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Coherent Frequentism: A Decision Theory Based
on Confidence Sets
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By representing fair betting odds according to one or more pairs of confidence
set estimators, dual parameter distributions called confidence posteriors secure the
coherence of actions without any prior distribution. This theory reduces to the
maximization of expected utility when the pair of posteriors is induced by an exact or
approximate confidence set estimator or when a reduction rule is applied to the pair.
Unlike the p-value, the confidence posterior probability of an interval hypothesis is
suitable as an estimator of the indicator of hypothesis truth since it converges to 1
if the hypothesis is true or to 0 otherwise.
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1. Introduction
1.1. Motivation

A well-known mistake in the interpretation of an observed confidence interval
confuses confidence as a level of certainty with “confidence” as the coverage rate, the
almost-sure limiting rate at which a confidence interval would cover a parameter
value over repeated sampling from the same population. This results in using the
stated confidence level, say 95%, as if it were a probability that the parameter
value lies in the particular confidence interval that corresponds to the observed
sample. A practical solution that does not sacrifice the 95% coverage rate is to
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report a confidence interval that matches a 95% credibility interval computable from
Bayes’s formula given some matching prior distribution (Rubin, 1984). In addition
to precluding the error in interpretation, such matching enables the statistician to
leverage the flexibility of the Bayesian approach in making self-consistent inferences,
involving, for example, the probability that the parameter lies in any given region
of the parameter space, on the basis of a posterior distribution firmly anchored
to valid coverage rates. Priors yielding exact matching of predictive probabilities
are available for many models, including location models and certain location-
scale models (Datta et al., 2000; Severini et al., 2002). Although exact matching
of fixed-parameter coverage rates is limited to location models (Welch and Peers,
1963; Fraser and Reid, 2002), priors yielding asymptotic matching have been
identified for other models, e.g., a hierarchical normal model (Datta et al., 2000).
For mixture models, all priors that achieve matching to second order necessarily
depend on the data but asymptotically converge to fixed priors (Wasserman, 2000).
Data-based priors can also yield second-order matching with insensitivity to the
sampling distribution (Sweeting, 2001). Agreeably, Fraser et al. (2010) suggested
a data-dependent prior for approximating the likelihood function integrated over
the nuisance parameters to attain accurate matching between Bayesian probabilities
and coverage rates. These advances approach the vision of building an objective
Bayesianism, defined as a “universal recipe for applying Bayes theorem in the
absence of prior information” (Efron, 1998).

Viewed from another angle, the fact that close matching can require resorting to
priors that change with each new observation, cracking the foundations of Bayesian
inference, raises the question of whether many of the goals motivating the search for
an objective posterior can be achieved apart from Bayes’s formula. It will, in fact, be
seen that such a probability distribution lies dormant in nested confidence intervals,
securing the above benefits of interpretation and coherence without matching priors,
provided that the confidence intervals are constructed to yield reasonable inferences
about the value of the parameter for each sample from the available information.

Except for confidence intervals that are conservative by construction, the
condition of adequately incorporating any relevant information is usually satisfied
in practice since confidence intervals are most appropriate when information about
the parameter value is either largely absent or included in the interval estimation
procedure, as it is in random-effects modeling and various other frequentist
shrinkage methods. Likewise, confidence intervals known to lead to pathologies
tend to be avoided. (Pathological confidence intervals often emphasized in support
of credibility intervals include formally valid confidence intervals that lie outside
the appropriate parameter space [Mandelkern, 2002] and those that can fail to
ascribe 100% confidence to an interval deduced from the data to contain the true
value [Bernardo and Smith, 1994].)

A game-theoretic framework makes the requirement more precise: for the 95%
confidence interval to give a 95% degree of certainty in the single case and to
support coherent inferences, it must be generated to ensure that, on the available
information, 19:1 are approximately fair betting odds that the parameter lies in
the observed interval. This condition rules out the use of highly conservative
intervals, pathological intervals, and intervals that fail to reflect substantial pertinent
information. In relying on a realized confidence interval to that extent, the decision
maker ignores the presence of any recognizable subsets (Gleser, 2002), not only
slightly conservative subsets, as in the tradition of controlling the rate of Type I
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errors (Casella, 1987), but also slightly anti-conservative subsets. Given the ubiquity
of recognizable subsets (Buehler and Feddersen, 1963; Bondar, 1977), this strategy
uses pre-data confidence as an approximation to post-data confidence in the sense
in which expected Fisher information approximates observed Fisher information
(Efron and Hinkley, 1978), aiming not at exact inference but at a pragmatic use of
the limited resources available for any particular data analysis. Certain situations
may instead call for careful applications of conditional inference (Goutis and
Casella, 1995; Sundberg, 2003; Fraser, 2004) or of minimum description length
(Bickel, 2011b) for basing decisions more directly on the data actually observed.

1.2. Direct Inference and Observed Confidence

The above betting interpretation of a confidence posterior will be generalized in
a framework of decision to formalize, control, and extend the common practice
of equating the level of certainty that a parameter lies in an observed confidence
interval with the interval estimator’s rate of coverage over repeated sampling. (See
[Shafer, 2010] for a review and extension of an alternative betting interpretation of
probability.)

