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Multiple Case High Leverage Diagnosis in
Regression Quantiles
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Regression Quantiles (RQs) (see Koenker and Bassett, 1978) can be found as optimal
solutions to a Linear Programming (LP) problem. Also, these optimal solutions corre-
spond to specific elemental regressions (ERs). On the other hand, single case ordinary
least squares (OLS) leverage statistics can be expressed as weighted averages of ER
ones. Using this three-tier relationship amongst RQs, ERs, and OLS leverage statistics
some relationships between single case leverage statistics and ER ones are explored
and deduced. We build upon these results and propose a multiple-case RQ weighted
predictive leverage statistic, TJ . We do this using an ER view of the well-known leverage
relationship,

∑n
i=1 hi =p, by summing the ER weighted predictive leverage statistics

over all ERs (RQs included) instead of over observations, i.e.,
∑K

J=1 TJ = p. As an
ad-hoc cut-off value of this statistic we make use of the analog of the Hoaglin and
Welsch (1978) one, i.e., high leverage points have hi > 2p

/
n. So in the RQ weighted

predictive leverage scenario, the cut-off value becomes 2p
/
K , where K is the total

number of ERs. We then apply this RQ high leverage diagnostic to well-known data sets
in the literature. The cut-off value used generally seems too small. Some proposals of
cut-off values based on some analytical bounds and a simulation study are therefore
given and shown to be reasonable.

Keywords Regression quantile; Elemental regression; Predictive leverage.

Mathematics Subject Classification Primary 62J20; Secondary 62P99.

1. Introduction

The linear regression model is one of the most widely used tool in many applications via
the ordinary least squares (OLS) procedure. An alternative and complementary procedure
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is quantile regression. The Koenker and Bassett (1978) Regression Quantiles (RQs) gen-
eralize the usual L1 (50% RQ) estimator to all the quantile levels, so they are especially
indispensible in applications where extremes are important. For an overview of such ap-
plications which include medical reference charts, survival analysis, finance, economics
and environmental modelling see Yu et al. (2003). This emergence of quantile regression
as a comprehensive approach to statistical analysis in the last three decades is partly at-
tributed to its robustness to outliers (in the response variable) as RQs’ influence functions
are bounded in the response variable. However, their influence functions are unbounded in
the predictor space, hence they are very susceptible to outliers in the predictor space (high
leverage points). Some high-leverage points tend to create or obscure collinearity (see, e.g.,
Chatterjee and Hadi, 1988). Such leverage points are referred to as collinearity influential
points.

Although some RQ high leverage diagnostics, constructed using robust multivariate
location and scale estimates to circumvent the masking and swamping effects, have been
reported in the literature (see Rousseeuw and van Zomeren, 1990; Rousseeuw and van
Driessen, 1999), they have not received much attention at the multiple-case level. Multiple-
case high leverage diagnostics are important since single case high leverage diagnostics
fail in the presence of multiple-case effects (see, e.g., Kempthorne and Mendel, 1990). For
instance, there may be situations where observations are individually influential (in the high
leverage sense), but not jointly. Furthermore, joint influence is difficult to understand and
detect since the computational demands may be huge (see, e.g., Barrett and Gray, 1997)
and therefore practically infeasible.

In this article, we propose a multiple-case high leverage diagnostic for RQs using
elemental regressions (ERs). An ER is based only on the minimum number of observations,
p, to estimate the parameters of the given model (see, e.g., Hawkins, 1993).

ER procedures were introduced by Boscovich half a century before the advent of the
OLS procedure (see, e.g., Stigler, 1986). However, they were out-competed by OLS due to
the fact that the total number of ERs, given by

K =
(

n

p

)
,

is often very large, resulting in extreme computational demands. For example, the Gunst
and Mason data set (see Gunst and Mason, 1980) that we consider in this article has n = 49
and p = 7 giving K = 85900 584. The K ERs consist of the set of all feasible solutions to
the Linear Programming (LP) problem giving RQs as its optimal solutions (see Koenker and
Bassett 1978, Theorem 3.1, p. 39). At the optimal solution the p basic observations at level
zero correspond to a specific RQ. Thus, RQs can also be found through an exhaustive search
over all ERs, but this procedure is not generally pursued in practice due to the availability of
many efficient LP algorithms in the literature (see, e.g., the recent monograph by Koenker,
2005). Hence, there is an inherent relationship between these two sets of procedures. On
the other hand, OLS leverage statistics can be expressed as weighted averages of ERs (RQs
included) leverage statistics (see, e.g., Hawkins et al., 1984). These facts imply that there is
an inherent relationship between leverage statistics based on ERs and those based on OLS.
This three-tier relationship amongst RQs, ERs and OLS enables the single case OLS high
leverage diagnostics to be extended to the ER scenario, and thus to RQs.

Although the high leverage multiple-case diagnostics developed here may be applicable
to all ERs, we are only interested in those ERs that correspond to specific RQs as it is well-
known that RQs are susceptible to high leverage points and their computation is practically
feasible. However, we give analytical bounds and cut-off values that are applicable to
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a generic ER of size p. Summarizing, our motivations to exploit the above-mentioned
three-tier relationship to address multiple-case high leverage diagnosis in RQs, namely, the
following.

� It is well known that RQs have influence functions that are unbounded in the predictor
space, and therefore have a high affinity for high leverage points unlike other ERs that
do not correspond to RQs, which may not contain high leverage points and therefore
unlikely to be high leverage multiple cases.

� The number (approximately, n) of unique RQs (which are easily computed using many
efficient LP algorithms available in the literature) is usually much smaller than K , the
total number of ERs, hence the extensive computations involving all the K subsets which
may be practically infeasible (see, e.g., Hadi and Simonoff, 1993) are avoided.

� The determination of the subset size m (and hence K) is a subject of much debate in the
literature since it is unknown and there are many proposals in the literature (see, e.g.,
Barrett and Gray,1997; Seaver et al., 1999). Using the ER procedure, taking m = p ties
in with the RQ setting, thus the dilemma of choosing the subset size is avoided.

� Subset diagnostics are not comparable across different subset sizes (see e.g., Barrett and
Gray, 1997). So a different subset size m �= p is not useful for comparison purposes,
hence we fix the subset size at m = p.

