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ABSTRACT
The hypothesis tests of performance measures for an M/Ek/1 queue-
ing system are considered. With pivotal models deduced from sufficient
statistics for the unknown parameters, a generalized p-value approach
to derive tests about parametric functions are proposed. The focus is on
derivation of the p-values of hypothesis testing for five popular perfor-
mance measures of the system in the steady state. Given a sample T , let
p(T ) be the p values we developed. We derive a closed form expression
to show that, for small samples, the probability P(p(T ) � γ ) is approxi-
mately equal to γ , for 0 � γ � 1.

1. Introduction

In a queueing system, it is important to carry out a statistical analysis. When operating a
queueing system, monitoring and control of the performance measures of the system are
essential to ensure that the system performance is up to design standards. “A model is not
of much use unless it is related with the system through empirical data analysis, parame-
ter estimation and tests of relevant hypothesis” (Bhat and Rao, 1997). In this article, per-
formance measures of the classical single server markovian model (M/Ek/1) are chosen to
analyse. The pioneering paper in attempting at statistical inference in M/M/1 queues was
made by Clarke (1957). He developed maximum likelihood estimates of arrival rate and ser-
vice rate. Another notable contribution has been made by Lilliefors (1966), who presented
the confidence intervals of parameters such as traffic intensity for the M/M/1, M/M/2, and
M/Ek/1 queues. Problems of large sample estimation and tests for the parameters in a single
server queue are discussed by Basawa and Prabhu (1988). For a review of statistical analysis in
queueing systems, see Bhat and Rao (1997). There has been recent interest in Bayesian anal-
ysis of queueing models. Armero and Conesa (1998) made inference about the parameters
in stationaryMk/M/1 andM/Ek/1 queues from a Bayesian point of view. Insua et al. (1998)
analyzedM/Er/1 andM/Hk/1 queues using Bayesian approach. Some references are Armero
(1994), Armero and Conesa (2000), Ausín (2004). Recently, Bayesian inference and predic-
tion of some popular performance measures inM/M/1 queue was carried out by Choudhury
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and Borthakur (2007). Xu and Zhang (2010) derived the uniformly most accurate confidence
bounds and the uniformly most powerful unbiased tests for the mean sojourn time of an
M/M/1 queueing system.

Throughout this article, we consider an experiment inwhichm interarrival times andn ser-
vice times are measured. We use {Xi, i = 1, . . . ,m} and {Yi, i = 1, . . . , n} to denote the posi-
tive random variables of interarrival and service time for the i th customer of anM/Ek/1 First
Come First Service queueing system. Hence, X1,X2, . . . ,Xm are independent and identically
distributed (i.i.d.) with exponential distribution F(t ) = 1 − e−λx, t > 0, and Y1,Y2, . . . ,Yn

are i.i.d with Erlang probability density

g(t ) = (μk)k

(k − 1)!
tk−1e−kμt , (0 < t < ∞)

where λ and μ are unknown positive parameters, k is considered as a fixed constant. Two
samples (X1, . . . ,Xm) and (Y1, . . . ,Yn) are assumed to be mutually independent.

It is very frequent to assume steady-state in queueing theory. Steady-state implies traffic
intensity ρ = λ

μ
< 1. A queue in the steady-state is called the stationary queue. The objective

of this paper is to test hypotheses for five performance measures of the stationary M/Ek/1
queue: traffic intensity (ρ), mean system size (L), the mean queue size (Lq), the mean waiting
time in system (W ), and the mean waiting time in queue (Wq).

Inference for the performance measures in a stationary M/Ek/1 queue is complex. The
restriction ρ < 1 in the parameter spacemust be incorporated. Note that the five performance
measures are functions of parameters in two populations. With pivotal models deduced from
sufficient statistics of the exponential population and the Erlang population, the generalized p-
value approach for hypothesis testing about parametric functions are proposed. The concept
of the generalized p-value was first introduced by Tsui and Weerahandi (1989) to deal with
some nontrivial statistical testing problems. These problems involve nuisance parameters in
such a fashion that the derivation of a standard pivot is not possible. For the five performance
measures the generalized p-values of hypothesis testing are derived. The frequentist properties
of these p-values with fixed sample sizes are investigated. For the former three performance
measures the tests are just the classical F tests (see Cox, 1965 or Lilliefors, 1966). For the later
two performance measures, given a sample T , we provide a relatively tight upper bound for
P(p(T ) � γ ) of the p-values we derived, for 0 � γ � 1. The tests given by us are satisfactory
which will be seen from Theorems 3.2 and 3.3 and simulation results.

