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ABSTRACT
We propose two non parametric portmanteau test statistics for serial
dependence in high dimensions using the correlation integral. One test
depends on a cutoff threshold value, while the other test is freed of this
dependence. Although these testsmayeachbeviewedas variants of the
classical Brock, Dechert, and Scheinkman (BDS) test statistic, they avoid
some of the major weaknesses of this test. We establish consistency
and asymptotic normality of bothportmanteau tests. UsingMonteCarlo
simulations, we investigate the small sample properties of the tests for
a variety of data generating processes with normally and uniformly dis-
tributed innovations.We show that asymptotic theoryprovides accurate
inference in finite samples and for relatively high dimensions. This is fol-
lowed by a power comparison with the BDS test, and with several rank-
based extensions of the BDS tests that have recently been proposed in
the literature. Two real data examples are provided to illustrate the use
of the test procedure.

1. Introduction

Testing for serial independence has been extensively studied in the literature.Within the con-
text of (non) linear time series analysis, a wide variety of tests have been proposed. Among
them, are many procedures for testing first-order serial dependence (m = 2 dimensions)
based on functionals measuring differences between two estimated densities. Often this is
coupled with a desire to avoid specific assumptions about the marginal distributions under
the null hypothesis of serial independence. Not surprisingly, therefore, non parametric test
statistics are predominant in the literature. Using kernel density estimators, research papers
in this area are by Robinson (1991), Skaug and Tjøstheim (1993, 1996), Delgado (1996), and
Hong and White (2005), among others. Also various tests of serial independence based on
rank statistics have been proposed, including Hallin and Puri (1992), Ferguson et al. (2000),
and Genest, Ghoudi, and Rémillard (2007) (henceforth GGR, 2007).

Since it is now generally believed that many empirical time series, while non linear, are
generated by high-dimensional processes, it is natural to consider non parametric serial
independence portmanteau tests for dimensions m > 2. Indeed, both Skaug and Tjøstheim
(1993), and Hong and White (2005) proposed tests for multidimensional data using a linear
combination of their original tests whenm = 2. However, Delgado (1996) remarked that the
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asymptotic null distribution of these test statistics can be different from tests based on the
joint density ofm > 2 consecutive time series observations.

Motivated by high-dimensional non linear deterministic and stochastic phenomena in eco-
nomics, and using the correlation integral of Grassberger and Procaccia (1984) (see, e.g., Sec.
2), Brock et al. (1996) proposed a non parametric test for higher variate serial independence,
often referred to as BDS test. The BDS test is free of nuisance parameters, but it suffers from
some problems. For instance, the power of the BDS test depends on the choice of value of
the dimensional distance parameter. Another problem is that the BDS test, though asymptot-
ically normal under the null, has high rates of Type I error, especially for non Gaussian data.
Moreover, the BDS test is inconsistent. In an attempt tomitigate some or all of these problems,
GGR (2007) advocated a circular version of the BDS test and seven rank-based extensions of
the BDS test statistic (see Sec. 4).

In this article, we address the above issues in a direct way. Rather than using the theory
of rank statistics, we propose two non parametric portmanteau test statistics based on the
correlation integral. The first test statistic depends on a cutoff threshold value. And the
second test statistic is free of this dependence. Both tests can be viewed as variants of
the traditional BDS test statistic. In contrast, our test statistics are consistent, and asymptot-
ically normally distributed. Moreover, the finite-sample rejection probabilities of the tests do
not differ too much from their asymptotic level, for both Gaussian and uniformly distributed
data. Thus, the tests avoid some of the major weaknesses of the BDS test statistic. Further,
they can be relatively easily computed using a simple adjustment of available computer code.

The article is organized as follows: Sec. 2 introduces the two non parametric portmanteau
test statistics. The asymptotic properties of the tests are discussed in Sec. 3. In Sec. 4, we report
the results of a Monte Carlo study, comparing the finite-sample performance of our tests with
the BDS test, and with the eight rank-based BDS tests of GGR (2007). In Sec. 5, two empirical
examples are given to illustrate the use of the test procedure, and in Sec. 6 we offer some
concluding remarks. We relegate all technical arguments to an Appendix.

2. Test statistics

Let {Yt : t = 1, . . . , n} be a sample from a real-valued, strictly stationary time series process
with values in R. Rather than focusing on a single time series in R, we embed {Yt} in an
m-dimensional space R

m, where m ∈ N
+ ≡ {2, 3, . . .}. It can be constructed from {Yt} as

the set of random vectors, {Zt : t = 1, . . . , n − m + 1} defined by Zt = (Zt,1, . . . ,Zt,m) =
(Yt , . . . ,Yt+m−1). Assume that {Zt} admits a common continuous joint density function
fm(z1, . . . , zm) for Z = (z1, . . . , zm). Denote the marginal density by f (z). The problem
under consideration is that of testing the null hypothesis H0: {Yt} is independent and identi-
cally distributed (i.i.d.) versus the alternative hypothesis of serial m − 1 dependence. Now, if
{Yt} is i.i.d. the joint density will be equal to the product of the individual marginals, and the
hypothesis of interest is

H0 : fm(z1, . . . , zm) = f (z1) · · · f (zm), for all (z1, . . . , zm) ∈ R
m.

