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Inverse Probability Weighting with Missing
Predictors of Treatment Assignment or Missingness

SHAUN SEAMAN AND IAN WHITE

MRC Biostatistics Unit, Cambridge, UK

Inverse probability weighting (IPW) can deal with confounding in non randomized stud-
ies. The inverse weights are probabilities of treatment assignment (propensity scores),
estimated by regressing assignment on predictors. Problems arise if predictors can
be missing. Solutions previously proposed include assuming assignment depends only
on observed predictors and multiple imputation (MI) of missing predictors. For the
MI approach, it was recommended that missingness indicators be used with the other
predictors. We determine when the two MI approaches, (with/without missingness indi-
cators) yield consistent estimators and compare their efficiencies.We find that, although
including indicators can reduce bias when predictors are missing not at random, it can
induce bias when they are missing at random. We propose a consistent variance esti-
mator and investigate performance of the simpler Rubin’s Rules variance estimator. In
simulations we find both estimators perform well. IPW is also used to correct bias when
an analysis model is fitted to incomplete data by restricting to complete cases. Here,
weights are inverse probabilities of being a complete case. We explain how the same
MI methods can be used in this situation to deal with missing predictors in the weight
model, and illustrate this approach using data from the National Child Development
Survey.

Keywords Causal inference; Confounding; Horwitz-Thompson estimator; Missing at
random; missing Not at random.

Mathematics Subject Classifications 62-07.

1. Introduction

In a randomized controlled trial, individuals are randomly assigned to one of two or more
treatments, and an outcome is measured. The randomization ensures that the measured effect
of treatment on outcome is not confounded by other variables. In an observational study,
the assignment of individuals to a treatment is not random, and so the observed association
between treatment and outcome may be confounded. If the confounding variables are
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observed, they can be adjusted for in the analysis. This may be done using regression
models, in which confounders are included as covariates alongside treatment, or by using
propensity scores (PS) (Rosenbaum and Rubin, 1983). Cepeda et al. (2003) and Stürmer
et al. (2005) discuss the relation between, and relative advantages of, these two approaches.
In the present article, we are concerned with the PS approach in the situation of a binary
treatment variable. We shall call the two treatments “active” and “control”. The term
“treatment” should be interpreted liberally: it could be any binary exposure.

In the PS approach, a model is specified for the probability that an individual receives
the active treatment. The covariates, X , in this model are called treatment predictor variables,
and the fitted probabilities from the model are called propensity scores. Rosenbaum and
Rubin showed that if the set of treatment predictor variables includes all confounders in
the association between treatment and outcome, then adjustment for the PS is sufficient to
obtain an unconfounded estimate of the treatment effect. Adjustment can be performed by
stratifying or matching on the PS or by weighting by the reciprocal of the PS. The latter
approach is known as inverse probability weighting (IPW). When the PS model is correctly
specified, IPW yields a consistent estimator of treatment effect, unlike stratification, which
is subject to residual confounding (Lunceford and Davidian, 2004). In the present article,
we are concerned with IPW.

IPW can also be used when estimating a population mean outcome from a sample in
which the outcome variable is sometimes missing. In this situation, one might estimate the
population mean by the sample mean in individuals with observed outcome (the “complete
cases”). This “complete-case” analysis yields consistent estimation when the probability
that an individual’s outcome is observed does not depend on that outcome, but it may
be biased otherwise. The Horwitz–Thompson (IPW) estimator (Horwitz and Thompson,
1958) provides a straightforward way of correcting this bias. Again, only individuals with
observed outcome are included, but weights are used to rebalance the set of complete cases
so that it is representative of the whole sample. Each individual’s weight is the inverse
of their probability of being a complete case. Normally, this probability is unknown and
needs to be estimated. This is done by specifying a model for the conditional probability
of an individual being a complete case given a set of predictor variables. This application
of IPW is also used when fitting a more general regression model (known as the “analysis
model”). In this more general situation, the complete cases are those individuals for whom
all variables in the analysis model are observed.

There is a strong parallel between using IPW to deal with missing data and using it to
deal with confounding in non randomized studies. Estimating a population mean outcome
when outcome can be missing in the sample is analogous to estimating the mean outcome
that would result if everyone was assigned to active treatment using data from a sample
in which some individuals are assigned to control treatment. In the latter case, the PS is
the probability of being assigned to active treatment; in the former, it is the probability of
being a complete case. In this article, our real-data example (Sec. 7) concerns the use of
IPW to deal with missing data. We shall study methods in the more complicated situation
of confounding in non randomized studies and then show how these methods transfer to
the simpler situation of missing data.

When there are missing values in X , estimation of the PS is not straightforward. A
number of approaches have been suggested in the setting of estimating a treatment effect in
a non randomized study. D’Agostino and Rubin (2000) assume that the PS depends only on
observed predictors. This implies that the PS model is different in different individuals: if all
predictors are observed on an individual, his/her PS may depend on all predictors; if some
are missing, his/her PS may not depend on these. Once this assumption has been made,
the simplest approach is to stratify the individuals according to which predictors have been
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observed and then fit a separate PS model to each stratum. The number of individuals in
some strata may, however, be small, which could cause problems when fitting the PS models
in these strata. D’Agostino and Rubin proposed instead modeling the joint distribution of
X , T , and R, where T = 1 if the individual is assigned to active treatment and T = 0 if
assigned to control, and R denotes the missingness pattern of X , i.e., it denotes which
predictors of propensity are observed. The model is fitted using an expectation conditional
maximization algorithm. One drawback with this approach is its unappealing assumption
that the PS depends on a predictor of propensity only if it is observed, i.e., that a variable
is not a confounder if it is unobserved. A second drawback is the difficulty of interpreting
the parameter constraints needed to make the joint model for (X, T , R) estimable.

Qu and Lipkovich (2009) proposed multiply imputing missing values of X using the
observed values of X , T , and the outcome, thus creating M multiple data sets in which X
is complete. For each completed data set, the PS model is fitted, PS’s are estimated and the
inverse PS’s are used as weights in the estimator of treatment effect. The M treatment effect
estimates are then averaged. In a refinement of this approach, Qu and Lipkovich (2009)
propose including R as an additional covariate in the PS model. They explain that this may
reduce bias when X is missing not at random. However, no formal justification for their
methods is provided.