The remainder of this article proceeds as follows. In Sec. 2, the generalized p-values of
hypothesis testing problems are derived. The frequentist properties of p-values are studied in
Sec. 3. Simulation examples are presented in Sec. 4.

2. The generalized p-values

In this section, we consider tests of certain hypotheses concerning the performance mea-
sures ρ, L, Lq,W,Wq. Expressions for the steady-state performance measures of theM/Ek/1
queue can be found inGross andHarris (1997). Let θi, i = 1, · · · , 5 represent ρ, L, Lq,W,Wq,
respectively. We will discuss tests for the parameters θi = gi(λ, μ), i = 1, · · · , 5, respectively,
where

θ1 = g1(λ, μ) = λ

μ
� ρ, θ2 = g2(λ, μ) = ρ + (k + 1)ρ2

2k(1 − ρ)
, θ3 = g3(λ, μ) = (k + 1)ρ2

2k(1 − ρ)
,

θ4 = g4(λ, μ) = 1
μ

+ (k + 1)λ
2kμ(μ− λ)

, θ5 = g5(λ, μ) = (k + 1)λ
2kμ(μ− λ)

.
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The five measures in a stationaryM/Ek/1 queue are all functions of λ and μ. In general, they
can be expressed as θ = g(λ, μ). Consider hypotheses of the forms:

H : θ � θ0 vs. K : θ > θ0; (2.1)
H : θ � θ0 vs. K : θ < θ0; (2.2)
H : θ = θ0 vs. K : θ �= θ0. (2.3)

As mentioned in Sec. 1, {Xi, i = 1, 2, . . . ,m} and {Yj, j = 1, 2 . . . , n} are independent
exponentially distributed. Hence, the statistics T1 = 2mX = 2

∑m
i=1 Xi and T2 = 2knY =

2k
∑n

j=1Yj are sufficient for the parameters (λ, μ). They can be expressed in the following
pivotal model

λT1 = E1, μT2 = E2, (2.4)

where

E1 ∼ χ 2(2m), E2 ∼ χ 2(2kn), (2.5)

and E1 and E2 are mutually independent. The pivotal model (2.4) can be inverted into

λ = E1/T1, μ = E2/T2. (2.6)

In order to simplify our notation, denote

T = (T1,T2), E = (E1,E2), ξ = (λ, μ),

and Q is the distribution of E given by (2.5).
In a stationary M/Ek/1 queue, λ < μ is the condition for stationarity. However, due to

the independence of E1 and E2, λ � μ will occur in the expression (2.6). This occurrence is
supposed to be unreasonable. For convenience, we assume that λ � μ. The model (2.4) can
be expressed as

T1 = E1/λ, T2 = E2/μ.

Given (t1, t2), the observations of (T1,T2), and (e1, e2), the observations of (E1,E2), which
distribution in the parameter space 0 < λ � μ is most likely to generate t1, t2? It is natural
to take the usual least squares method to fulfil it. Consider the following minimum value
problem (Xu and Li, 2006):

min
0<λ�μ

{
(T1 − E1/λ)

2 + (T2 − E2/μ)
2} .

The minimum value can be attained at

λ =
{
E1/T1, E1/T1 � E2/T2,
(E2

1 + E2
2 )/(T1E1 + T2E2), E1/T1 > E2/T2,

μ =
{
E2/T2, E1/T1 � E2/T2,
(E2

1 + E2
2 )/(T1E1 + T2E2), E1/T1 > E2/T2.

Substituting this in θ = g(λ, μ) gives

θ = θ̂g,T (E) �

⎧⎪⎨⎪⎩
g
(E1
T1
,
E2
T2

)
,

E1
T1

� E2
T2
,

g
(

E2
1 + E2

2
T1E1 + T2E2

,
E2
1 + E2

2
T1E1 + T2E2

)
,
E1
T1
>

E2
T2
.