Any deviation from this equality is evidence of serial dependence.
Various functionals measuring the divergence from independence between densities have

been proposed in the literature. It is natural to require that a measure of functional depen-
dence has, at least, the following basic properties: non negativity, maximal information, and
invariance under continuous monotone increasing transformations. A divergence measure



COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 387

satisfying these three properties is the mutual information, defined by

Im ≡
∫

ln
( fm(z1, . . . , zm)

f (z1) · · · f (zm)

)
fm(z1, . . . , zm)dz1 · · · dzm, (2.1)

where the integral is taken over the support of {Zt}, and with the convention that 0 ln(0/0) ≡
0. It is easy to see that (2.1) can be expressed in terms of the Shannon entropy, or the second-
order Rényi entropy, H(Z) ≡ − ∫

fm(z1, . . . , zm) ln fm(z1, . . . , zm)dz1 · · · dzm as

Rm =
m∑
i=1

H(Zi) − H(Z), (2.2)

where H(Zi) = − ∫
ln f (zi) ln f (zi)dzi is the ith marginal version of H(Z).

A serial dependence measure can be obtained by relating Rm to the second-order
correlation integral, which in the i.i.d. case is defined as C(m, δ) = ∫ ∫

1(‖ s − t ‖ ≤
δ) fm(s) fm(t )dsdt where ‖ · ‖ denotes the maximum norm on R

m, 1(·) is the indicator func-
tion, and δ ≡ δn > 0 a cutoff threshold value or bandwidth. Pompe (1993) and Prichard and
Theiler (1995) showed that, for δ small,H(Z) ≈ − ln C(m, δ). In fact, putting Rm in terms of
the correlation integral, Prichard and Theiler (1995) find:

Rm,δ = lnC(m, δ) − ln{C(1, δ)}m. (2.3)

We see that (2.3) has a similar structure as the divergence measureC(m, δ) − {C(1, δ)}m that
forms the basis of the traditional BDS test statistic.

Note thatC(m, δ) is just the expectation of the kernel function, that is, E(1(‖ Zi − Zj ‖ ≤
δ)) with Zi ∼ fm, where ‘∼’ denotes equivalence in distribution. Hence, it can be estimated
straightforwardly in a U-statistic framework by

Cn,δ (m) =
(
n − m + 1

2

)−1 ∑
1≤i< j≤n−m+1

1(‖ Zi − Zj ‖ ≤ δ). (2.4)

Given (2.3) and (2.4) the first non parametric portmanteau test statistic takes the form

In,δ (m) = ln(Cn,δ (m)/Cm
n,δ (1)). (2.5)

In principle, the naive kernel in (2.4) may be replaced by more sophisticated kernels. But
fully kernel-based non parametric estimation ofC(m, δ) is usually unattractive because esti-
mation accuracy decreases rapidly, for fixed sample sizes n, as m increases. Besides, issues
linked with kernel estimation in high dimensions like bandwidth selection, will complicate a
direct comparison between (2.5) and the test statistics proposed byGGR (2007). Also note that
the test statistic In,δ (m) has an invariance property in the following sense. For any monotone
increasing transformation Z′

i = g(Zi) of the data, 1(||Zi − Zj|| ≤ δ) = 1(||Z′
i − Z′

j|| ≤ δ′)
with δ′ = g−1(δ). So the null hypothesis of the original data corresponds to the null hypothesis
after the transformation. Thus, after the transformation, by Theorem 1 in Sec. 3, the asymp-
totic null distribution of In,·(m) is still normal only with parameter δ changed to δ′.

Note that the test statistic (2.5) depends on the choice of δ. This may be viewed as a serious
limitation in practice. A common way to get around this problem is to integrate out δ with
respect to some specified probability density function h(·) on [a, b] (0 < a < b < ∞). Thus,
the second test statistic can be defined as follows

Ĩn(m) =
∫ b

a
In,δ (m)h(δ)dδ, (2.6)

where, without loss of generality, we assume δ ∈ [a, b]. A specific choice of δ is made later.
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3. Asymptotic properties

Let C ≡ C(δ) = PH0 (|Y1 −Y2| ≤ δ) = ∫ ∫
1(|u − v| ≤ δ)dF (u)dF(v ), η(y) = EH0 (1(|y −

Y2| ≤ δ), τ 2 = VarH0 (η(Y1)) = K −C2, with K ≡ K(δ) = Eη2(Y1) = ∫
[F(u + δ) − F(u −

δ)]2dF(u), and γ ≡ γ (δ) = PH0 (|Y1 −Y2| ≤ δ, |Y1 −Y3| ≤ δ). In addition, D→ stands for
convergence in distribution.

Theorem 1. Assume K > C2, i.e. τ 2 > 0. Then,
(i) For fixed δ > 0, underH0, as n → ∞ we have

√
nIn,δ (m)

D→ N (0, σ 2(m, δ)),

where σ 2(m, δ) = 4( τ2m
C2m − m2 K−C2

C2 ), τ 2
m = Km −C2m + 2

∑m−1
i=1 (Km−iC2i −C2m), and

K ≡ γ

(ii) UnderH0, as n → ∞ first and then let δ → 0, we have
√
nIn,δ (m)

D→ N (0, σ 2(m)),

where σ 2(m) = limδ→0 σ 2(m, δ), assume exist.