Mitra and Reiter (2011) also proposed multiply imputing missing X . Their aim was
to make inference more robust to misspecification of the imputation model. A drawback
of their method is that the imputation model excludes the outcome data, and so missing
X values are imputed without using the observed outcome. This means that X is imputed
using a model which assumes X is not a confounder.

In applied work, Mattei (2009) and Song et al. (18) also deal with missing predictors
of propensity by using multiple imputation (MI), but without investigating the properties
of their methods or providing theoretical justification for them. Their descriptions of the
methods they used are somewhat limited, but these methods would appear to be the same
as, or very similar to, that of Qu and Lipkovich (2009). Hayes and Groner (2008) multiply
impute missing predictors and calculate PSs for each imputed data set. However, they then
choose one PS at random for each individual. Uncertainty in PS is ignored.

The purpose of the present article is fourfold. First, we investigate Qu and Lipkovich’s
(2009) two imputation methods, showing under what conditions each yields consistent
parameter estimation and comparing their efficiencies. Second, as these estimators are not
maximum likelihood estimators (MLEs), it is not obvious that Rubin’s Rules will apply in
this case (Robins and Wang, 2000; Nielsen, 2003). Qu and Lipkovich (2009) proposed that
variance estimates be obtained by bootstrapping, a computationally intensive procedure.
We investigate how the simple Rubin’s Rules variance estimator performs in this setting.
Third, MI may be proper or improper. In proper MI, the uncertainty in the parameters of the
imputation model is accounted for by including in the imputation procedure a random draw
from the posterior distribution of these parameters. In improper MI, this step is omitted,
and the MLEs of the parameters are used instead. In most applications of MI, proper
imputation is used, because it enables the variance to be estimated using Rubin’s Rules. For
improper MI, on the other hand, a closed-form variance estimator is available (Robins and
Wang, 2000). This latter estimator is complicated, but has the advantage of being valid even
when the parameter estimator is not a MLE, as is the case here. Qu and Lipkovich (2009)
use proper MI. We describe the analogous improper MI procedure and its closed-form
variance estimator. Fourth, Qu and Lipkovich (2009) were concerned with estimating a
simple treatment difference in a non randomized study. We show how these methods can
also be used to estimate the population mean of an outcome when this outcome can be
missing, and extend them to more general analysis models.
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The structure of the article is as follows. In Sec. 2, the PS approach with fully observed
predictors of propensity is described. In Sec. 3, we describe Qu and Lipkovich’s (2009)
imputation method and prove consistency of their parameter estimator when R is not in the
PS model. In Sec. 4, we examine the effect of including R. Section 5 contains a simulation
study comparing various approaches for handling missing predictors. We look at asymptotic
and finite-sample biases and at the coverage of confidence intervals constructed using both
our explicit variance estimator and the Rubin’s Rules variance estimator. In Sec. 6, we show
how Qu and Lipkovich’s (2009) methods transfer to the estimation of a population mean
from a sample with missing outcomes and to more general analysis models. An application
of these methods to data from the National Child Development Survey (NCDS) is described
in Sec. 7. We end with a discussion.

2. PS Approach with Fully Observed Predictors

Let D1 denote an individual’s potential outcome if assigned to active treatment and D0

denote the outcome if assigned to control. Only one of these can be observed. If T = 1,
D1 is observed and D0 is missing; if T = 0, D0 is observed and D1 is missing. Let
θ = E(D1) − E(D0) denote the average treatment effect, and let θ0 denote the true value
of θ . Let Dobs = T D1 + (1 − T )D0 denote the observed outcome.

A model (e.g., a logistic regression model) π (X ; α) is specified, for π (X) = P (T = 1 |
X), where α denotes unknown parameters. This is the PS model. Assume this is correctly
specified, and let α0 denote the true value of α. So, π (X) = π (X ; α0). The following
additional assumptions are made:

(A1) T ⊥⊥ D1,D0 | X

(A2) ∃c > 0 such that P {c < π (X ; α0) < 1 − c} = 1

(A1) means that, given X , treatment assignment is independent of the two potential out-
comes. (A2) means that, with probability one, a randomly chosen individuals will have
positive probabilities of being assigned to each of the two treatments.

Suppose a sample of n individuals is drawn. Let subscript i denote individual i, and let
α̂ denote the solution to a set of consistent estimating equations

∑n
i=1 Sα(α; X i , Ti) = 0

for α. For example, if π (X ; α) is a logistic regression model fitted by maximum likelihood,
then Sα(α; X i , Ti) is the contribution of individual i to the score equations of, and α̂ is the
MLE from, the logistic regression of T1, . . . , Tn on X1, . . . , Xn.

A consistent estimator of θ is (Lunceford and Davidian, 2004)

θ̂ = 1

n

n∑
i=1

{
TiDobs,i

π (X ; α̂)
− (1 − Ti)Dobs,i

1 − π (X ; α̂)

}
(1)

and a consistent estimator of the variance of β̂ = (θ̂
T
, α̂T )T is(

n∑
i=1

∂U i

∂βT

∣∣∣∣
β=β̂

)−1 (
n∑

i=1

U iUT
i

)(
n∑

i=1

∂U i

∂βT

∣∣∣∣
β=β̂

)−1

(2)

where U i = (ST
θ (θ ; X i , Dobs,i , Ti), ST

α (β; X i , Ti))T and

Sθ (θ,α; X,Dobs, T ) = T Dobs

π (X ; α)
− (1 − T )Dobs

1 − π (X ; α)
− θ (3)
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3. PS Approach with Missing Predictors

We now describe two MI procedures for estimating θ when X is not fully observed.
Let Xobs and Xmis denote the observed and missing parts of X , respectively, and

let W = (Xobs,Dobs, T ). We shall use M to denote the number of imputations. A model
f (X | Dobs, T ; ψ), with parameters ψ , is specified for the distribution of X given Dobs

and T . If a component, X full, of X is fully observed, a model may instead be specified for
f (X | X full,Dobs, T ; ψ), the distribution of X given X full, Dobs, and T . Assume that this
model and the PS model π (X ; α) are correctly specified. Qu and Lipkovich (2009) propose
the following proper MI procedure.