(2.7)
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Consider the expression of θ̂g,t (E) given by (2.7), here t = (t1, t2) is the observation of the
statistic T . Substituting E = (λT1, μT2), we obtain

Rg(T; t, λ, μ) = θ̂g,t (λT1, μT2). (2.17)

Then:
(1) the observation of Rg(T; t, λ, μ) satisfies

Rg(t; t, λ, μ) = g(λ, μ) = θ;
(2) given t, λ, μ, the conditional distribution of Rg(T; t, λ, μ) is free of parameters, that

is

P
(
Rg(T; t, λ, μ) � z|t, λ, μ) = Q

(
θ̂g,t (E) � z

)
.

Therefore, the random variable given by (2.17) is a generalized pivotal quantity for θ =
g(λ, μ) (refer to Weerahandi, 1993), and also a Fiducial generalized pivotal quantity (refer to
Hannig, 2006). Let

Sg(T; t, λ, μ) = g(λ, μ)− Rg(T; t, λ, μ),
hence Sg(t; t, λ, μ) = 0. Moreover, Sg(T; t, λ, μ) is generalized test variable (see Tsui and
Weerahandi, 1989). Therefore, we can get the generalized p value

pg(t ) = Pg(λ,μ)=θ0
(
Sg(T; t, λ, μ) � 0

) = Q
(
θ̂g,t (E) � θ0

)
.

In this way, the p values pl,i(t ), i = 1, 2, · · · , 5 can be obtained by substituting g = gi, i =
1, 2, · · · , 5 into the above expression.

Based on (2.7), the generalized p values for the tests of the hypotheses (2.1), (2.2), and
(2.3) concerning the parameters θi, i = 1, 2, · · · , 5 can be derived. The generalized p values
for testing (2.1) concerning θi, i = 1, 2, · · · , 5 can be defined by

pl,i(T ) = Q(θ̂gi,T (E) � θ0), i = 1, 2, · · · , 5. (2.8)

For testing (2.2), the generalized p values can be defined by

pr,i(T ) = Q(θ̂gi,T (E) � θ0), i = 1, 2, · · · , 5. (2.9)

In the case of testing (2.3), the p values can be defined by

pc,i(T ) = 2min
{
pl,i(T ), pr,i(T )

}
, i = 1, 2, · · · , 5. (2.10)

It follows from the expressions (2.9), (2.10), and (2.11),

pr,i(T ) = 1 − pl,i(T ), pc,i(T ) = 2min{pl,i(T ), 1 − pl,i(T )}, i = 1, 2, · · · , 5.
Hence, the performances of pl,i(T ), i = 1, 2, · · · , 5 are mainly investigated.

Notice that the equilibrium of the system requires ρ < 1. The constant θ0 is constrained
in the problem of testing (2.1) for various θi, i = 1, · · · , 5. For θ1, 0 < θ0 < 1, and for θi,
i = 2, 3, 4, 5, θ0 > 0. It follows from the expressions (2.5) and (2.8),

pl,1(T ) = Q
(
E1T2
E2T1

� θ0

)
= F2m,2kn

(
θ0
knT1
mT2

)
, (2.11)
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where Fa,b(·) denotes F-distribution function with degrees of freedom a and b. Let θL =
k(1+θ0 )+k

√
1+θ20+2θ0/k

k−1 and θLq = 2θ0√
θ20+2θ0(k+1)/k+θ0

, we have

pl,2(T ) = Q
(
E1T2
E2T1

� θL

)
= F2m,2kn

(
θL
knT1
mT2

)
. (2.12)

pl,3(T ) = Q
(
E1T2
E2T1

� θLq

)
= F2m,2kn

(
θLq

knT1
mT2

)
. (2.13)

pl,4(T ) = Q
(
k + 1
2k

· E1/T1
E2/T2(E2/T2 − E1/T1)

+ 1
E2/T2

� θ0

)
= EK2m

(
2k(E2θ0 + T2)T1E2

(3k + 1)T 2
2 + 2kE2θ0T2

)
. (2.14)

where Ka(·) is χ 2-distribution function with degrees of freedom a, the expectation symbol E
is taken with respect to E2:

pl,5(T ) = Q
(
E2T1
E1T2

(
E2

T2
− E1

T1

)
� k + 1

2kθ0

)
= EK2m

(
2kθ0E2

2T1
(k + 1)T 2

2 + 2kθ0E2T2

)
. (2.15)

3. Frequentist properties

We start with investigate the frequentist properties of the first three generalized p-values.

