; bÞ the expected value is a � b; so

p hð Þflat : E Hjxð Þ ¼
Pn

i¼1 xi þ 1
n

p hð Þ / I hð Þ : E Hjxð Þ ¼
Pn

i¼1 xi þ 1=2
n

p hð Þ�C a; bð Þ : E Hjxð Þ ¼
Pn

i¼1 xi þ a
nþ 1=b

So, with respect to expectation the influence of the parameters on the priors decreases
with increasing values of n, since all three expressions eventually get close to �x: This
makes sense!

Reply: Yes indeed! We can also observe that it seems relevant to call the first two priors
uninformative. Furthermore the expectations can be seen as functions of the prior mean
and the maximum likelihood estimate �x ¼ ð1=nÞPn

i¼1 xi:

Student: That escaped me regarding the last expression, but let me try and rewrite it:Pn
i¼1 xi þ a
nþ 1=b

¼ b
Pn

i¼1 xi
nbþ 1

þ ab
nbþ 1

¼ �x
nb

nbþ 1
þ ab

1
nbþ 1

This is elegant! We get a weighted average of the sample mean �x and the prior mean
a � b; where the first weight tends to 1 and the second weight to 0 when n ! 1:

Reply: The conditional expectation EðHjxÞ is actually a Bayes’s point estimate of h. It is
formally derived as the decision function dðxÞ which minimizes the conditional expect-

ation of the loss function Lðh; dðxÞÞ ¼ ðh�dðxÞÞ2: (Ideally we should perhaps call this a
predicted value of H rather than an estimated value of h.)
We are now finally prepared for the Bayesian interval estimates of h. They are called
credible intervals and are constructed as posterior prediction intervals for H.
Student: Then if the posterior distribution is known, we can find, say, a and b so that

P ajx<H<bjxð Þ ¼ 1�p

(Intentionally I avoided the use of a at the right hand side!)

Reply: Yes, and it is important to acknowledge that a and b depend on x.

Student: And on a and b for the gamma prior!

5498 P. G. ANDERSSON



Reply: True! As usual we can further choose, for the sake of uniqueness and symmetry,
a and b so that

P H<ajxð Þ ¼ P H>bjxð Þ ¼ p
2

Bayes’s interval estimation is really more straightforward than Bayes’s point estimation,
where in the latter situation we have to specify a loss function.
It is also worth pointing out that �x is a sufficient statistic for the Poisson parameter h,
so we can condition on �x instead of x.
Now I think it is time to study the behavior of credible intervals based on the prior and
posterior distributions we have considered here. This could be accomplished analytically
or by a simulation study, where you can labor with different scenarios. There will be
many degrees of freedom for you!

Student: I accept the challenge!

Reply: Good! We will meet again in a few days and discuss how to accomplish this.

3. The second meeting

So, have you given this enough thought, do you think?

Student: Well, at first it seemed a bit strange to evaluate credible intervals, since what
we get in the end is an interval with a prespecified probability of coverage. Could the
length be something to consider?

Reply: Impolitely I will reply to your question with another. Did you consider compari-
sons with confidence intervals for a fixed parameter?

Student: That was tempting and I have been looking into what Casella and Berger have
to say about this very case with the Poisson distribution parameter in their “Statistical
Inference”. They make comparisons between confidence and credible intervals and I
guess the main conclusion is that a confidence interval evaluated as a credible interval
can perform poorly and vice versa. Is comparing these two concepts like comparing
apples with oranges?

Reply: Not even that! I have a colleague who says that it is like comparing an apple
with a lorry! It is really not very fruitful to make such comparisons, since the underly-
ing concepts differ so much.

Student: Evaluating cases where we use the “wrong” prior might be something?