For fixed δ, σ 2(m) can be consistently estimated by σ 2
n (m) ≡ σ 2

n (m, δ), which is σ 2(m)

with C and K replaced by the following estimates

Cn :=
(
n
2

)−1 ∑
1≤i< j≤n

1(|Yi −Yj| ≤ δ)
a.s.→ C,

Kn :=
(
n
3

)−1 ∑
1≤i< j<k≤n

1(|Yi −Yj| ≤ δ, |Yi −Yk| ≤ δ)
a.s.→ K,

where the dependence on m has been suppressed for notational clarity. Similarly, using Kn

andCn, a consistent estimator for τ 2
m can be obtained.

For fixed m, assume δ varies in [a, b]. LetW (·) = W (m, ·) denote a Gaussian process on
[a, b], that is, for each fixed δ ∈ [a, b],W (δ) is a Gaussian random variable with E(W (δ)) =
0, and for each fixed δ1, δ2 ∈ [a, b], Cov(W (δ1),W (δ2)) = σ 2(m, δ1 ∧ δ2), where δ1 ∧ δ2 =
min(δ1, δ2), for all δ1, δ2 ∈ [a, b]. The following theorem states the asymptotic null distribu-
tion of Ĩn(m). It is also a uniform weak convergence result for In(m, ·) := Im,·(m) on the
space C[a, b], the space of all bounded continuous functions on [a, b], equipped with the
Skorohod metric.

Theorem 2. UnderH0, completed with conditions of Theorem 1, we have

√
nĨn(m)

D→
∫ b

a
W (δ)h(δ)dδ ∼ N (0,V 2

h (m)),

where V 2
h (m) = ∫ b

a

∫ b
a σ 2(m, s ∧ t )h(s)h(t )dsdt.

4. Finite-sample performance

The purpose of this section is to investigate the finite-sample performance of (2.5) and (2.6)
vis-à-vis the standard BDS test statistic and eight high-dimensional serial correlation test
statistics proposed by GGR (2007). For ease of reference, these latter tests can be described
as follows. The first two test statistics, denoted by S̃∗

n,ε and S̃n,ε , are a circular version and a
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rank-based BDS (RBDS) statistic, respectively. Both statistics depend on the distance param-
eter ε, fixed at 0.3 by GGR (2007) and in the computations shown below.

To eliminate the finite-sample behavior of S̃∗
n,ε and S̃n,ε from ε, GGR (2007) introduced six

additional RBDS test statistics. These statistics use three functionals, that is, direct integration,
the Kolmogorov–Smirnov functional, and the Cramér-von Mises functional, and two differ-
ent m-dimensional empirical processes; see GGR (2007) for a definition of these processes.
Tests derived from the first empirical process are denoted by Ĩ∗n , M̃∗

n , and T̃ ∗
n , respectively. Tests

based on the second empirical process are denoted by Ĩn, M̃n, and T̃n, respectively. UnderH0,
the six RBDS test statistics converge in distribution to centered Gaussian variables.

For (2.5) and (2.6) all test results are based on the empirical distribution of 100 boot-
strapped p-values, computed over 1,000 independent runs. Following GGR (2007), Monte
Carlo results for the BDS and RBDS test statistics are based on 10,000 time series generated
for each statistic. Simulation results showed that, in finite-samples, bootstrap approximations
to the distribution of our two test statistics are much better than sample approximations in
the right and left tail.

Although the asymptotic variance of In,δ (m) depends on δ, minimizing the variance over
δ is intractable. Therefore, we simply set δn = 2σ̂Yn−1/5, where σ̂Y is an estimate of the stan-
dard deviation of {Yt}, and we use Theorem 1 (ii) to evaluate the asymptotic result. For
the evaluation of Ĩn(m) we need to specify a probability density function h(δ). Since the
range of optimal values of δ can be wide, we set δ j = uσ̂Y ( j = 1, . . . ,M) with u sam-
pled from aU [0.5, 2.5] distribution. In addition, we approximate the integration in (2.6) by
(1/M)

∑M
j=1W (δ j). All power results presented below are forM = 100. Similar results were

obtained forM = 200.

4.1. Fixed alternatives: Raw data

In this section, we consider the size and rejection rates of the two proposed test statistics
against fixed alternatives for stationary data generating processes (DGPs) with known param-
eters. The DGPs are listed in Table 1. They are identical to the ones used by Hong and White
(2005) and GGR (2007).

Table 2 reports bootstrapped empirical rejection rates (in percentages) of the tests In,δ (m)

and Ĩn(m) under DGP 0 for both i.i.d.N (0, 1) and i.i.d.U (0, 1) distributions. The tests are
reasonably well sized at all three (10%, 5%, and 1%) significance levels with rejection frequen-
cies close to the nominal levels and for both sample sizes, and both distributions.

Note that both test statistics In,δ (m) and Ĩn(m) behave well for both distributions. By
contrast, a limitation of the BDS test statistic is that its rate of converge depends on the choice

Table . Data generating processes (DGPs) used for the Monte Carlo simulation study.

