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On the optimal designs for the prediction of complex
Ornstein-Uhlenbeck processes

Kinga Sikolya and S�andor Baran

Faculty of Informatics, University of Debrecen, Debrecen, Hungary

ABSTRACT
Physics, chemistry, biology or finance are just some examples out of
the many fields where complex Ornstein-Uhlenbeck (OU) processes
have various applications in statistical modeling. They play role e.g.
in the description of the motion of a charged test particle in a con-
stant magnetic field or in the study of rotating waves in time-
dependent reaction diffusion systems, whereas Kolmogorov used
such a process to model the so-called Chandler wobble, the small
deviation in the Earth’s axis of rotation. A common problem in these
applications is deciding how to choose a set of a sample locations in
order to predict a random process in an optimal way. We study the
optimal design problem for the prediction of a complex OU process
on a compact interval with respect to integrated mean square pre-
diction error (IMSPE) and entropy criteria. We derive the exact forms
of both criteria, moreover, we show that optimal designs based on
entropy criterion are equidistant, whereas the IMSPE based ones
may differ from it. Finally, we present some numerical experiments
to illustrate selected cases of optimal designs for small number of
sampling locations.
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1. Introduction

Physics, chemistry, biology or finance are just some examples out of the many fields
where random processes have various applications in statistical modeling. In the current
article we study the problem of optimal design for the prediction of a complex
Ornstein-Uhlenbeck (OU) process on a compact interval with respect to the Integrated
Mean Square Prediction Error (IMSPE) and entropy criteria. A complex OU process
(see e.g. Arat�o 1982), defined in detail in Section 2, is used in the study of rotating
waves in time-dependent reaction diffusion systems (Bayn and Lorenz 2008; Otten
2015), it can also describe the motion of a charged test particle in a constant magnetic
field (Balescu 1997), and has several applications in financial mathematics as well (see
e.g. Barndorff-Nielsen and Shephard 2001). An important application of the complex
OU is the so-called Chandler wobble (CW), the small deviation in the Earth’s axis of
rotation relative to the solid earth (Lambeck 1980). It is a famous example of motion
performed by any spinning sphere which is not entirely spherical, and the investigation
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of the properties of the CW helps in the understanding of the physical processes in the
Earth. The uniqueness of this motion is the change of about 9 meters in the point
where the axis intersects the Earths surface and it has a period of 435 days. Since 1899
the International Latitude Service (ILS) has been measuring the wobble. Recently moni-
toring of the polar motion is done by the International Earth Rotation Service (IERS).
Since its discovery in 1891, a huge number of articles deal with the analysis of the CW
and among them Jeffreys (1942) used first the stochastic difference equation method to
estimate the period and damping parameters of the motion. Later Kolmogorov intro-
duced more realistic approaches and described the CW using the model

Z tð Þ ¼ Z1 tð Þþ iZ2 tð Þ ¼ mei2pt þY tð Þ; t> 0 (1.1)

where Z1ðtÞ and Z2ðtÞ are the coordinates of the deviation of the instantaneous pole
from the North Pole (Arat�o, Kolmogorov, and Sinay 1962). In this model the first term
is a periodical component, whereas the second one Y(t) is a complex OU process.
For the complex OU process Baran, Sz�ak-Kocsis, and Stehl�ık (2018) derived the exact

form of the Fisher information matrix (FIM) and investigated the properties of D-opti-
mal designs for estimation of model parameters. Here we derive exact form of the
IMSPE already studied e.g. in Baran, Sikolya, and Stehl�ık (2013), Baran, Sikolya, and
Stehl�ık (2015) or Crary (2002), Crary (2016) and show that in contrast to the case of
classical real OU process on a compact interval investigated by Baldi Antognini and
Zagoraiou (2010), the equidistant design is usually not optimal. We also investigate the
properties of the optimal design with respect to the entropy criterion (Shewry and
Wynn 1987; Baldi Antognini and Zagoraiou 2010). Note that in some situations the lat-
ter design is equivalent to a D-optimal one, see e.g. Sebastiani and Wynn (2000) or
Wynn (2004). The article is organized as follows. Section 2 gives the necessary defini-
tions connected to the complex OU process, Sections 3 and 4 contain the results about
IMSPE and entropy criteria, respectively, whereas in Section 5 some simulation results
are presented. The article ends with the concluding Section 6 and to maintain the con-
tinuity of the explanation, proofs are provided in the Appendix.