1. Calculate the posterior distribution of ψ implied by likelihood function f (X |
Dobs, T ; ψ), observed data W 1, . . . , Wn and a non informative prior.

2. Sample ψ (1), . . . ,ψ (M) from this posterior distribution.
3. For each m = 1, . . . ,M and i = 1, . . . , n, sample X∗(m)

mis,i from the distribution g(Xmis,i |
W i ; ψ

(m)) implied by model f (X | Dobs, T ; ψ (m)). Let X∗(m)
i = (Xobs,i , X∗(m)

mis,i).
4. For each m = 1, . . . , M , let α̂(m) denote the solution to estimating equations

n−1 ∑n
i=1 Sα(α̂(m); Ti, X∗(m)

i ) = 0.
5. For each m = 1, . . . , M , calculate

θ̂ (m) = 1

n

n∑
i=1

{
TiD1i

π (X∗(m)
i ; α̂(m))

− (1 − Ti)D0i

1 − π (X∗(m)
i ; α̂(m))

}
. (4)

6. Calculate θ̂A = M−1 ∑M
m=1 θ̂ (m).

An alternative, improper MI procedure is as follows.

1. Calculate the MLE, ψ̂ , of ψ from likelihood function f (X | Dobs, T ; ψ) and observed
data W 1, . . . , Wn.

2. For each m = 1, . . . ,M and i = 1, . . . , n, generate X∗(m)
mis,i from g(Xmis,i | W i ; ψ̂). Let

X∗(m)
i = (Xobs,i , X∗(m)

mis ).
3. Calculate α̂ as the solution to (nM)−1 ∑n

i=1

∑M
m=1 Sα(X∗(m)

i , T ; α̂) = 0.
4. Calculate

θ̂B = 1

nM

n∑
i=1

M∑
m=1

{
TiD1i

π (X∗(m)
i ; α̂)

− (1 − Ti)D0i

1 − π (X∗(m)
i ; α̂)

}
(5)

These two MI procedures differ in two ways. The first procedure estimates θ using proper
imputation of X and Rubin’s Rule for the mean, i.e., α and θ are estimated separately for
each of the M imputed data sets, and then the estimates of θ are averaged. The second
procedure uses improper imputation and calculates a single estimate of (α, θ ) directly from
the whole set of M imputations.

Assume (A1), (A2), and (A3) are true, where (A3) is

(A3) p(R | X,Dobs, T ) = p(R | Xobs,Dobs, T )

(i.e., X is MAR given Dobs and T). In Appendix B, we prove that when these conditions
are satisfied and M = ∞, θ̂A and θ̂B are asymptotically equivalent, consistent estimators of
θ . Moreover, assuming that θ̂A and θ̂B are consistent when M < ∞, θ̂B is asymptotically
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more efficient than θ̂A when M < ∞, and the variance of θ̂B is consistently estimated by
the formula given in Appendix C. For the Rubin’s Rules variance estimator of θ̂A, the
complete-data variance estimator we use is that given by Eq. (2).

In Appendix A, we present an alternative pair of estimators of treatment effect, in
which Eqs. (4) and (5) are modified by dividing by the sum of the weights. We also present
estimators of the treatment ratio, E(D1)/E(D0).

4. Including R in the PS Model

Qu and Lipkovich (2009) recommend additionally including R in the PS model, saying it
may reduce the bias in θ̂A when Assumption (A3) is violated, i.e., when X is not MAR
given Dobs and T . We now explore the consistency of θ̂A and θ̂B when R is included in the
PS model and the efficiency relative to when R is not included.

Including R in the PS model implies replacing Assumption (A1) by (A1′):

(A1′) T ⊥⊥ D1,D0 | X, R

When (A1) and (A3) are true, (A1′) is not true in general. An example illustrates this. Sup-
pose that R = r , X = x, and P (R = r | X = x,Dobs, T ) = P (R = r | Xobs = xobs,Dobs)
is an increasing function of Dobs. Then the probability that T = 1 is greater if D1 > D0

than if D0 > D1. Therefore (A1′) is false.
If (A1) and (A4) are true, where (A4) is

(A4) R ⊥⊥ D0,D1 | X, T

then (A1′) is also true, and so including R will not induce bias. A stronger assumption than
both (A3) and (A4) is (A5):

(A5) p(R | X,D0,D1, T ) = p(R | Xobs, T )

So, when Assumptions (A1) and (A5) are true, Assumptions (A1′) and (A3) are also true.
In this case, including R in the PS model should not induce bias, although there is no need
to include R, because it is not a confounder in the relation between T and (D0,D1) given X .
Moreover, there may be some loss of efficiency if it is included. This is because including
R will cause individuals with the same values of T and X but different values of R to
receive different weights, and because (D0,D1) is distributed equally in such individuals,
efficiency is lost by weighting them differently. Asymptotically, however, the efficiency
loss tends to zero (Tsiatis, 2006).

Qu and Lipkovich (2009) describe a simulation study in which p(R | X,D0,D1, T ) =
p(R | X), so that (A4) is true. They found that including R made no difference to bias (as
expected) and that the efficiency loss was very small.

Qu and Lipkovich (2009) suggested that including R would reduce bias when (A3) is
false, i.e., when X is MNAR given T and Dobs. They imagined an extreme MNAR scenario
in which X = (Xa, Xb), where Xa is fully observed and Xb is binary. The variable Xb was
assumed to be always observed (R = 1) if Xb = 0 and always missing (R = 0) if Xb = 1.
In this extreme situation, R is a one-to-one mapping of Xb and so R can replace Xb in the
PS model. In realistic situations, the MNAR mechanism will be weaker, and the missing
variables may not be binary, so R will not be a one-to-one mapping. Whether including
R increases or reduces the bias resulting from X not being MAR given Dobs and T will
depend on the strength of the association between Xmis and R given Xobs and on the extent
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of deviation from Assumption (A4). Qu and Lipkovich (2009) describe a MNAR simulation
in which R is independent of T , D0, and D1 given X . They found that including R reduced
bias in this situation. As including R does not introduce bias when (A4) is true, this is as
expected. In Sec. 5, we consider bias under a wider range of MNAR mechanisms.

