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ABSTRACT
The foundations of the criteria to assess the goodness of quantile
estimators for continuous random variables are reviewed and the
probabilistic justification for a novel bin-criterion is presented. It is
shown that the bin-criterion is a more appropriate measure of good-
ness of a quantile estimator than those based on minimizing the
bias of the quantiles or the parameters of the distribution.
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1. Introduction

The problem of estimating one or more quantiles from observed values x1,… ,xN of a
continuous random variable X is typically solved by estimating the cumulative distribu-
tion function assuming that all observations are mutually independent and come from
identical distributions. Various methods exist for the estimation of an unknown distri-
bution function from the observations which, when arranged in increasing order, are
called order statistics. For example, the form of the distribution may be confirmed by
numerical tests developed for this purpose, and the parameter estimates for this distri-
bution determined using an estimator, such as the moment method (MM) or the max-
imum likelihood method (MLE).
In the classical family of methods, a value pi on the probability axis, so-called plotting

position, is associated to each order statistic xi. By assuming the form of the distribution
and transforming the XP-coordinate system properly, the assumed distribution appears
linear on the transformed XP’- system called “probability paper” whatever the unknown
distribution parameters are. If the points (xi,p’i) plotted on the probability paper seem
to be on the same line accurately enough, the assumed form of distribution is regarded
as correct. Otherwise, other distributions are tested until a satisfactory form is obtained.
Eventually, a straight line is fitted to the points (xi,p’i) using e.g., the method of least

squares (MLS). The parameters of the estimated distribution F̂ are related to the slope

and intersection of the fitted straight line. They are solved, and the resulting F̂ deter-
mines the quantile estimates needed. By a computer, it is also possible to solve the dis-
tribution parameters using the MLS in the original XP-coordinate system. Tens of
different plotting positions and numerous curve-fitting methods have been proposed
during the last one hundred years.
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With so many alternatives, giving different distribution parameters and different
quantiles, a question arises: Which method should be chosen? The answer depends on
the criterion used to assess the goodness or performance of the estimators. Minimizing
the bias of the distribution parameters or the quantiles is the most popular approach,
while minimizing the variance and mean squared error (MSE) of the distribution
parameters or the quantiles have also been used, see e.g., Chernoff and Lieberman
(1954), Gringorten (1963), Cunnane (1978), and Fuglem, Parr, and Jordaan (2013).
This paper replies to the question: How should one assess the goodness of a quantile

estimator? In particular, we clarify the background of a probabilistic criterion for assess-
ing quantile estimators of continuous random variables. This, so called bin criterion,
has been introduced (Makkonen, Pajari, and Tikanm€aki, 2012) and applied (Makkonen
and Tikanm€aki 2019), but not justified in detail elsewhere. The bin criterion is based on
the frequency interpretation of probability, and is free from the anomalies arising when
using the traditional criteria, such as minimizing the bias or mean squared error (MSE)
of the quantiles or the distribution parameters.

2. Performance of quantile estimators

Let X be a continuous random variable and F the cumulative distribution function of X,
G the inverse function of F and p an arbitrary probability. qp ¼ F�1(p) ¼ G(p) is called
the p-quantile of X. By definition of F, the probability for a randomly chosen x not to
exceed qp, equals p. According to the classical definition of probability this means that,
when generating K random numbers yi from X, the ratio rK ¼ number of yi not exceed-
ing qp divided by K, approaches stochastically p with increasing K.
The goodness of an estimation method for quantiles, called estimator in this context,

should be independent of the set of N random observations we happen to have.
Therefore, in Monte Carlo simulations a great number of such sets is generated to show
that the estimator “on average” gives a correct answer or an answer that is “close to”
the correct one. However, there is no consensus about the meaning of “on average”.
Some features of the widely used goodness criteria are discussed in the following.
A popular approach is to require that an estimator is unbiased. Consequently, when

estimating a quantile, the bias of the estimator is then minimized. However, due to the
nonlinear relationship between quantiles and distribution parameters in e.g., a log-
normal or Weibull distribution, if a quantile estimator is an unbiased estimator for a
quantile, it is a biased estimator for the distribution parameters a, b,… and vice versa.
In the same way, P, qP as well as the return period R¼ 1/(1-P), are non-linearly related,
so that no estimator can be unbiased for all of them. When considering the goodness of
quantiles, a question then arises, which parameter should be estimated using an
unbiased or nearly unbiased estimator, or is the bias a useful criterion at all?
The sample mean is an unbiased estimator of the population mean. This is so,

because the expected value of the sample mean equals the population mean. However,
the use of the sample mean as an estimator for characteristics like the median and other
quantiles is not so straightforward. For example, the goodness of a median estimate
m̂med is evaluated in a MC (Monte Carlo) simulation by the number of hits below or
equal to m̂med divided by the total number of the trials. This hit ratio is not determined
by the mean or any other parameter that depends on the deviations of the observations
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from some specific value. Only for symmetric distributions can we expect that E(m̂med)
equals the true median mmed. Consequently, there is no reason why an unbiased estimator
for m̂med would be an appropriate estimator for mmed except in some special cases. More
generally, the use of an unbiased estimator of a quantile is probabilistically inappropriate
and provides a poor estimate. This is discussed, and demonstrated further, in the following.
Consider the fundamental characteristic of a quantile. Figure 1 illustrates the standar-

