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ABSTRACT
While the Gompertz distribution is often fitted to lifespan data, testing
whether the fit satisfies theoretical criteria is being neglected. Here four
goodness-of-fit measures – the Anderson–Darling statistic, the correla-
tion coefficient test, a statistic usingmoments, and a nested test against
the generalized extreme value distributions – are discussed. Along with
an application to laboratory rat data, critical values calculated by the
empirical distribution of the test statistics are also presented.

1. Introduction

Goodness-of-fit tests determine if the empirical distribution of the data satisfies the assump-
tions of theoretical distributions. While the Gompertz distribution is routinely used as life
time distribution in demography, biology, actuarial, and medical science, according to our
best knowledge, no studies on goodness-of-fit tests for it have been published so far. How-
ever, the Gompertz distribution is a degenerate generalized extreme value distribution for the
minima, and an abundance of goodness-of-fit tests exist in the literature for other extreme
value distributions (see, e.g., Hosking, 1984).

In a landmark paper, Anderson–Darling (1952) developed the Anderson–Darling test that
later Stephens (1977) analyzed in the context of extreme value distributions. Sinclair et al.
(1990)modified the Anderson–Darling test to allow different weighting schemes that empha-
size either the lower or the upper tail of the distributions.
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Filliben (1975) used the Pearson correlation coefficient to check the correlation between
expected statistics of a theoretical distribution and sample statistics. The correlation coeffi-
cient test was the most popular in hydrology (Vogel, 1986; Kinnison, 1989) to assess the fit of
extreme value distributions.

The likelihood ratio test naturally arises to account for the differences between the
Gompertz and other extreme value distributions. The generalized extreme value distribution
is characterized by μ, location, σ , scale, and ξ, shape, parameters. For ξ = 0, the generalized
extreme value distribution reduces to theGumbel, and theGompertz distribution is a reversed
and truncated Gumbel distribution with additional correlation between the maximum like-
lihood estimate of its parameters a and b. The different parametrization of the Gompertz
distribution removes it from location-scale family of distributions.

Li andPapadopoulos (2002) proposed a goodness-of-fit test usingmoments. The test statis-
tic is derived from an identity for the moments, and its values are compared to the z-values
of the standard normal distribution.

This paper will first briefly describe each of these tests and apply them to the Gompertz
distribution. The final sections of the paper compare the power of the tests against alternative
distributions and derive critical values of thembased onMonteCarlo simulation experiments.
An application of the tests to laboratory rat data is also discussed.

1.1 Properties of the Gompertz distribution

The Gompertz distribution is often applied to describe the distribution of adult lifespans by
demographers (e.g., Vaupel, 1986; Doblhammer, 2000; Preston et al., 2001; Willekens, 2001;
Perozek, 2008) and actuaries (Benjamin et al., 1980; Willemse and Koppelaar, 2000). It is
also used to fit the mortality data of birds, mammals (Finch et al., 1990; Promislow, 1991;
Witten and Satzer, 1992; Finch and Pike, 1996; Ricklefs and Scheuerlein, 2002), and some-
times invertebrates (Hirsch and Peretz, 1984; Honda and Matsuo, 1992).

The Gompertz distribution has a continuous probability density function with parameters
a and b,

f (x) = aebx−
a
b

(
ebx−1

)
a ≥ 0, b > 0, (1)

with support on [0,∞). Please see Fig. 1 for the shape of the Gompertz distribution.
Given its popularity, the Gompertz distribution is surprisingly understudied in the sta-

tistical, demographic literature. Pollard and Valkovics (1992) were the first to analyze the
statistical properties of the Gompertz distribution, however their results only hold asymp-
totically when a→ 0. Exact moments of the Gompertz distribution can be derived by
realizing that its moment-generating function can be represented by the generalized integro-
exponential function (Milgram, 1985). Unfortunately, despite its simple looking hazard
function,

h(x) = aebx a > 0,

the moments of the Gompertz distribution can only be formulated in terms of special func-
tions. The nth moment of a Gompertz distributed random variable X is

E [Xn] = n!
bn

e
a
b En−1

1

(a
b

)
,

where En
s (z) = 1

n!

∫∞
1 (ln x)

nx−se−zx dz is the generalized integro-exponential function (Mil-
gram, 1985). The advantage of using the generalized integro-exponential function is that it has
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Figure . Shape of the Gompertz distribution. The Gompertz distribution for different combination of a and
b parameters.

known power series expansion and also can be transformed to the succinct form of Meijer-G
functions (Lenart, 2012).

