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Detecting long-range dependence with truncated ratios
of periodogram ordinates

Erhard Reschenhofer and Manveer Kaur Mangat

Department of Statistics and Operations Research, University of Vienna, Vienna, Austria

ABSTRACT
We propose new tests for testing hypotheses about the memory
parameter that are based on ratios of periodogram ordinates. They
are highly robust against conditional heteroskedasticity and outliers
and are therefore of great value for the detection of long-range
dependence in financial data. The robustness is obtained by trunca-
tion of a distribution with nonexistent moments. Tables of critical
values are provided. The performance of the new tests is assessed
by extensive simulations. Applying the tests to daily series of gold
price returns and stock index returns, we find no evidence of long-
range dependence characterized by a non-vanishing memory param-
eter. In the case of spread series (differences between interest rates
at different maturities, gold prices and silver prices, related stock
market indices), we find no evidence of a memory parameter well
below 0.5.
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1. Introduction

Let ðytÞt2Z be a fractionally integrated ARMA (ARFIMA) process satisfying

ð1� LÞdU Lð Þyt ¼ H Lð Þut (1)

(Granger and Joyeux 1980; Hosking 1981), where d < 0:5 (stationarity condition), d >

�0:5 (invertibility condition), L is the lag operator, all roots of the polynomials U Lð Þ ¼
1� /1L� :::� /pL

p and H Lð Þ ¼ 1� h1L� :::� hqLq lie outside the unit circle (causal-

ity condition and invertibility condition, respectively), the fractional difference operator

ð1� LÞd is defined by the expansion

ð1� LÞd ¼ 1� dLþ d d � 1ð ÞL2=2� dðd:1Þðd � 2ÞL3=3!þ ::: (2)

and ðutÞt2Z is a white noise process with mean 0 and variance r2: The negative signs in

H Lð Þ are due to the unusual parametrization for the MA part in the R package
‘fracdiff’, which will be employed in our simulation study to generate realizations of
ARFIMA processes. Since the autocorrelation function q hð Þ ¼ Corðytþh, ytÞ of an
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ARFIMA process with 0 < dj j < 0:5 decays more slowly as h ! 1 than that of an
ARMA process (d ¼ 0), the former process is said to exhibit long-range dependence (or
long memory) and the latter is said to exhibit short-range dependence (or short mem-
ory). In order to distinguish between ARFIMA processes with positive and negative val-
ues of the memory parameter (or fractional differencing parameter) d, the latter are
sometimes said to exhibit antipersistence (or intermediate memory or negative mem-
ory). For a review of several formal definitions of long memory see Palma (2007).
The spectral density of the stationary ARFIMA process (1) is given by

f xð Þ ¼ r2

2p
1� e�ixj j�2d

1�
Xq
j¼1

hje
�ixj

������
������
2

1�
Xp
j¼1

/je
�ixj

������
������
�2

, x 2 �p, pð � (3)

which reduces to the familiar ARMA spectral density

f0 xð Þ ¼ r2

2p
1�

Xq
j¼1

hje
�ixj

������
������
2

1�
Xp
j¼1

/je
�ixj

������
������
�2

, x 2 �p, pð � (4)

if d ¼ 0:
When an ARFIMA process is used as a model for a time series y1, :::, yn, the model

dimension (p, 1, qÞ must be specified and the model parameters d,/1, :::,/p, h1, :::, hq, r
2

must be estimated. If the model is correctly specified, maximum likelihood (ML) esti-
mation of the model parameters is the method of choice (see Dahlhaus 1989; Sowell
1992; for an estimation procedure that is based on the approximate maximum likeli-
hood see Fox and Taqqu 1986). However, the model dimension is unknown in practice.
If a misspecified model is chosen, the ML estimator will be inconsistent. Robinson
(1995) and Reschenhofer (2013) therefore argued that it is safer to take a nonparametric
approach (e.g., rescaled range analysis; see Hurst 1951; Mandelbrot 1971; Hauser and
Reschenhofer 1995) or a semiparametric approach (e.g., the log periodogram regression
of Geweke and Porter-Hudak 1983, the local Whittle likelihood of K€unsch 1987, the
averaged periodogram of Robinson 1994a, the smoothed periodogram of Reisen 1994
the wavelet analysis of Abry and Veitch 1998 and Moulines, Roueff, and Taqqu 2007).
Hurvich, Deo, and Brodsky (1998) established the asymptotic normalityffiffiffiffi