Using existing OLS-ER relationships in the next section we derive a RQ high leverage
diagnostic analogy of the single case OLS one. The elemental regression weight (ERW) is
the vehicle through which OLS leverage statistics are related to the ER leverage statistics.
We briefly elaborate on the ERW. In Theorem 2.1 we give two expressions for the ERW
and their proofs. To motivate the proposed RQ high leverage diagnostic we give Theorems
2.1 and 2.2 and their proofs. For an ad-hoc cut-off value of this statistic we make use of the
analogue of the Hoaglin and Welsch (1978) one, i.e., high leverage points have hi > 2p

/
n.

Applications to well-known data sets show that this cut-off value is generally too small.
Therefore some analytical bounds and reasonable cut-off values based on these bounds and
a simulation study are given in Secs. 3 and 4, respectively. Applications are given in Sec.
5. We consider data sets with high leverage points that both create and hide collinearity as
well as a control data set with very moderately high leverage points. Using as cut-off value
the analogue of the single case one, it was found to be generally too small. However, cut-off
values proposed in Sec. 3 and in a simulation study are found to be reasonable. Conclusions
and further research are given in the last section.

2. High Leverage Diagnostics

Some important relationships between single case high leverage diagnostics and multiple-
case (RQ) high leverage diagnostics using the three-tier relationship amongst RQs, ERs and
OLS are explored and deduced leading to the development of a high leverage diagnostic
for RQs (TJ in (2.6) below). We do this by deducing the relationship between the OLS
leverage (hi in (2.1)) and the ER predictive leverage (hiJ, i /∈ J in (2.3)) using the existing
relationship between the jackknife OLS leverage statistic (h(i) in (2.2)) and (2.3); see
Hawkins et al. (1984) for these results. In these relationships the so-called elemental
regression weight (ERW, see (2.4) below) plays a pivotal role. As a precursor to developing
a high leverage diagnostic for RQs, we first briefly elaborate on the existing leverage
statistics hi , h(i), and hiJ, i /∈ J and their relationships. This enables us to define the
relevant diagnostics in a natural way.
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Let X denote the predictor matrix without the constant term and write X̃ = (
1n X

)
.

Without loss of generality we assume that X is centered. The projection (hat) matrix
H = X̃(X̃′X̃)−1X̃′, and its variants play a very important role in high leverage diagnostics,
as we will now briefly discuss. Leverage values are given by the diagonal elements of H
denoted by

hi = x̃′
i

(
X̃′X̃

)−1
x̃i . (2.1)

High leverage points have hi > 2p/n (see Hoaglin and Welsch, 1978).
The diagonal elements of one such variant of H, H(i) = X̃(X̃/(i)X̃(i))−1X̃′ give the usual

jackknife leverage statistics

h(i) = x̃′
i

(
X̃′

(i)X̃(i)
)−1

x̃i , (2.2)

where the subscript (i) denotes calculations with the ith observation left out.
Let J denote a generic ER containing p observations and let I be its complement

containing the remaining n − p observations.
The RQ (ER) analogues of the above jackknife leverage statistics, are the diagonal

elements of the analogue of matrix H(i), H(I ) ≡ HJ = X̃(X̃′
J X̃J )−1X̃′, where subscript (I )

denotes calculations with set I left out. These elements are given by

hiJ =
{

x̃′
i

(
X̃′

J X̃J

)−1
x̃i , i /∈ J (i ∈ I )

1 i ∈ J,
, (2.3)

for non singular X̃J , which are the diagonal elements of the matrix HIJ = X̃I (X̃′
J X̃J )−1X̃′

I .

Remark 2.1. Hawkins et al. (1984) refer to hiJ as the residual freedom, to “convey the
impression of its property of measuring the extent to which the elemental set J fails to
predict Yi, i ∈ I”.

For a given ER J , the corresponding elemental regression weight (ERW) is given by

ωJ = |X̃′
J X̃J |

|X̃′X̃| . (2.4)

Note that 0 ≤ ωJ ≤ 1,
∑

J ωJ = 1 and by the Cauchy-Binet Theorem (Aitken, 1964, p.
86), it follows that

ωJ = |X̃J |2∑
J |X̃J |2 .

A tighter upper bound for the ERW is derived in Sec. 3. These weights play a pivotal
role in the construction of least squares estimators. Jacobi, in 1841 showed that the least
squares estimators can be expressed as weighted averages of the elemental regressions (see
Sheynin, 1973; Mayo and Gray, 1997).

We now prove Theorem 2.1 below, which shows that the ERW can be expressed as
the determinant of the elemental regression matrix (ERM), (In−p + HIJ )−1 ≡ In−p − HI ,
where HI ≡ X̃I (X̃′X̃)−1X̃′

I is the sub-matrix of H.
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Theorem 2.1. For X̃′X̃ non singular, we have

(i) ωJ = |In−p + HIJ|−1

and

(ii) ωJ = |In−p − HI |.

Proof of (i). We have |X̃′X̃|& = |X̃′
J X̃J + X̃′

I In−pX̃I |, from the well known result (see,
e.g., Harville, 1997) |R + STU| = |R||T||T−1 + UR−1S|, where R and T are non singular,
follows that

|X̃′X̃| = |X̃′
J X̃J ||In−p||In−p + X̃I (X̃′

J X̃J )−1X̃′
I |

= |X̃′
J X̃J ||In−p + HIJ |.

Finally, substituting the above last expression into (2.4) follows (i). �

Proof of (ii). Let Z = ( In−p X̃I

X̃′
I X̃′X̃ ). Now, for any k × k non singular matrix A11, k × m

matrix A12, m × k matrix A21, and m × m nonsingular matrix A22, it is well known that the
determinant of the partitioned matrix is given by∣∣∣∣ A11 A12

A21 A22

∣∣∣∣ = |A22||A11 − A12A−1
22 A21|

= |A11|
∣∣A22 − A21A−1

11 A12

∣∣.

Applying the first form to Z, gives

|Z| = |X̃′X̃||In−p − X̃I

(
X̃′X̃

)−1
X̃′

I |
= |X̃′X̃||In−p − HI |,

and using the second form, gives

|Z| = |X̃′X̃ − X̃′
I X̃I |

= |X̃′
(I )X̃(I )|

= |X̃′
J X̃J |.

From these two expressions and (2.4), (ii) follows. This completes the proof of the
theorem. �

Remark 2.2. Making use of the above results it will be shown that the RQ weighted
predictive leverage can be written in matrix form (see (2.7) and (2.8)).
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We now prove Theorem 2.2 below which gives alternative expressions of leverage statistics.
These expressions and some intermediate results (in the proofs) are central to deducing a
RQ weighted predictive leverage statistic.