Theorem 3.1. For testing hypotheses (2.1) concerning θi, i = 1, 2, 3, the p values defined by
(2.12), (2.13), and (2.14) have the following properties for i = 1, 2, 3, respectively:

(1) the distribution of pl,i(T ) only depends on the parameter θi;
(2) the p value pl,i(T ) is stochastically decreasing in θi, namely when θ ′

i < θ ′′
i ,

Pθ ′
i
(pl,i(T ) � γ ) � Pθ ′′

i
(pl,i(T ) � γ ), γ ∈ (0, 1); and

(3) when θi = θ0, pl,i(T ) distributes according to the uniform distribution over the interval
(0,1).

Proof. For each i = 1, 2, 3, the p value pl,i(T ) depends onT only throughT1/T2 and is strictly
increasing in T1/T2. Further, the distribution of (ρknT1)/(mT2) is F-distribution with degrees
of freedom 2m and 2kn, and θi, i = 1, 2, 3 are all strictly increasing function of ρ. Hence,
conclusions (1) and (2) hold. When θi = θ0, pl,i(T ) = F2m,2kn((ρknT1)/(mT2)), i = 1, 2, 3,
thus conclusion (3) holds. The proof is completed. �

For 0 < γ < 1 , let

Di,γ = {t : pl,i(t ) � γ }, i = 1, 2, 3.

By Theorem 3.1, the rejection region Di,γ defines an exact unbiased level-γ test, i = 1, 2, 3.
For p values pr,i(T ), i = 1, 2, 3, analogous results in Theorem 3.1 hold. For p values pc,i(T ),
i = 1, 2, 3, the conclusion (3) in Theorem 3.1 hold. Hence exact tests can be obtained.

For the p value pl,4(T ), the following conclusions hold.

Theorem 3.2. Consider the problem of testing hypotheses (2.1) concerning mean sojourn time
θ4. The p value is given by (2.15). For arbitrary γ (0 < γ < 1), if the rejection region is taken
as {pl,4(T ) � γ }, we have following results.
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(1) The true level of this test is attained on the common boundary of H and K, namely

sup
g4(λ,μ)�θ0

Pλ,μ(pl,4(T ) � γ ) = sup
g4(λ,μ)=θ0

Pλ,μ(pl,4(T ) � γ ).

The minimum power of the test is also reached on the common boundary, namely

inf
g4(λ,μ)�θ0

Pλ,μ(pl,4(T ) � γ ) = inf
g4(λ,μ)=θ0

Pλ,μ(pl,4(T ) � γ ).

(2) On the common boundary, let ϕγ (λ) = Pλ,μ(λ)(pl,4(T ) � γ ), where μ(λ) satisfies
g4(λ, μ(λ)) = θ0. Then,

lim
λ→0

ϕγ (λ) = lim
λ→∞

ϕγ (λ) = γ .

(3) On the common boundary, the test satisfies

γ � ϕγ (λ) � γ − γ lnγ , λ > 0.

Proof. Let E∗ = (E∗
1 ,E∗

2 ) be an independent copy of E = (E1,E2). For no confusion, denote
the distribution of E∗ by Q∗. According to (2.4) and (2.15),

pl,4(T )
d= pl,4(

E∗
1

λ
,
E∗
2

μ
) = Q

(
k + 1
2k

· λE1/E∗
1

μE2/E∗
2 (μE2/E∗

2 − λE1/E∗
1 )

+ 1
μE2/E∗

2
� θ0

)
, (3.1)

where d= denotes identically distributed.
(1) For any (λ, μ) satisfying g4(λ, μ) = 1

μ
+ (k+1)λ

2kμ(μ−λ) < θ0, choose μ′ < μ and
g4(λ, μ′) = 1

μ′ + (k+1)λ
2kμ′(μ′−λ) = θ0. By (3.1),

pl,4
(
E∗
1

λ
,
E∗
2

μ′

)
� pl,4

(
E∗
1

λ
,
E∗
2

μ

)
.

Hence,

Pλ,μ′
(
(pl,4(T ) � γ )

) = Q∗
(
pl,4

(
E∗
1

λ
,
E∗
2

μ′

)
� γ

)
� Q∗

(
pl,4

(
E∗
1

λ
,
E∗
2

μ

)
� γ

)
= Pλ,μ(pl,4(T ) � γ ).