K
p

d̂ � dð Þ!d N 0,
p2

24

� �
(5)

of the log periodogram estimator

d̂ ¼
XK

j¼1
ðxj � xÞlogI xjð Þ=Sxx (6)

where

xj ¼ �2 log 1� e�ixj j ¼ � 2 log sinðxj=2Þ
� �

(7)

and xj ¼ 2pj=n is the j’th Fourier frequency, for the case where K ¼ oðn4=5Þ and

log2 nð Þ ¼ oðKÞ: When K is small, approximate normality may not hold because the
central limit theorem has not kicked in yet. Conducting a Monte Carlo power study
with small and medium values of K, Mangat and Reschenhofer (2019) found that
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conventional tests that are based on the asymptotic normality of the log periodogram
estimator either have extremely low power (when the standard variance formula
ðp2=6Þ=Sxx of the least squares estimator of the slope in a simple linear regression is
used instead of the asymptotic variance) or do not attain the advertised levels of signifi-
cance (when the asymptotic variance p2=24 is used). They therefore further developed
Bartlett’s (1954, 1955) frequency-domain test for white noise, which is based on the
application of the Kolmogrov-Smirnov test (for a standard uniform distribution) to the
cumulative sumXr

j¼1

I xjð Þ
.Xm

j¼1

I xjð Þ, r ¼ 1, :::,m� 1, m ¼ ½ðn� 1Þ=2� (8)

by using only Fourier frequencies xj in the neighborhood of frequency zero and divid-

ing each periodogram ordinate IðxjÞ by x�2d0
j in order to allow the testing of hypothe-

ses such as H0 : d ¼ d0, H0 : d � d0, and H0 : d � d0: The Kolmogrov-Smirnov test is
particularly suitable for the testing of these hypotheses because the cumulative sum (8)
is approximately linear under the null hypothesis and is either concave or convex under
the alternative hypothesis, which is exactly that framework in which the Kolmogrov-
Smirnov test is most powerful (whereas it may have extremely low power against more
complex alternatives; see Reschenhofer and Bomze 1991; Reschenhofer 1997). While the
test proposed by Mangat and Reschenhofer (2019) performs well in the case of small
samples (and has the further advantage that no new tables of critical values have to be
provided), its applicability to financial time series is impacted negatively by its sensitiv-
ity to non-normality and conditional heteroskedasticity (see Section 3). The goal of this
paper is therefore to develop tests that do not only function properly in the case of
small samples but are also robust against conditional heteroskedasticity and heavy tails.
Tests with these properties are introduced in Sec. 2 before their performance is exam-
ined with the help of a Monte Carlo power study in Sec. 3. Section 4 applies the robust
tests to financial time series. Section 5 concludes.

2. Robust tests and estimators

2.1. Simple expressions for the moments of a truncated F distribution

In the following, we obtain simple expressions for the mean and the variance of a trun-
cated Fð2)-distribution, which will be then used in Subsection 2.2 to construct robust
tests of hypotheses about the memory parameter d.
After restricting the support of an Fð�1, �2)-distribution with density g xð Þ and distri-

bution function G xð Þ to the interval C,Dð Þ, the density of the truncated distribution
F½C,D�ð�1, �2) becomes

f xð Þ ¼ 1

G Dð Þ � GðCÞ g xð Þ

¼ 1

G Dð Þ � GðCÞ
1

B �1
2 ,

�2
2

� � �1
�2

� ��1
2 x

�1
2 �1

1þ �1x
�2

� ��1þ�2
2

, (9)
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where �1 > 0, �2 > 0, �1 � C < x < D � 1, and B is the beta function defined by

B u, vð Þ ¼ C uð ÞC vð Þ
C uþ vð Þ , u, v 2 C, Re uð Þ > 0, Re vð Þ > 0 (10)

Nadarajah and Kotz (2008) derived explicit expressions for the moments of this trun-
cated distribution in terms of the ordinary hypergeometric function represented by the
Gauss hypergeometric series

2F1 a, b; c; zð Þ ¼
X1
j¼0

ðaÞjðbÞj
ðcÞj

zj

j!
¼ 1þ ab

c � 1 z þ
aðaþ 1Þbðbþ 1Þ
cðcþ 1Þ � 1 � 2 z2 þ ::: (11)

where zj j < 1 and ðaÞj ¼ a aþ 1ð Þ:::ðaþ j� 1Þ denotes the ascending factorial. This ser-

ies is not defined if c is a nonpositive integer and neither a nor b is a nonpositive inte-
ger that is greater than c (see Gradshteyn and Ryzhik 2007, 1005). If X has a truncated
Fð�1, �2)-distribution, then

EXn ¼ 1

G Dð Þ � GðCÞ
1

B
�1
2
,
�2
2

� � 2�n1
�n2ð2nþ �1Þ

�
� ð�1DÞnþ

�1
2

ð�2 þ �1DÞnþ
�1
2

2F1 nþ �1
2
, 1þ n� �2

2
; 1þ nþ �1

2
;

�1D
ð�2 þ �1D

� �

� ð�1CÞnþ
�1
2

ð�2 þ �1CÞnþ
�1
2

2F1 nþ �1
2
, 1þ n� �2

2
; 1þ nþ �1

2
;

�1C
ð�2 þ �1C

� �	
(12)

where

G Dð Þ � G Cð Þ ¼ 2 �1Dð Þ�12
�1ð�2 þ �1DÞ

�1
2

2F1
�1
2
, 1� �2

2
; 1þ �1

2
;