Theorem 2.2. For X̃J non singular,

(i)

h(i) =
∑

J ��i ωJ hiJ

(n − p)
∑

J ��i ωJ

= R̃i

(n − p)
.

(ii)

hi = R̃i

(n − p) + R̃i

.

(iii)

hi =
∑

J ��i ωJ hiJ

(n − p)
,

where R̃i =
∑

J ��i ωJ hiJ∑
J ��i ωJ

.

Proof of (i). For any d ∈ �p, |Ip + dd′| = 1+d′d. Similarly for any (p×p) symmetric
and nonsingular matrix A, d ∈ �p, |A + dd′| = |A| (1 + d′A−1d) (see Graybill, 1983,
p. 231; Schott, 2005, p. 92). Hence, �

1 + h(i) = 1 + x̃′
i

(
X̃′

(i)X̃(i)
)−1

xi

= |(X̃′
(i)X̃(i)

) + x̃′
i x̃i |

|(X̃′
(i)X̃(i)

)| = |X̃′X̃|
|(X̃′

(i)X̃(i)
)| .

Thus, invoking the Cauchy-Binet Theorem, we have

1 + h(i) =
∑

J |X̃J |2∑
J ��i |X̃J |2

h(i) =
∑

J i |X̃J |2∑
J ��i |X̃J |2 . (2.2.1)

Analogously for the ER J , we have

1 + hiJ = 1 + x̃′
i

(
X̃′

J X̃J

)−1
x̃i

= |(X̃′
J X̃J

) + x̃′
i x̃i |

|(X̃′
J X̃J

)| .
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Similarly, again invoking the Cauchy-Binet Theorem to the numerator, we have

1 + hiJ =
∑

H⊂{J,i} |X̃H |2
|X̃J |2 ,

where H is an ER (a subset of size p) from the observations in the set {J, i}.
Thus,

hiJ =
∑

H⊂{J,i},H i |X̃H |2
|X̃J |2 .

Multiplying both sides by |X̃J |2 and summing over J �� i,

∑
J ��i

|X̃J |2hiJ =
∑

J ��i

∑
H⊂{J,i},H i

|X̃H |2.

Now, for any given set H , set J , which does not include i, must contain the other p − 1
elements of H . Thus, J will have only one free element, which will run over the n − p

values outside H . Consequently, any term |X̃H |2 will appear n − p times, i.e.,

∑
J ��i

|X̃J |2hiJ = (n − p)
∑

J i
|X̃J |2. (2.2.2)

(For this result, see also Hawkins et al., 1984.)
Dividing both sides by (n − p)

∑
J ��i |X̃J |2, the above equation becomes

∑
J ��i |X̃J |2hiJ

(n − p)
∑

J ��i |X̃J |2 =
∑

J i |X̃J |2∑
J ��i |X̃J |2 .

Thus, using (2.2.1)

h(i) =
∑

J ��i |X̃J |2hiJ

(n − p)
∑

J ��i |X̃J |2 .

Dividing the numerator and denominator by
∑

J |X̃J |2, the relation becomes

h(i) =
∑

J ��i ωJ hiJ

(n − p)
∑

J ��i ωJ

. (2.2.3)

The first result of (i) is proved.
Dividing the numerator and denominator by

∑
J ��i ωJ , the relation becomes

h(i) = R̃i

n − p
, (2.2.4)

where R̃i =
∑

J ��i ωJ hiJ∑
J ��i ωJ

, proving the second result of (i).

Proof of (ii). Using hi = h(i)/(1 + h(i)) (see Hawkins et al., 1984), and substituting h(i)

from (2.2.4), (ii) follows immediately. �
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Proof of (iii). Using hi = h(i)/(1 + h(i)) again with (2.2.3) gives

hi =
∑

J ��i ωJ hiJ

(n − p)
∑

J ��i ωJ + ∑
J ��i ωJ hiJ

(2.2.5)

Dividing (2.2.2) by
∑

J |X̃J |2, the relation becomes

∑
J ��i

ωJ hiJ = (n − p)
∑

J i
ωJ .

Substituting (n − p)
∑

J i ωJ for
∑

J ��i ωJ hiJ the denominator of (2.2.5) becomes

(n − p)
(∑

J ��i
ωJ +

∑
J i

ωJ

)
but

∑
J ��i

ωJ +
∑

J i
ωJ = 1.

Thus,

hi =
∑

J ��i ωJ hiJ

(n − p)
, (2.5)

proving (iii). �

Remark 2.3. In (i) we rewrote the crude expression for h(i) given by Hawkins et al. (1984)
in terms of the ERW and R̃i . In (ii) and (iii) we extended the same ideas to hi . However,
for the purpose of determining multiple leverage points, it is more convenient to use (iii).

Now summing the individual quantities ωJ hiJ
/

(n − p), over J �� i gives the usual
ordinary least squares (OLS) leverage diagnostic hi which is not useful in the RQ scenario.
However, an alternative way of summing the individual quantities ωJ hiJ/(n − p), J �� i

in this expression is over i (the observation not contained in ER J ), suggesting as a RQ
weighted predictive leverage (RQWPL) statistic, the quantity

TJ =
∑

i /∈J ωJ hiJ

n − p
. (2.6)

This statistic is very useful in the RQ scenario as one can only sum over the quantities
corresponding to a particular ER and thus RQ as schematically depicted in Table 1 below.
In this, use is made of Theorem 2.2 (iii) and the well-known fact that

∑
i hi = p, implying

that ∑K

J=1
TJ =

∑n

i=1
hi =p.

Summarizing, there are therefore two ways of summing the quantities ωJ hiJ/(n − p) in
Table 1.

� hi , OLS leverage of observation i is obtained as the sum of the quantities ωJ hiJ/(n − p)
over the ERs not containing observation i. These quantities can then be viewed as the
contribution of ER J to the OLS leverage of observation i.

� In the same way, TJ is obtained as the sum of the quantities ωJ hiJ/(n − p) over the ob-
servations not contained in ER J . These quantities can then be viewed as the contribution
of observation i (not in J ) to the weighted predictive leverage of ER J .
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Table 1
Relationship between ER weighted predictive leverage, TJ , and OLS Leverage, hi

ELEMENTAL SETS

Obs 1 2 . . . K Leverage

1 ω1h11
n−p

ω2h12
n−p

. . . ωKh1K

n−p
h1

2 ω1h21
n−p

ω2h22
n−p

. . . ωKh2K

n−p
h2

3
...