Reply: It is indeed problematic to discuss in terms of “right” and “wrong” in a Bayesian
context, but it could be a way to illustrate the influence of the prior on the posterior.
We must not forget though that the prior is the choice of the researcher and
thus subjective.
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Student: In that case I should first compute ajx and bjx given whatever p and prior I
have and then use these limits to compute the probability of coverage using a” wrong”
posterior? I take it that since the first two priors we have discussed are similar, I may
consider only two of them?

Reply: Yes, and do not forget to try different sample sizes to observe how the effect of a
“wrong” prior changes.

Student: Another thing, I have been thinking about the derivation of the posterior for
the flat prior, where we obtained a gamma posterior. When I generate a random num-
ber I want to use a uniform distribution with some upper bound for the support and
then the posterior will not exactly be a gamma distribution?

Reply: No, but in this case we can approximate with a CðPn
i¼1 xi þ 1; 1=nÞ: The density

function for the true posterior will have an adjustment factor, which is quite close to 1
even for moderate sizes of n.

Student: I think I know what to do now, so I will get back to my computer and
MATLAB and hopefully return with some interesting results!

Reply: Good luck, see you next week!

4. The third meeting

Teacher: Now I am curious about your results!

Student: I find them quite interesting even though they are not dramatic.

Reply: Something undramatic can be important too!

Student: Maybe! Anyway, there are some nice functions in MATLAB for generating val-
ues from distributions and computing probabilities and quantiles, so programing this
was not hard work. For the flat prior I have used a uniform distribution on (0, 100) to
cover a wide enough range of possible values of h. For the “wrong” posterior as a first
step I chose different combinations of a and b in such a way that the expected value a �
b equaled that of the prior (in this case 50). I have used the same p¼ 0.95 throughout
and the sample sizes n¼ 10, 50 and 100. 10 000 Poisson samples were generated for
each setup.
I could perhaps show the results of these cases first before I move on describing the
other scenarios?

Reply: Please do!

Student: So, for the sake of completeness I include the results for all my chosen sample
sizes, even if the level of inclusion is close to 0.95 already for n¼ 10.
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Reply: By an inclusion probability you meanðbjx
ajx

f hjxð Þdh;

where f ðhjxÞ is a posterior based on a “wrong” prior?

Student: Yes, I admit I have not defined it properly, but I think inclusion is a proper
expression, since h is supposed to be random. Coverage does not seem suitable here.

Reply: I agree. Actually, in design-based survey sampling theory the inclusion probabil-
ity equals the probability that a unit in the population is included in the ran-
dom sample.
Looking at your results, in these cases there is not much penalty for assuming the
“wrong” prior. Maybe you thought that we should get gradually deteriorating results for
decreasing values of a?

Student: Yes, since the skewness coefficient for a Cða; bÞ is 2=
ffiffiffi
a

p
I expected that, but

then I realized that one should also consider variances: 1002=12 ’ 833 for the “true”

uniform prior and a � b2 ’ 500 for the first gamma combination (a¼ 5, b¼ 10) and
1000 for the second.

Table 2. Empirical inclusion probabilities for credible intervals of a Poisson mean
given p¼ 0.95 for the uniform (0, 100) prior combined with the “wrong” gamma
prior Cða;bÞ; where a � b ¼ 25:
n¼ 10

a¼ 5, b¼ 5: 0.937
a ¼ 2:5; b¼ 10: 0.947
a ¼ 0:25; b¼ 100: 0.949

Table 3. Empirical inclusion probabilities for credible intervals of a Poisson mean
given p¼ 0.95 for the uniform (0, 100) prior combined with the “wrong” gamma
prior Cða;bÞ; where a � b ¼ 10:
n¼ 10

a¼ 5, b¼ 2: 0.849
a ¼ 2:5; b¼ 4: 0.924
a ¼ 0:25; b¼ 40: 0.948

n¼ 50

a¼ 5, b¼ 2: 0.928
a ¼ 2:5; b¼ 4: 0.950
a ¼ 0:25; b¼ 40: 0.950

Table 4. Empirical inclusion probabilities for credible intervals of a Poisson mean
given p¼ 0.95 for a Cða; bÞ prior combined with the “wrong” assumption of a
flat improper gamma prior.
a � b ¼ 50; n ¼ 10

a¼ 5, b¼ 10: 0.948
a ¼ 2:5; b¼ 20: 0.949
a ¼ 0:25; b¼ 40: 0.916

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 5501



Reply: Yes, that could very well be the reason why we get this pattern of inclusion prob-
abilities. Did you try some “uglier” scenarios?