DGP Name Model specification

 i.i.d. Yt = εt
 AR() Yt = 0.3Yt−1 + εt
 ARCH() Yt = h1/2t εt , ht = 1 + 0.8Y 2

t−1
 Threshold GARCH(,) Yt = h1/2t εt , with

ht = 0.25 + 0.6ht−1 + 0.5Y 2
t 1(εt < 0) + 0.2Y 2

t−11(εt ≥ 0)

 Bilinear AR() Yt = 0.8Yt−1εt−1 + εt
 Non linear MA() Yt = 0.8ε2t−1 + εt
 Threshold AR() Yt = 0.4Yt−11(Yt−1 > 1) − 0.5Yt−11(Yt−1 ≤ 1) + εt
 Fractional AR() Yt = 0.8|Yt−1|0.5 + εt
 Sign AR() Yt = sign(Yt−1) + 0.43εt
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Table . Bootstrap levels of the test statistics In,δ (m) and Ĩn(m) under i.i.d. N (0, 1) and under i.i.d.
U (0, 1) for DGP .

n = 100 n = 200

In,δ (m) Ĩn(m) In,δ (m) Ĩn(m)

m % % % % % % % % % % % %

εt ∼ i.i.d.N (0, 1)
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .

εt ∼ i.i.d.U(0, 1)
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .

of ε, the dimension m, and the shape of the distribution function. With the i.i.d. U (0, 1)
distribution, for example, a nominal 5% test rejects between 8% and 44% of the time when
n = 100 andm = 2; see, for example, Brock et al. (1991, Table A.5). No serious size distortions
are reported by GGR (2007) for the RBDS test statistics.

Figure 1 is partly based on GRR (2007, Table 4). It shows percentages of the empirical
rejection rates of eleven statistics under DGPs 1–8 with i.i.d.N (0, 1) innovations, at the 5%
nominal level, and for n = 100 and m = 2, 4, and 6. Several points are noteworthy. First,
In,δ (m) and Ĩn(m) are equally powerful as the best performing RBDS test under DGPs 2, 3,
4, and 8, and more powerful under DGP 5 for all values ofm. Second, In,δ (m) and Ĩn(m) are
less powerful than the best performing RBDS test under DGPs 1, 6, and 7. Third, across all
test statistics the power remains fairly constant for all values ofm under DGPs 2, 3, and 8. The
test statistics S̃∗

n,0.3, Ĩ∗n , M̃∗
n , and T̃∗

n (RBDS 1–4) also have constant, but very low power, for all
values of m under DGPs 1, 6, and 7. For all other DGPs rejections decrease as m increases.
Fourth, the test statistics S̃∗

n,0.3, Ĩ∗n , M̃∗
n , and T̃∗

n (RBDS 1–4) are roughly equally powerful. In
addition, we see a clear difference between the performance of the first set of four RBDS test
statistics as opposed to the second set of four RBDS test statistics. Not surprisingly, under all
DGPs, In,δ (m) and Ĩn(m) are far more powerful than the Hong–White test statistic and the
Skaug–Tjøstheim test statistic. Hence, these results have been omitted from the comparison.

Table 3 reports the empirical rejection rates underDGPs 1–8with i.i.d.U (0, 1) innovations
for n = 100. The simulations permit several observations. First, under DGP 8, almost all test
statistics have rejection rates quite close to the nominal size of 5%. This is not surprising, since
in this case the sign AR(1) process (DGP 8) reduces to a uniformly distributed white noise
process. A clear exception is the BDS statistic with far too high rejection rates; see Brock et al.
(1991) for similar Monte Carlo results.

Second, under DGPs 2 and 3, In,δ (m) and Ĩn(m) are more powerful than almost all other
tests, except for BDS. The power of our test statistics is considerably higher than the powers
of S̃∗

n,0.3, Ĩ∗n , M̃∗
n , and T̃∗

n under DGPs 1–5, and 7. Under DGP 4, BDS, In,δ (m), Ĩn(m), S̃n,0.3, Ĩn,
M̃n, and T̃n, are equally powerful. Under DGPs 5 and 6, S̃n,0.3, Ĩn, M̃n, and T̃n, slightly outper-
form In,δ (m) and Ĩn(m). Third, the power of Ĩn(m) almost always is higher than the power
of In,δ (m).

In summary, the suggested test statistics In,δ (m) and Ĩn(m) remarkably outperformmany
of the (R)BDS test statistics under various DGPs when the innovations are i.i.d. N (0, 1) or
i.i.d.U (0, 1), and when the sample size is relatively small, and for all values ofm.
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Figure . Percentage rejections of the BDS statistic, the RBDS test statistics, In,δ (m) (.) and Ĩn(m) (.);
n = 100 and % nominal level with εt ∼ i.i.d.N (0, 1).

4.2. Fixed alternatives: Residuals

In this section, we compare and contrast the size and rejection rates of eleven portmanteau
test statistics against AR(2) processes as fixed alternatives, using residuals obtained from
a fitted AR(1) process. Specifically, when testing for serial dependence, replacing the true
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Table . Percentages rejectionsof eleven test statistics at the %nominal level under i.i.d.U (0, 1);n = 100.