5. Asymptotic and Simulation Study

We now describe a study of asymptotic bias and finite-sample bias and efficiency, com-
paring several methods for dealing with missing predictors of propensity when using the
PS approach to estimate average treatment effect. Both MAR and MNAR predictors of
propensity will be considered.

We consider scenarios in which the outcome, D, and the predictors of propensity,
X1 and X2, are binary variables, and X1 is fully observed. We assume P (X1 = 1) = 0.5,
P (X2 = 1) = 0.2+0.6X1, P (T = 1 | X1, X2) = {1+exp(1.5−X1−2X2)}−1, and P (Dt =
1 | X1, X2) = {1 + exp(1 − X1 − X2 − 2t)}−1. So, X1 and X2 are positively correlated,
X1 and X2 both increase the probability of assignment to active treatment, and X1, X2

and active treatment all independently increase the probability of outcome D = 1. With
these choices, P (T = 1) = 0.5, P (D = 1) = 0.64, the treatment effects (i.e., treatment
differences) are 0.46, 0.38, 0.38, and 0.22 in the four strata defined by (X1, X2) = (0, 0),
(0, 1), (1, 0), and (1, 1), respectively, and the overall treatment effect is θ0 = 0.35. Let
R = 1 if X2 is observed; R = 0 otherwise. The probability that X2 is missing (i.e., R = 0)
was {1 + exp(−γ0 − X1 − γ2X2 − γT T − γDDobs)}−1. When γ2 = 0, X is MAR given
Dobs and T . A variety of values of γT and γD were considered; γ0 was chosen to make
P (R = 1) = 0.5.

We used the method of Rotnitzky and Wypij (1994) to calculate the asymptotic biases
of the estimators of treatment effects from seven methods:

Complete Data (Comp): Using X1 and X2 in the PS model (before deleting missing X2

values).
No Adjust (NoAdj): No adjustment for confounding, i.e., the difference between the means

of the observed outcomes in the two treatment groups.
Partly Adjusted (PartAdj): Using only X1 in the PS model.
Missing indicator method (MissI): Using X1, RX2, and R in PS model.
Separate PS models by R (SepPS): Using X1, RX2, R, and RX1 in PS model (so effectively

using two different PS models: one for individuals with observed X2 and one for those
with missing X2).

Improper MI (Imp): Using X1 and X2 in the PS model, and imputing missing X2 values
using improper MI with M = ∞.

Improper MI with R (ImpR): Same as Imp, but also using R in the PS model.

As mentioned earlier, when M = ∞ the treatment effect estimators from proper MI are
asymptotically equivalent to those from improper MI. For Imp and ImpR, a saturated
imputation model was used, i.e., P (X2 = 1 | X1, T ,Dobs) was allowed to be different for
each of the eight combinations of X1, T , and Dobs.

The asymptotic biases of Comp, NoAdj, and PartAdj do not depend on γ ; they are
0.000, 0.174, and 0.064, respectively. Table 2 shows asymptotic biases for the other four
methods for a variety of values of γ0, γ2, γD , and γT . We consider four MAR scenarios: one
where neither outcome nor treatment assignment affects the probability that X2 is observed
(γT = γD = 0); one where only treatment assignment affects it (γT = 1, γD = 0); one
where only outcome affects it (γT = 0, γD = 1); and one where both affect it (γT = γD = 1).
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As expected, we see that Imp is asymptotically unbiased in all four MAR scenarios, but
ImpR is only unbiased when outcome does not affect the probability that X2 is observed.
MissI and SepPS are biased in all scenarios.

Table 2 also shows asymptotic biases when γ2 = 2, and so X is MNAR. As expected,
Imp is no longer asymptotically unbiased. Its bias may be more or less than the biases of the
other three methods. We also examined what happens when γ2 assumes larger values (data
not shown), concentrating on the case where γD = γT = 0. As γ2 increases, whether X2 is
observed increasingly predicts whether X2 = 1 and, as this happens, ImpR is expected to
become less asymptotically biased than Imp, for the reasons explained in Sec. 4. Indeed,
when γ2 = 4, the asymptotic bias is 0.024 for Imp but only −0.011 for ImpR; when γ2 = 8,
the biases were, respectively, 0.056 and −0.003. Likewise, the asymptotic biases of MissI
and SepPS tend to diminish: when γ2 = 4 they are 0.026 and 0.017, respectively; when
γ2 = 8 they are 0.005 and 0.003 respectively.

By simulating 1000 data sets, each with sample size n = 500, for each scenario, we
also estimated the finite sample biases, empirical SEs and coverages of 95% confidence
intervals. The biases of Comp, NoAdj, and PartAdj were estimated as 0.0008, 0.173,
and 0.064, respectively, agreeing closely with the asymptotic biases. The corresponding
empirical SEs were 0.062, 0.036, and 0.045. Coverages were 95%, 0%, and 69%. The
imputation methods that we applied were Imp1 and Imp10 (missing X2 imputed using
improper MI with M = 1 and M = 10, respectively), Pro10 (proper MI with M = 10),
and ImpR10 and ProR10 (like Imp10 and Pro10 but with R included in the PS model).
A saturated imputation model was used for each imputation method, and for proper MI
independent Beta(1, 1) (i.e., uniform) priors were used for each element of ψ . Confidence
intervals were based on the Robins’ variance estimator (see Appendix C) for Imp1, Imp10,
and ImpR10, and on the Rubin’s Rules variance estimator for Pro10, and ProR10.