2. Complex Ornstein-Uhlenbeck process with a trend

Let YðtÞ ¼ Y1ðtÞþ iY2ðtÞ; t � 0, be a complex valued stationary OU process defined by
the stochastic differential equation (SDE)

dY tð Þ ¼ � cY tð ÞdtþrdW tð Þ; Y 0ð Þ ¼ n (2.1)

where c ¼ k� ix with k> 0;x 2 R, r> 0, WðtÞ ¼ W1ðtÞþ iW2ðtÞ; t � 0, is a standard
complex Brownian motion, with W1ðtÞ and W2ðtÞ being independent standard
Brownian motions, and n ¼ n1 þ in2, where n1 and n2 are centered normal random vari-
ables that are chosen according to stationarity (Arat�o 1982). In the current article we
consider the shifted complex stochastic process ZðtÞ ¼ Z1ðtÞþ iZ2ðtÞ, defined as

Z tð Þ ¼ mþY tð Þ; t � 0 (2.2)

where m ¼ m1 þ im2;m1;m2 2 R, and YðtÞ; t � 0, is a complex valued stationary OU
process, observed in design points taken from the non-negative half-line Rþ .
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In order to simplify calculations, instead of the complex process Y(t) one can use the

two-dimensional real valued stationary OU process ðY1ðtÞ;Y2ðtÞÞ> defined by the SDE

dY1 tð Þ
dY2 tð Þ
� �

¼ A
Y1 tð Þ
Y2 tð Þ
� �

dtþr
dW1 tð Þ
dW2 tð Þ
� �

; where A :¼ � k �x
x � k

� �
(2.3)

Note that in physics (2.3) is a Langevin equation, see e.g. Balescu (1997). The real
and imaginary parts of a complex OU process form a two-dimensional real OU process

satisfying (2.3), and conversely, if ðY1ðtÞ;Y2ðtÞÞ> satisfies (2.3) then Y1ðtÞþ iY2ðtÞ will
be a complex OU process which solves (2.1). Naturally, EY1ðtÞ ¼ EY2ðtÞ ¼ 0, and the

covariance matrix function of the process ðY1ðtÞ;Y2ðtÞÞ> is given by

R sð Þ :¼ E
Y1 tþ sð Þ
Y2 tþ sð Þ
� �

Y1 tð Þ
Y2 tð Þ
� �>

¼ r2

2k
eAs ¼ r2

2k
e� ks cos xsð Þ sin xsð Þ

� sin xsð Þ cos xsð Þ
� �

; s � 0

(2.4)

This results in a complex covariance function of the complex OU process Y(t)
defined by (2.1) of the form

C sð Þ :¼ EY tþ sð ÞY tð Þ ¼ r2

k
e� ks cos xsð Þ� i sin xsð Þð Þ; s � 0

behaving like a damped oscillation with frequency x.
In the next steps we will consider the damping parameter k, frequency x and standard

deviation r as known. Nevertheless a promising direction moving forward could be the
examination of models where the above mentioned parameters should also be estimated.
Note that the estimation of r can be done on the basis of a single realization of the com-
plex process, see e.g. Arat�o (1982, Chapter 4). Now, without loss of generality, one can set
the variances of Y1ðtÞ and Y2ðtÞ to be equal to one, that is r2=ð2kÞ ¼ 1, which reduces
RðsÞ to a correlation matrix function. In Arat�o, Baran, and Isp�any (1999) we can find
more results on the maximum-likelihood estimation of the covariance parameters.

3. Optimal design with respect to the IMSPE criterion

Assume we observe our complex process Z(t) at design points 0 � t1 < t2< ::: < tn
resulting in the 2n-dimensional real vector Z ¼ ðZ1ðt1Þ;Z2ðt1Þ;Z1ðt2Þ;Z2ðt2Þ; :::;
Z1ðtnÞ;Z2ðtnÞÞ>, where

Z1 tð Þ ¼ m1þY1 tð Þ; Z2 tð Þ ¼ m2 þY2 tð Þ
The main aim of the kriging technique consists of predicting the output of the inves-

tigated process or field on the experimental region, and for any untried location x 2 X ,
which in our case lies in a closed interval X � R, the estimation procedure is focused

on the best linear unbiased estimator (BLUE) ẐðxÞ of Z(x). Considering again the two-

dimensional vector form of the complex process, the real and imaginary parts Ẑ1ðxÞ
and Ẑ2ðxÞ, respectively, of the BLUE are given as

Ẑ1 xð Þ
Ẑ2 xð Þ

" #
¼ m̂1

m̂2

� �
þQ xð ÞC� 1 nð Þ Z1

Z2

� �
�H nð Þ> m̂1

m̂2

� �� �

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 4861



where ðZ1 Z2Þ> :¼ ðZ1ðt1Þ;Z2ðt1Þ;Z1ðt2Þ;Z2ðt2Þ; :::;Z1ðtnÞ;Z2ðtnÞÞ is the real observa-
tion vector, H(n) is the 2� 2n matrix