Rank-based BDS test statistics

DGP m BDS S̃∗
n,0.3 Ĩ∗n M̃∗

n T̃ ∗
n S̃n,0.3 Ĩn M̃n T̃n In,δ (m) Ĩn(m)

  . . . . . . . . . . .
 . . . . . . . . . . .
 . . . . . . . . . . .

  . . . . . . . . . . .
 . . . . . . . . . . .
 . . . . . . . . . . .

  . . . . . . . . . . .
 . . . . . . . . . . .
 . . . . . . . . . . .

  . . . . . . . . . . .
 . . . . . . . . . . .
 . . . . . . . . . . .

  . . . . . . . . . . .
 . . . . . . . . . . .
 . . . . . . . . . . .

  . . . . . . . . . . .
 . . . . . . . . . . .
 . . . . . . . . . . .

  . . . . . . . . . . .
 . . . . . . . . . . .
 . . . . . . . . . . .

  . . . . . . . . . . .
 . . . . . . . . . . .
 . . . . . . . . . . .

parameter value by an estimator introduces a non negligible random term in the empiri-
cal distribution function, and this can affect the finite-sample behavior of the test statistic
under study. To study this issue, we assume that the true DGP is the AR(2) process Yt =
(θ + 0.3)Yt−1 − 0.3θYt−2 + εt , where εt ∼ i.i.d.N (0, 1). However, we fit an AR(1) model to
the generated time series and, using least squares residuals, test for serial dependence. Table 4
shows the percentage rejections for parameter θ ∈ {0, 0.4, 0.8}.

For θ = 0 the aboveAR(2) process reduces to anAR(1) process. All rejection rates are fairly
close to the nominal level of 5%, which is not surprising since the residuals will be close to
Gaussian white noise. For θ = 0.4, the residuals are non i.i.d. and hence for the test statistics
In,δ (m) and Ĩn(m) the results of Theorems 1 and 2 do not apply. Nonetheless, the empirical
rejection rates of these tests and the (R)BDS tests do not deviate too much from the nominal
level of 5%. Finally, as the value of θ increases and becomes equal to 0.8, all tests indicate
residual dependence.

Table . Percentages of empirical rejection rates of eleven test statistics using least squares residuals
obtained from fitting an AR() model to an AR() process; % nominal level, n = 100.

Rank-based BDS test statistics

θ m BDS S̃∗
n,0.3 Ĩ∗n M̃∗

n T̃ ∗
n S̃n,0.3 Ĩn M̃n T̃n In,δ (m) Ĩn(m)

  . . . . . . . . . . .
 . . . . . . . . . . .
 . . . . . . . . . . .

.  . . . . . . . . . . .
 . . . . . . . . . . .
 . . . . . . . . . . .

.  . . . . . . . . . . .
 . . . . . . . . . . .
 . . . . . . . . . . .
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An investigation of parameter estimation uncertainty on the properties of the two pro-
posed test statistics in an analytic way is rather difficult. However, we expect that parameter
uncertainty has no impact on the limiting distribution of In,δ (m) and Ĩn(m), because para-
metric model parameter estimators typically converge to the true parameter values at a much
faster rate than our kernel-based non parametric estimator ofC(m, δ).

5. Illustrative examples

5.1. S&P 500 index

As a first illustration, we consider the daily S&P 500 stock price index from January 1, 1992
to December 31, 2003. The complete series was analyzed by Hong and White (2005). Here
we consider two subperiods. Period 1 (11/2000–02/2003; n = 608) corresponds to the worst
decline in the S&P 500 Index since 1931, with the end of the “dot-combubble” aroundNovem-
ber 2000. Period 2 (03/2003–12/2003; n = 218) corresponds to an upward trend with moder-
ate volatility, indicating the start of a new bull market in the first quarter of 2003. We test the
geometric random walk hypothesis, which is equivalent to testing the log-returns for serial
independence.

Table 5 reports the bootstrapped p-values of the (R)BDS, the Skaug–Tjøstheim test statistic
J n(m), and the Hong–White test statistic T n(m). With abuse of notation, these latter two
test statistics are the sum ofm single-lag two-dimensional test statistics; see Hong andWhite
(2005) for the definitions of J n(m) and T n(m). For the first (downward) downward period,
the results of almost all test statistics suggest that the log-returns are not i.i.d. with much
stronger evidence from In,δ (m) and Ĩn(m) for higher dimensions than from the other test
statistics. On the other hand, the test statistics BDS, Ĩn, M̃n, and T n(m) do not reject H0.
The second (upward) period shows a complete different picture. There, except for the test
statistics T̃n and J n(m), all test results suggest that the log-returns are i.i.d., that is, the S&P
500 daily stock price index follows a random walk. Given these results, and considering
the volatility of the series, a related null hypothesis worth investigating is the martingale
difference hypothesis.

5.2. Canadian lynx data

As a second illustration, we consider the classic log (base 10) lynx data (n = 114) that have
been extensively analyzed. It is generally believed that this series is non linear, but there is no

Table . Bootstrap p-values of tests for daily S&P  stock returns; period  (/–/; n = 608),
period  (/–/; n = 218). Boldface numbers indicate rejection ofH0 at a nominal % level.