dized normal distribution and two estimates q̂1 and q̂2 for quantile qP. When measured
horizontally, q̂1 is closer to qP than q̂2, but F(q̂2) is closer to F(qP) than F(q̂1). The
essential role of a quantile qP is to answer the question: “What is the probability for a
random x not to exceed qP?” In this respect, q̂2 performs much better than q̂1 because
jF(q̂2)-F(qP)j< jF(q̂1)-F(qP)j. The fact that jq̂1 - qP j< jq̂2 - qPj is irrelevant when the
probability is concerned. In other words, the goodness of estimate q̂i is defined by
jF(q̂i)-F(qP)j, not by jq̂i - qP j. This simple consideration implies that all goodness crite-
ria for quantile estimators, based on the distance measured along X-axis, are dubious.
When concepts such as mean, bias, mean squared error etc. are used in X-direction for
comparison of quantiles, the concept of probability is lost. The criterion for “close to”,
based on the distance measured along P-axis, is preferable because that distance is pro-
portional to the number of hits in a MC simulation, i.e., proportional to the probability.
In “Criteria for quantile estimators” section, this aspect is considered in more detail.
Using the same arguments, any other criterion based on the deviation of a quantile estimate

from the correct value is dubious. As an example, consider a normal distribution N(l,r) ¼
N(0,1) illustrated in Figure 2. Over the most part of the range, the estimated dotted curve is
closer to the exact curve than the estimated dashed curve. This seems natural because the
parameters of the dotted curve are closer to the exact ones than those of the dashed curve.
However, if we look at the upper tail illustrated in Figure 3, the dashed curve is better

than the dotted curve both in vertical and horizontal directions. Even more striking is
the fact that “improving” the dotted curve by setting l¼ 0.0 enlarges the range where
the dashed curve is better than the dotted one, as seen in Figure 4. Particularly in
extreme value analysis, the upper tail of the distribution is crucial. Nevertheless, it is
not uncommon to base the conclusions concerning the quantile estimators on mini-
mization of the bias of the distribution parameters.
Let us consider one more example which deals with the bias of the parameter estimators.

It is well-known that when the MLE is applied to a sample from exponential distribution

Figure 1. Two estimates q̂1 and q̂2 for qP. q̂1 is closer to qP than q̂2 but F(q̂2) is closer to F(qP) than F(q̂1).
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F xð Þ ¼ 1� e�kx (1)

MLE yields a biased estimate k̂ for k . If, for example, k̂ ¼ 2, we may conclude that

F̂ xð Þ ¼ 1� e�2x should be abandoned. On the other hand, applying MLE to the same
sample, but writing

Figure 2. Curves for normal distributions with mean l and standard deviation r.

Figure 3. Upper tail of the curves in Figure 2.

Figure 4. Same as Figure 3, but the dotted curve is an “improvement” of the dotted curve in the
previous figure.
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F xð Þ ¼ 1� e�
1
bx (2)

we get b̂ ¼ 1=2. Again, F̂ xð Þ ¼ 1� e�2x but this time F̂ xð Þ may be regarded excellent

because b̂ is unbiased. This “paradox” can be explained in a simple way. Even though
quantiles can be estimated by estimating the distribution parameters, the quantile esti-
mators cannot be assessed based on the bias of the parameter estimators.

3. Criteria for quantile estimators

3.1. Classical approaches

Given a continuous random variable X with probability distribution F, an arbitrary
value q0 of X and probability p0, the validity of hypothesis q0 ¼ F�1(p0) can be tested
by generating K random numbers y1,… ,yK from X and observing, what happens to the
ratio rK ¼ (number of yi not exceeding q0)/K when K increases without limit. When
E(rK), the expected value of rK, equals p0, we say that F(q0) ¼ p0 by definition of the
classical probability.
Logics require that a criterion for the goodness of a quantile estimator must be based

on the definition of a quantile. Since the quantiles define the distribution function, the
same requirement applies to the goodness of the estimator of the distribution function.
In practical situations, we are not interested in testing whether an arbitrary value of x

equals F�1(p0), and we do not know F. Instead, we have a sample S ¼ {x1,… ,xN}, i.e., a
set of observations from X. To determine quantiles, we need an estimator T that is a
rule associating, to any S and probability p, a quantile estimate q̂P. We may formally
write T(S,p) ¼ q̂P. The performance or goodness of an estimator may depend on F and
p, but not on the set of observations we happen to have. The performance of T for a
certain distribution F is assessed by generating a great number of sets Si ¼ {xi,1,… ,xi,N}
(samples of size N) and using a criterion which tells how well T performs on average.
In the same way as “close to” has several interpretations, “on average” have been under-
stood in many ways. Some examples of this are given below.
Cunnane (1978) postulated that the order statistics xi from a known distribution type