Many who fully understand that the 95% confidence interval is defined to
achieve a 95% coverage rate over repeated sampling will for that reason often
be substantially more certain that the true value of the parameter lies in an
observed 99% confidence interval than that it lies in a 50% confidence interval
computed from the same data (Franklin, 2001; Pawitan, 2001, pp. 11-12). This direct
inference, reasoning from the frequency of individuals of a population that have a
certain property to a level of certainty about whether a particular sample from the
population, is a notable feature of inductive logic (e.g., Franklin, 2001; Jaeger, 2005)
and often proves effective in everyday decisions. Knowing that the new cars of a
certain model and year have speedometer readings within 1 mile per hour (mph)
of the actual speed in 99.5% of cases, most drivers will, when betting on whether
they comply with speed limits, have a high level of certainty that the speedometer
readings of their particular new cars of that model and year accurately report their
current speed in the absence of other relevant information. (Such information might
include a reading of 10mph when the car is stationary, which would indicate a
defect in the instrument at hand.) If the betting interpretation holds for an interval
given by some predetermined level of confidence, then coherence requires that it
hold equally for a level of confidence given by some predetermined hypothesis.

Fisher’s fiducial argument also employed direct inference (Fisher, 1945; Fisher,
1973, pp. 34-36, 57-58; Hacking, 1965, Chapter 9; Zabell, 1992). The present
framework will depart from his in its applicability without exact confidence sets,
in the closer proximity of its probabilities to repeated-sampling rates of covering
vector parameters, in its toleration of reference classes with relevant subsets, and in
its theory of decision. Since the second and third departures are shared with recent
methods of computing the confidence probability of an arbitrary hypothesis, the
main contribution of this article is the general framework of inference that both
motivates such methods given an exact confidence set and extends them for use with
approximate, valid, and non conservative set estimators and for coherent decision
making, including prediction and point estimation.

This framework draws from the theory of coherent upper and lower
probabilities for the cases in which no exact confidence set with the desired
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properties is available. To allow indecision in light of inconclusive evidence, these
non additive probabilities have been formulated for lotteries in which the agent
may either place a bet or refrain from betting or, equivalently, in which the casino
posts different odds to be used depending on whether a gambler bets for or against
a hypothesis. Confidence decision theory will be formulated for this scenario by
setting an agent’s prices of buying and selling a gamble on the hypothesis that
a parameter 0 is in some set ® C © according to the confidence levels of a
valid set estimate and a nonconservative confidence set estimate that coincide with
®'. As a result, the hypothesis that 6§ € @ has an interval of confidence levels
rather than a single confidence level, that is, an interval of confidence posterior
probabilities rather than a single confidence posterior probability. Equating the
buying and selling prices reduces the upper and lower probability functions to a
single confidence posterior, a probability measure on parameter space ®, and thus
reduces the interval to a point.

1.3.  Overview

This subsection outlines the organization of the remainder of the article while
offering a brief summary.

After preliminary concepts are defined (§2.1), Sec. 2.2 presents the new
framework for confidence-based inference and decision. The family of probability
measures (confidence posteriors) used in inference and decision can be stated
in terms of coherent lower and upper probabilities and is thus completely self-
consistent according to a widely accepted account of coherence derived from
ideas of Bruno de Finetti (Sec. 2.3). This lays a foundation for decisions and for
flexible inference about the truth of hypotheses without invoking the likelihood
principle (Secs. 2.4, 2.5). The framework is compared to other versions of frequentist
coherence based on upper and lower probabilities in Sec. 2.5.

While reporting an interval level of confidence in a hypothesis has the advantage
of honestly communicating the inability of the data to determine a single confidence
level, such intervals are less useful in situations requiring the automation of
decisions. Under such circumstances, the family of confidence posteriors can be
reduced to a single confidence posterior P* by the use of exact or approximate
confidence sets or by an automatic reduction rule (Sec. 3.1). The important special
case of a scalar parameter of interest provides an arena for contrasting confidence
posterior probabilities and p-values (Sec. 3.2). As will be seen, the observed
confidence level P*(¥ € @) can differ markedly from the p-value for testing 0 € ®
as the null hypothesis not only in interpretation but also in numeric value.

Section 4 concludes the article by highlighting the main properties of the
proposed framework.

2. Confidence Decision Theory
2.1. Preliminaries

2.1.1. Basic Notation. The values of x Ay and x Vv y are respectively the minimum
and maximum of x and y. The symbols C and C respectively signify subset and
proper subset. 1, : @ — {0, 1} is the usual indicator function: 14 (0) is 1 if 0 € O
and 0 if 6 ¢ @'. |O] is the number of members in O.
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Angular brackets rather than parentheses signal numeric tuples. For example,
if x and y are numbers, then (x, y) denotes an ordered pair, whereas (x, y) denotes
the open interval {z: x < z < y}.