For any (λ, μ) satisfying g4(λ, μ) = 1
μ

+ (k+1)λ
2kμ(μ−λ) > θ0, choose μ′′ > μ satisfies

g4(λ, μ′′) = 1
μ′′ + (k+1)λ

2kμ′′(μ′′−λ) = θ0. Analogously, we have

Pλ,μ′′
(
(pl,4(T ) � γ )

)
� Pλ,μ(pl,4(T ) � γ ).

It follows that conclusion (1) holds.
(2) According to (3.1),

ϕγ (λ)=Q∗
(
Q
(
k+1
2k

· λE1/E∗
1

μ(λ)E2/E∗
2 (μ(λ)E2/E∗

2 − λE1/E∗
1 )

+ 1
μ(λ)E2/E∗

2
�θ0

)
�γ

)
, (3.2)

whereμ(λ)2 = μ(λ)λ+ μ(λ)/θ0 + (1−k)λ
2kθ0

. Since E and E∗ are identically distributed.
Because

lim
λ→0

μ(λ) = 1/θ0, lim
λ→∞

λ

μ(λ)
= 1, lim

λ→∞
μ(λ) = ∞

(3.2) implies

lim
λ→0

ϕγ (λ) = Q∗
(
Q
(
E2

E∗
2
� 1

)
� γ

)
= Q∗(1 − K2kn(E∗

2 ) � γ ) = γ ,
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lim
λ→∞

ϕγ (λ) = Q∗
(
Q
(
E2

E∗
2
� E1

E∗
1

)
� γ

)
= Q∗

(
1 − F2kn,2m

(
E∗
2

E∗
1

)
� γ

)
= γ .

(3) Notice that

Q
(
k + 1
2k

· λE1/E∗
1

μ(λ)E2/E∗
2 (μ(λ)E2/E∗

2 − λE1/E∗
1 )

+ 1
μ(λ)E2/E∗

2
� θ0

)
= Q

(
1 − k
2kθ0

· λE1

E∗
1

+ μ(λ)

θ0
· E2

E∗
2

+ μ(λ)λE1

E∗
1

E2

E∗
2
�
(
μ(λ)E2

E∗
2

)2
)

(3.3)

For 0 < a < 1, notice that ax + (1 − a) � xa.x > 0. Taking a = μ(λ)λ/(μ(λ)λ+
(1 − k)λ/2kθ0), x = E2

E∗
2
, in the above inequation, we get

(3.3) � Q

(
(μ(λ)λ+ (1 − k)λ/2kθ0) · E1

E∗
1

(
E2

E∗
2

)a

+ μ(λ)

θ0
· E2

E∗
2
�
(
μ(λ)E2

E∗
2

)2
)

(3.4)
Apply the inequation again, let a = (μ(λ)λ+ (1 − k)λ/2kθ0)/μ(λ)2, x =
E1
E∗
1
( E2E∗

2
)

(k−1)λ/2kθ0
μ(λ)λ+(1−k)λ/2kθ0 . We get

(3.4) � Q

⎛⎜⎝E2

E∗
2

⎛⎝E1

E∗
1

(
E2

E∗
2

) (k−1)λ/2kθ0
μ(λ)λ+(1−k)λ/2kθ0

⎞⎠
μ(λ)λ+(1−k)λ/2kθ0

μ(λ)2

�
(
E2

E∗
2

)2
⎞⎟⎠ = γ (3.5)

Notice that

Q

(
1 − k
2kθ0

· λE1

E∗
1

+ μ(λ)

θ0
· E2

E∗
2

+ μ(λ)λE1

E∗
1

E2

E∗
2
�
(
μ(λ)E2

E∗
2

)2
)

� Q
(
E2

E∗
2
� E1

E∗
1
,
E2

E∗
2
� 1,

E2
2

E∗
2
2 � E1

E∗
1

)
. (3.6)

Let V = E1 + E2, W = E1/(E1 + E2). We know that V ∼ χ 2(2m + 2kn), W ∼
β(2m, 2kn), andV is independent ofW . IfV ∗ andW ∗ are defined asV andW , then

Q
(
E2

E∗
2
� E1

E∗
1
,
E2

E∗
2
� 1,

E2
2

E∗
2
2 � E1

E∗
1

)
= Q

(
V (1 −W ) � V ∗(1 −W ∗),

1 −W
W

� 1 −W ∗

W ∗ ,
V 2(1 −W )2

W
� V ∗2(1 −W ∗)2

W ∗

)
� Q(V � V ∗,W �W ∗) = (1 − K2m+2n(V ∗))B2m,2n(W ∗), (3.7)

where Ba,b(·) denotes the cumulate distribution function of β(a, b). Because both 1 −
K2m+2n(V ∗) and B2m,2n(W ∗) are uniformly distributed on (0,1), from (3.2) and (3.3),

ϕγ (λ) � Q∗ ((1 − K2m+2n(V ∗))B2m,2n(W ∗) � γ
) = γ − γ lnγ .