Table 1 shows empirical SEs and coverages of confidence intervals for these imputation
methods and for MissI and SepPS. Finite-sample biases are not shown, as these are very
close to the corresponding asymptotic biases reported in Table 2; biases for Pro10 and
ProR10 are very similar to those for Imp10 and ImpR10, respectively. Empirical SEs are
reduced by using M = 10 imputations rather than M = 1 (compare Imp10 and Imp1). As
expected (see Sec. 4), including R in the PS model leads to an increase in the empirical SE
when γD = 0 and γT = 1. This difference becomes increasingly marked as γT increases: the
SEs of Imp10 and ImpR10 are 0.065 and 0.085, respectively, when γT = 3, γD = γ2 = 0
(data not shown). Coverages of Imp10 and Pro10 were close to their nominal levels when
X is MAR given Dobs and T , suggesting that Rubin’s Rule for the variance is valid.

The empirical SEs of Pro10 are generally slightly smaller than those of Imp10. Asymp-
totically (as n → ∞), the SE of Imp10 should be smaller than that of Pro10 when M < ∞,
and asymptotically equal to it when M = ∞ (Robins and Wang, 2000). So, we investi-
gated further the case of γT = 3 and γD = γ2 = 0, which was the MAR scenario where the
difference was greatest. With independent Beta(1, 1) priors for the parameters, ψ , of the
imputation model, the SEs of Imp10 and Pro10 were 0.065 and 0.062, respectively. When
these priors were replaced by Beta(0, 0) priors, the SE for Pro10 was 0.067, greater than
that of Imp10 (0.065). Under improper Beta(0, 0) priors, the posterior mean of ψ is equal
to its MLE, whereas Beta(1, 1) priors cause the posterior mean of each element of ψ to
be closer to 0.5 than its corresponding MLE. This will slightly reduce the variance of the
distribution of weights and hence reduce the SE. As the sample size n increases, the prior
should become less influential. Indeed, when n = 5000 and Beta(1, 1) priors were used,
the SE of Imp10 (0.0192) was slightly less than that of Pro10 (0.0193).
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Table 1
Empirical standard errors and 95% coverages of estimators of average treatment effect, θ ,

for seven methods of handling missing values of X2 in PS model. Monte Carlo SEs are
0.0013 for SEs when true SE is 0.06, and 0.7% for coverage when true coverage is 95%

γT γD γ2 MissI SepPS Imp1 Imp10 ImpR10 Pro10 ProR10

MAR Empirical SE
1 1 0 0.057 0.054 0.061 0.058 0.061 0.058 0.061
1 0 0 0.053 0.050 0.060 0.058 0.061 0.056 0.059
0 1 0 0.051 0.049 0.062 0.060 0.059 0.059 0.059
0 0 0 0.051 0.048 0.062 0.058 0.058 0.057 0.057

MNAR
1 1 2 0.055 0.052 0.061 0.059 0.067 0.056 0.063
1 0 2 0.052 0.050 0.060 0.057 0.063 0.056 0.061
0 1 2 0.051 0.049 0.072 0.069 0.073 0.062 0.064
0 0 2 0.051 0.048 0.071 0.068 0.069 0.062 0.062

MAR 95% Coverage
1 1 0 93 92 96 96 83 96 87
1 0 0 82 89 95 94 94 95 96
0 1 0 92 93 95 95 93 95 95
0 0 0 92 90 95 93 93 94 94

MNAR
1 1 2 93 90 87 87 97 88 94
1 0 2 87 92 92 93 97 93 97
0 1 2 93 94 89 89 96 91 96
0 0 2 87 91 92 92 95 93 95

Table 2
Asymptotic biases of estimators of average treatment effect, θ , for four methods of

handling missing values of X2 in PS model

P (X2 miss) Asymptotic bias

γT γD γ2 MissI SepPS Imp ImpR

MAR
1 1 0 −0.003 −0.024 0.000 −0.062
1 0 0 0.055 0.035 0.000 0.000
0 1 0 0.021 0.014 0.000 −0.017
0 0 0 0.029 0.032 0.000 0.000

MNAR
1 1 2 −0.016 −0.028 0.039 −0.047
1 0 2 0.039 0.022 0.016 −0.009
0 1 2 0.014 0.003 0.033 −0.019
0 0 2 0.039 0.028 0.004 −0.008
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6. IPW Complete Case Analysis

Now consider the second use of IPW described in Sec. 1, i.e., the estimation of a population
mean outcome when this outcome can be missing. This problem is analogous to that
of estimating an average treatment effect. Let D denote the outcome and θ denote the
population mean of D. Let T = 1 if D is observed, T = 0 otherwise. Let X be a vector of
predictors of T , and Dobs = T D. The earlier results for a treatment difference imply that if
the proper imputation procedure is used to impute missing values of X , then

1

nM

M∑
m=1

n∑
i=1

TiD1i

π
(
X∗(m)

i ; α̂(m))
is a consistent estimator of θ when M = ∞, provided that T ⊥⊥ D | X and (A2) and (A3)
are true. This estimator comes from ignoring the second half of Eq. (4). An analogous
estimator for the improper imputation procedure comes from ignoring the second half of
Eq. (5). Note that since Xmis is imputed using Dobs and Dobs is nonzero only in complete
cases (T = 1), it may be desirable to impute Xmis separately in complete cases (using Dobs)
and incomplete cases (not using Dobs).