Given a probability space (Q, 3, Pé) indexed by the vector parameter ¢ € § C
R4, consider the random quantity X of distribution P and with a realization x in
some sample set ) € IR”. For notational convenience, partition the full parameter
¢ into an interest parameter 6 € ® and, unless 6 = £, a nuisance parameter y € I,
such that { € ® x I' and P, = P:.

Except where otherwise noted, every probability distribution is a standard
(Kolmogorov) probability measure. A strictly incomplete probability measure is a
standard, additive measure with total mass less than 1.

Let (O, sf) represent a measurable space and % ([0, 1]) the Borel o-field of
[0, 1]. The complement and power set of @ are ® and 2, respectively. The o-field
induced by € is o (6).

2.1.2. Multimeasure and Multiprobability Spaces. The following slight extension
of probability theory, based on a multimeasure (Precupanu, 2008), facilitates a
clear and precise presentation of the present framework. To prevent unnecessary
confusion between single-valued probability and the specific type of multi-valued
probability required, the former will be called probability in agreement with common
usage, and the latter will be called multiprobability, a term defined below.

Definition 2.1. Given a measurable space (O, s7) and a multimeasure space, the
triple M = (O, 4, %) with a family 5 of measures, the multimeasure % of M is a
function & from ${ to the set of all closed intervals of [0, co) such that & (A) is the
convex hull of

{P(A): Pe%}

for each A € si. The multimeasure % is said to be degenerate if |¥3| =1 or non
degenerate if || > 1.

Definition 2.2. The multimeasure % of a multimeasure space M = (0O, s{, ) is a
probability multimeasure if each member of % is a probability measure. Then / is
a multiprobability space, and % (A) is the multiprobability of event A for all A € .
The expectation interval € (L) of a measurable map L : sf — IR with respect to a
probability multimeasure & on / is the convex hull of

{/L(ﬁ)dP(ﬁ):PeiB}.

Thus, the expectation interval of a scalar random variable with respect to a
probability multimeasure is the smallest closed interval containing the expectation
values of the random quantity with respect to the probability measures of the
multiprobability space.

2.2. Confidence Measures and Multimeasures

Particular types of confidence sets form the basis of the multimeasure on which
confidence decision theory rests.
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Definition 2.3. A set estimator © for 0 is a function defined on Q x % for some
nonempty interval & C [0, 1]. A set estimator is called valid if its coverage rate over
repeated sampling is at least as great as p, the nominal confidence coefficient:

P (0e®(X:p)zp

for all ¢ € E and p € %. A set estimator is called non conservative if its coverage
rate over repeated sampling is at no greater than the nominal confidence coefficient:

P (0€®(X:p)) <p

for all £ € E and p € R. A set estimator that is both valid and nonconservative is
called exact. For some set € of connected subsets of ®, a set estimator is called
nested if it is a function © : ) x R — € such that, for all x € €, there is a € (x)
€ such that O (x; e) : & — € (x) is bijective, O (x;0) =@, O (x; 1) = 0, and

O (x; p;) € O (x:py) (1)

for all py, p, € % such that p; < p,. Two nested set estimators ., QxR — €and
@2 QO x R — € are dual if the ranges ¢, (x) and G, (x) of ® (x; @) and @2 (x; @)
induce the same o-field, i.e., o (€, (x)) = ¢ (6, (x)), for each x € Q.

The desired multimeasure will be constructed from two confidence measures in
turn constructed from dual nested set estimators.

Definition 2.4. Let ©: Q x % — € denote a nested set estimator and s(* the o-field
induced by € (x), the range of @(x o) for each x € Q. Then, for all x € Q, 0
induces the probability space (O, s¢*, P*) and the confidence measure or confidence
posterior P*, the probability measure on $/* such that

0 c€(x) = O =0 (x; P (0)). )

The probability P* (') is the confidence level of the hypothesis that 0 € @', If 0 is
valid, nonconservative, or exact, then P* and P* (0®’) are likewise called valid, non
conservative, or exact, respectively.

Definition 2.5. Consider the dual nested set estimators O, : {) x % — €, which
is valid, and®_ : Q) x % — €, which is nonconservative. For every x € Q, let «¢*
denote the common o-field induced by each of the ranges of @2 (x; @) and @S (x; 0).
If P{ is the valid confidence measure, the confidence measure induced by 0., then
P* (@) is called a valid confidence level of the hypothesis that 0 € ®'. For each x €
Q, the dual non conservative confidence measure P~ and non conservative confidence
level P* (®') are defined analogously. On the multiprobability space

A o = (0,507 {PL, PL) (3)

called a confidence multimeasure space, the probability multimeasure %" is called the
confidence multimeasure induced by ©. and ©_ given some x in (). Accordingly, the
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confidence multilevel of the hypothesis that 6 € @ is 9* (®") for all @ € s(*. By the
definition of multiprobability, any hypothesis ® € s/* has a confidence multilevel of

P (0) =[P (®)APL(O),PL(0)VP(O)]. 4)

Various standard criteria used to judge confidence intervals (Bickel, 2010)
provide guidance on the choice of a dual set estimator for inducing the confidence
multimeasure.