�1D
�2 þ �1D

� �

� 2 �1Cð Þ�12
�1ð�2 þ �1CÞ

�1
2

2F1
�1
2
, 1� �2

2
; 1þ �1

2
;

�1C
�2 þ �1C

� �
(13)

For C ¼ 0 and D ¼ 1 and �1 ¼ �2 ¼ 2, we obtain

G Dð Þ � G Cð Þ ¼ G 1ð Þ ¼ 1
2 2F1 1, 0; 2;

1
2

� �
¼ 1

2
(14)

ltF ¼ EX ¼ 1
4 2F1 2, 1; 3;

1
2

� �
¼ 2log 2ð Þ � 1 � 0:3862944 (15)

EX2 ¼ 1
12 2F1 3, 2; 4;

1
2

� �
¼ 1

6 2F1 1, 2; 4;
1
2

� �
¼ 3� 4log 2ð Þ � 0:2274113 (16)

and

r2tF ¼ Var Xð Þ ¼ EX2 � EXð Þ2 ¼ 2� 4log2 2ð Þ � 0:07818794 (17)

because
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1
4 2F1 2, 1; 3; zð Þ ¼ 1

4
1þ 2

3
z þ 2

4
z2 þ 2

5
z3 þ :::

� �
¼ 1

2z2
z þ z2

2
þ z3

3
þ z4

4
þ z5

5
þ :::

� �
� 1
2z

¼ � logð1� zÞ
2z2

� 1
2z

(18)

2F1 a, b; c; zð Þ ¼ ð1� zÞc�a�b
2F1 c� a, c� b; c; zð Þ (19)

(see Gradshteyn and Ryzhik 2007, 1008), and

2F1 1, 2; 4; zð Þ ¼ 1þ 2
4
z þ 2 � 3

4 � 5 z
2 þ 2 � 3

5 � 6 z
3 þ :::

¼ 1þ 2
4
z þ 2 � 3

z2
z

1 � 2þ
z2

2 � 3þ
z3

3 � 4þ
z4

4 � 5þ
z5

5 � 6þ :::

� �
� 2 � 3

z2
z

1 � 2þ
z2

2 � 3þ
z3

3 � 4

� �
¼ 1þ 2

4
z þ 2 � 3

z2
1� 1� z

z
log

1
1� z

� �� �
� 2 � 3

z2
z

1 � 2þ
z2

2 � 3þ
z3

3 � 4

� �
(20)

2.2. Test statistics, critical values and asymptotic distributions

Under the simple (but in many applications implausible) assumption that the observa-
tions y1, :::, yn are i.i.d. normal with mean 0 and variance r2, the normalized periodo-
gram ordinates J xjð Þ ¼ 2pr2I xjð Þ, 1 � j � m ¼ ½ðn� 1Þ=2�, are i.i.d. standard

exponential and the ratios Rj, k ¼ J xjð Þ=J xkð Þ ¼ I xjð Þ=I xkð Þ, j 6¼ k, have an

Fð2;2)-distribution. Since the moments of this distribution do not exist (not even the
first one), we truncate the ratios Rj, k to the interval (0,1). The mean ltF and the vari-

ance r2tF of the truncated ratios are then given by (15) and (17), respectively.
If the spectral density of the data generating process is not constant but strictly

increasing on the interval ð0, pÞ, e.g., in the case of an AR(1) process with /1 < 0, then
each ratio Rj, k with j < k will asymptotically be distributed as a constant kj, k < 1 times
an Fð2;2)-distribution, which implies that

P Rj, k < 1ð Þ > 0:5 (21)

because the median of an Fð2)-distribution is 1, and

E Rj, kð jRj, k < 1Þ < ltF (22)

because the probability density function of an Fð2)-distribution is a convex function
and the truncated density of Rj, k is therefore steeper than that of the truncated Fð2)-dis-
tribution. Given a subset S of the set

S�K ¼ Rj, k : 1 � j < k � K � m

 �

(23)

we could use both the proportion of ratios that fall into the interval [0,1] - because of (21) -
and the sample mean of those ratios - because of (22) - to test the null hypothesis of white
noise against the alternative hypothesis of a strictly increasing spectral density. Choosing a
subset such as R1, 2,R3, 4,R5, 6, :::f g 	 S�K or R1, 2,R3, 6,R4, 8,R5, 10,R7, 14, :::f g 	 S�K has the
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advantage that its elements are independent and the central limit theorem can be applied
to the sample mean R(S) of those n½0, 1� elements of S that fall into the interval [0,1], which
entails that the test statistic