F with unknown parameters shall be associated to the plotting positions (probabilities)
pi ¼ F(E(Xi)). He also preferred the MLS in X-direction because in this way the mean
squared error (MSE) of the quantiles is minimized. The values of pi can numerically be
evaluated when N and the form of F are known. They depend on the size of the sample
and on the form of F. It follows that T defined by T(S,pi) ¼ q̂Pi ¼ xi is an unbiased esti-
mator of pi-quantile because F�1(pi) ¼ E(Xi) ¼ qPi. However, as pointed out in Chapter
2 above, such an unbiased estimator is not in line with the definition of a quantile.
Minimizing the MSE of the distribution parameters is the goodness criterion favored

e.g., by Chernoff and Lieberman (1954), and minimizing the bias of the distribution
parameters was preferred e.g., by Fuglem, Parr, and Jordaan (2013). Fuglem, Parr, and
Jordaan (2013) carried out MC simulations with the linear MLS for several distribution
types and plotting positions. They concluded that the Weibull plotting with pi ¼ i/
(Nþ 1) should not be used because it results in more biased estimators for distribution
parameters, as well as for 0.9- and 0.99-quantiles, than the other plotting positions.
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However, as pointed out above and discussed further below, an estimator that aims at
unbiased distribution parameters may be a poor estimator of the quantiles.
Maximum likelihood (MLE) and the moment methods (MM) perform well in mini-

mizing the bias or MSE of quantiles, and they have been widely recommended in the
literature and used in practice, see e.g., Castillo (1988) and Millar (2011). We stress
again that such criteria are not probabilistically sound goodness criteria for quan-
tile estimators.

3.2. Measure of the goodness of an estimator based on the definition of a quantile

To illustrate the difference in performance of two goodness criteria, three examples are
given in the following. From order statistics we know that if S ¼ {x1,… ,xN} is an order-
ranked sample from random variable X and y is an arbitrary value of X, the probability
of event A ¼ {y � xi} is equal to i/(Nþ 1), see e.g., Madsen, Krenk, and Lind (1986),
Makkonen, Pajari, and Tikanm€aki (2012) and Makkonen and Pajari (2014). Obviously,
xi is an ideal estimator for i/(Nþ 1)-quantile. For example, choosing N¼ 99 implies that
x50, x98 and x99 are ideal estimators for 0.50, 0.98- and 0.99-quantiles, respectively. To
compare the criteria in which either the bias of the cumulative probability of the quan-
tile or that of the quantile itself is minimized, 10 000 samples from Gumbel, and log-
normal distributions are taken and the expected value evaluated using data given in
Table 1. To give an impression of the effect of the sample size, one case with N¼ 29 is
also considered. The results are shown in Figures 5–7.
As expected, in all of the examples in Figures 5–7 the cumulative probability of any

considered quantile is unbiased, but the quantile itself is biased. This demonstrates that
a goodness criterion aiming at minimum bias of the quantile estimator results in an
estimate of the quantile, which contradicts the definition of the quantile. For example,
in the case illustrated in Figure 7, the 0.9900-quantile is x¼ 10.2. The expectation of the
quantile estimate x99 is then x¼ 13.6 which, in fact, is the 0.9955-quantile. It also fol-
lows that (10.2/13.6) x99 ¼ 0.75x99 should be an unbiased estimator for the 0.99-
quantile, which underlines the absurdity of the unbiased quantile estimators.
The examples above represent discrete quantiles, which depend on the size of the

sample. In practice, quantiles are often searched for p-values which do not equal i/
(Nþ 1). For these cases, let F be the CDF of a random variable X. Define experiment as
generating a random number y from X. According to the classical frequency interpret-
ation, the probability of event A ¼ {y � qp} is

F qpð Þ ¼ P Að Þ ¼ P y � qpf gð Þ ¼ lim
K!1

#KðAÞ
K

(3)

Table 1. Quantile simulations.
Distribution l;r p N T #S

Gumbel 14;5 0.50 99 x50 10 000
14;5 0.50 29 x15 50 000
14;5 0.98 99 x98 10 000

Log-normal 0;1 0.99 99 x99 10 000

Distribution parameters l and r, probability p, size of sample N, estimator T and number of samples #S.
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where p is a given probability, qp ¼ F�1(p) and #K(Z) is the number of events Z in K
subsequent experiments. qp is called the p-quantile of X.
Let T be a quantile estimator which transforms a given probability p and sample S ¼

(x1,… ,xN) from X into a CDF F̂ in such a way that

Figure 5. Simulated expectation for the 0.5-quantile (median) and for the cumulative probability of
the median. Gumbel distribution, sample sizes 29 and 99.

Figure 6. Simulated expectation for the 0.98-quantile and cumulative probability of the quantile.
Gumbel distribution, sample size 99.