Now consider the more general problem of using IPW when fitting a general
analysis model to complete cases. Let D and θ denote the variables and parame-
ters, respectively, in an analysis model of interest. Let T = 1 if the individual is a
complete case (i.e., D is observed) and T = 0 otherwise (i.e., at least one element
of D is missing). Let X be a vector of predictors of T , and let Dobs = T D. Let
Qθ (θ ; D) denote an individual’s contribution to the complete-data estimating equations∑n

i=1 Qθ (θ ; Di) = 0. So, the true value of θ is the solution of E{ Qθ (θ ; D)} = 0. Let
Sθ (θ ,α; Dobs, T , X) = T Qθ (θ ; D)/π (X ; α) denote an individual’s contribution to the IPW
estimating equations

∑n
i=1 Sθ (θ,α; Dobs,i , Ti, X i) = 0. Assume that T ⊥⊥ D | X and that

(A2) and (A3) are true. Proper or improper imputation can be used for missing values of

X . First, consider proper imputation. Let θ̂
(m)

denote the solution of estimating equations∑n
i=1 Sθ (θ, α̂(m); Dobs,i , Ti, X∗(m)

i ) = 0. Then θ̂A = M−1 ∑M
m=1 θ̂

(m)
is a consistent estima-

tor of θ when M = ∞. Now, consider improper imputation. The solution θ̂B to estimating
equations (nM)−1 ∑M

m=1

∑n
i=1 Sθ (θ, α̂; Dobs,i , Ti, X∗(m)

i ) = 0 is a consistent estimator of
θ when M = ∞. The variance of θ̂B can be estimated using the formula given in Appendix
C. As in the special case of estimating a population mean outcome, it may be better to
impute Xmis separately in complete cases (using Dobs) and incomplete cases (not using
Dobs). This was done in the analysis described in Sec. 7.

7. Application to NCDS Data

In this section, we demonstrate the use of IPW to reduce bias in a complete-case analysis.
Note that the analysis we present is intended to be illustrative rather than definitive. The
NCDS consists of 17,638 people born in Britain during one week in 1958. Nine hundred
and twenty immigrants with the same birth dates were added later. Data were collected at
birth, ages 7, 11, 16, 23, 33, and 45. Sixteen thousand three hundred and thirty-four non
immigrants were still alive and free from type-1 diabetes at age 45, and 8953 (55%) of these
participated in a biomedical survey. Data from this biomedical survey have been previously
used to investigate the effects of characteristics measured at birth and of adult adiposity
(body mass index (BMI) and waist circumference at age 45) on glucose metabolism at
age 45 (Thomas et al., 2007). Following Thomas et al. (2007), we classified subjects as
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having high blood glucose if their glycosylated hemoglobin (A1C) was >6% or they
had type-2 diabetes. Immigrants and subjects with type 1 diabetes were excluded. After
these exclusions, 5673 partipants (“complete cases”) had complete data for variables in
the analysis model. The complete-case analysis will be valid if the 5673 complete cases
are representative of the 16,334 non immigrants still alive and free from type 1 diabetes.
Otherwise it may be biased. We use IPW to allow for possible unrepresentativeness of the
complete cases.

For the missingness model, i.e., the model for the probability that an individual is a
complete case, we used potential predictors of missingness recorded at birth and age 7 that
were identified by Atherton et al. (2008) as well as further predictors measured at age 11. All
were categorical. They were sex, mother’s husband’s social class (non manual/manual III
or IV/manual V or no husband), mother leaving school at or before minimum statutory age,
breast-feeding <1 month, short stature at age 7, overweight at age 7, hospitalization prior
to age 7, social care prior to age 7 (all yes/no) and housing tenure at age 7 (owned/rented).
Maths and reading scores (normal/low) and internalizing and externalizing behaviour (nor-
mal/intermediate/problem) at ages 7 and 11 were also included, as were verbal and non
verbal scores at age 11 (normal/low).

Some missingness predictors were themselves incomplete. Most of this missingness
was due to some individuals failing to attend the age-7 or 11 visits: 77% of the cohort
attended both visits; 13% just the age-7 visit; 4% just the age-11 visit; 6% attended
neither visit. The proportion of missing values in each missingness predictor among those
attending the visit at which the missingness predictor should have been measured ranged
from 0% to 13%. All missing values in missingness predictors were multiply imputed
using the ice function (Royston, 2005) in STATA. This implements the chained equations
(or “fully-conditional specification”) MI method, which is a proper imputation procedure.
Ten imputed data sets were created (i.e., M = 10). Imputation was carried out separately
in complete and incomplete cases (i.e., complete and incomplete for the variables in the
analysis model). For the complete cases, the variables in the analysis model were also used
for the imputation.

Two missingness models were used: one with just the missingness predictors described
above, and one with an additional categorical variable describing the pattern of missingness
in the missingness predictors. The first of these corresponds to not including R in the model;
the second, to including it. As the main cause of missingness in the predictors was the
failure of some individuals to attend the age-7 and 11 visits, the additional categorical
variable we used in the second model was visit attendance: equal to 1 if both visits were
attended; 2 if only age-7 visit was attended; 3 if only age-11 visit; and 4 if neither visit was
attended.

When fitting the analysis model to each multiply imputed data set in turn, SEs were
estimated using a sandwich estimator that accounts for the weights and the uncertainty in
these weights (i.e., the uncertainty in the parameters α of the missingness model). Rubin’s
Rules were used to combine point estimates and SEs.

For the first missingness model (the model not including visit attendance), the mean
weight in the complete cases averaged over the 10 imputed data sets was 2.88, the 95th
centile was 4.27, and the maximum was 9.25. For the second missingness model (the
model including visit attendance), the mean, 95th centile and maximum were 2.89, 4.75,
and 33.68, respectively. The greater variability in the second set of weights indicates that
visit attendance is a strong predictor of being a complete case for the variables in the
analysis model. This is also evident from the estimated odds ratio of being a complete
case associated with missing both age-7 and 11 visits relative to attending both visits:
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Table 3
log ORs and SEs for predictors of high blood glucose, using CC and IPW. Binary

predictors are gestational age < 38 weeks, preeclampsia, smoking during pregnancy, pre
pregnancy BMI ≥ 25 kg/m2, and manual socio economic position at birth. Ordinal and

continuous predictors are birth weight for gestational age (per tertile), BMI at age 45 (per
kg/m2), and waist circumference at age 45 (per cm). Adjustment was also made for sex

and family history of diabetes

CC IPW without IPW with
visit visit

log OR SE log OR SE log OR SE

Short gestation 0.562 0.244 0.559 0.265 0.637 0.282
Preeclampsia 0.645 0.283 0.651 0.290 0.823 0.314
Smoking 0.103 0.160 0.157 0.168 0.106 0.175
Pre-preg BMI 0.332 0.163 0.328 0.172 0.364 0.180
Manual SEP 0.281 0.199 0.310 0.202 0.315 0.208
Birth weight −0.303 0.097 −0.313 0.100 −0.292 0.106
BMI 0.066 0.028 0.060 0.029 0.059 0.030
Waist size 0.061 0.012 0.061 0.013 0.062 0.013

0.21 (95% CI 0.17–0.25). In this application, it seems plausible for the following reasons
that including visit attendance in the weighting model may reduce bias in the analysis
model. First, it seems quite possible that the missingness predictors may not be MAR:
for example, whether or not social care prior to age 7 is observed may depend on social
care prior to age 7 even after adjusting for the missingness predictors that are observed.
Second, the relation represented by the analysis model, i.e., that between high blood
glucose and its predictors, may be different in individuals who attend both age-7 and 11
visits from that in individuals who attend neither, even after adjusting for the missingness
predictors.