Example 2.1 (Normal Distribution). For n independent random variables each
distributed according to P, ., the normal distribution with mean 0 and variance 7,
the interval estimator ®* given by

0" (x; p) = [p;' (). ;' (p+ )]

for all p € [0, 1 — a] is nested and is an exact p (100%) confidence interval for 0,
where o € [0, 1], p, (6) is the upper-tailed p-value of the hypothesis that 6 = 0', and
p;! is the inverse of p,. Since ®* is both valid and non conservative, it is dual to
itself, yielding the equality of the valid and non conservative confidence measures
P;_ and P; _, each the distribution of

$=x+T, ,6//n,

where T,_, is the random variable of the Student r distribution with n — 1 degrees
of freedom. Hence, the confidence multimeasure %; induced by ®* is degenerate:

(®’ st {P;C,z’ P;c‘,s}) =(0,50%, {P})
If ®' is an interval, then
P; (@) = p, (sup®) — p, (inf O')

for all x € ) and O € «¢*, from which it follows that the confidence measure P;
does not depend on the nested set estimator chosen and can thus be represented
by P*.

Special properties of degenerate confidence multimeasures are given in
Section 3. The next example involves a nondegenerate confidence multimeasure.

Example 2.2 (Binomial Distribution). Let P, denote the binomial measure with n
trials, success probability 0 € ®, and upper-tailed cumulative probabilities p , (0) =
Py (X > x) + CPy(X = x) with C €[0,1] as the correction factor usually set at
C =1/2. Consider the family 7. = {O% : o € (0, 1]} of nested set estimators such
that

[Pilc. (@), pcl (x+p)] pe(0,1-0]
0% (v p) = {0 o
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foralla e (0,1, peR=[0,1—-a]U{l}, x € {0,1,...} = Q, where

po (@) =0 = po. (0) =2 )

Since the rates at which valid (C =0) and nonconservative (C =1) interval
estimators cover 6 are bound according to

Py (0 € 65 (X; p)) = p,

Py (0 € O (X; p)) < p,
the sets %, and ¥, are valid and non conservative families of nested set estimators,
respectively, and for any o € [0, 1], the valid set estimator ®; is dual to the non
conservative set estimator ©f, thus inducing the valid confidence measure P}, the
nonconservative confidence measure P;,, and the confidence multimeasure % on

the o-field % ([0, 1]) for each x € . In order to weigh evidence in X = x for the
hypothesis that 0 < 6" < 0 < 0” < 1, Eq. (2) furnishes

P:C ([pl_—le (a) s pEIX (a + pC,x)]) = pC,x’
which in turn yields

Pyc([0.0) = Py e ([Prle. @, pe (4 p¢.)]) = Prc ([Piles (0 pek (24 0C.)])
= pg‘,x - p/C,x’ (6)
where

p/C,x = pC,x (0/) -
p/(é,x = pC,x (0//) — .

Since o drops out of the difference, let Pg = P .. For any ® € % ([0, 1]), Egs. (6)
and (4) specify the confidence multilevel of the hypothesis that 0 € @', e.g., if
P, ([0,0"]) < P}, ([0,0"]) and 1 < x < n, then

9 ([0, 0"1) = [P (0") = po.c (0 pr (0") = py. (0]
— [Py (X > x). Py (X = 2)].

from which it follows that the generalized fiducial distributions of Hannig (2009,
Example 2.1) are stochastically bounded by Pj and P;. (The Poisson-distribution
example of Dempster (2008) indicates that the extrema of the confidence multilevel
equal the “belief” and “plausibility” values of Dempster-Shafer theory in the case
of a scalar-parameter family of discrete probability distributions.) To illustrate the
reduction of confidence indeterminacy with additional observations, the boundary
values of P* ([1/4, 3/4]) are plotted against n in Fig. 1 for the 6 = 2/3 case.

Remark 2.1. The restriction to o-fields with events common to valid and non
conservative confidence measures strongly constrains the choice of the estimators
to ensure the ability to assign a confidence multilevel to any hypothesis of interest
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binomial frequency parameter p = 2/3
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Figure 1. Confidence levels of the hypothesis that 0, the limiting relative frequency of
successes, is between 1/4 and 3/4 as a function of n, the number of independent trials, with
0 =2/3 as the unknown true value. In the notation of Example 2.2, the non conservative
confidence level is P; ([1/4, 3/4]), the valid confidence level is P§ ([1/4,3/4]), and the half-
corrected level is Py, ([1/4,3/4]). The confidence level averaged over the convex set is
defined in Sec. 3.1. Sampling variation was suppressed by setting each number x of successes
to the lowest integer greater than or equal to n0 instead of randomly drawing values of x
from the (n, 0) binomial distribution. (color figure available online.)

without a need for strictly incomplete probability measures. For further hypothesis
flexibility, the o-field s¢* may be expanded via the replacement of the valid
confidence measure in Eq. (3) by a probability distribution extending multiple
confidence measures each derived from a different valid set estimator, in which
case the nonconservative confidence measure would be replaced by an extension
of multiple nonconservative confidence measures dual to the valid confidence
measures. The valid confidence measures must be compatible with each other in
the sense that the intersections of their events can have defined probabilities, and
likewise for the nonconservative confidence measures. Extensions of this type are
often necessary for the generation of Borel o-fields of multi-dimensional parameter
spaces. For instance, Polansky (2007, p. 24) derived conference measures for
vector parameters of interest by means of a shape parameter indexing different
asymptotically exact set estimators; o in Example 2.2 is a simple shape parameter.