T�
S ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

n½0, 1�
p R � ltF

rtF
(24)

will approximately have a standard normal distribution under the null hypothesis if
n½0, 1� is large. The null hypothesis will be rejected by this one-sided test if the test statis-

tic T�
S takes a too large negative value. Indeed, in case of a strictly increasing spectral

density, the term n½0, 1� in will be larger than under the null hypothesis because of (21)

and the term R � ltF will be a large negative number because of (22).
Analogously, when we suspect that the spectral density of the data generating process

is strictly decreasing on the interval ð0, pÞ, e.g., in the case of an AR(1) process with
/1 > 0, then each ratio Rj, k with j < k will asymptotically be distributed as a constant
kj, k > 1 times an Fð2;2)-distribution, which implies that P Rj, k < 1ð Þ < 0:5 and

E Rj, kð jRj, k < 1Þ > ltF: In this case, we could replace n½0, 1� in (24) by Sj j � n½0, 1� and
reject the null hypothesis if the resulting test statistic takes a too large positive value.
Note that under the null hypothesis n½0, 1�=ð Sj j � n½0, 1�Þ will converge in probability to 1

because the F 2, 2ð Þ-distribution has a median of 1. However, since the test statistic will
generally be more informative when the sample mean is based on a larger sample, we
prefer to stick to (24) and only replace all ratios Rj, k with j < k by Rk, j: The set

Rk, j : 1 � j < k � K � m

 �

will be denoted by SþK and the associated test statistic based

on a subset S of SþK by Tþ
S :

When our focus is on small samples, tables of critical values are more important than
the asymptotic distribution, hence there is no need to keep the dependence structure
simple. In the following, we will therefore, in order to increase the power of our tests,
use the whole sets S�K and SþK , respectively, instead of just simple subsets. Obviously, for
the two tests T�

K and Tþ
K that are based on the sets S�K and SþK , respectively, we need

only one set of critical values. Table 1 gives the 0.05%, 1%, 2.5%, 5%, 95%, 97.5%, 99%,
and 99.5% quantiles for m ¼ 5, 6, 7, 8, 9, 10, 15, 20, 24, 25, 50, 100, 150: The
quantiles in each column of this table were obtained by generating 10,000,000 random
samples of size m from the standard exponential distribution, evaluating the test statistic
T� for each random sample, and finally computing the order statistics of the sample of
10.000.000 values of T�:

Table 1. Critical values for the tests based on the test statistics T� and Tþ:
K¼ 5 6 7 8 9 10 15 20 24 25 50 100 150

0.05% �2.702 �2.881 �3.139 �3.358 �3.499 �3.712 �4.406 �5.174 �5.503 �5.802 �8.340 �11.500 �13.932
1% �2.479 �2.697 �2.934 �3.057 �3.257 �3.402 �4.084 �4.657 �5.026 �5.344 �7.488 �10.279 �12.733
2.50% �2.205 �2.371 �2.534 �2.661 �2.805 �2.929 �3.524 �4.041 �4.275 �4.454 �6.260 �8.748 �10.828
5% �1.907 �2.039 �2.159 �2.273 �2.396 �2.475 �2.992 �3.438 �3.669 �3.739 �5.346 �7.425 �9.056
95% 2.159 2.342 2.450 2.590 2.789 2.854 3.240 3.815 4.095 4.050 5.503 7.673 9.507
97.50% 2.551 2.758 2.890 3.083 3.277 3.415 3.954 4.499 5.021 4.872 6.630 9.336 11.377
99% 2.957 3.225 3.429 3.719 3.860 4.035 4.654 5.322 5.904 5.740 7.827 11.250 13.925
99.50% 3.205 3.657 3.832 4.087 4.304 4.401 5.137 5.862 6.507 6.382 8.728 12.466 15.258
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The critical values from Table 1 can also be used to test hypotheses about the memory
parameter d of an ARFIMA(0,d,0) process (fractionally integrated white noise). In this
framework, the normalized periodogram ordinates J xjð Þ ¼ I xjð Þ=f xjð Þ, H � j � K, are

asymptotically i.i.d. standard exponential provided that H is not too small (recall the dis-
cussion in Sec. 1) and the ratios

Rj, k dð Þ ¼ I xjð Þ= 1� e�ixj j�2d

IðxkÞ= 1� e�ixj j�2d ¼
I xjð Þ
IðxkÞ �

sinðxj=2Þ
sinðxk=2Þ

 !2d

� I xjð Þ
IðxkÞ �

xj=2

xk=2

 !2d

¼ I xjð Þ
I xkð Þ �

j
k

� �2d

(25)

depend only on the unknown parameter d, hence the null hypothesis d � d0 can be
rejected if the test statistic

T�
K dð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

n½0, 1�
p RðdÞ � ltF

rtF
(26)

takes a too large negative value, where n½0, 1� is the number of elements of

S�K ðdÞ ¼ Rj, kðdÞ : 1 � j < k � K � m

 �

(27)

that fall into the interval [0,1] and RðdÞ is the sample mean of these elements.
Analogously, the test statistic Tþ

K ðdÞ can be defined when we want to test the null
hypothesis that d � d0:
When we use the first K Fourier frequencies, they become smaller and smaller as the

sample size n increases. Clearly, the very lowest frequencies, which are the most inform-
ative with regard to long-range dependence, are the ones which are closest to frequency
zero. Unfortunately, the distribution of the periodogram at these very frequencies is out
of line (K€unsch 1986; Hurvich and Beltrao 1993; Robinson 1995). Omitting the first H
Fourier frequencies, where H grows with n, is an obvious option. Indeed, if ðH þ 1Þ= ffiffiffi

n
p !