Figure 7. Simulated expectation for the 0.99-quantile and cumulative probability of the quantile.
Lognormal distribution, sample size 99.
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F̂
�1ðpÞ ¼ q̂p (4)

where the quantile estimate of p is q̂p: Define experiment now as: given F and p, gener-

ate N random numbers x1,… ,xN from X, use the given estimator T to find F̂ and q̂p
and generate one more random number y from X. In one experiment, the probability

of an event Â ¼ {y � q̂p} is

P Âð Þ ¼ P fy � q̂pg
� �

(5)

In subsequent K experiments, K different values of q̂p are obtained. An ideal estima-

tor would yield

P Âð Þ ¼ P Að Þ () lim
K!1

#K Âð Þ
K

¼ lim
K!1

#K Að Þ
K

(6)

where #K(Z) is the number of events Z in K experiments. Hence, when K is high, the
difference

dK ¼ #KðÂÞ
K

� P Að Þ ¼ #KðÂÞ
K

� F qpð Þ (7)

is a natural measure of the goodness of the quantile estimator T for F and p. This is the
case in MC simulations in which the number of cycles (experiments) can be made large
enough to achieve convergence. Furthermore, if dK does not converge to zero with
increasing K, the estimator is erroneous. In this sense, dK presents a unique measure for
the goodness of quantile estimators.
The goodness of an estimator may depend on the probability distribution F, probabil-

ity p and the size of the sample, but the same measure of the goodness can be used to
compare the different quantile estimators.
Consider next the estimation of the quantile difference qp2 - qp1 where p1 < p2 and

F(qp1) ¼ p1, F(qp2) ¼ p2. Let F̂ be the estimated CDF and

q̂p1 ¼ F̂
�1

p1ð Þ, q̂p2 ¼ F̂
�1

p2ð Þ (8)

Equation (6) means that the probability of event B̂ ¼ fq̂p1 < y � q̂p2 is

P B̂ð Þ ¼ P fq̂p1 < y � q̂p2g
� �

¼ lim
K!1

#K B̂ð Þ
K

¼ lim
K!1

#K y � q̂p2
� �� �

K
� #K y � q̂p1

� �� �
K

� 	

¼ lim
K!1

#K y � q̂p2
� �� �

K
� lim

K!1
#K y � q̂p1
� �� �

K

� 	
(9)

The difference

#KðB̂Þ
K

� P Bð Þ ¼ #K y � q̂p2
� �� �

K
� #K y � q̂p1

� �� �
K

� F qp2ð Þ � F qp1ð Þ
 �

¼
#K fq̂p1 < y � q̂p2g
� �

K
� F qp2ð Þ � Fðqp1Þ
h i (10)
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is a good measure for the goodness of the estimator for the probability of event B̂ when
K is large. In other words, when the number of simulations in a MC simulation is large,
the number of hits between q̂p1 and q̂p2 divided by the number of simulations is the

appropriate estimate for the probability of event B ¼ fqp1< y � qp2g:

3.3. Fundamental property of probability distribution function applied to
quantile estimation

Figure 8 illustrates a fundamental property of a continuous distribution function F: Let
us cut the probability axis with Jþ 2 equally spaced horizontal lines at Pj ¼ j/(Jþ 1),
j¼ 0(1)(Jþ 1), and call the interval (Pj-1, Pj] bin j or Bj when j¼ 1(1)(Jþ 1). Now, when
taking randomly K values y1,… ,yK from X, then rj, the share of hits of yk values in
interval (qj-1,qj] ¼(F�1(Pj-1), F

�1(Pj)] approaches stochastically 1/(Jþ 1) with increasing
K. This property provides the means for comparison of an estimated distribution with
the exact distribution. Such a comparison is based on the same idea as Pearson’s well-
known v2-statistic.

To evaluate the accuracy of an estimated distribution F̂ , we take K random numbers

y1,… ,yK from X and calculate rj, the share of hits in bin Bj using bin limits q̂j ¼ F̂�1(pj)

instead of qj ¼ F�1(pj). A nearly uniform distribution of rj in the bins with increasing K

tells that the pj-quantiles of F̂ are nearly exact, i.e., F̂�1(pj) � F�1(pj). The deviation

dj ¼
Xj
i¼1

ri � 1
J þ 1

� 	
¼
Xj
i¼1

ri � j
J þ 1

(11)

is a robust measure of the accuracy of the estimated pj-quantile q̂j because it tells us

how much the cumulative probability of the estimated quantile q̂j ¼ F̂�1(pj) deviates

from the correct value pj. Note that the number and size of the bins, with obvious mod-
ifications in Equation (11) may be chosen arbitrarily.

3.4. Bin criterion for goodness of quantile estimators

A criterion, based on the fundamental property of quantiles, and aimed for comparison
of different quantile estimators, is introduced in the following. We call it the bin

Figure 8. Five bins. Bin limits on X- and P-axis for exact (F) and estimated distribution (F̂ ).