2.3. Coherence of Confidence Multilevels

The confidence multimeasure %* on confidence space /(% _ models the reasoning
process of an ideal agent betting on inclusion of the true parameter value in elements
of %, the o-field of /% _, with upper and lower betting odds determined by the
coverage rates of the corresponding valid and non conservative confidence sets.
The coherence of the agent’s decisions may be evaluated by expressing its betting

odds in terms of upper and lower probabilities that lack the additivity property of
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Kolmogorov’s probability measures. Given the dual functions u : s¢* — [0, 1] and
v: ¥ — [0, 1] such that

1 (0) +v(0\0) = 1,
u(®UO”)>u(®)+u(®), (7
V(O UBO") <v(0)+v(0)

for all disjoint ® and ®” in s¢*, the values u (@) and v(®) are the lower and
upper probabilities (Molchanov, 2005, Sec. 9.3) of the hypothesis that 0 € ®'. The
decision-theoretic interpretation is that u (0’) is the largest price an agent would
pay for a gain of 1,(0’), whereas v (0’) is the smallest price for which the same
agent would sell that gain, assuming an additive utility function (Walley, 1991). The
duality between u and v expressed as Eq. (7) means each function is completely
determined by the other.
The function u is called the lower envelope of a family ¢ of measures on s if

u(®) = inf P (0

for all @ € o (Coletti and Scozzafava, 2002, Sec. 15.2; Molchanov, 2005, Sec. 9.3).
Since the lower envelope of a family of probability measures is a coherent lower
probability (Walley, 1991, Sec. 3.3.3; Molchanov, 2005, Sec. 9.3) and since {PY, P}
as specified in Definition 2.5 constitutes such a family, the agent weighing evidence
for any hypothesis 0 € @ by %*(0'), with @ € «*, satisfies the minimal set of
rationality axioms of Walley (1991). It follows that the agent avoids sure loss by
making decisions according to the lower and upper probabilities

u(®) = PL(O) A PL(O),
v(®) =1-u(0\0).

Conversely, the framework of Sec. 2.2 can be presented starting with de Finetti’s
prevision and the related concept of coherent extension (Walley, 1991; Coletti and
Scozzafava, 2002) as follows. An intelligent agent first sets its prices for buying and
selling gambles on the hypotheses corresponding to the elements of ¢ according to
the confidence coefficients of valid and nonconservative nested set estimators. Then
it extends its prices or previsions to the family of the two probability measures on
the ¢-field induced by € in order to evaluate the probability of a hypothesis 0 € ®
for some ®' in the g-field but not in €. This family in turn yields coherent lower and
upper probabilities that equal the initial buying and selling prices whenever the latter
apply, i.e., when the hypothesis is that 0 € @ for some @ € €. In this situation,
a Dutch book cannot be made against the agent, i.e., a betting opponent cannot
formulate a betting strategy such that the agent will suffer net loss regardless of the
truth values of the hypotheses on which the agent and opponent place bets against
each other (Bickel, 2010).

2.4. Decisions Under Arbitrary Loss

This section generalizes betting under 0-1 loss to making confidence-based decisions
under any unbounded loss function. Confidence multilevels do not describe the
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actual betting behavior of any human agent, but instead prescribe decisions,
including amounts bet on any hypothesis involving 6, given that the agent will incur
a loss of L,(0) for taking action a.

According to a natural generalization of the Bayes decision rule of minimizing
loss averaged over a posterior distribution, action @' dominates (is rationally
preferred to) action a” if and only if

Ve e €(L,), € €€(L,):€ <¢€"
I e€(L,), € e€€E(L,) € <€,

where both expectation intervals (Definition 2.2) are with respect to the same
confidence multimeasure 9*. The confidence multimeasures impose no restrictions
on agent decisions other than restricting them to non dominated actions.

This use of the confidence multimeasure in making decisions follows a previous
generalization of maximizing expected utility to multi-valued probability. (Here, the
utilities are expressed in terms of equivalent losses, as is conventional in the statistics
literature.) Kyburg (1990, pp. 180, 231-234; 2003, 2006) and Kaplan (1996, Sec. 1.4)
used the principle of dominance to make decisions on the basis of intervals of
expected utilities determined by the expected utility of each probability measure: an
action yielding expected utilities in interval A is preferred to that yielding expected
utilities in interval B if at least one member of A is greater than all members of B
and if no member of A is less than any member of B.

While multi-valued probabilities do not dictate how to choose one of the
non dominated actions in situations that demand a choice equivalent to deciding
between accepting a hypothesis or accepting its alternative, they may prove
more practical when indecision can be broken by additional considerations, as
Walley (1991, pp. 161-162, 235-241) explained. In the case of a human agent,
Kyburg (2003) argued for selecting among non dominated actions on the basis of
considerations that cannot be represented mathematically rather than selecting on
the basis of an arbitrary prior distribution.