The conclusion (3) is true. Thus the proof of the theorem is completed. �

For the p value pl,5(T ), analogous results to pl,4(T ) are established as follows.
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Theorem 3.3. Consider the problem for testing (2.1) of the mean waiting time θ5. The p value is
given by (2.16). For arbitrary γ (0 < γ < 1), if the rejection region is taken as {pl,5(T ) � γ },
then:

(1) the true level of the test is attained on the common boundary of H and K, namely

sup
g5(λ,μ)�θ0

Pλ,μ(pl,5(T ) � γ ) = sup
g5(λ,μ)=θ0

Pλ,μ(pl,5(T ) � γ ),

and the minimum power of the test is also obtained on the common boundary, namely

inf
g5(λ,μ)�θ0

Pλ,μ(pl,5(T ) � γ ) = inf
g5(λ,μ)=θ0

Pλ,μ(pl,5(T ) � γ );

(2) on the common boundary,

lim
λ→0

ψγ (λ) = lim
μ→∞

ψγ (λ) = γ ;

where ψγ (λ) = Pλ,μ(λ)(pl,5(T ) � γ ), and μ(λ) satisfies g5(λ, μ(λ)) = θ0;
(3) on the common boundary, the test satisfies

γ � ψγ (λ) � γ − γ lnγ , λ > 0.

Proof. Take notations E∗ = (E∗
1 ,E∗

2 ) and Q∗ are same as those in the proof of Theorem 3.2.
By (2.4) and (2.16),

pl,5(T )
d= pl,5

(
E∗
1

λ
,
E∗
2

μ

)
= Q

(
μE2E∗

1

E1E∗
2

(
μE2

λE∗
2

− E1

E∗
1

)
� 2k + 1

2kθ0

)
. (3.8)

(1) The proof is similar as that of Theorem 3.2(1), and therefore is omitted.
(2) Let θ ′

0 = 2k
k+1θ0 From (3.4),

ψγ (λ) = Q∗
(
Q
(
μ(λ)2

E2
2E∗

1

E1(E∗
2 )

2 � μ(λ)λ
E2

E∗
2

+ λ

θ ′
0

)
� γ

)
, (3.9)

where μ(λ) = λ/2 +√
λ2/4 + λ/θ ′

0. Because

lim
λ→0

λ

μ2(λ)
= θ ′

0, lim
λ→∞

λ

μ(λ)
= 1,

we have

lim
λ→0

ψγ (λ) = Q∗
(
Q
(

E2
2E∗

1

E1(E∗
2 )

2 � 1
)
� γ

)
= Q∗

(
Q
(
E2
2

E1
� (E∗

2 )
2

E∗
1

)
� γ

)
= γ

and

lim
λ→∞

ψγ (λ) = Q∗
(
Q
(

E2
2E∗

1

E1(E∗
2 )

2 � E2

E∗
2

)
� γ

)
= Q∗

(
Q
(
E2

E1
� E∗

2

E∗
1

)
� γ

)
= γ .

(3) For 0 < a < 1, notice that

{(x, y) : y � ax + (1 − a), x > 0} ⊂ {(x, y) : y � xa.x > 0}.

Taking a = μ(λ)λ/μ(λ)2 = λ/μ(λ), x = E22E
∗
1

E1(E∗
2 )

2 , y = E2/E∗
2 in the above relationship

of two sets. We know 0 < a < 1 because μ(λ)2 = μ(λ)λ+ λ/θ ′
0. We get

ψγ (λ) � Q∗
(
Q
(

E2
2E∗

1

E1(E∗
2 )

2 �
(
E2

E∗
2

)a)
� γ

)
= Q∗

(
Q
(
E2−a
2

E1
� (E∗

2 )
2−a

E∗
1

)
� γ

)
= γ .
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On the other hand, as the proof of Theorem 3.2(3),

ψγ (λ) � Q∗
(
Q
(

E2
2E∗

1

E1(E∗
2 )

2 � E2

E∗
2
,

E2
2E∗

1

E1(E∗
2 )

2 � 1
)
� γ

)
� Q∗

(
Q
(
E2

E∗
2
� E1

E∗
1
,
E2

E∗
2
� 1

)
� γ

)
� γ − γ lnγ .