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 3327



criterion. This criterion is applied to estimators of the whole distribution function but
can also be used for single quantiles. There are similarities between the bin criterion
and the discrete die-rolling process for checking the fairness of a die and in the MC
simulation for assessing a quantile estimator of a continuous random variable X with
distribution F. Table 2 compares these two processes and their goodness criteria.
An overall criterion for an estimator is the mean squared error of relative bin fre-

quencies

dmse ¼ 1
J þ 1

XJþ1

j¼1

rj � 1
J þ 1

� 	2

� 0 (12)

It is obvious that a quantile estimator T that meets this bin criterion is unbiased in
regard to the probability of pj-quantile estimates q̂j:

K may be ¼ 1, but a higher value of K speeds up the convergence of rj, particularly
for estimators which need much computer time per cycle.
The bin criterion, with obvious modifications, works with non-equal bin sizes as well.

For example, to compare the goodness of two estimators T1 and T2 for a given p-quan-
tile, we set J¼ 1, and B1 ¼ [0,p], B2 ¼ (p,1], and let K be a large number in a MC
simulation. Then dmse,i ¼ [(ri,1 – p)2 þ (ri,2 – 1þp)2]/2 and the smaller of values dmse,1,
dmse,2 indicates the better estimator.
As shown in Figure 9, instead of generating y1,i,… ,yK,i from X as in Table 2, the

probability of a random number from X to fall in bin Bj can directly be calculated from
(see Figure 9)

pj, i ¼ F q̂j, iþ1
� �� F ðq̂j, iÞ (13)

The share of hits in Bj then becomes

rj ¼ 1
M

XM
i¼1

pj, i (14)

This method is recommended to speed up the convergence. The generation of
random numbers y1,i,… ,yK,i was introduced first above, because it is similar to the die-

Table 2. Comparison of rolling a die and bin simulation for a distribution estimator.
Rolling a die Bin simulation

Preparations Take a six-sided die Divide P-axis in Jþ 1 bins by Jþ 2 horizontal
lines pj ¼ j/(Jþ 1), j¼ 0(1)Jþ 1
Choose estimator T and K ¼ number of random
values to be placed in the bins

Cycle i What is done: One roll

Outcome: nj,i ¼ hits in bin Bj,
j¼ 1(1)6 (nj,i ¼ 0 or 1)

What is done: Generate set Si¼ {xi,1,… ,xi,N} from
X, find T(Si) ¼ estimated distribution F̂ i, Calculate
bin limits (quantile estimates)
q̂j,i ¼ F̂ i

-1(pj), j¼ 1(1)J
Generate y1,i,… ,yK,i from X
Outcome: nj,i ¼ number of hits of yk,i in bin Bj,
j¼ 1(1)Jþ 1, (0 � nj,i � K)

After M cycles Outcome: Total number of hits in bin Bj
is nj ¼

PM
i¼1 nj, i (bin frequency)

Share of hits in Bj
rj ¼ nj

M (relative bin frequency)

Outcome: Total number of hits in bin Bj is
nj ¼

PM
i¼1 nj, i (bin frequency)

Share of hits in Bj
rj ¼ nj

MK (relative bin frequency)
Criterion for T rj � 1/6 for all j¼ 1(1)6 rj � 1/(Jþ 1) for all j¼ 1(1)Jþ 1
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rolling process and illustrates the close relation of the bin criterion to Pearson’s v2-
statistic which, when applied to a case with sample size K and Jþ 1 equal bins, gives

v2 ¼
PJþ1

j¼1 nj � K
Jþ1

� �2
K
Jþ1

¼ K J þ 1ð Þ
XJþ1

j¼1

nj
K
� 1
J þ 1

� 	2

¼ K J þ 1ð Þ
XJþ1

j¼1

rj � 1
J þ 1

� 	2

¼ KðJ þ 1Þ2dmse

(15)

Both dmse and v2 represent the same idea. Given the number (Jþ 1) of equal bins
and the size of the sample (K), only the difference in the number of observed and the-
oretical hits in the bins matters. However, there are some differences regarding the use
of these two statistics. When applying v2, a probability distribution is assumed correct
in the 0-hypothesis, and the statistic is typically used to check whether one sample of
size K is taken from that distribution, whether two samples are taken from the same
distribution etc. However, dmse is used for comparison of estimators. For such a com-
parison, a great number of samples is taken from X with a known distribution, and
there is no need to check where the samples come from. The goodness of the estimators
can then be evaluated based on dmse. This can be done even when no critical values of
the statistic dmse are specified.