H nð Þ :¼ 1 0 1 0 � � � 1 0
0 1 0 1 � � � 0 1

� �

C(n) is the 2n� 2n covariance matrix of the observations, QðxÞ is the 2� 2n matrix of
correlations between ZðxÞ ¼ ðZ1ðxÞ;Z2ðxÞÞ and fðZ1ðtjÞ;Z2ðtjÞÞ; j ¼ 1; 2; :::; ng defined
by QðxÞ ¼ ðQðx; t1Þ; :::;Qðx; tnÞÞ with

Q x; tið Þ :¼ r2

2k
e� kjx� tij cos x x� tið Þð Þ sin x x� tið Þð Þ

� sin x x� tið Þð Þ cos x x� tið Þð Þ
� �

and ðm̂1; m̂2Þ> is the generalized least squares estimator of ðm1;m2Þ>, that is
m̂1

m̂2

� �
¼ H nð ÞC nð Þ� 1H nð Þ>
� �� 1

H nð ÞC nð Þ� 1 Z1

Z2

� �

Thus, a natural criterion is to minimize suitable functionals of the mean squared pre-
diction error (MSPE) given by

MSPE Ẑ xð Þ
� �

:¼ r2

2k
tr I2 � I2; Q xð Þð Þ O2 Hn

H>
n C nð Þ

" #� 1

I2; Q xð Þð Þ>
2
4

3
5 (3.1)

where Ik and Ok; k 2 N, denote the k-dimensional unit and null matrices, respectively.
Since the prediction accuracy is often related to the entire prediction region X , the
design criterion IMSPE is given by

IMSPE Ẑð Þ :¼ 2k
r2

ð
X
MSPE Ẑ xð Þ

� �
dx

Instead of an arbitrary interval X , without loss of generality, we may consider
X ¼ ½0; 1�. Further, as extrapolative prediction should be treated with caution in kriging,
we can set t1 ¼ 0 and tn ¼ 1, which results in a reduction of free parameters and sim-
plifies our formula.

Theorem 3.1. In our setup,

IMSPE Ẑð Þ ¼ 2 1�AnþG nð Þ� 1Bn

� 	
(3.2)

where

G nð Þ ¼ 1þ
Xn� 1

‘¼1

g d‘ð Þ; with g xð Þ :¼ 1� 2e� kx cos xxð Þþ e� 2kx

1 � e� 2kx
; x> 0; and g 0ð Þ :¼ 0

An ¼ .n;nþ
Xn� 1

i¼1

.i;i � 2pi.iþ 1;i þpi2.iþ 1;iþ 1

1 � p2i

(3.3)

Bn ¼ 1� 2vn;n þ .n;n� 2
Xn� 1

i¼1

vi;i �pivi;iþ 1ð Þ�pi viþ 1;i �piviþ 1;iþ 1ð Þ
1 � pi2

(3.4)
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þ 2
Xn� 1

i¼1

.n;i � pi.n;iþ 1ð Þ cos x di þ :::þ dn� 1ð Þð Þ�pi cos x diþ 1 þ :::þ dn� 1ð Þð Þ� 	
1 � pi2

þ
Xn� 1

i¼1

.i;i � 2pi.iþ 1;i þpi2.iþ 1;iþ 1

� 	
1� 2pi cos xdið Þþ pi2
� 	

1�p2i
� 	2

þ 2
Xn� 1

i¼2

Xi� 1

j¼1

.i;j � pi.iþ 1;j �pj.i;jþ 1 þpipj.iþ 1;jþ 1
� 	

�
�

cos x dj þ :::þ di� 1
� 	� 	�pi cos x dj þ :::þ di

� 	� 	�pj cos x djþ 1 þ :::þ di� 1
� 	� 	

1 � pi2ð Þ 1 � pj2
� 	

þ pipj cos x djþ 1 þ :::þ di
� 	� 	

1 � pi2ð Þ 1 � pj2
� 	 �

where for i� j :¼ minfi; jg; i� j :¼ maxfi; jg; i; j 2 N,

.i;j : ¼ 1
2k

2e� k dj þ ��� þ di� 1ð Þ � e� k 2d1 þ ��� þ 2dj� 1 þ dj þ ��� þ di� 1ð Þ � e� k dj þ ���þ di� 1 þ 2di þ ��� þ 2dn� 1ð Þ� 	
þ dj þ � � � þ di� 1
� 	