If a single-valued estimate of 1, () is needed for some @' € <4, the indeterminacy
sup ?* (0') — inf P* (@) can quantify a set estimator’s degree of undesirable
conservatism; some ways to eliminate such indeterminacy by replacing a confidence
multimeasure with a confidence measure are mentioned in Sec. 3. If indeterminacy
is removed, the above dominance principle reduces to the principle of minimizing
expected loss; see Bickel (2009, 2010, 2011a).

2.5. Likelihood Principle

While in some cases the likelihood function can guide the construction of set
estimators with desirable properties (Bickel, 2010), it plays no general role in
confidence decision theory. Consequently, inference does not always obey the
likelihood principle: some set estimators lead to values of evidential support and
partial proof that depend on information in the sampling model not encoded in the
likelihood function; cf. Wilkinson (1977).

An advantage of coherent statistical methods, in general, is the flexibility they
give the researcher to simultaneously consider as many hypotheses and interval
estimates for 6 as desired. Although such versatility is usually presented as a
consequence of the likelihood principle and Bayesian statistics, they are not needed
to secure it once coherence has been established (Sec. 2.3). In the proposed
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framework, the presence of multiple comparisons affects data analyses largely
through the use of non additive loss functions (Bickel, 2011a).

That the proposed framework is not constrained by the likelihood principle
distinguishes it from Peter Walley’s W, and W,, two inferential theories of
indeterminate (multi-valued) probability intended to satisfy the best aspects of
both coherence and frequentism (Walley, 2002). The coverage error rate of W,
tends to be much higher than the nominal rate in order to ensure simultancous
compliance with the likelihood principle. Although the principle often precludes
approximately correct frequentist coverage, more power can be achieved by less
stringently controlling the error rate (Walley, 2002). Walley (2002) did not report
the degree of conservatism of W,, a normalized likelihood method. With a uniform
measure for integration over parameter space, the normalized likelihood is equal to
the Bayesian posterior that results from a uniform prior.

3. Confidence Posterior Distribution

An important realm for practical applications of the above framework is the
situation in which inference may reasonably depend only on a single confidence
measure P* rather than directly on a confidence multimeasure %*. That is possible
not only in the special case of degeneracy due to the availability of a suitable exact
nested set estimator (Example 2.1), but can also be achieved either by transforming
a nondegenerate confidence multimeasure to a confidence measure (Sec. 3.1) or by
approximating a confidence measure (see Remark 3.1 below). In the ubiquitous
special case of a scalar parameter of interest, a single confidence level of a hypothesis
is a consistent estimator of whether the hypothesis is true under more general
conditions than is the p-value as such an estimator (§3.2).

3.1. Reducing a Confidence Multimeasure

Interpreting upper and lower probabilities as bounds defining a family of
permissible probability measures, Williamson (2007) argued for minimizing expected
loss with respect to a single distribution within the family instead of using outside
considerations to choose among actions that are non-dominated in the sense of
Sec. 2.4. Consider the confidence multimeasure space M2 _ = (O, st*, {PX, P1}) of
confidence multimeasure &* for some x € ). A much larger family 8 of measures
on $* such that {Pi, Pi} and B have the same lower envelope u is the convex set

®={Py:Dec[0.1]),

where P;, = (1 — D) P + DPZ, thereby forming the multiprobability space 7@‘ =
(0, s1*, B) and probability multimeasure :Ujv”; cf. Smith (1961, Sec. 11), Wasserman
(1990), and Paris (1994, pp. 40-42). The measure P* € ¥ selected according to some
rule is called a reduction of 2%, and, by extension a reduction of %*.

Effective reduction of %* to a single measure P* can be accomplished by
averaging over 3 with respect to the Lebesgue measure. That average of the convex
set is simply the mean of the valid and non conservative confidence measures:

1
P (@) = /0 P3(©)dD = (P (0') + PL () /2= P}, () )

for all © € s1%; recall that Py, € .
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Other automatic methods of reducing a multimeasure to a single measure are
also available. For example, the recommendation of Williamson (2007) to select the
measure within the family that maximizes the entropy is minimax under convexity
and Kullback-Leibler loss (Griinwald and Philip Dawid, 2004).

Example 3.1 (Binomial Distribution, Continued from Example 2.2). As the gray
line in Fig. 1 indicates, the mean measure P* of the convex set (8) yields a
confidence level between those of the valid and non conservative confidence
measures, discarding the notable reduction in confidence non degeneracy from n = 1
to n = 10 as irrelevant for action in situations that do not permit indecision. This P*
is equivalent to the generalized fiducial distribution of Hannig (2009, Example 2.1,
Choice 5). The approximate (half-corrected) confidence level also disregards non
degeneracy information, yielding in this special case the same levels of confidence
as does P*. In contrast, the confidence multimeasure records the nondegeneracy as
the difference between the agent’s selling and buying prices of a gamble with a
payoff contingent on whether or not 6 € [1/4, 3/4], a difference that becomes less
important as n increases.