4. Applying the bin criterion to broken line estimators

Associating “probabilities” p’1,… ,p’N (plotting positions) to order-ranked observations
x1,… ,xN, respectively, and plotting the corresponding points (xi,p’i) on a probability
paper has been considered briefly above. Traditionally, this has been a visual method
for checking whether the observations are in accordance with the distribution specific
to the probability paper used. If the points seem to be on a straight line, the distribution
assumption is regarded as correct and the parameter estimates are solved from the slope
and intersection of the line.
The Weibull positions p’i ¼ i/(Nþ 1) are a natural choice because the probability of a ran-

dom x not to exceed xi equals i/(Nþ 1), see e.g., Madsen, Krenk, and Lind (1986),
Makkonen, Pajari, and Tikanm€aki (2012), and Makkonen and Pajari (2014). In other words,

Figure 9. The probability of a random y from F(x) to fall in bin jþ 1 is p̂ jþ1 - p̂ j.
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i/(Nþ 1) is in full agreement with the definition of the cumulative distribution function. This
result is independent of the underlying distribution F. Nevertheless, many other plotting
positions depending on F and N have been proposed, recommended and used, because the
bias of some Weibull-based estimators concerning both the quantiles and distribution
parameters can be reduced in this way. However, as shown in Chapter 2, abandoning the
Weibull plotting positions due to such a bias is unfounded.
Figure 10 illustrates the principle of MC simulations with N¼ 9 order statistics

x1,… ,x9. Points (xi,p’i) where p’i is the plotting position chosen for comparison, are con-

nected to their neighbors with straight lines. A broken line estimate F̂ is obtained. The
broken line is cut by horizontal lines at p ¼ pj ¼ j/(Jþ 1). Choosing J¼N simplifies the
MC simulation. (J<N is also possible. J>N would not be useful because the broken line
might not intersect the highest and lowest horizontal lines.) The cutting points determine
the estimated quantiles q̂j,i or bin limits. K new random numbers yk are taken from X.
The share of the number of hits of yk in each bin Bj is recorded. Repeating the cycle
described above and summing up the number of hits in each bin, a reliable comparison
between the estimators with different plotting positions can be made.
The principles presented above were followed in a number of simulations with

J¼N¼ 30, K¼ 1 and M¼ 106. The probability distributions in Table 3 were used. The
results of these simulations are shown in Table 4 and illustrated in Figure 11 for the
normal distribution. As expected, the Weibull plotting works well, the other alternatives
are poor. The measure dmse gets bigger the further the plotting positions are from the
Weibull positions. This shows that the criteria for the goodness of broken line estima-
tors proposed by Hyndman and Fan (1996) are not in accordance with the bin

Table 3. Cumulative distribution functions (CDF) used in the numerical simulations.
Distribution CDF Parameters

Normal 1ffiffiffiffi
2p

p
r

Ð x
�1 e�

ðt�lÞ
2r2

2

dt
l¼ 0, r¼ 1

Lognormal 1ffiffiffiffi
2p

p
r

Ð x
�1 e�

ðlnt�lÞ
2r2

2

dt l¼ 0, r¼ 1

Exponential 1� expð�kxÞ k¼ 1

Gumbel exp � exp � x�l
r

� �� �
l¼ 0, r¼ 1

Weibull 1� exp � x
k

� �kn o
k¼ 1, k¼ 2

Figure 10. Determining bin limits for cumulative probability distribution.

3330 M. PAJARI ET AL.



criterion. In contrast to the conclusions by Hyndman and Fan (1996), plotting positions
other than those of Weibull clearly give an erroneous picture of the CDF.
These MC simulations support the conclusion made above that the Weibull plotting

positions are the only ones that are based on the concept of probability. Abandoning
the other historically used plotting positions greatly simplifies the estimation based on
plotting. When applying the Weibull plotting, the goodness of the estimators depends
only on the goodness of the curve fitting.
In the early days of order statistics, when applying the MLS on probability paper

with Weibull plotting, it was observed that the bias in distribution parameters or quan-
tiles was high, or some other desirable property was not achieved. The natural step,
modifying the curve-fitting method alone, was not taken. Instead, the plotting positions
were varied to meet the preferred statistical requirements. Since then, the distortion due to
the curve fitting and nonlinear scaling of the probability axis have been compensated by
opposite errors in the plotted points to which the curve has been fitted (Makkonen 2008).
The broken line estimator connects pi ¼ i/(Nþ 1) with the order statistic xi. It is

well-known that E(F(Xi)) ¼ i/(Nþ 1) is true for all F (Gumbel 1958). This means that,
when using the Weibull plotting, the broken line estimator is unbiased when interpreted
as an estimator of random variables F(Xi). The resulting quantile estimators are biased,
but in probabilistic sense this is irrelevant.

5. Applying bin criterion to probability distributions fitted to a sample

5.1. The simulation tools

A free mathematical program (Sage, version 4.3), was used for generation of random
numbers and solving the distribution parameters when using the method of least

Table 4. Results of MC simulations for normal, log-normal, exponential and Gumbel distribution.