e� k dj þ ���þ di� 1ð Þ; 1 � j � i � n

vi;j :¼ 2k

k2 þ x2
cos x di � j þ :::þ di� 1� j

� 	� 	
þ e� k d1 þ ���þ di� 1ð Þ

k2 þ x2
x sin x d1 þ � � � þ dj� 1

� 	� 	� k cos x d1 þ � � � þ dj� 1
� 	� 	� 	

þ e� k di þ ��� þ dn� 1ð Þ

k2 þ x2
x sin x dj þ � � � þ dn� 1

� 	� 	� k cos x dj þ � � � þ dn� 1
� 	� 	� 	

with the empty sum to be defined as zero, and pi :¼ exp ð� kdiÞ with
di :¼ tiþ 1 � ti, i ¼ 1; 2; :::; n� 1.

Example 3.2. As an illustration consider a three-point design, that is n¼ 3,
t1 ¼ 0; t2 :¼ d; t3 ¼ 1. Figure 1a shows the mean squared prediction error (MSPE) func-
tion for k ¼ 1;x ¼ 4 together with the corresponding contour plot (Figure 1b). In
Figures 1c and 1d the IMSPE corresponding to the equidistant three-point design for
the prediction as function of k and x and its contour plot, respectively, are given.

Straightforward calculation shows that in this case d ¼ 1
2 is a minimizer of IMSPEðẐÞ

for all possible values of k and x, that is the optimal design is equidistant.

Example 3.3. Consider now the four-point design f0; d1; d1 þ d2; 1g. In this case the

partial derivatives of IMSPEðẐÞ with respect to d1 and d2 at d1 ¼ d2 ¼ 1=3 are not
necessarily zero, that is in general, one cannot state that the equidistant design
is optimal.

4. Optimal information gain for complex OU process

Another approach to optimal design is to find locations which maximize the amount of
obtained information. Following the ideas of Shewry and Wynn (1987) one has to maxi-
mize the entropy EntðZÞ of the observations corresponding to the chosen design which

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 4863



in our Gaussian case forms a 2n-dimensional normal vector with covariance matrix
r2
2k CðnÞ, that is

Ent Zð Þ ¼ n 1þ ln
pr2

k

� �� �
þ 1

2
ln detC nð Þ

Theorem 4.1. Under conditions of Theorem 3.1 entropy EntðZÞ has the form

Ent Zð Þ ¼ n 1þ ln
pr2

k

� �� �
þ 1

2

Xn� 1

i¼1

ln 1� 2p2i
� 	

(4.1)

For any sample size the equidistant design d1 ¼ d2 ¼ ::: ¼ dn� 1 is optimal with respect
to the entropy criterion.

Figure 1. Mean squared prediction error (MSPE) for the three-point design f0; d; 1g for k ¼ 1;x ¼ 4
(a) and IMSPE corresponding to the equidistant three-point design for the prediction as function of k
and x (c), together with the corresponding contour plots (b) and (d), respectively.
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5. Numerical experiments

In order to compare the performances of the two examined criteria we compare the opti-

mal values of IMSPEðẐÞ calculated using fmincon function of Matlab to its values corre-
sponding to the equispaced design which is optimal for the entropy criterion. In Table 1
the values of IMSPE are given for both designs together with the relative efficiency of the
equispaced monotonic design with respect to the optimal one for various sample sizes and
combinations of damping parameter k and frequency x. Observing that for the three-
point design (n¼ 3), the efficiency of the equispaced design is 100%, so in this case the
equidistant design is optimal. In the other cases it is notable, that the optimal values of

IMSPEðẐÞ are better than the optimal values of entropy criterion. The damping parameter
k and frequency x used for the simulations are estimated based on public pole coordinates
from the IERS EOP C01 IAU2000. This database contains a series of the Earth Orientation
Parameters given at a 0.05 year time interval (since 1890), and we consider the x and y

Table 1. IMSPE values (in arcsec2) corresponding to the optimal and to the equispaced design and
relative efficiency of the equispaced design.