... . . .
...

...
...

...
... . . .

...
...

n ω1hn1
n−p

ω2hn2
n−p

. . . ωKhnK

n−p
hn

Sum T1 T2 . . . TK p

From (2.6) and Theorem 2.1, the RQWPL statistic, TJ can be expressed in matrix notation
as follows:

TJ = trace(HIJ)

(n − p)|In−p + HIJ| (2.7)

= |In−p − HI |trace(HIJ)

n − p
, (2.8)

where |In−p − HI | = ωJ the ERW and trace(HI J ) = ∑
i /∈J hiJ the sum of the RQ predictive

leverage.Since

n∑
i=1

hi =
K∑

i=1

TJ = p,

an intuitively appealing idea is to extend the single case Hoaglin and Welsch (1978)
procedure of identifying high leverage points by hi > 2p/n to the multiple-case by flagging
ERs (RQs) having TJ > 2pK−1. In the applications in Sec. 3, we take this as our ad-hoc
cut-off value. Also, due to the small values of TJ , it is convenient to use the rule, flag
− ln(TJ ) < − ln(2pK−1). We will adopt this approach in Sec. 5 on applications. However,
in these applications it is clearly evident that the cut-off value is generally small.

For comparison with existing multiple-case high leverage diagnostics in the literature,
the measures of choice would be ||HI || ≡ ||X̃I (X̃′X̃)−1X̃′

I || and ||HJ || ≡ ||X̃J (X̃′X̃)−1X̃′
J ||,

the Frobenius matrix norms of the sub-matrices of H, since they are not measure-specific
and easy to compute (see Barrett and Gray, 1997). The measure ||HI || quantifies the
leverage for observations outside subset J corresponding to a RQ, i.e., observations i ∈ I .
Since RQs have a high affinity for leverage points, we are more interested interested in
the measure ||HJ ||, quantifying the leverage for observations in subset J corresponding
to a RQ. Simulation results show that ||HI || is negatively correlated with ||HJ || and TJ

while ||HJ || and TJ are positively correlated. Therefore, we will use ||HJ || for comparison
purposes.

Since the Hoaglin and Welsch (1978) multiple-case analog cut-off values of single
case ones for TJ , are practically too small and the computation of all ERs is practically
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infeasible, some analytical bounds could be useful, if the interest is in all ERs. Therefore
in the next section we derive some bounds for TJ .

3. Some Bounds and Cut-off Values

The RQWPL leverage statistic TJ is the scaled product of the ERW and trace(HIJ ). We
first find the bounds of these two statistics which are the building blocks of RQWPL,
separately starting with the ERW. The ERW is the determinant of the elemental regression
matrix (ERM), and the ERM is a sub-matrix of the projection matrix, I − H. It is well
known that I−H is idempotent and hence, its sub-matrix In−p −HI is positive semidefinite
definite with eigenvalues contained in [0, 1). Positive semidefinite definite matrices are rich
in determinantal relationships. Using these relationships, it can be shown that

1 − trace(In−p − HI ) ≤ |In−p − HI | = ωJ ≤ 1 − trace(HI ) + m − 1

2m
[trace(HI )]2

(3.1)

(see, Barrett and Gray, 1996).
An alternative upper bound for the ERW to that in (3.1) is given by the following lemma.

Lemma 3.1. For any elemental set J from a full rank X̃, 0 ≤ ωJ ≤ p
n

.

Proof. For the lower bound, since In−p − HI is positive semidefinite, 0 ≤ |In−p − HI | =
ωJ .
Now, we consider the upper bound.
Let, as before, X̃ = (1 X), and denote by H the projection matrix of X̃, i.e.,

H = X̃
(
X̃′X̃

)−1
X̃′

= H0 + H1,

where

H0 = 1

n
Jn,

with Jn = 1n1′
n and

H1 = (In − H0)X(X′(In − H0)XI )−1X′(In − H0)

(see Chatterjee and Hadi, 1988, Property 2.4, p. 16).
Consider the following equality:

(In − H0) = (In − H) + (H − H0).

Clearly, all three matrices (each one in brackets) are non negative definite (since they are
projection matrices).
Now, taking the corresponding (n−p) × (n−p) sub-matrices indexed by I from the above
three matrices, we can write

(In − H0)I = (In − H)I + (H − H0)I .
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Again, all three matrices are non-negative definite since they are sub-matrices of projection
matrices. Using Corollary 18.1.8 in Harville (1997), p. 418, we have

|(In − H0)I | ≥ |(In − H)I |.

Clearly,

(In − H0)I = In−p − 1
n

Jn−p.

Also, since

X̃ =
(

X̃J

X̃I

)
,

we have

H =
(

X̃J

X̃I

)
(X̃′X̃)−1

(
X̃′

J X̃′
I

)

=
(

X̃J (X̃′X̃)−1X̃′
J X̃J (X̃′X̃)−1X̃′

I

X̃I (X̃′X̃)−1X̃′
J X̃I (X̃′X̃)−1X̃′

I

)

From which

(H − H0)I = HI − H0I

and

(In − H)I = In−p − HI ,

with

H0I = 1

n
Jn−p.

The above inequality can then be written as

∣∣∣∣In−p − 1

n
Jn−p

∣∣∣∣ ≥ |In−p − HI | = ωJ

(see Theorem 2.1).
Thus,

ωJ ≤
∣∣∣∣In−p − 1

n
Jn−p

∣∣∣∣ .
The proof is completed by calculation of the determinant on the right-hand side.
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Now,

∣∣∣∣In−p − 1

n
Jn−p

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n − 1

n
−1

n
· · · −1

n

−1

n

n − 1

n
· · · −1

n
...

...
. . .

...

−1

n
−1

n
· · · n − 1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1 − (n − p)

n

= p

n

(see Searle, 1982, p. 322).
This completes the proof of the lemma. �
Comparing the upper bounds in (3.1) and the one given by Lemma 3.1, we have

1 − trace(HI ) + m − 1

2m
[trace(HI )]2 − p

n

= m − 1

2m

{(
trace(HI ) − m

m − 1

)2
}

− n(m − 2) − 2p(m − 1)

2n(m − 1)
.

≥ 0, for m > 2 and n ≥ 2p[(m − 1)/(m − 2)],

which is usually the case in practice. Therefore, we make use of the tighter upper bound
given by Lemma 3.1, for m > 2 and n ≥ 2p[(m − 1)/(m − 2)].