Table 3 shows results for the analysis model using IPW with the weights from both
missingness models. (Unweighted) complete-case estimates are also shown. As can be
seen, using IPW with either missingness model does not substantially change the results.
The biggest differences are in the ORs for short gestation, preeclampsia and smoking
during pregnancy. The effects of short gestation and preeclampsia have increased slightly
when the second missingness model is used. On the other hand, the effect of smoking
during pregnancy has increased slightly when the first missingness model is used. As
expected, all SEs have increased slightly, especially when the second missingness model
is used. No variable except prepregnancy BMI has changed from being non significant to
significant or vice versa; prepregnancy BMI is on the borderline of significance in all three
cases.

These data were also analyzed by Thomas et al. (2007) and Seaman and White (2013).
Seaman and White (2013) used IPW but dealt with missing X using the missing indicator
method. Thomas et al. used essentially a complete-case analysis, but increased the number
of complete cases by imputing some of the missing variables in the analysis model. Both
sets of authors reached similar conclusions to those reported here.
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8. Discussion

We have shown that the MI procedure described by Qu and Lipkovich (2009) that does not
use the missingness pattern of X in the PS model yields consistent estimation when X is
MAR given observed outcome Dobs and treatment T . Including R may induce bias if it is
associated with the outcome. However, when X is MNAR given Dobs and T , inclusion of R
may reduce bias. The decision of whether to include R might reasonably depend on one’s
beliefs in a particular given application about whether X is approximately MAR given Dobs

and T , about whether R is likely to be associated with the outcome, and about how useful
R is as a predictor of missing X .

Two MI procedures have been presented in the current article: proper and improper.
The improper procedure has the advantage that an asymptotically unbiased estimator for
sampling variance is available. It has the disadvantages that this estimator is quite compli-
cated and has not been implemented in current software, and that a parametric imputation
model is required, thus ruling out the chained equations MI approach. The proper imputa-
tion procedure is more flexible, but the properties of the Rubin’s Rules variance estimator
when used in this case are not fully understood. In our simulation, however, we found it
gave good coverage. Seaman et al. (2012) also found good performance of the Rubin’s
Rules variance estimator when it was applied in another situation involving IPW. Schafer
(2003, p. 31) comments that “although we may find it difficult to prove good performance
for [the Rubin’s Rules variance estimator when not using the MLE], that does not imply
that good performance will not be seen in practice. Experience suggests that Bayesian
MI does interact well with a variety of semi- and non-parametric estimation procedures.”
On this basis, we cautiously recommend that Rubin’s Rules can be used with the proper
imputation procedure. An alternative method of variance estimator for either MI procedure
is bootstrap.

Finally, note that we have treated the situation where adjustment for confounding is
done using IPW, but the proper imputation procedure could also be used when adjustment
is by stratification or matching on the PS.
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Appendix A

An alternative estimator of treatment difference, E(D1) − E(D0), is obtained by replacing
Eq. (4) in the proper MI procedure by

θ̂ (m) =
{

n∑
i=1

TiD1i

π
∗(m)
i

/ n∑
i=1

Ti

π
∗(m)
i

}
−

{
n∑

i=1

(1 − Ti)D0i

1 − π
∗(m)
i

/ n∑
i=1

1 − Ti

1 − π
∗(m)
i

}
, (A1)

where π
∗(m)
i = π (X∗(m)

i ; α̂(m)). Another estimator of treatment difference can be obtained
by replacing Eq. (5) in the improper MI procedure by

θ̂B =
{

n∑
i=1

TiD1i

π∗
i

/ n∑
i=1

Ti

π∗
i

}
−

{
n∑

i=1

(1 − Ti)D0i

1 − π∗∗
i

/ n∑
i=1

1 − Ti

1 − π∗∗
i

}
, (A2)
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where π∗−1
i = M−1 ∑M

m=1 π (X∗(m)
i ; α̂)−1 and (1 − π∗∗

i )−1 = M−1 ∑M
m=1{1 − π (X∗(m)

i ;
α̂)}−1.

To estimate treatment ratio, E(D1)/E(D0), replace Eqs. (A1) and (A2) by

θ̂ (m) =
{

n∑
i=1

TiD1i

π
∗(m)
i

/ n∑
i=1

Ti

π
∗(m)
i

}/ {
n∑

i=1

(1 − Ti)D0i

1 − π
∗(m)
i

/ n∑
i=1

1 − Ti

1 − π
∗(m)
i

}
(A3)

and

θ̂B =
{

n∑
i=1

TiD1i

π∗
i

/ n∑
i=1

Ti

π∗
i

} / {
n∑

i=1

(1 − Ti)D0i

1 − π∗∗
i

/ n∑
i=1

1 − Ti

1 − π∗∗
i

}
, (A4)

respectively. Appendix B contains a proof of the consistency of these estimators when
M = ∞. The formula in Appendix C for a consistent variance estimator of θ̂B still applies.