k ¼ 2:452; x ¼ � 4:127 k ¼ 4:997; x ¼ � 0:356 k ¼ 4:937; x ¼ � 5:777

(estimates from Y2017) (estimates from Y2016) (estimates from Y2015)
optimal 0.8327 1.3179 1.5010

n¼ 3 equispaced 0.8327 1.3179 1.5010
rel. eff. (%) 100 100 100
optimal 1.0740 0.9981 1.3844

n¼ 4 optimal design ð0; 0:344; 0:75; 1Þ ð0; 0:334; 0:671; 1Þ ð0; 0:394; 0:794; 1Þ
equispaced 1.1284 0.9982 1.4675
rel. eff. (%) 95.18 99.99 94.34
optimal 1.0323 0.6389 0.9621

n¼ 5 optimal design ð0; 0:019; 0:196; 0:661; 1Þ ð0; 0:245; 0:495; 0:739; 1Þ ð0; 0:206; 0:422; 0:791; 1Þ
equispaced 1.4753 0.6395 1.0792
rel. eff. (%) 69.97 99.91 89.15

Figure 2. Real and modeled yearly polar motion (a) for the three-year period 2015–2017 based on
data from IERS EOP C01 IAU2000, together with the corresponding plot of deviation of the model
from the observation (b).
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coordinates of the deviation of the North Pole (in arcsec). We make yearly estimates of k
and x based on data from the previous three years. As a first step we estimate the regres-
sion model that fits best the real polar motion in the least squares sense, thus we obtain
the coordinates of modeled polar motion (x̂ and ŷ coordinates). Then, according to
Kolmogorov’s model (1.1) of the CW, deviation of the real and fitted yearly polar motion
results in the required complex OU process (~x ¼ x� x̂ and ~y ¼ y� ŷ coordinates). The
maximum likelihood estimators for the parameters k and x of the complex OU process
are given in Arat�o (1968) or in Arat�o (1982, Chapter 4, pp. 221–223). The required inte-
grals of the realizations of the OU process are calculated numerically with a time step of
0.05 year corresponding to the data frequency. As an example, Figure 2 shows the real and
modeled yearly polar motion based on data from the three-year period 2015–2017,
together with the corresponding deviation modeled as a complex OU process.

6. Conclusions

We derive the exact form of the IMSPE for a shifted complex OU process on a compact
interval and show that optimal design for prediction based on IMSPE may well differ
from the equidistant one. This is in contrast both to the D-optimal design for estima-
tion (Baran, Sz�ak-Kocsis, and Stehl�ık 2018) and to the case of the classical real OU pro-
cess (Baldi Antognini and Zagoraiou 2010), but similar to the optimal design for the
prediction of OU sheets on a monotonic set (Baran, Sikolya, and Stehl�ık 2013). We also
investigate the properties of the optimal design with respect to entropy criterion and we
show that these optimal designs are equidistant. Simulations illustrate selected cases of
optimal designs for small number of sampling locations. The damping parameter k and
frequency parameter x used for the simulations are estimated based on real data (pole
coordinates from the IERS EOP C01 IAU2000), which is a well known application of
the complex OU process, namely Kolmogorov’s model (1.1) of the Chandler wobble.
Since the above discussed designs depend on values of damping and frequency parame-
ters, obtained optimal designs are only locally optimal. Such knowledge may be crucial
for experiments to increase efficiency of design in practical setups.
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Qi; i ¼ 1; 2; :::; n. According to the results of Baran, Sz�ak-Kocsis, and Stehl�ık (2018)
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where Uk :¼ ½I2 � eðAþA>Þdk �� 1; k ¼ 1; 2; :::; n� 1, and Vk :¼ Uk þ eðAþA>Þdk� 1Uk� 1;
k ¼ 2; 3; :::; n� 1.
Consider first the MSPEðẐðxÞÞ given by (3.1). Short matrix algebraic calculations show
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and according to the results of Baran, Sz�ak-Kocsis, and Stehl�ık (2018) we have
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Examining member by member the above expression
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where pi :¼ exp ð� kdiÞ, with di :¼ tiþ 1 � ti, pi;j :¼ exp ð� kðjx� tij þ jx� tjjÞÞ, and
qi;j :¼ exp ð� kjx� tijÞ cos ðxðx� tjÞÞ, i; j ¼ 1; 2; :::; n� 1. Further, according to the definition of
the IMSPE criterion, we can write
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with the empty sum to be defined as zero, short calculation leads to (3.3) and (3.4). w

A.2. Proof of Theorem 4.1

Following the idea of Baldi Antognini and Zagoraiou (2010, Lemma 3.1) the covariance matrix
C(n) can be written as

C nð Þ ¼ LDU

where L is a lower, U is an upper block triangular matrix with I2 as blocks in the main diagonal
and D is block diagonal matrix with
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as main block matrices. In this way
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which proves (4.1). Now, from (4.1) we have
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Since

@2f dð Þ
@d2

¼ � 8k2e2kd
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f(x) is a concave function of x, and the result follows from Schur-concavity of the entropy
criterion. w
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