Rank-based BDS test statistics

Period m BDS S̃∗
n,0.3 Ĩ∗n M̃∗

n T̃ ∗
n S̃n,0.3 Ĩn M̃n T̃n In,δ (m) Ĩn(m) T n(m) J n(m)

  . . . . . . . . . . 0.01 . 0.04
 . 0.00 0.00 0.02 0.00 0.00 . . . 0.00 0.00 . 0.00
 . 0.00 0.00 0.02 0.00 0.00 . . 0.01 0.00 0.00 . 0.00
 . 0.00 0.00 0.02 0.00 0.00 . . 0.00 0.00 0.00 . 0.00

  . . . . . . . . 0.00 . . . .
 . . . . . . . . 0.00 . . . 0.04
 . . . . . . . . 0.00 . . . 0.01
 . . . . . . . . 0.00 . . . 0.02
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Table . Bootstrap p-values of eleven test statistics for serial independence applied to the residuals of four
time series models fitted to the log lynx series (n = 114). Boldface numbers indicate rejection ofH0 at a
nominal % level.

Rank-based BDS test statistics

Model m BDS S̃∗
m Ĩ∗m M̃∗

m T̃ ∗
m S̃m Ĩm M̃m T̃m In,δ (m) Ĩn(m)

AR()  . . . . 0.04 0.04 . . 0.01 0.02 0.04
 . 0.02 0.01 . 0.01 . . . 0.01 0.02 0.02
 . 0.01 0.01 . 0.01 . . . 0.02 . .

SETAR(;,)  . . . . . . . . . . .
 . . . . . . . . . . .
 . . . . . . . . . . .

SETAR(;,,)
 . . . . . . . . . . .

 . . . . . . . . . . .
 . . . . . . . . . . .

ExpAR()  . 0.02 . . 0.01 0.02 . . 0.01 0.00 0.00
 . 0.02 . . 0.01 . . . 0.02 0.01 0.01
 . 0.01 . . 0.00 . . . 0.04 0.03 0.01

agreement on which non linear model is most appropriate for the data. Tong (1990, Chap-
ter 7) reproduced four time series models proposed in the literature. For the original series,
the set of models consists of an AR(2) model, a SETAR(2;7,2) model, and a SETAR(3;1,7,2)
model. For the mean-deleted log lynx series, we consider an EXPAR(2) model. Using three
parametric portmanteau tests statistics, Tong (1990, p. 388) detected “no obvious lack of fit”
of the specified SETAR(2;7,2) model. In addition, he remarked that the DGP underlying the
series can be well represented by the fitted SETAR(3;1,7,2) model. By contrast, the adequacy
of the fitted AR(2) and the fitted EXPAR(2) model was seriously questioned.

Table 6 shows p-values, based on 1,000 bootstrap replicates, of the (R)RBDS statistics and
our test statistics (2.5) and (2.6) applied to the residuals of the abovementioned models. For
the AR(2) model we see that BDS, M̃∗

n , Ĩn, and M̃n fail to reject the null hypothesis of resid-
ual serial independence at a 5% nominal level, and for almost all values of m. For the fitted
SETAR(2;7,2) and SETAR(3;1,7,2) models, the p-values suggest that both these models ade-
quately capture the non linear phenomena in the data. Finally, for the fitted ExpAR(2) model,
we observe very pronounced evidence of residual dependence from the reported p-values of
the RBDS test statistics S̃∗

n,0.3, T̃∗
n , T̃n, and from our test statistics In,δ (m) and Ĩn(m). Unfor-

tunately, the BDS test statistic fails to notice any model inadequacy in the residuals obtained
from the AR(2) and ExpAR(2) specifications.

In summary, most test statistics correctly indicate the presence or lack of serial indepen-
dence in the residuals of the fittedmodels. One notable exception, however, is the test statistic
M̃∗

n that gives rise to far too high p-values in all cases. Moreover, from the p-values reported
for residuals of the AR(2) models we see that in the cases of S̃∗

n,0.3 and Ĩ∗n no evidence of
residual serial dependence is detected when m = 2, while for m = 4 and 6 the p-values of
these test statistics are smaller than the nominal 5% level. Thus, it is recommended not to
rely completely on low-dimensional test results. Finally, we like to mention that the results
(not displayed here) of the well-known Ljung-Box andMcLeod-Li portmanteau test statistics
provided no evidence of inadequacy of the fitted time series models.

6. Concluding remarks

This paper has developed two non parametric portmanteau tests for detecting time series non
linearities in high dimensions using the correlation integral. The tests statistics are consistent
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and asymptotically normally distributed. The finite-sample rejection probabilities of the tests
do not differ too much from their asymptotic levels. Our tests are invariant under continuous
monotonic transformation of data. Moreover, no unrealistic data requirements are needed
when the dimensionm increases.

On the whole, our simulation results indicate that in commonly used samples, the Ĩn(m)

test performs similarly, and sometimes better, as the best performingRBDS test statistic T̃n. An
additional advantage is that our test statistics can be relatively easily computed by adjusting
the fast MATLAB code for computing the traditional BDS statistic of Kanzler (1999), whilst
T̃n is computationally demanding when n > 200, and is therefore not viable in practice.
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Appendix: Proofs

Proof of Theorem 1.
(i) We first show

√
n

(
Cn,δ (m) −Cm

Cn,δ (1) −C

)
D→ N (0, 
), where 
 = 4

(
τ 2
m mCm−1τ 2

mCm−1τ 2 τ 2

)
, (A.1)

where τ 2
m = Km −C2m + 2

∑m−1
i=1 (Km−iC2i −C2m).