1 and ðH þ KÞ=n ! 0, the normalized periodogram ordinates J xHþ1ð Þ, :::, J xHþKð Þ will
still be asymptotically i.i.d. standard exponential (K€unsch 1986). Clearly, the choice of H is
critical. For example, H ¼ ½n0:6=50� satisfies K€unsch’s condition but equals zero for n¼ 100.
In their simulation studies, Reisen, Abraham, and Lopes (2001) and Mangat and
Reschenhofer (2019) found that even for much larger values of n, keeping the lowest Fourier
frequencies is harmless, which is in line with the results of our own simulation study pre-
sented in Sec. 3. We conclude that for sample sizes typically occurring in practice, it is safe to
setH ¼ 0:
The condition ðH þ KÞ=n ! 0 (or K=n ! 0 if H ¼ 0) is crucial when the observa-

tions come from a general ARFIMA process rather than from fractionally integrated
white noise. K must not be too large to ensure that we are not misled by the behavior
of the spectral density outside a neighborhood of frequency zero (short-range depend-
ence), which is described by the AR parameters /1, :::,/p and the MA parameters

h1, :::, hq (whereas the memory parameter d describes the behavior close to frequency
zero and therefore takes care of any long-range dependence).
Although frequency-domain methods are in general more robust than time-domain

methods (because periodogram ordinates are squares of sums whereas sample
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autocovariances are sums of squares or products), their performance may deteriorate in
the presence of volatility clusters and extreme observations, which are typical for finan-
cial time series. We may expect that our frequency-domain tests, which are based on
the truncated ratios of normalized periodogram ordinates, are more robust. Our simula-
tion study, which will be presented in the next section, shows that this is indeed
the case.

3. Simulations

In order to examine the robustness of our tests, we allow for deviations from normality,
homoscedasticity, and uncorrelatedness. For this purpose, we use submodels of the
ARFIMA(p,d,q)-GARCH(1,1) model

ð1� LÞd 1� /1Lð Þyt ¼ 1� h1Lð Þut (28)

where

pþ q � 1

ut ¼ rtzt

zt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð� � 2Þ

p
i:i:d: tð�Þ with � ¼ 5

r2t ¼ a0 þ a1u
2
t�1 þ b1r

2
t�1

a0¼1, a1¼0.1, b1¼0.8999

Short-range dependence is controlled by the parameters /1 and h1: Nonnormality is
accomplished by using a distribution with heavier tails, namely the t-distribution, rather
than by introducing additive outliers. Conditional heteroscedasticity is modeled by a
simple GARCH(1,1) model because the focus of this simulation study is on robustness
only and not on the modeling of real financial data. For the latter purpose, more
sophisticated models that are able to capture asymmetry in the returns as well as long
memory and periodicities in the volatility would be more appropriate than simple
GARCH models (see Nelson 1991; Baillie, Bollerslev, and Mikkelsen 1996; Lopes and
Prass 2013, 2014). The model (28) becomes increasingly ill-behaved (heavier tails, fewer
existing moments, more distinct volatility patterns) as the number � of degrees of
freedom decreases and the sum a1þb1 approaches 1. The fourth moment of a tð�Þ-
distribution exists if � > 4: However, for the existence of the fourth unconditional
moment of the GARCH(1,1) process ut it is required that

E b1 þ a1z
2
t�1

� �2
< 1 (29)

(see Nelson 1990; He and Ter€asvirta 1999). If zt�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð� � 2Þp � t �ð Þ and � ¼ 5, we

have

E b1 þ a1z
2
t�1

� �2 ¼ b21 þ 2b1a1 þ 9a21 (30)

which is already greater than one for a1¼0.1 and b1¼0.86. Vo�svrda and �Zike�s (2004)
fitted an GARCH(1,1) model to the returns of the Warsaw Stock Exchange Index
(which will also be analyzed in the next section) and obtained the estimates 0.082,
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0.854, 6.521 for the parameters a1, b1, and �: By choosing a small value of � and a1þb1
very close to 1, we ensured the occurrence of both extreme values and large volatility
fluctuations. The results of our simulation study therefore allow to draw conclusions
about the robustness of our tests, which use critical values that have been obtained
under the idealized assumption that the normalized periodogram ordinates are indeed
independent and standard exponentially distributed.
For the generation of a large number of pseudorandom samples of size n ¼ 250 from

the model (28), we used the function ‘fracdiff.sim’ from the R package ‘fracdiff’ with a
burn in period of length 5,000. For each of 5,000 samples generated with dA ¼
�0:4, � 0:3, :::, 0:3, the null hypotheses H0 : d � d0 with d0 ¼ dA þ 0:1, dA þ
0:2, :::, 0:4 were tested using the test statistic T�

a with K ¼ ffiffiffi
n

p�  ¼ 15: Analogously, for
each of 5,000 samples generated with dA ¼ �0:4, � 0:3, :::, 0:4, the null hypotheses
H0 : d � d0 with d0 ¼ �0:4, � 0:3, :::, dA were tested using the test statistic Tþ

a with
K ¼ 15: Table 2 shows the rejection rates at the (one-sided) 5% level of significance for
p ¼ q ¼ 0: Results obtained for alternatives with non-zero values of /1 and h1 are
shown in Table 3. In general, the power is relatively low if d0 is close to dA but
increases quickly as the distance between d0 and dA increases. The values in the main
diagonal are reasonably close to 5%, which suggests that our tests roughly attain the
advertised levels of significance even in case of serious deviations from normality and
homoscedasticity. The only exceptions occur in the case of large values of /1, where we
would need larger sample sizes (e.g., n ¼ 1000) to distinguish between short-range auto-
correlation and long-range autocorrelation.
The values corresponding to those shown in Table 2 are less favorable for the non-

robust test employed by Mangat and Reschenhofer (2019) for the detection of long-
range dependence in series of gold price returns and stock index returns. E.g., for d0 ¼
�0:4 and dA ¼ �0:4, 0.1, 0.2, 0.3, 0.4, the probability to reject the true null hypothesis
is 0.069 and the probabilities to reject the false null hypotheses are 0.374, 0.480, 0.587,
and 0.671, respectively (compared to the values 0.054 and 0.480, 0.626, 0.753, 0.842
from Table 2). The non-robust test may therefore be of limited usefulness in financial
applications. In the next section, we will reanalyze the gold and stock index data sets
with our robust tests. In addition, we will have a look at several spread series.

Table 2. Rejection rates (at the 5% level of significance) obtained by applying the tests (with
K ¼ 15) based on the test statistics T�a (if dA < d0Þ and Tþa (if dA � d0Þ, respectively, to samples of
size n ¼ 250 from an ARFIMA(0,d,0)-GARCH(1,1) model with tð5Þ distributed innovations and GARCH
parameters a0 ¼ 1, a1 ¼ 0.1, b1 ¼ 0.8999.
d0\dA �0.4 �0.3 �0.2 �0.1 0.0 0.1 0.2 0.3 0.4

�0.4 0.054 0.093 0.142 0.238 0.355 0.480 0.626 0.753 0.842
�0.3 0.076 0.056 0.080 0.144 0.230 0.343 0.489 0.633 0.747
�0.2 0.121 0.081 0.047 0.088 0.144 0.226 0.345 0.492 0.623
�0.1 0.197 0.131 0.071 0.056 0.083 0.141 0.224 0.349 0.487
0.0 0.302 0.216 0.121 0.082 0.050 0.087 0.133 0.235 0.357
0.1 0.441 0.328 0.206 0.142 0.077 0.052 0.075 0.137 0.223
0.2 0.587 0.468 0.317 0.219 0.133 0.080 0.045 0.082 0.134
0.3 0.728 0.615 0.459 0.331 0.221 0.132 0.077 0.046 0.072
0.4 0.842 0.754 0.617 0.487 0.330 0.218 0.133 0.076 0.045
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4. Empirical results

Recent studies found indications of time-varying long memory in financial time series
(Cajueiro and Tabak 2004; Carbone, Castelli, and Stanley 2004; Hull and McGroarty
2014; Auer 2016b). Batten et al. (2013) and Auer (2016a) explored possible applications
for the development of profitable trading strategies. They used estimates of the Hurst
coefficient H, which is related to the memory parameter d via H ¼ d þ 0:5, for the
generation of buy and sell signals. Batten et al. (2013) used the values –0.1 and 0.1 as
thresholds (for estimates of d, i.e., 0.4 and 0.6 for estimates of H) and a rolling window
of 22 trading days. In an effort to reduce transactions costs by reducing the trading fre-
quency, Auer (2016a) increased the threshold values to –0.2 and 0.2 and the window
size to 240 trading days. However, in the light of the results of our simulation study
(see Section 3), it seems virtually impossible to distinguish between close neighboring
values such as –0.1, 0, and 0.1 and still extremely difficult to distinguish between –0.2,
0, and 0.2. The worst case for any trading strategy based on fractal dynamics is when
there is no long-range dependence at all, i.e., d ¼ 0 throughout the whole observation
period. Mangat and Reschenhofer (2019) applied their non-robust tests to series of gold
price returns and stock index returns in a rolling analysis and found that the overall
pattern of rejections could best be explained by the absence (or virtual absence) of
long-range dependence. In the following, we will apply our new robust tests to the
same datasets and check whether we arrive at the same conclusion.
Daily gold prices from 1979-01-01 to 2017-11-10 were downloaded from the website

www.gold.org of the World Gold Council. Daily quotes of the Dow Jones Industrial
Average (DJIA) from 1928-10-02 to 2018-02-07 were obtained from Yahoo!Finance.
Using the test statistics T�

a and Tþ
a to test the hypotheses H0 : d � 0:2 and H0 : d �

�0:2 at the 5% level of significance in a rolling analysis with a window size of 250