The bounds for trace(HIJ ) follow from the fact that HIJ is positive semidefinite and
so can be written as a product of two positive semidefinite matrices as given by Lemma 3.2
below.

Lemma 3.2. For any elemental set J from a full rank X̃, HIJ = HI (In−p − HI )−1, for non
singular (positive definite) In−p − HI .

Proof. This result can be realized from evaluating (X̃′X̃ − X̃′
I X̃I )−1 (see Chatterjee and

Hadi, 1988, p. 192), i.e.,

(X̃′
J X̃J )−1 = (X̃′X̃ − X̃′

I X̃I )−1

= (X̃′X̃)−1 + (X̃′X̃)−1X̃′
I (In−p − HI )−1X̃I (X̃′X̃)−1.

Post-multiplying by X̃′
I , we have

(X̃′
J X̃J )−1X̃′

I = (X̃′X̃)−1X̃′
I {In−p + (In−p − HI )−1HI }.
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Adding and subtracting (X̃′X̃)−1X̃′
I (In−p − HI )−1 yields

(X̃′
J X̃J )−1X̃′

I = (X̃′X̃)−1X̃′
I (In−p − HI )−1HI ,

which on pre-multiplying by XI the proof is completed. �

In terms of the Frobenius inner product and using Lemma 3.2, we have〈
HI , (In−p − HI )−1

〉
F

= trace(HI (In−p − HI )−1)

= trace(HIJ ),

and from the Cauchy-Schwartz inequality we have〈
HI , (In−p − HI )−1

〉 = trace(HIJ ) ≤ ‖HI‖
∥∥(In−p − HI )−1

∥∥ (3.3)

which can also be deduced from the well-known relationship

cos[HI , (In−p − HI )−1] = trace(HIJ )

‖HI‖
∥∥(In−p − HI )−1

∥∥ ,

where || · || denotes the Frobenius matrix norm.
Using the result from Yang et al. (2001) for the product of the trace of positive semidefinite
matrices and Lemma (3.2) we have

trace(HIJ ) ≤ trace(HI )trace[(In−p − HI )−1]. (3.4)

Also,

n−p∑
i=1

λi(HI )λn−i+1([(In−p − HI )−1]) ≤ trace(HIJ )

≤
n−p∑
i=1

λi(HI )λi([(In−p − HI )−1]) (3.5)

where {λi(·)}n−p
1 are the real eigenvalues in decreasing order (see Schott, 2005, p. 128) for

this result.
Now, the upper bounds of the RQWPL statistic follow from the above results. From

Lemma 3.1 and (3.3), (3.4), and (3.5) we have

p ‖HI‖
∥∥(In−p − HI )−1

∥∥
n(n − p)

, (3.6)

p{trace(HI )trace[(In−p − HI )−1]}
n(n − p)

(3.7)

and

p
∑n−p

i=1 λi(HI )λi([(In−p − HI )−1])

n(n − p)
(3.8)
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as the upper bounds for TJ , respectively. We propose cut-off values as c/K multiplied by
each of the above three upper bounds, namely

cp ‖HI‖
∥∥(In−p − HI )−1

∥∥
Kn(n − p)

, (3.9)

cp{trace(HI )trace[(In−p − HI )−1]}
Kn(n − p)

(3.10)

and

cp
∑n−p

i=1 λi(HI )λi([(In−p − HI )−1])

Kn(n − p)
(3.11)

where c is a constant determined from simulation studies in the next section since the factor
2 from the analogue of the Hoaglin and Welsch (1978) methodology is generally too small
for application purposes as we will show in Sec. 5.

4. Simulation Study

The cut-off values for the RQWPL statistic, TJ based on the Hoaglin and Welsch (1978)
methodology with factor 2, i.e., 2pK−1 are generally too small. Therefore, we determine
factors c > 2 in order to compute reasonable cut-off values for the RQ case using simulation
studies. The simulation design comprises the following scenarios:

• error distributions
� Gaussian;

• design matrices choices
� D1 − xij iid N (0, 1) for i = 1, ...n and j = 2, 3, ..., p,
� D2−As in D1, but one point is moved 10 units in the X space,
� D3−As in D1, but two points are moved 10 units in the X space,
� D4−As in D1, but one point is moved 100 units in the X space,
� D5−As in D1, but two points are moved 100 units in the X space;

• covariates: p = 3, 4, 5, 6, 7, 8;
• choices of τ : n−2 τ levels which approximately corresponds to the entire RQ solution

set;
• sample size: n = 20; and
• number of simulation runs: 200.

The design matrix D1 is orthogonalized so that X′X = nI while design matrices D2 to
D5, were generated as in de Jongh et al. (1988). We chose the Gaussian distribution as the
appropriate error term distribution. This would avoid the distortion brought about by the
interplay between the two antagonistic forces namely, the RQs exclusion of outliers (in the
case of heavy tailed error term distributions) and their affinity for high leverage points.

Figure 1 below gives the scatter plot representation of matrices D2–D5.
There is only one influential point, viz., observation 3, across all design matrices and

distributions. The influence of this point increases as observation 5’s leverage increases.
However, the addition of another high leverage point (observation 7), reduces the influence
of this point.
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Figure 1. Scatter plots for design matrices D2–D5.

Remark 4.1. Note that D2 and D4 are similar (high leverage observation, 5 creates
collinearity) but differ in the severity leverage while D3 and D5 are also similar (high
leverage observation, 7 hides the collinearity) but also differ in the severity of leverage.

We start with the orthogonal design. At this design we want to find the minimum value
of c for which we would flag no TJ ’s corresponding to RQs using cpK−1 as the cut-off
value. This is so because D1 is our “ideal” design and we are not expected to flag any RQ
at this design matrix.

For each design matrix we give the proportions of the TJ ’s flagged and show the display
depicted graphically. The graphical representation gives us some idea of the distribution of
the TJ ‘s since we plot the τ levels (and p sizes) against the quantiles of the simulated TJ ‘s.

4.1 Results for the D1 Matrix

Based on the orthogonal (“clean”) D1 we do not flag any TJ ’s at the given c for a given
size of p. Graphically, the plot of the τ levels (and p sizes) against the quantiles of the 200
simulated TJ values, quant(TJi)

1≤i≤200
at 18 τ levels (at p predictors) is as in Fig. 2 below.