The conclusion (3) is established. So we complete the proof. �

Now, we explain the results given in Theorems 3.2 and 3.3. Although the fixed level tests
specified by the p values pl,4(T ) and pl,5(T ) are not unbiased, Theorem 3.2(1) and Theorem
3.3(1) present the properties which an unbiased test must admit. These properties also mean
that the levels of the two given tests depend on the probabilities of the rejection regions under
probability distributions in the common boundaries of the null hypotheses and alternative
hypotheses. When nuisance parameter exists, the common boundary of the null hypotheses
and alternative hypotheses is often a set of probability distributions. We call the set boundary
set temporarily. It is shown in Theorem 3.2(2) and Theorem 3.3(2) that on the boundaries of
the boundary sets, the levels of the two given tests tend to nominal levels. Therefore the levels
of the tests depend on the probabilities of the rejection regions under probability distributions
in the middles of the boundary sets. Theorem 3.2(3) and Theorem 3.3(3) establish the same
upper bound and lower bound of these probabilities. The lower bound is the nominal level and
the upper bound is γ − γ lnγ . From simulations in Sec. 4, we can see that this upper bound is
not sharp. However it is important to give an upper bound of the difference between true and
nominal levels of a test. In existing papers about generalized p values, the investigations of
frequentist properties are mostly resort to simulations. Only an exception is the investigation
of generalized pvalues for Behrens-Fisher problem given byTang andTsui (2007). Noting that
γ − γ lnγ is the cumulate distribution function of the product of two independent random
variables with same uniformly distribution on (0,1), perhaps the upper bound γ − γ lnγ is
the bound for generalized p values in some other hypothesis testing problems.

Simply Theorems 3.2 and 3.3 can be summarized in

sup
gi(λ,μ)�θ0

Pλ,μ(pl,i(T ) � γ ) = γ − γ lnγ , inf
gi(λ,μ)�θ0

Pλ,μ(pl,i(T ) � γ ) = γ , i = 4, 5.

The former equalities give an same upper bound of the true levels of the two left-sided tests,
and the latter equalities indicate that the powers of the tests are not lower than the nominal
level. From them the frequentist properties of other p values can be obtained. For the right-
sided tests, by the relationship between pr,i(T ) and pl,i(T ), i = 3, 4, we have

sup
gi(λ,μ)�θ0

Pλ,μ(pr,i(T ) � γ ) = sup
gi(λ,μ)�θ0

Pλ,μ(pl,i(T ) � 1 − γ )

= 1 − inf
gi(λ,μ)�θ0

Pλ,μ(pl,i(T ) < 1 − γ )

= γ .

Hence, for right-sided tests, true levels equal the nominal ones. For two-sided test,

Pλ,μ(pc,i(T ) � γ ) = Pλ,μ(pl,i(T ) � γ /2, pl,i(T ) � 1 − γ /2)
= Pλ,μ(pl,i(T ) � γ /2)+ 1 − Pλ,μ(pl,i(T ) < 1 − γ /2),
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i = 4, 5. If gi(λ, μ) = θ0, then for i = 4, 5,

γ + (1 − γ /2)ln(1 − γ /2) � Pλ,μ(pc,i(T ) � γ ) � γ − (γ /2)ln(γ /2).

The bounds of the levels of two-sided tests are obtained.

4. Simulation

Because the pvalues for testing hypotheses about former three parameters are just the classical
F tests, the simulations are performed only for later two parameters θ4 and θ5. For p values
given by (2.15) and (2.16), we provide another convenient computing approach by simulation.
The detailed procedure is given in the following algorithm.