An alternative to the estimator given in Sec. 6 of a population mean outcome when
outcomes may be missing is

1

M

M∑
m=1

{
n∑

i=1

TiD1i

π (X∗(m)
i ; α̂(m))

/
n∑

i=1

Ti

π (X∗(m)
i ; α̂(m))

}

Appendix B

Consider the improper MI procedure of Sec. 3. Let Sψ (ψ ; W , Xmis) = ∂ log f (X |
Dobs, T ; ψ)/∂ψ and ψ0 be the true value of ψ . The MLE, ψ̂ , of ψ is the solu-
tion to observed-data score equations n−1 ∑n

i=1 Sobsψ (ψ ; W i) = 0, where Sobsψ (ψ ; W ) =
EXmis [Sψ (ψ ; W , Xmis) | W ]. If (A3) is true, ψ̂ is a consistent estimator of ψ and

EW ,R[Sobsψ (ψ0; W )] = 0. (B1)

Let S̄α(α,ψ ; W ) = EX∗
mis

[Sα(α; T , X) | W ] and S̄θ (θ,α,ψ ; W ) = EX∗
mis

[Sθ (θ,α;
W , X∗

mis) | W ], where X∗
mis is distributed g(Xmis | W ; ψ).

If (A3) is true, the distribution of Xmis given W and R is g(Xmis |
W ; ψ0). So, S̄α(α,ψ0; W ) = EXmis [Sα(α; T , X) | W ] = EXmis [Sα(α; T , X) | W , R] and
S̄θ (θ,α,ψ0; W ) = EXmis [Sθ (θ,α; W , Xmis) | W ] = EXmis [Sθ (θ,α; W , Xmis) | W , R].

Let α̃ and θ̃ be the solutions to estimating equations n−1 ∑n
i=1 S̄α(α̃, ψ̂ ; W i) = 0 and

n−1 ∑n
i=1 S̄θ (θ̃ , α̃, ψ̂ ; W i) = 0, and let α0 denote the true value of α. Then

EW ,R[S̄α(α0, ψ0; W )] = EW ,R EXmis [Sα(α0; T , X) | W , R]

= EW ,R,Xmis [Sα(α0; T , X)]

= EX,T [Sα(α0; T , X)]

= 0 (B2)

and EW ,R[S̄θ (θ0,α0, ψ0; W )] = EW ,R EXmis [Sθ (θ0,α0; X,Dobs, T ) | W , R]

= EW ,R,Xmis [Sθ (θ0,α0; X,Dobs, T )]

= EX,Dobs,T [Sθ (θ0,α0; X,Dobs, T )]

= 0 (B3)
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Lines (B2) and (B3), respectively, follow because the PS model is correctly specified and
because

EX,Dobs,T

[
T D1

π (X ; α0)
− (1 − T )D0

1 − π (X ; α0)

]
= θ0

It follows from Eqs. (B1), (B2), and (B3) that, subject to regularity conditions on the
missingness and imputation models for X (Tsiatis, 2006), (ψ̂, α̃, θ̃ ) → (ψ0,α0, θ0) as
n → ∞. That is, θ̃ is consistent.

S̄α(α,ψ ; W ) and S̄θ (θ,α,ψ ; W ) can be estimated by Monte Carlo integration, by sam-
pling M values of X∗

mis from g(Xmis | W ,ψ). When M = ∞, this Monte Carlo integration
is exact and so θ̃ = θ̂B and α̃ = α̂.

This improper MI procedure is a special case of the improper MI discussed by Robins
and Wang (2000). It follows that θ̂A and θ̂B are asymptotically (n → ∞) equivalent when
M = ∞. Moreover, assuming θ̂A and θ̂B are also consistent when M < ∞, θ̂B will be
asymptotically more efficient than θ̂A when M < ∞.

After replacing θ by θ = (δ, θ ) and Sθ (θ,α; X,Dobs, T ) in Eq. (3) by

Sθ (θ,α; X,Dobs, T ) =
[

1−T
1−π(X ;α) (D0 − δ)

1−T
1−π(X ;α) (D0 − δ) + T

π(X ;α) (D1 − δ − θ )

]
, (B4)

the preceding proof shows that Eqs. (A1) and (A2) yield consistent estimators of treatment
difference when M = ∞. If Sθ (θ,α) in Eq. (3) is replaced by

Sθ (θ,α; X,Dobs, T ) =
[

1−T
1−π(X ;α) (D0 − δ) + T

π(X ;α) (D1 − δθ )
T

π(X ;α) (D1 − δθ )

]
, (B5)

then the proof shows that Eqs. (A3) and (A4) yield consistent estimators of the treatment
ratio when M = ∞.

Appendix C

Let β = (θT ,αT )T and β0 = (θT
0 ,αT

0 )T . Assuming β̂ is consistent and the regularity con-
ditions for Corollary 1 of Robins and Wang (2000), a consistent estimator of the asymptotic
variance of n1/2(β̂ − β0) is τ−1�(τ T )−1, where τ and � are given below.

Let U = U(β; W , Xmis) = (ST
θ (β; W , Xmis), ST

α (β; W , Xmis))T , and let Ū = Ū(β;
W ) = M−1 ∑M

m=1 U(β; W , X∗(m)
mis ). Let U (m)

i = U(β; W i , X∗(m)
mis,i), let Ū i = Ū(β; W i), and

let Sobsψi(ψ) = Sobsψ (ψ ; W i). Let

� = �C + κ
κT + 1

n

n∑
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[
κ DiŪ

T
i +

(
κ DiŪ

T
i

)T
]

,
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i S(m)T

misψi, 
 = 1

n

n∑
i=1

Di DT
i ,
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Di = −
{

1

n

n∑
i=1

∂ Sobsψi(ψ)

∂ψT

∣∣∣∣
ψ=ψ̂

}−1

Sobsψi(ψ),

S(m)
misψi = ∂f (X i , X∗(m)

mis,i | W i ; ψ)/∂ψ |ψ=ψ̂= Sψ (ψ̂ ; W i , X∗(m)
mis,i) − Sobsψi(ψ̂).

If they are unavailable analytically, Sobsψi(ψ) and ∂ Sobsψi(ψ)/∂ψT
∣∣
ψ=ψ̂

can be estimated

by Monte Carlo integration. Note that S(m)
misψi = 0 if X i is observed.