3358 Ranganai et al.

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

RQs corresponding to different sizes of specific ERs

R
Q

 W
ei

gh
te

d 
P

re
di

ct
iv

e 
Le

ve
ra

ge
 Q

ua
nt

ile
s

18 36 54 72 90 108
p=3 p=4 p=5 p=6 p=7 p=8

median (0.5)

 (min/max) band

.95 band (0.05/0.95)

.90 band (0.10/0.90)

.75 band (0.25/0.75)

cut-off line

Figure 2. RQ Leverage based on D1 under the Normal distribution at different sizes of p.

At D1 under the Gaussian distribution, all the optimal solutions to the LP problem
giving RQs consists of 18 unique ERs corresponding to RQs at the given sizes ofp, i.e.,
{3, 4, ..., 8}, thus the horizontal axis consists of 18 τ levels per given size of p. The vertical
axis consists of the (min/max), 95%, 90%, 75% bands, the median and the cut-off values
for the 200 simulated TJ values as shown in the legend.

Based on D1 (“clean” case) we take values of c to be the set {4, 7, 15, 21, 26, 34} cor-
responding to the sizes of p in the set {3, 4, 5, 6, 7, 8}, respectively. Hence, for these sizes
of p, the threshold values are {4pK−1, 7pK−1, 15pK−1, 21pK−1, 26pK−1, 34pK−1},
respectively.

Remark 4.2. For the graphical representations that will follow and the various statistics
we are investigating, the horizontal axis will stay the “same” as in Fig. 2, i.e., we will
fix the τ ’s at equally spaced 18 levels at the given p sizes. This helps us to carry out
convenient comparisons among the different scenarios as each scenario may result in a
different number of unique RQs.

Note that the distribution of the TJ ’s generally decreases in an approximate stepwise
fashion. That is, as K increases (or as p approaches n

2 ), the statistic TJ generally becomes
smaller and smaller. The determined new cut-off values are given by the solid line. Note
that the cut-off values flag no RQs at this “clean” case as expected. It is interesting to see if
these cut-off values will result in the flagging of RQs in the presence of different leverage
scenarios. We only give results for D2 and D3 since the flagging pattern of the RQs at D2
is similar to that at D4 and that at D3 similar to that at D5 except that it more pronounced
at the latter design matrices.



Regression Quantiles High Leverage Diagnosis 3359

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

RQs corresponding to different sizes of specific ERs

R
Q

 W
ei

gh
te

d 
P

re
di

ct
iv

e 
Le

ve
ra

ge
 Q

ua
nt

ile
s

18 36 54 72 90 108
p=3 p=4 p=5 p=6 p=7 p=8

median (0.5)

 (min/max) band

.95 band (0.05/0.95)

.90 band (0.10/0.90)

.75 band (0.25/0.75)

cut-off line

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

RQs corresponding to different sizes of specific ERs

R
Q

 W
ei

gh
te

d 
P

re
di

ct
iv

e 
Le

ve
ra

ge
 Q

ua
nt

ile
s

18 36 54 72 90 108
p=3 p=4 p=5 p=6 p=7 p=8

Figure 3. RQ Leverage based on D2 and D3 under the Normal distribution at different sizes of p.
Upper panel D2; lower panel D3.

4.2 Results for D2 and D3 Matrices

In order to see the effect of the degree of leverage on the distribution of the TJ we give the
graphs of the τ levels (and p sizes) against the quantiles of the 200 simulated TJ s at 18
τ levels, i.e., 200×18 TJ s. We give D2 and D3 results together in Fig. 3 below to see the
differences that may arise due to collinearity inducing high leverage points and collinearity
hiding high leverage points, respectively. Since the D2 and D4 matrices are similar, we
present the results for D2 only.
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Figure 4. Plot of ||HI || vs. ||HJ ||, upper panel; plot of TJ vs. ||HJ ||, lower panel at p = 4 and D1.

On average we flag 78% for p = 3, 37% for p = 4, 15% for p = 5, 8% for p = 6,
0.0% for p = 7, 6% for p = 8 of the RQs using the threshold values based on c for this
design matrix.

Again since the D3 and D5 matrices are similar, we present the results for D3 only.
On average, we flag 98% for p = 3, 100% for p = 4, 63% for p = 5, 37% for p =

6, 23% for p = 7, 22% for p = 8 of the RQs using the cut-off values based on c for this
design matrix.

On average, we flag 100% for p = 3, 100% for p = 4, 64% for p = 5, 38% for p =
6, 22% for p = 7, 23% for p = 8 of the RQs using the threshold values based on c for this
design matrix.

At D3 TJ s tend to be larger and more RQs are flagged than at D2 and generally, the
proportion of RQs being flagged generally decreases as p increases.

Now, we give simulation comparisons of the proposed multiple-case leverage diag-
nostic TJ with those in the literature, ||HI || and ||HJ || for some high leverage scenarios at
D1, the control design matrix and p = 4, and analogues of the Hocking and Pendleton and
Gunst and Mason data sets, design matrices D3 and D4, respectively. At the orthogonal
design, D1 ||HI || is negatively correlated with ||HJ || while ||HJ || and TJ are positively
correlated as shown in Fig. 4 below.

Like the Hocking and Pendleton data set, design matrices D3 and D5 have a high
leverage point that hides collinearity. Figure 5 below shows results for D3.

At design matrix D3 the correlation pattern is as at D1. However, a higher and more
drastic flagging rate at lower values of p depicted in Fig. 2 is also evident. Only 4 values
are very small for both TJ and ||HJ ||.

The analog of the Gunst and Mason data set are the design matrices D2 and D4. We
give results for D4 only in Fig. 6 below.

At p = 7, a more gradual increase in both TJ and ||HJ || is synonymous with a more
gradual and less drastic flagging rate as depicted at larger values of p in Fig. 3.
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Figure 5. Plot of ||HI || vs. ||HJ ||, upper panel; plot of TJ vs. ||HJ ||, lower panel at p = 4 and D3.

These simulation results show that the RQWPL statistic TJ compares very well to the
existing multiple-case diagnostic ||HJ ||.

In the next section we apply the cut-off values of the RQWPL statistic based on the
analogue of the Hoaglin and Welsch (1978) one as well as those proposed in section 3
based on the simulation to the above-mentioned 3 data sets. In order to find out the single
case high leverage points involved in the high leverage multiple-cases, we first apply the
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Figure 6. Plot of ||HI || vs. ||HJ ||, upper panel; plot of TJ vs. ||HJ ||, lower panel at p = 7 and D4.
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robust and multivariate location and scale estimates of Rousseeuw and van Driessen (1999)
in order to circumvent the masking and swamping effects that might be inherent in the data
sets.