A confidence measure, whether reduced or derived from (approximately) exact
confidence sets, minimizes expected loss according to Sec. 2.4. Thus, it generates
optimal point estimators and optimal predictors in the same way as does a Bayesian
posterior distribution (Bickel, 2010).

3.2. Scalar Subparameter Case

The equality between tail probabilities of confidence measures and p-values will be
used to prove the consistency of estimating composite hypothesis truth, a property
that holds under more general conditions for a confidence level than for a p-value.

3.2.1. Confidence CDF as the p-Value Function. If decisions are based on a
single confidence measure of a scalar parameter of interest, then the cumulative
distribution function of that measure is an upper-tailed p-value function.

Definition 3.1. Consider a function pt:Q x ® — [0, 1] such that p* (x,e) =
pt(e) is a CDF for all x € Q and such that

P (px (0) <o) =« )

for all 0 € ©, £ € E, and o € [0, 1]. Then, for any x € Q, the map pf : ® — [0, 1]
is called an upper-tailed p-value function for 0. Likewise, p; : @ — [0, 1] is called a
lower-tailed p-value function if

Py (0)=1-p7(6) (10)
for all 0 € © and for all x € Q.
Uniformly distributed under the simple null hypothesis that 0 = @', p; (0') and

pl(0) are exact p-values of one-sided tests. Since Eq. (10) is an isomorphism
between the two p-value functions, either element of the pair (p_, p}) may be
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conveniently designated by pi. The two-sided p-value of the null hypothesis that 0
is in a central region O of O is

P (0) =2 SUp p; (0) A py (0)

for all x € Q, reducing to the usual p, (0)=2p; (6') A pf (0') for the point
hypothesis that 6 = 0'.

While the name p-value function used by Fraser (1991) has become standard in
the scientific literature, significance function is also used in higher-order asymptotics
(e.g., Brazzale et al., 2007). Singh et al. (2007) prefered the term confidence
distribution, which for Efron (1993) and Schweder and Hjort (2002) instead refered
to the confidence measure as a Kolmogorov probability distribution, though they
do not call confidence levels probabilities of hypothesis truth. (Whereas any p-
value function is isomorphic to a unique confidence measure as defined in Sec. 2.2,
the p-value function can also be isomorphic to a strictly incomplete probability
measure. That Wilkinson (1977) constructed a theory of incoherence based on such
a measure underscores the need to sharply distinguish confidence measures from p-
value functions.)

By the usual concept of statistical power, the Type II error rate of p*
associated with testing the false null hypothesis that 6 = 6" at significance level « is
B* (2, 0,0) = P: (p (0') > «) for any 0 = 0'. For all «;, o, € [0, 1] such that «; +
o < 1,

P <pi(0) <1—o0y)=1—0 —a,,

implying that 603 :[0,1] — ©, the inverse function of pJf, yields
(0% (o)), 0% (1 — o)) as an exact 100 (1 —a; —o,) % confidence interval (Fraser,
1991; Efron, 1993; Schweder and Hjort, 2002; Singh et al., 2007).

Remark 3.1. In many applications, approximate p-value functions replace those
that exactly satisfy the definition. For instance, Schweder and Hjort (2002) used
a half-corrected p-value function like p., of Example 2.2 for discrete data.
Other approximations involve parameter distributions with asymptotically correct
frequentist coverage, including the asymptotic p-value functions of Singh et al.
(2005), the distributions of asymptotic generalized pivotal quantities of Xiong and
Mu (2009), some of the generalized fiducial distributions of Hannig (2009), and the
Bayesian posteriors of Sec. 1.1. As with frequentist inference in general, asymptotics
provide approximations that in many applications prove sufficiently accurate for
inference in the absence of exact results (Reid, 2003).

3.2.2. Confidence Levels Versus p-Values. Although both confidence levels and p-
values can be computed from the same p-value function, the following examples
illustrate how they can lead to different inferences and decisions. Section 3.2.3 then
demonstrates that the former but not the latter are consistent as estimators of
composite hypothesis truth.

Example 3.2 (Point Null Hypothesis). If P*(¢ < e) is continuous on ®, then
P* (0 = 0") = 0 for any interior point 0’ of ®. This means that given any alternative
hypothesis 6 € @ such that P*(0 € ®') > 0, betting on § =0 vs 0 € @ at any
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finite betting odds will result in expected loss, reflecting the absence of information
singling out the point 6 = 0’ as a viable possibility before the data were observed.
(By contrast, the usual two-sided p-value is numerically equal to p, ('), which
does not necessarily equal the probability of any hypothesis of interest.) If, on the
other hand, the parameter value can equal the null hypothesis value for all practical
purposes, that fact may be represented by modeling the parameter of interest as
a random effect with non zero probability at the null hypothesis value. The latter
option would define the confidence measure such that its cdf is a predictive p-value
function such as that used by Lawless and Fredette (2005).