Plotting
106dmse

position pi \ Distribution Normal Log-normal Exponential Gumbel

Weibull i/(Nþ 1) 0.028 0.025 0.031 0.034
Blom (i-0.375)/(Nþ 0.25) 6.97 7.01 7.82 6.75
Cunnane (i-0.4)/(Nþ 0.2) 8.11 8.12 8.97 7.88
Gringorten (i-0.44)/(Nþ 0.12) 10.1 10.2 11.1 10.0
Hazen (i-0.5)/N 13.7 13.7 14.7 13.6

Figure 11. MC simulation for normal distribution N(0,1). Number of hits in bins 1,… , 31.
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squares (scipy.optimize, least squares, trf) or maximum likelihood estimator (scipy.opti-
mize, minimize, BFGS). When the MLE is applied to normal and exponential distribu-
tion, or when the linear MLS regression is applied to find the parameters of a
distribution, an explicit solution is obtained. When this is not possible, a solution may
be found using a suitable iterative algorithm, but the convergence is not guaranteed. In
the following analysis, a sample resulting in divergent iteration has been replaced by a
new sample until the target number of solutions (¼105) has been achieved.

5.2. Probability distribution estimated by method of least squares in the P-direction

We carried out a MC simulation based comparison similar to that in the previous sec-
tion but, instead of a broken line through the plotted points, the distribution was esti-
mated by a curve fitted using the MLS in the P-direction without scaling of the
probability axis. This results in nonlinear regression in P-direction.
The results of the MC simulations with 105 samples of size 15 and 30 for the 4 distri-

butions are given in Table 5. Equation (15) was applied to find the share of hits in each
bin. As expected, the Weibull plotting positions perform best except for Weibull distri-
bution with sample size of 15. For the other plottings, dmse increases with increasing
distance from the Weibull’s plotting positions. Additional simulations on the Weibull
distribution showed that for sample sizes greater than 27 the Weibull plotting results in
a lower value of dmse than the other plotting positions.
Figures 12 and 13 show the probability of a random x to fall in bins 1,… ,31 when

the sample size is 30. The points for Cunnane and Gringorten plotting are not shown

Table 5. Results of MC simulations for some distributions.
105dmse

Plotting
Distribution

Normal Exponential Gumbel Weibull

N 15 30 15 30 15 30 15 30

Weibull 5.38 1.54 15.4 1.48 34.7 4.33 9.49 1.51
Blom 32.4 6.48 17.5 1.68 93.6 10.3 4.43 1.61
Cunnane 35.7 7.03 17.7 1.69 99.5 10.9 5.83 2.04
Gringorten 41.5 7.97 17.9 1.72 110 11.9 8.80 2.89
Hazen 51.3 9.53 18.4 1.76 127 13.4 15.4 4.60

N is sample size.

Figure 12. Probability of a random x from Normal distribution to fall in bins 1,… , 31.
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but they lie between those of Blom and Hazen. The first and last bins have a pro-
nounced role. For Weibull plotting, this is different from the broken line estimators, see
Figure 11, and reflects the incomplete behavior of the MLS. With increasing sample size
this effect becomes weaker.

5.3. Probability distribution estimated by method of least squares in X-direction

For some probability distributions, a technical advantage of the MLS in X-direction is
the possibility to use linear regression without nonlinear scaling of the P- or X-axis or
both. As shown in Table 6, this may be an appropriate choice even when the probability
and the random variable are not linearly related. The results show that, for the normal,
Gumbel and Weibull distributions, the Weibull plotting is a good choice, but not for
the exponential distribution.

5.4. Comparison of maximum likelihood method and method of least squares

In Tables 7, 8 and 9 we compare, using the bin criterion, the maximum likelihood esti-
mator (MLE) and the method of least squares (MLS) with Weibull plotting. The least
squares are calculated in the P-direction using scaled P-axis (“probability paper
approach”) and without scaling, as well as in the X-direction without scaling.
The results in Tables 7 and 8 show that the classic probability paper approach, where

the P-axis is scaled, is not competitive at all. Interestingly, the accuracy of the MLS with

Figure 13. Probability of a random x from Gumbel distribution to fall in bins 1,… , 31.

Table 6. Results of MC simulations for some distributions.
106dmse

Plotting
Distribution

Normal Exponential Gumbel Weibull

N 15 30 15 30 15 30 15 30

Weibull 9.92 1.68 21.2 2.85 18.8 3.65 7.22 1.19
Blom 28.3 2.53 3.04 0.99 34.8 3.59 31.3 3.03
Cunnane 34.4 3.13 2.60 1.11 42.3 4.43 37.2 3.65
Gringorten 45.9 4.30 2.20 1.42 57.1 6.13 48.3 4.82
Hazen 68.2 6.61 2.49 2.18 86.5 9.66 69.0 7.06

Curves fitted using the MLS in X-direction. 105 samples of size 15 or 30.
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Weibull plotting, both in X-direction and in P-direction without scaling of P-axis, is
competitive with the accuracy of the MLE, and in most cases considerably better. This
property remains the same for sample size 100 as shown in Table 9. Thus, for small
sample sizes, i.e., when the errors are significant, MLS outperforms MLE.