E [Xn] = n!
bn

e
a
b Gn+1,0

n,n+1

(
a
b

∣∣∣∣ ; 1, . . . , 10, . . . , 0;
)
,

where the Meijer G-function is a generalized hypergeometric function. It is defined by the
contour integral

Gm,n
p,q

[
z
∣∣∣∣ a1, . . . , an; an+1, . . . , apb1, . . . , bm; bm+1, . . . , bq

]
= 1

2π i

∫
C

∏m

j=1
�(b j−s)

∏n

j=1
�

(
1−a j + s

)
∏q

j=m+1
�(1−b j + s)

∏p

j=n+1
�

(
a j − s

)zs ds
along contourC (Erdélyi, 1953).

An interesting property of the Gompertz distribution is that the distribution can be trun-
cated at any x and by rescaling the a parameter, the distribution will still yield a proper
density function (Garg et al., 1970). Therefore, when studying, for example, the remaining
life expectancy at x > 0, after rescaling the a parameter, the analyzed age will become the
new 0.

.. Relation to the generalized extreme value distribution
The generalized extreme value distributions have the density function

fGEV (x) = 1
σ

[
1+ ξ

(
x−m
σ

)]−(
1
ξ

)
−1

e−[1+ξ(
x−m
σ )]

− 1
ξ
, x ∈ R,
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characterized bym location, σ scale and ξ shape parameters. For ξ := 0

fGumbel(x) = 1
σ
e−e
− x−m

σ − x−m
σ , x ∈ R,

the generalized extreme value distribution degenerates into the Gumbel distribution. The
Gumbel distribution is often used by hydrologists to calculate the probability of floods
or extreme rainfall (e.g., Landwehr et al., 1979; Watterson and Dix, 2003). Formally, the
Gompertz distribution is a special case of the Gumbel distribution for the minima, i.e.,
when x := −x and truncated at x = 0 with Gompertz parameters substituted as b = 1/σ and
a = b exp(−bm):

fGompertz(x) = beb(x−m)+e
−bm−eb(x−m) , x ≥ 0. (2)

The Weibull distribution is another widespread distribution of the generalized extreme
value family that is used in survival analysis (Lawless, 2011). The generalized extreme value
distribution degenerates into the Weibull distribution for ξ < 0. The difference between the
shape parameters govern the tail behavior of the distribution; the smaller the shape parameter,
the thinner the tail is (Bali, 2003).

.. Generalization of the Gompertz distribution
Amajor drawback of the Gompertz distribution is that it fits only adult mortality sufficiently
(Thatcher, 1999). After ages 80 or 90, the population level mortality starts to decelerate and
the Gompertz hazard would overestimate the observed marginal hazard of the population.
Vaupel et al. (1979) proposed to use a logistic, or gamma-Gompertz (GG), curve to provide a
better fit:

hGG(x) = aebx

1+ γ a
b

(
ebx − 1

) x ≥ 0 ; a, γ > 0

to model the mortality deceleration above age 80. Here μ̄(x) denotes the marginal hazard, or
average hazard on the population level at age x. This improved model not only fits the data
better but also provides a rationale for the slowing pace of mortality increase. They hypothe-
size that each individual is born with a level of frailty that increases or decreases their hazard
of dying. Frailty can be interpreted as a random variable, if it is distributed according to the
gamma distributionwith same shape and scale parameters, then the average frailty of the pop-
ulation will be equal to 1 and the coefficient of variation of the gamma distribution, denoted
by γ will be constant at all ages. As frailer individuals are more likely to die earlier than their
more robust counterparts, the observed, marginal hazard levels off and mortality seems to
decelerate.

2. Goodness-of-fit tests

2.1 Correlation coefficient test

Filliben (1975) introduced the probability plot coefficient test for normal distributions. The
idea of the test is to compare the ordered observations with predicted order statistics of a
theoretical distribution. Let X[i] denote the ith largest observed datum, X̃[i] the order statistic
median, X̄ the average observation and X̃ the population median, then the probability plot
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correlation coefficient is given by the Pearson correlation coefficient:

r =
∑n

i=1
(
X[i] − X̄

) (
X̃[i] − X̃

)√
n∑

i=1

(
X[i] − X̄

)2 n∑
i=1

(
X̃[i] − X̃

)2 .
Filliben (1975) estimated the order statistic medians from the quantile function and later the
same approach was used for the Gumbel and other extreme-value distributions (Vogel, 1986;
Kinnison, 1989). These approaches relied on numerical approximations to the plotting posi-
tions between the order statistics and the order statistic medians or other measures of loca-
tion1 such as the plotting position of Gringorten (1963) which is unbiased only for the largest
observation.