5. Applications

It is wellknown that the usual OLS single case diagnostics suffer from the masking and
swamping effects. Therefore, we make use of the robust and multivariate location and
scale estimates computed with the minimum covariance determinant (MCD) method of
Rousseeuw and van Driessen (1999) to expose all the single case high leverage points and
outliers.

In this section we consider three data sets. First, we consider the Gunst and Mason
data set (see Gunst and Mason, 1980). It has 6 predictors and 49 observations, of which
high leverage observations 17 and 39 induce collinearity, while high leverage observation
27 obscures collinearity. Other high leverage observations are 3, 8, 20, 24, 26, 33, 37, 43,
and 46. Graphically, some of these high leverage points are shown to be more severe as
well as being outliers in Fig. 7 below.

Second, we consider the Hocking and Pendleton data set (see Hocking and Pendleton,
1983) which has 3 predictors and 26 observations of which 24 is a high leverage point
that hides collinearity. The other points with notable relatively high leverage are 11 and 18
which are also outliers. Observation 17 is an outlier. The plot revealing these high leverage
points and outliers is shown in Fig. 8 below.

Figure 7. High leverage and outlier diagnosis for the Gunst and Mason data set.
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Figure 8. High leverage and outlier diagnosis for the Hocking and Pendleton data set.

Finally, we consider the Hald data set (Montgomery and Peck, 1982) which has 4
predictors and 13 observations with relatively very moderate high leverage points, 3 and
10, and no outliers

Since the high leverage points in the first two data sets change the eigenstructure of
the design matrices thereby, inducing or hiding collinearity, they are called collinearity-
influential points. The Hald data set will be used as more or less of the control since it has
very moderate high leverage points (see Fig. 9 below).

Tables 2–4 below give the RQ high leverage view at different 0 < τ < 1 levels for the
Gunst and Mason, Hocking and Pendleton, and Hald data sets, respectively, using the cut-
off value based on the Hoaglin and Welsch (1978) methodology. The τ levels correspond
to the entire solution set of the LP giving unique RQs. The tables are sorted in ascending
order of − ln(TJ ) (descending order of TJ ).

High leverage points at both the single case and the RQ case are shown in bold in all
three tables. Flagged values for TJ , i.e., − ln(TJ ) < − ln(2pK−1) are sorted from smallest
value of − ln(2pK−1) to the largest. We discuss the flagging percentages of the three data
sets below.

Discussion

The flagging rate of the Gunst and Mason data set, given in Table 2, is second highest with
90.70% (having − ln(TJ ) < 15.630). In this data set, the most severe influential weighted
leverage subgroups are based on the highest single leverage points 27 (obscuring collinear-
ity), 39 (inducing collinearity), and the moderate leverage point 20 which apparently form
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Table 2
RQs that are flagged due to high multiple-case weighted leverage1

Dataset τ − ln(TJ ) ERs Corresponding to RQs

Gunst and Mason Flagged
cut-off = 15.630 0.772 8.759 8 10 20 26 27 39 46

0.957 8.860 10 20 25 26 27 39 46
0.814 8.888 10 20 26 27 33 39 46
0.748 8.933 8 10 16 20 27 39 46
0.875 8.979 10 20 26 27 39 41 46
0.845 9.020 10 20 26 27 39 45 46
0.937 9.020 10 20 26 27 39 42 46
0.726 9.324 10 16 20 27 31 39 46
0.698 9.328 1 10 16 20 27 39 46
0.635 11.081 1 10 16 27 35 39 46
0.588 11.483 10 13 15 27 35 39 46
0.629 11.561 10 13 27 35 39 44 46
0.674 11.810 1 10 16 27 39 46 48
0.580 11.910 9 10 13 15 27 39 46
0.107 12.180 3 5 20 32 37 39 49
0.567 12.789 13 15 17 29 38 39 46
0.532 13.005 13 17 22 29 38 39 46
0.244 13.032 17 20 21 30 32 34 39
0.196 13.036 17 19 23 32 37 39 49
0.580 13.036 9 10 13 15 17 39 46
0.260 13.250 17 20 30 32 34 39 47
0.106 13.309 3 5 20 37 39 40 49
0.373 13.346 2 9 17 23 29 39 46
0.382 13.377 9 14 17 23 29 39 46
0.519 13.702 9 11 13 17 38 39 46
0.057 13.757 3 5 20 39 40 43 49
0.140 13.954 3 5 6 32 37 39 49
0.060 14.058 3 5 37 39 40 43 49
0.496 14.143 9 11 17 28 38 39 46
0.175 14.236 3 19 32 34 37 39 49
0.469 14.286 9 14 17 28 29 38 46
0.449 14.445 9 14 17 18 28 29 46
0.221 14.592 17 21 30 32 34 39 49
0.147 14.639 3 6 32 34 37 39 49
0.270 14.755 17 20 30 32 34 38 47
0.205 14.796 17 21 23 32 34 39 49
0.178 14.871 19 23 32 34 37 39 49
0.285 14.977 9 17 20 30 32 38 47
0.054 15.206 3 5 20 37 40 43 49

Not Flagged
0.366 15.661 2 9 17 23 29 38 39
0.342 15.863 2 9 17 23 36 38 39
0.050 16.609 3 5 20 24 32 40 43
0.323 16.890 9 17 23 30 36 381 47

1high leverage points at both the single case and the RQ case are shown in bold
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Figure 9. High leverage and outlier diagnosis for the Hald data set.

the “anchor points” to which three more obscure points are added to create the high leverage
subset. Some values of − ln(TJ ) are very far away from the cut-off value indicating that the
most severe high leverage subsets occur in this data set.

The flagging rate of the Hocking and Pendleton data set, given in Table 4, is the highest
with 96.00% (having − ln(TJ ) < 7.533). In this data set, the single most important anchor
leverage point is the collinearity-obscuring point 24 which combines with the moderate
leverage point 8 and low leverage values 6 and 16 to create the highest leverage subset.
The values of − ln(TJ ) are relatively closer to the cut-off value compared to the Gunst and
Mason data set, indicating that these are not severe high leverage subsets. The Hocking and
Pendleton data set with the single case high leverage point, 24, that hides collinearity has
a higher flagging rate of high leverage RQs than the Gunst and Mason data set with single
case high leverage points that both induce and hide collinearity. However, the difference in
the flagging rate between the first two data sets is marginal.