Student: Well, the next setup was letting a � b ¼ 25 with the following results:

Reply: Still high inclusion probabilities!

Student: Next I tried a � b ¼ 10 :
Finally something substantially lower than 0.95!

Reply: However, you have to be pretty far off the mark with respect to the expected
value to get this effect and then only for n¼ 10. There is clearly some stability here.
Student: After this I turned to the opposite situation, where the “true” prior is a

Cða; bÞ; while “falsely” assuming a flat improper prior. I started with the same pairs of
a and b values as for the previous situation. Here is what happened for n¼ 10:
There is a tendency of decreasing inclusion probabilities for decreasing values of a, so

then I tested a ¼ 0:25; b ¼ 100; which gave me the inclusion probability 0.924 and the
combination a ¼ 0:25; b ¼ 40 resulted in 0.917. Still the inclusion probabilities are
higher than 90%, but for a ¼ 0:1; b ¼ 100 the result was 0.780. The same combination
with n¼ 50 yielded 0.808 and with n¼ 100 I got 0.820. Thus, this is an example of a
situation where we need a lot of information from the sample to “correct” for a misspe-
cified prior.

Reply: You have clearly shown that one can construct examples of “wrong” priors,
which lead to unreliable credible interval limits in terms of reduced inclusion probabil-
ities. However, as we have mentioned earlier, the discussion of “right” or “wrong” priors
is conceptually problematic. In practice the prior is chosen using information from pre-
vious similar situations and/or your own belief which we consider to be subjective.
What you also could have studied is how the outcome of the prior affects your empir-
ical inclusion probabilities, that is, what happens locally if you get a value of h far away
from its expectation?

Student: I guess there is some degree of subjectivity in all types of approaches including
the frequentistic.

Reply: Yes, you can say that already in the choice of the approach to be used you are
actually being subjective.
Before we part, let us apply one of your derived posteriors to the road example.

Student: Yes, that would be interesting. I could try using the flat prior assuming that we
do not have access to reliable previous traffic data.
The observed value of passing vehicles in one hour’s time was x¼ 28, so I get the pos-
terior Cð29; 1Þ; since n¼ 1. Using the gaminv function I arrive at the 95% credible
interval ð19:4; 40:5Þ:
Reply: Good. Finally, let us compare this interval numerically with the Wald and score
intervals for this case.
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Student: The Wald interval was ð17:6; 38:4Þ and the score interval ð19:4; 40:5Þ!

Reply: Well, that was a bit of a surprise, though I suspected that the credible interval
would be closer to the score interval than to Wald’s.

Student: Is the main connection between the Poisson and its conjugate distribution,
which is the gamma, that they are both positively skewed?

Reply: Yes, that was my thought. However, we must not forget the difference in inter-
pretation between the interval concepts. You remember the comparison between an
apple and a lorry?

Student: Absolutely! This has really been an interesting scientific journey for me! It is
amazing how much you can illustrate in terms of statistical methodology just using the
Poisson distribution.

Reply: It is certainly a very useful distribution. I am glad you have appreciated these
excursions to “Poissonland”!

5. Summary

Once again the Poisson distribution and its parameter h turn out to be very useful for
the illustration of statistical inference theory. Particularly when working within the
Bayesian approach where several technical steps are required, we need a distribution
which is simple to work with, yet inhabiting interesting properties. This article is aimed
at the construction of credible intervals and their properties when assuming “wrong”
priors in some simple situations.
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