Table 3. Rejection rates (at the 5% level of significance) obtained by applying the tests (with
K ¼ 15) based on the test statistics T�a (if dA < d0Þ and Tþa (if dA � d0Þ, respectively, to samples of
size n ¼ 250 from an ARFIMA(p,d,q)-GARCH(1,1) model with tð5Þ distributed innovations, GARCH
parameters a0 ¼ 1, a1 ¼ 0.1, b1 ¼ 0.8999, and different values of (a) the AR parameter /1 and (b)
the MA parameter h1, respectively.
(a) p¼ 1, q¼ 0

d0\dA �0.4 �0.2 0 0.2 0.4

/1 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
�0.4 0.06 0.07 0.15 0.15 0.17 0.35 0.35 0.42 0.65 0.65 0.69 0.86 0.87 0.9 0.97
�0.2 0.12 0.09 0.05 0.05 0.06 0.14 0.15 0.17 0.36 0.36 0.4 0.64 0.67 0.71 0.88
0 0.3 0.26 0.13 0.12 0.1 0.05 0.05 0.06 0.15 0.14 0.17 0.35 0.39 0.42 0.66
0.2 0.58 0.54 0.32 0.31 0.27 0.13 0.13 0.11 0.05 0.05 0.06 0.15 0.17 0.18 0.38
0.4 0.84 0.81 0.61 0.61 0.55 0.32 0.31 0.27 0.14 0.13 0.1 0.05 0.07 0.06 0.15

(b) p¼ 0, q¼ 1

d0\dA �0.4 �0.2 0 0.2 0.4

h1 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
�0.4 0.06 0.05 0.03 0.13 0.11 0.06 0.33 0.28 0.14 0.63 0.56 0.35 0.85 0.81 0.63
�0.2 0.12 0.14 0.18 0.05 0.04 0.02 0.13 0.1 0.05 0.33 0.28 0.14 0.63 0.57 0.35
0 0.31 0.33 0.39 0.13 0.17 0.3 0.04 0.04 0.02 0.13 0.1 0.05 0.34 0.29 0.15
0.2 0.59 0.61 0.66 0.34 0.4 0.57 0.14 0.17 0.34 0.05 0.04 0.02 0.14 0.11 0.05
0.4 0.85 0.85 0.87 0.64 0.69 0.83 0.35 0.4 0.63 0.14 0.18 0.34 0.05 0.04 0.02
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trading days and K ¼ 15, we obtained the rejection rates 0.124 and 0.062, respectively,
for the gold price returns and 0.126 and 0.128, respectively, for the stock index returns.
Apart from the second one, these rates agree well with the results obtained in our simu-
lation study for dA ¼ 0 (see Table 2). The agreement is even better, when a higher value
of K is used. In Figure 1, the rejection rates obtained for K ¼ 24 are plotted cumula-
tively. Clearly, similar rejection rates would also be obtained if there was a balanced
ratio between values of d greater than 0.2 on the one hand and less than –0.2 on the
other hand. However, given competing explanations for a particular outcome, the sim-
plest explanation is often the correct one (Occam’s razor). Moreover, Figure 1 shows no
indications of structural breaks in the memory parameter.
While using only a small set of Fourier frequencies in a rolling analysis to distinguish

between different values of d that lie close to each other may not promise success, there

Figure 1. Cumulative number of rejections with n ¼ 250, K ¼ 24, a¼ 0.05 by tests based on T�a
with d0 ¼ 0:2 (a,c) and Tþa with d0 ¼ �0:2 (b,d): gold returns (bold in gold), DJIA returns (bold in
magenta), synthetic ARFIMA(0,d,0)-series with d ¼ �0:2 (red), d ¼ �0:1 (orange), d ¼ 0 (darkgray),
d ¼ 0:1 (green), d ¼ 0:2 (blue).
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are other interesting problems which are easier to solve. In the absence of any evidence
of fractal dynamics, we can use the whole sample and in further consequence include
more Fourier frequencies in order to increase the power of our tests and narrow down
the range of possible values of d: In the following, we consider four financial time series
consisting of thousands of observations (as opposed to the sample size of 250 in our
rolling analysis). However, we increase the number of included Fourier frequencies only
moderately in order to safeguard against possibly more complex short-range depend-
ence. In accordance with reports in the literature (see the discussion above) about pos-
sible long-range dependence in returns series of emerging markets and in spread series,
the first of our four time series contains the log returns of the Warsaw Stock Exchange
Index (WIG) from 2011-03-11 to 2019-04-12 (downloaded from Investing.com) and the
other three time series are potentially (trend) stationary differences of two nonstationary