Example 3.3 (Beyond Statistical Significance). Consider the null hypothesis 6 —
A<60<0+A, where the non negative scalar A is a minimal degree of
practical or scientific significance in a particular application. For instance,
researchers developing methods of analyzing microarray data are increasingly
calling for specification of a minimal level of biological significance when testing
null hypotheses of equivalent gene expression against alternative hypotheses of
differential gene expression (Bickel, 2011c; Bochkina and Richardson, 2007; Lewin
et al., 2006; Van De Wiel and Kim, 2007). Bickel (2004) and McCarthy and Smyth
(2009) in effect approached the problem with p-values of composite null hypotheses,
in conflict with the confidence-posterior approach (Sec. 3.2.3). To circumvent
arbitrary selection of A, Bickel (2011a) recently reported observed confidence levels
of gene underexpression (0 < 0) and gene overexpression (6 > 0) after a correction
of the null (0 = 0) distribution for multiple comparisons.

3.2.3. Consistency of Hypothesis Confidence. More terminology will be introduced
to establish a sense in which the confidence value but not the p-value consistently
estimates the hypothesis indicator.

Definition 3.2. An indicator estimator 1 is consistent if, for all ® € o,
~ Py,
lg (X) — 1g (0)

for every y € I' and for every 0 that is an element of ® but not of the boundary of
Q.

By the usual concept of statistical power, the Type II error rate of p*
associated with testing the false null hypothesis that 0 = 0" at significance level
o is p*(, 0,0) = Py, (p5 (0) > ) for any 0 = 0. Commonly used in two-sided
testing, the two-sided p-value of the null hypothesis that 0 € @ is p, (0) =
2sUpyee Py (0) A pt(0) for all @ € O and x € Q.

The next two Propositions contrast the consistency of the confidence value with
the inconsistency of the two-sided p-value.

Proposition 3.1. Assume all one-sided tests represented by the p-value functions p*
are asymptotically powerful in the sense that lim, . f* (a, 0, 0') = 0 for all « € (0, 1)
and for all 0,0 € O such that 0 Z 0'. The function 1:s0xQ— [0, 1] is a consistent
indicator estimator if P* = i, (x) is a confidence measure corresponding to p* given
X = x for all x € Q.
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Proof. By the definition of the boundary of a set ©" as the difference between its
closure ® and its interior int ®’, the theorem asserts that, for all ® ¢ o, 0 is either

Py,
in int ', in which case the theorem asserts P¥ (@) 2 1, or 6 is in ®\®', in which

Py,
case the theorem asserts P* (0) —40. Let o represent the set of all disjoint open
interval subsets of ®'. Then,
P¥(®) = P* (int® U (0\int ©'))
= P* (Ugreyy®") + P* (©\int @)
= Y P¥(O")+0.

Q" e

Each term of the sum expands as

P¥(®") = P* ((inf ®”, sup ®"))
= px (sup®”) — py (inf ©")
— iy (inf ©") — p (sup @)
=1 — py (sup®”) — py (inf @").

Py,
As the p-value functions are asymptotically powerful, p3 (0') L 0foralloe 0,1)
and for all 0, 0" € O such that 0 = @', with the result that each term may be written
as a function of p-values that converge in P, to 0:

py (inf @) — py (sup ©@”) 0 < inf @”
PX(O") = 31— py(sup®”) —ps (inf@") 0 e

Py (sup ®”) — py (inf ©") 0 > sup®@”
. 0-0 6 < inf @”

— 11-0-0 0€0®”

0-0 0 > sup®@”

for all ®” € s¢’. Summing the terms over s yields

PYO) 5 Y g (0) = 1o (0)

0" e

since 0 € int @ implies that 0 is in one element of &{'.

Remark 3.2. Polansky (2007, pp. 37-38) proved a similar proposition of
consistency given a smooth distribution Py ,. A suitably transformed likelihood ratio
test statistic is also a consistent indicator estimator under the standard regularity
conditions (Bickel, 2011c).

Proposition 3.2. Under the conditions of Theorem 3.1, the two-sided p-value py (0')
is not a consistent indicator estimator.
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Proof. For any 0 € @ € o, the distribution of the two-sided p-value py ()
converges to the uniform distribution on [0, 1] (Singh et al.,, 2007), violating
consistency (Definition 3.2).

4. Concluding Summary

The confidence multimeasure %* and the confidence measure or confidence posterior
P* bring both coherence and consistency to frequentist inference and decision
making.

The coherence property established in Sec. 2.3 enables confidence-posterior
decisions even in the absence of exact confidence sets. In addition, the reduction to
a single confidence measure for inference and decision making shares the coherence
of theories of utility maximization usually associated with Bayesianism (Sec. 3).
In conclusion, the multilevel or level of confidence in a given hypothesis has the
internal coherence of the Bayesian posterior or class of such posteriors without
requiring a prior distribution or even an exact confidence set estimator.

More can be said if the parameter of interest is one dimensional, in which case
the confidence level of a composite hypothesis is consistent as an estimate of whether
that hypothesis is true, whereas neither the Bayesian posterior probability nor the
p-value is generally consistent in that sense (Sec. 3.2.3). Specifically, the equality of
the confidence level of 0 € ® to the coverage rate of the corresponding confidence
set guarantees convergence in probability to 1 if 6 is in the interior of & or to 0 if
0 ¢ O (Proposition 3.1).
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