5.5. Bias of distribution parameter estimates

During the MC simulations described in “Comparison of maximum likelihood method
and method of least squares” section, the mean of the parameter values obtained in sub-
sequent simulations was also recorded. The simulated means are shown in Table 10,
where each of the values is the mean of 105 parameter values obtained using MLE and
MLS with Weibull plotting in the P-direction without scaling. Since the MLE is inaccur-
ate for sample sizes of the order of 15, the corresponding values were not calculated.
Table 10 shows that when increasing the sample size, the mean of the estimated

parameters seems to approach the corresponding value of the parent distribution given
in Table 3. However, this does not happen with a constant sample size and with
increasing number of samples. This means that the parameter values obtained using the
MLE or MLS are slightly biased, as one would expect based on the discussions in
“Performance of quantile estimators” section.

Table 7. Simulations with 105 samples of size 15.

MLE

MLS

106�dmse
X-direction

P-direction

Distribution P-axis not scaled P-axis scaled

Normal 87.6 10.4 5.38 48.9
Exponential 18.5 19.3 15.4 43.2
Gumbel 86.3 19.1 34.7 269
Weibull 85.0 7.27 9.49 131

Statistic dmse applied to MLE (maximum likelihood) and three versions of MLS with Weibull plotting.

Table 8. Same as Table 7, but with samples size of 30.

MLE

MLS

106�dmse
X-direction

P-direction

Distribution P-axis not scaled P-axis scaled

Normal 7.40 1.65 1.54 16.1
Exponential 1.58 2.79 1.48 9.26
Gumbel 7.82 3.53 3.65 44.9
Weibull 7.58 1.25 1.51 17.4

Table 9. Same as Table 7, but with sample size of 100 and without the last column.
106�dmse

MLE

MLS, P-axis not scaled

Distribution X-direction P-direction

Normal 0.0809 0.0463 0.0258
Exponential 0.0164 0.0698 0.0179
Gumbel 0.0887 0.1182 0.0760
Weibull 0.1025 0.0384 0.0339
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5.6. Cumulative bin distribution function as a goodness measure for a single quantile

Statistic dmse reflects the overall performance of a quantile estimator. For a given quan-
tile, comparison of the discrete “cumulative bin distribution function” /

/ F�1 k
N þ 1

� 	
 �
¼
Xk
j¼1

rj ¼
Xk
j¼1

1
M

XM
i¼1

pj, i

 !
k ¼ 1 1ð ÞN (16)

with the parent distribution F gives a better illustration of the goodness of the consid-
ered estimator for that specific quantile. This is illustrated in Figures 14 and 15 for the
Gumbel distribution. For small values of the observed variable X, MLE and MLS in the
P-direction with Weibull plotting appear almost equally good, but the MLS is clearly
better for high values of X, which is the important range in which Gumbel distribution
is applied to the extreme value analysis.

Table 10. Mean of distribution parameters in simulations. N is the sample size.

Distribution / N
MLE MLS

Normal lmean (0) rmean (1) lmean (0) rmean (1)

15 – – 0.00121 1.06654
30 �0.00090 0.97518 0.00036 1.03157
100 �0.00043 0.99298 0.00017 1.00983

Exponential kmean (1) – kmean (1) –

15 – 1.05317
30 1.03487 1.02559
100 1.00997 1.00749

Gumbel lmean (0) rmean (1) lmean (0) rmean (1)

15 – – 0.01636 1.01411
30 0.00967 0.97376 0.01317 1.00660
100 0.00411 0.99259 0.00741 1.00045

Weibull kmean (1) kmean (2) kmean (1) kmean (2)

15 - - 1.01236 1.99560
30 1.01579 2.11554 1.00572 1.99440
100 1.00893 2.03729 1.00205 1.99894

Figure 14. Cumulative bin distribution function compared with CDF of the parent Gumbel
distribution.
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6. Conclusions

The background of the Makkonen-Pajari-Tikanm€aki bin statistic dmse for assessing
quantile estimators was clarified in this paper. The proposed bin statistic dmse is based
on the definition of probability in the same sense as Pearson’s v2 statistic. It provides a
measure for assessing the goodness of quantile estimators, which is in accordance with
the definition of the cumulative distribution function. The bin statistic can be used both
for a single quantile and for the distribution function, i.e., for the whole range of quan-
tiles of a continuous random variable.
We showed that the criteria traditionally used to assess the quantile estimators, such as

minimization of the bias or mean squared error of the quantiles themselves or those of the
distribution parameters, should be abandoned. They violate the probability theory, because
they are determined by the distance between the estimate and the correct value measured
by a concept other than probability. Such a distance is a concept alien to the definition of a
quantile, and should not be used when evaluating the performance of quantile estimators.
The focus of the present paper was to introduce and justify the bin criterion for

assessing the goodness of fit and demonstrate how it is used. In this connection, the
weaknesses of the classical estimation methods became evident. As an interesting
byproduct, our Monte-Carlo simulations by applying the bin criterion showed that,
when the P-axis is not scaled, the Method of Least Squares with Weibull plotting is a
better estimator than the Maximum Likelihood Method.
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