Figure 2. (a) Log Warsaw Stock Exchange Index, (b) Log returns, (c) Log Amsterdam Exchange Index
(green) & log BEL 20 Index (red), (d) Difference, (e) 5 Year Treasury Yield Index (green) & 10 Year
Treasury Yield Index (red), (f) Difference, (g) Log iShares Physical Gold ETC (green) & log iShares Silver
ETC (red), (h) Difference.
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time series, i.e., the difference of the log Amsterdam Exchange Index (bAEX) and the
log BEL 20 Index (bBFX) from 1991-04-09 to 2017-12-12, the trend residuals obtained
from the difference of the CBOE 10 Year Treasury Yield Index (bTNX) and the CBOE
5 Year Treasury Yield Index ( b FVX) from 1962-01-02 to 2019-04-12 (see Figure 2f),
and, finally, the trend residuals obtained from the difference of the log iShares Physical
Gold ETC (SGLN.L) and the log iShares Silver ETC (SSLN.L) from 2011-04-14 to 2018-
02-27 (all downloaded from Yahoo! Finance). The last time series was truncated at
2018-02-27 because of too many missing values in the last part. Figure 2a, c, e, and g
show the original time series and Figure 2b, d, f, and h show the return series and
spread series, respectively.
Ideally, the parameter d in the true data generating model should not be too close to

0 in the case of the returns series and not too close to 0.5 in the case of the spread ser-
ies in order to keep a good chance of obtaining significant and interpretable results.
However, testing the null hypothesis that d � 0:4 for the difference of the stock market
indices, the test statistic Tþ

a with K ¼ 25, 50, 100, 150 took the values �7,206 (

),
�14.272 (

), �25,883 (

), �42,947 (

), where (
) indicates significance at the 5%
level and (

) significance at the 1% level. The corresponding values for the term spread
and the gold-silver spread were �3,681, �6,943 (
), �11,792 (

), �20,198 (

) and
�4,0318 (
), �8,302 (

), �13,191 (

), �32,4636 (

), respectively. Accordingly, it
was never possible to reject the converse hypothesis that d � 0:4, which would have
implied that the two original series were fractionally cointegrated (see Robinson 1994b;
Caporale and Gil-Alana 2004). Finally, assuming that d ¼ 0 in the case of the returns
series, the best we could hope for was to rule out values of d that are too far from 0.
Indeed, using the test statistic Tþ

a (T�
a ), the null hypothesis that d � �0:3 (d � 0:3Þ

could be rejected at the 1%-level with K ¼ 150:

5. Discussion

Being interested primarily in financial applications, our focus is on simple ARFIMA
models with small p and q ¼ 0 or small q and p ¼ 0, which helps us to avoid the prob-
lem that reliable inference on the memory parameter is not possible if the unrestricted
class of all ARFIMA models is used. Indeed, P€otscher (2002) has shown that the max-

imum risk of any estimator d̂n for the memory parameter d, which is based on a sample
of size n, is bounded from below by a positive constant independent of n, i.e.,

supE d̂n � d
�� ��r � 1

2r
> 0 (31)

where 1 � r < 1 and the supremum is taken over all Gaussian ARFIMA processes.
Another critical issue is the choice of the number of Fourier frequencies used for test-

ing. Since conventional frequency-domain tests for log-range dependence assume that
the number of used Fourier frequencies grows with the sample size, which is not rea-
sonable in case of a rolling analyses of a long time series, and the test proposed by
Mangat and Reschenhofer (2019) which is based on a fixed number of Fourier frequen-
cies, does not attain the advertised levels of significance in case of deviations from nor-
mality and homoscedasticity, we have developed robust tests that are based on
truncated ratios of periodogram ordinates at a fixed set of Fourier frequencies.
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The truncation is crucial for the robustness of the tests and the existence of moments.
Overall, there are four robust tests. The first two are less powerful but have simple
asymptotic distributions. The other two tests are more sophisticated. Because they are
closely related, we provide only one set of critical values which can be used for both
tests. The choice between the two tests depends on the alternative hypothesis we have
in mind, i.e., it depends whether we think that the memory parameter of the data gen-
erating model is greater or less than the values specified under the null hypothesis.
We conducted a simulation study to investigate the power of our tests and, in par-

ticular, to check whether they attain the advertised levels of significance in the presence
of outliers and conditional heteroskedasticity. The results suggest that the answer to the
latter question is affirmative, which indicates that the tests are indeed highly robust.
Regarding the power, the findings are less favorable. With the specifications likely to be
used in a rolling analysis, e.g., n ¼ 250 and K ¼ 15, it may be difficult to distinguish
between values of d that are too close to each other, e.g., –0.2, 0, and 0.2. However, if
we use the whole time series and values of K such as 50, 100, or 150, we may be able to
narrow down the range of possible values of d. In our empirical investigation of various
financial time series, we could reject the hypotheses d � �0:3 and d � 0:3 for return
series and the hypothesis d � 0:4 for spread series.
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