Since (Cn,δ (m),Cn,δ (1))T is a vector U-statistic with non degenerate kernel, so it
is asymptotical normal, we only need to find its asymptotic marginal distribution
and asymptotic covariance. For this, let ηm(z) = EH01(‖ z − Z2 ‖ ≤ δ), and τ 2

m =
VarH0 (ηm(Z1)), then 0 < τ 2

m < ∞. In fact, by Theorem2.1 of Brock et al. (1996), which
in turn is based on Theorem 1c of Denker and Keller (1983), we have

√
n(Cn,δ (m) −Cm)

D→ N (0, 4τ 2
m)

and
√
n(Cn,δ (1) −C)

D→ N (0, 4τ 2).

We only need to check the asymptotic covariance of
√
n(Cn,δ (m) −Cm) and√

n(Cn,δ (1) −C). Expanding the product
√
n(Cn,δ (m) −Cm)

√
n(Cn,δ (1) −C) and

leaving out terms with zero expectation, we have

Cov(
√
n(Cn,δ (m) −Cm),

√
n(Cn,δ (1) −C)) = n

1(n−m+1
2

) 1(n
2

) ×
(

(n − m)

×mE
[(

1(|Y1 −Y2| ≤ δ, |Y2 −Y3| ≤ δ, . . . , |Ym −Ym+1| ≤ δ) −Cm
)
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×
(
1(|Y1 −Y2| ≤ δ) −C

)]

+(n − m)

m−1∑
j=1

jE
[(

1(|Y1 −Y2| ≤ δ, |Y2 −Y3| ≤ δ, . . . , |Ym −Ym+1|

≤ δ) −Cm
)(

1(|Y1 −Y3| ≤ δ) −C
)]

+(n − m)m(n − m − 1)E
[(

1(|Y1 −Y2| ≤ δ, |Y2 −Y3| ≤ δ, . . . ,

×|Ym −Ym+1| ≤ δ) −Cm
)(

1(|Y1 −Ym+2| ≤ δ) −C
)]

+(other terms in which the Zi’s and Zj’s have common indices
for their components)

+
n−2m−1∑

j=0

(n − 2m − j)m

×E
[(

1(|Y1 −Ym+1| ≤ δ, |Y2 −Ym+2| ≤ δ, . . . , |Ym −Y2m| ≤ δ) −Cm
)

×
(
1(|Y1 −Ym+1| ≤ δ) −C

)]

+
n−2m−1∑

j=0

(n − 2m − j)(
(
m
2

)
− m)

×E
[(

1(|Y1 −Ym+1| ≤ δ, |Y2 −Ym+2| ≤ δ, . . . , |Ym −Y2m| ≤ δ) −Cm
)

×
(
1(|Y1 −Y2| ≤ δ) −C

)]

+
n−2m−1∑

j=0

(n − 2m − j)2m(n − 2m)

×E
[(

1(|Y1 −Ym+1| ≤ δ, |Y2 −Ym+2| ≤ δ, . . . , |Ym −Y2m| ≤ δ) −Cm
)

×
(
1(|Y1 −Y2m+1| ≤ δ) −C

)]

∼ n
1(n−m+1
2

) 1(n
2

)2m(n − 2m)

n−2m∑
j=1

j

×E
[(

1(|Y1 −Ym+1| ≤ δ, |Y2 −Ym+2| ≤ δ, . . . , |Ym −Y2m| ≤ δ) −Cm
)

×
(
1(|Y1 −Y2m+1| ≤ δ) −C

)]

= n
1(n−m+1
2

) 1(n
2

)m(n − 2m)2(n − 2m + 1)
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×E
[(

1(|Y1 −Ym+1| ≤ δ, |Y2 −Ym+2| ≤ δ, . . . , |Ym −Y2m| ≤ δ) −Cm
)

×
(
1(|Y1 −Y2m+1| ≤ δ) −C

)]
→ 4m[P(|Y1 −Ym+1| ≤ δ, |Y1 −Y2m+1| ≤ δ)

×P(|Y2 −Ym+2| ≤ δ, . . . , |Ym −Y2m| ≤ δ) −Cm+1]
= 4m[P(|Y1 −Y2| ≤ δ, |Y1 −Y3| ≤ δ)Cm−1 −Cm+1] = 4mCm−1(γ −C2).

Observe that γ = EY1 [P(|Y2 −Y1| ≤ δ, |Y3 −Y1| ≤ δ)|Y1] = EY1P2(|Y2 −Y1| ≤
δ|Y1) = K. Using the relationship τ 2 = K −C2 we have (A.1).
Now let g(x, y) = ln(x/ym) and G(x, y) = (∂g/∂x, ∂g/∂y) = (1/x, −m/y). We have
g(Cm,C) = 0. By (A.1) and the delta method (e.g. Serfling, 1980), we get

√
nIn,δ (m) = √

n(g(Cn,δ (m),Cn,δ (1)) − g(Cm,C))
D→ N (0, σ 2(m, δ)),

where σ 2(m) = G(Cm,C)
GT(Cm,C) = 4( τ2m
C2m + m2τ2+2m2(C2−K)

C2 ) = 4( τ2m
C2m +

m2(C2−K)

C2 ).