As expected, the flagging rate was least in the Hald data set, given in Table 4, which
is the control (but still quite high at 70.00%). This flagging rate is rather too high for the
control data set although it is wellknown that there may be situations where observations
are individually not high leverage points, but have high leverage jointly.

In the Hald data set, there are no severe high leverage subsets in this data set. Although
there is a high flagging rate in this data set, there are no extremely high leverage RQs
compared to the other two data sets as the values of − ln(TJ ) are pretty close to the cut-off
value. However, the subsets that are flagged are based mostly on the relatively larger single
case leverage points, 3 and 10 in conjunction with points 11 and 12.
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Table 3
RQs that are flagged due to high multiple-case weighted leverage1

Dataset τ − ln(TJ ) ERs Corresponding to RQs

Hocking cut-off = Flagged
7.533 0.957 5.535 6 8 16 24

0.123 5.574 8 11 19 24
0.622 5.613 8 9 10 24
0.73 5.717 8 10 15 24
0.205 5.745 8 13 14 24
0.723 5.784 8 9 15 24
0.955 5.805 2 6 8 24
0.305 5.822 1 14 16 24
0.631 5.949 8 9 24 25
0.739 5.982 6 8 21 24
0.253 5.999 1 14 24 26
0.186 6.024 8 12 13 24
0.828 6.028 6 8 22 24
0.551 6.039 3 8 10 24
0.469 6.067 10 14 16 24
0.402 6.121 1 14 23 24
0.259 6.189 1 5 14 24
0.684 6.211 9 15 24 25
0.537 6.299 7 10 14 24
0.366 6.388 1 4 16 24
0.545 6.684 3 9 10 24
0.766 6.769 6 21 22 24
0.441 6.888 14 16 23 24
0.085 7.389 8 11 16 18

Not Flagged
0.093 7.811 8 11 16 191

1high leverage points at both the single case and the RQ case are shown in bold.

The high inclusion rate of single case high leverage points (shown in bold in Tables 2
and 3) and single observations with notably relatively high leverage points, 3 and 10 (in
Table 4) in ERs corresponding to specific RQs is clearly evident in all data sets.

The application of the regression quantile procedure to the above-mentioned 3 data
sets confirms the RQs’ high affinity for high leverage points and exclusion of outliers, e.g.,
observation 17 in the Hocking and Pendleton data set is never included. Also, the cut-off
values deduced from the Hoaglin and Welsch (1978) methodology are generally too small
in practice as evidenced by a very low flagging rate. Therefore, we apply the cut-off values
proposed in Sec. 3 and based on the simulation study of Sec. 4 to the three data sets.
Figure 10 below shows The RQWPL statistic TJ values and cut-off values (3.9), (3.10),
Hoaglin and Welsch (1978) (HW) analog, 2pK−1, and the one based on simulation for the
Gunst and Mason, Hocking and Pendleton, and the Hald data sets. We left out bound 3.11
as it was again generally very small in the applications.
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Table 4
RQs that are flagged due to high multiple-case weighted leverage1

Dataset τ − ln(TJ ) ERs Corresponding to RQs

Hald cut-off = Flagged
4.857 0.514 4.092 1 3 10 11 12

0.426 4.123 1 3 5 7 10
0.337 4.213 3 5 7 8 10
0.429 4.406 1 3 5 10 12
0.752 4.605 1 9 10 11 12
0.825 4.646 1 2 10 11 12
0.547 4.689 1 5 10 11 12

Not Flagged
0.253 5.021 3 4 5 7 8
0.23 5.319 1 3 4 5 8
0.86 5.809 1 2 5 11 121

1high leverage points at both the single case and the RQ case are shown in bold

Bounds (3.9) and (3.10) exhibit a very similar flagging rate. Though these two bounds
exhibit a lower flagging rate compare to the simulation bound they exhibit a higher flagging
rate than the Hoaglin and Welsch (1978) (HW) analog, 2pK−1.

Comparison of the RQWPL statistic TJ to ||HJ || shown in Fig. 11 below is consistent
with the simulation results
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Figure 10. The RQWPL values and cut-off values (3.9), (3.10), Hoaglin and Welsch (1978) (HW)
analog and the one based on simulation for the Gunst and Mason, Hocking and Pendleton, and the
Hald data sets.
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Figure 11. Comparison of TJ and ||HJ || for the Gunst and Mason, Hocking and Pendleton, and the
Hald data sets.

However, note that Gunst and Mason data set is not quite like D7 as it contains some
outlier which may be responsible for the some sort of distortion of the flagging rate and
multiple-case high leverage pattern.

7. Conclusions

In this article, it was shown that an extension of the Hoaglin and Welsch (1978) methodology
of identifying single case high leverage points by hi > 2p

/
n to the multiple-case level by

flagging ERs (RQs) having TJ > 2pK−1, is mathematically tractable. However, this leads to
cut-off values which are generally small. Therefore, we proposed some analytical bounds
and more reasonable cut-off values based on these bounds and a simulation study. We
adjusted the given form of the cut-off value, by flagging RQs with TJ > cpK−1, for some
factor c > 2. This resulted in a lower reasonable flagging rate. The other cut-off values
were deduced by multiplying the analytical bounds by the factor cK−1. These cut-off
values generally exhibit a moderate flagging rate between that from the simulation study,
cpK−1 and the Hoaglin and Welsch (1978) analogue 2pK−1.

We chose to compare the RQWPL statistic TJ to the well-known multiple-case high
leverage diagnostic, ||HI || (and ||HJ ||) as they are not measure specific. From the simulation
study the RQWPL statistic TJ is negatively correlated with ||HI || but positively correlated
with ||HJ ||. Therefore, we can deduce that TJ measures the multiple-case leverage of
the RQ corresponding to ER J as does ||HJ || as opposed to ||HI || which measures the
multiple-case leverage of the complement of subset J , I .

The RQs’ affinity for leverage points was evident as well as its exclusion of outliers.
A second approach to determine the cut-off values for TJ could be based on deriving

its distribution under some regularity conditions such as those used in the derivation of the
distributions of hi and h(i) in Chatterjee and Hadi (1988).
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The RQWPL statistic TJ could be incorporated in determinantal subset influence
measures (see, e.g., Barrett and Gray, 1996). Both proposals are currently being investigated
by the authors.
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