Algorithm 1.
(1) For given data (x1, . . . , xm; y1, . . . , yn), choose a large simulation sample size, sayM =

10, 000.
(2) For j = 1, . . . ,M, produce an e1 j from the distribution χ 2

2m and an e2 j from the dis-
tribution χ 2

2kn.
(3) Compute θ̂i j = gi (̂λ, μ̂) = gi(

e1 j
t1
,
e2 j
t2
), i = 4 or 5,t1 = 2mx = 2

∑m
i=1 xi,t2 = 2ky =

2
∑n

i=1 yi.
(4) End j loop.
(5) The simulated p values are computed by the frequency of {θ̂i j � θ0, j = 1, . . . ,M} for

testingH : θi � θ0 and pr,i = (1 − pl,i) for testingH : θi � θ0, i = 4, 5. For testingH :
θi = θ0 the simulated p values are pc,i = 2min{pl,i, pr,i}, i = 4, 5.

We evaluate the performances of the proposed tests by their empirical Type I error rates
(TIRs). The Monte Carlo method is used to obtain the empirical TIRs. By Theorems 3.2 and
3.3, the fixed level tests determined by p values for testing θ4 and θ5 were studied when θ4 and
θ5 are in the boundary sets. The TIRs of the tests for different values of (λ, μ) are compared
with different sample size (m, n).

The Monte Carlo method applied to obtain TIRs is as follows. Generating Monte Carlo
sample with sizeN and computing statistic T , we have t1, t2, · · · , tN . For a given p value p(t ),
define Ij as the indicator of rejection event {p(t j) � γ } for j = 1, 2, . . . ,N, where γ is a pre-
assigned significant level. The p value p(t j) is computed by Algorithm 1, where the simulation
sample size of (e1, e2) is M. Then γ̂ = ∑N

j=1 Ij/N is a simulated value of the predetermined
size γ = 0.01, 0.05, 0.1. We calculate γ̂ for varying λ by repeating this process.

The simulation example is conducted as follows. We consider testing hypotheses (2.1),
(2.2), and (2.3) concerning θ4 and θ5, where θ0 = 2 for testing θ4 and θ0 = 1.5 for test-
ing θ5, respectively. The Monte Carlo sample size N = 1000 and the simulation sam-
ple size M = 10,000 in computing p value. To ensure (λ, μ) is in the boundary set, μ

should satisfy μ = λ+1/θ0+
√
(λ+1/θ0 )2−2λ(k−1)/(kθ0 )

2 for testing hypotheses about θ4, and μ =
λ+

√
λ2+2(k+1)·λ/(kθ0 )

2 about θ5, respectively. Table 1 contains the results for m = 5, n = 10 and
λ = 0.01, 0.25, 1, 100. The first three parts are about θ4 and the later three parts are about θ5,
respectively. The empirical TIRs γ̂l,i, γ̂r,i, and γ̂c,i are about testing hypotheses (2.1), (2.2), and
(2.3) concerning θi respectively, i = 4, 5. The last row shows the values of the upper bound
γ − γ ln γ for γ̂l,i and γ̂r,i, and γ − (γ /2) ln(γ /2) for γ̂c,i. From the simulation results in
Table 1, we can see that the proposed tests perform well.
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Table . Empirical TIRs for testingW andWq forM/E4/1.

I

λ = 0.01 λ = 0.25 λ = 1 λ = 100 γ − γ ln γ

γ̂l,4 γ = 0.01 . . . . .
γ = 0.05 . . . . .
γ = 0.1 . . . . .

II

λ = 0.01 λ = 0.25 λ = 1 λ = 100 γ − γ ln γ

γ̂r,4 γ = 0.01 . . . . .
γ = 0.05 . . . . .
γ = 0.1 . . . . .

III

λ = 0.01 λ = 0.25 λ = 1 λ = 100 γ − (γ /2) ln(γ /2)

γ̂c,4 γ = 0.01 . . . . .
γ = 0.05 . . . . .
γ = 0.1 . . . . .

IV

λ = 0.01 λ = 0.25 λ = 1 λ = 100 γ − γ ln γ

γ̂l,5 γ = 0.01 . . . . .
γ = 0.05 . . . . .
γ = 0.1 . . . . .

V

λ = 0.01 λ = 0.25 λ = 1 λ = 100 γ − γ ln γ

γ̂r,5 γ = 0.01 . . . . .
γ = 0.05 . . . . .
γ = 0.1 . . . . .

VI

λ = 0.01 λ = 0.25 λ = 1 λ = 100 γ − (γ /2) ln(γ /2)

γ̂c,5 γ = 0.01 . . . . .
γ = 0.05 . . . . .
γ = 0.1 . . . . .
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