(ii) Since the estimator is an U-statistic with an indicator kernel, with δ ∈ (0, δ0) for some
small δ0 > 0, so {In,δ (m) : δ ∈ (0, δ0)} is a P-Donsker class (van der Vaart andWellner,
1996), and so the weak convergence in Part (i) is in the l∞ sense, thus we can take the
limit δ → 0 on both sides of the expression in Theorem 1 (i), and get

lim
δ→0

lim
n→∞

√
nIn,δ (m) = √

n(g(Cn,δ (m),Cn,δ (1)) − g(Cm,C))
D→ N (0, σ 2(m))

with σ 2(m) = limδ→0 σ 2(m, δ), and the result does not depend on the rate at which
δ → 0. In the above argument, we use the fact that, the theorems for Donsker class in
van der Vaart andWellner (1996) for empirical process are in fact valid for U-statistics
based on i.i.d. observations. �

Proof of Theorem 2. Let D⇒ denote weak convergence onC[a, b], andW (·) be the Gaussian
process on [a, b] with E[W (δ)] = 0 and Cov(W (δ1),W (δ2)) = σ 2(m, δ1 ∧ δ2). For clarity
we denote In,δ (m) as In(m, δ). We first prove

√
nIn(m, ·) D⇒ W (·). (A.2)

In fact, by Theorem 1 (i) and similarly in its proof, we see that any finite dimensional distri-
bution of

√
nIn(m, ·)weakly converges to those ofW (·), so we only need to check tightness of

the sequence {Xn(·)} ≡ {√nIn(m, ·)} onC[a, b], and by Theorem 12.3 in Billingsley (1968, p.
95), we only need to show that (the original result is forC[0, 1], and it is the same forC[a, b])

(i) The sequence {Xn(0)} is tight.
(ii) There exist constants γ ≥ 0 and α > 1 and a non decreasing, continuous function G

on [a, b] such that for all δ1, δ2 ∈ [a, b],

P(|Xn(δ1) − Xn(δ2)| ≥ λ) ≤ 1
λγ

|G(δ1) − G(δ2)|α. (A.3)

In fact, define ln(0/0) = c = limδ→0 ln(C(m, δ)/Cm(1, δ)), then {Xn(0)} ≡ {c}, a
constant sequence, so (i) is true. Also, by Theorem 1, Xn(δ1) − Xn(δ2)

D→ N (0, ρ2),
with ρ2 = ρ2(δ1, δ2) = σ 2(m, δ1) + σ 2(m, δ2) − 2σ 2(m, δ1 ∧ δ2) = σ 2(m, δ1 ∨ δ2) −
σ 2(m, δ1 ∧ δ2) = |σ 2(m, δ1) − σ 2(m, δ2)| and δ1 ∨ δ2 = max(δ1, δ2). By definition of
Cn,δ (m), its variation is an increasing function of δ, that is, σ 2(m, ·) is an increasing function
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and apparently it is continuous. Thus, there is an increasing function G on [a, b] satisfying
ρ2(δ1, δ2) ≤ |G(δ1) − G(δ2)|2 for all δ1, δ2 ∈ [a, b]. Thus, for large n,

P(|Xn(δ1) − Xn(δ2)| ≥ λ) ≤ 1
λ2 |G(δ1) − G(δ2|α

and (ii) is satisfied and so (A.2) is true.
Now, let J(r) = ∫ b

a r(δ)h(δ)dδ for r ∈ C[a, b], then ∀r, s ∈ C[a, b], |J(r) − J(s)| ≤ ∫ b
a ||r −

s||h → 0 as ||r − s|| → 0, that is, J(·) is a continuous function onC[a, b]. Thus, by (A.3) and
the basic property of weak convergence, we have

√
nĨn(m) = √

n
∫ b

a
In,δ (m)h(δ)dδ = J(

√
nIn(m, ·)) D→ J(W ) =

∫ b

a
W (δ)h(δ)dδ.

Lastly, divide [a, b] into k intervals each of equal length�, let δi be a point in the ith interval,
then J(W ) = lim�→0

∑k
i=1W (δi)h(δi)� := lim�→0 Jk. SinceW (δi) ∼ N (0, σ 2(m, δi)) and

Var(Jk) =
k∑

i=1

k∑
j=1

σ 2(m, δi ∧ δ j)h(δi)h(δ j)�
2 := V 2

k,h(m),

we have Jk ∼ N (0,V 2
k,h(m)), with characteristic function sk(t ) = exp(−t2V 2

k,h(m)/2) →
exp(−t2V 2

h (m)/2) which is the characteristic function for N(0,V 2
h (m)), and where

V 2
h (m) = lim

k→∞
V 2
k,h(m) =

∫ b

a

∫ b

a
σ 2(m, s ∧ t )h(s)h(t )dsdt.

Thus, we get J(W ) ∼ N (0,V 2
h (m)). �
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