The correlation coefficient test can be improved by comparing the ordered observa-
tions with their expected values of a distribution. Let X(i) denote the ith smallest obser-
vation, E[X(i)] the expectation of it, and E [X] the expected value of the theoretical
population.

.. Density and expected value of order statistics
The density of f(i)(x) is (see, e.g., Harter, 1961)

f(i)(x) = n!
(i− 1)!(n− i)!

Fi−1(x) (1− F(x))n−i f (x)

and

E
[
X(i)

] = ∞∫
−∞

f(i)(x) dx.

The density of f(i)(x) can be simplified by

X(i) =d F−1
(
U(i)

)
, (3)

whereU ∼ U (0, 1) and F−1 is the quantile function of X . Because22

fU(i) (x) =
n!

(i− 1)!(n− i)!
xi−1 (1− x)n−i , x ∈ [0, 1] ,

the expected value of E[X(i)] can be reformulated (Sen, 1959) as

E
[
X(i)

] = n!
(i− 1)!(n− i)!

∫ 1

0
F−1(x)xi−1(1− x)n−i dx.

.. Correlation coefficient test for the Gompertz distribution
The correlation coefficient test has the null hypothesis

H0 : F(x) = G(x; θ ).
If X ∼ Gompertz(a, b), then

F−1(x) = 1
b
log

(
1− b

a
log(1− x)

)
, a, b > 0

 Plotting X[i] againstM[i] yields an approximately linear plot.
 Note that the distribution function, FU(i) (x) of the ith observation of a uniform distribution would be equal to the regularized
incomplete beta function, Ix(i, n− i+ 1) (Abramowitz and Stegun, , .).
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and

E
[
X(i)

] = n!
b(i− 1)!(n− i)!

∫ 1

0
log

(
1− b

a
log(1− x)

)
xi−1(1− x)n−i dx.

The expected value of the population is (Missov and Lenart, 2011)

E [X] = 1
b
e
a
b E1

(a
b

)
,

whereEn(z) =
∫∞
1 exp(−zt )/tn dt denotes the exponential integral (Abramowitz and Stegun,

1965, 5.1.4).
The estimated correlation coefficient is then

r̂
(
θ̂
)
=

∑n
i=1

(
X(i) − X̄

) (
E

[
X(i); θ̂

]
− E

[
X; θ̂

])
√∑n

i=1
(
X(i) − X̄

)2 ∑n
i=1

(
E

[
X(i); θ̂

]
− E

[
X; θ̂

])2
,

where θ̂ is themaximum likelihood estimate of θ = (a, b). The test statistic ranges from [0, 1]
and the null hypothesis is rejected if r̂ is lower than a critical value estimated by Monte Carlo
simulations (Table 1).

2.2 Anderson–Darling test

The Anderson and Darling (1952) test is based on the difference between the empirical and
the theoretical distribution function F(x) and G(x),

W 2 = n
∫ ∞
−∞

[F(x)− G(x)]2 ψ(x) dG(x),

whereψ(x) is a weight function. As Anderson andDarling (1952, p. 194) notes, forψ(x) := 1
W 2 will be the same as the Cramér-von Mises test statistic

T = 1
12n
+

n∑
i=1

{
2i− 1
2n
− G

[
X(i)

]}2

,

where X(i) is the ith smallest observation (Stephens, 1974). Other weight functions are also
used to test the goodness-of-fit of extreme value distributions (e.g., Stephens, 1977), most
notably ψ(x) := {G(x) [1− G(x)]}−1 that gives the Anderson–Darling test statistic (Shin
et al., 2011)

A2 = n
∫ ∞
−∞

[F(x)− G(x)]2

G(x) [1− G(x)]
dG(x)

= −n− 1
n

n∑
i=1
(2i− 1)

{
logG

(
X(i)

)+ log
[
1− G

(
X(n−i+1)

)]}
. (4)

.. Extensions of the Anderson–Darling test
For testing the mortality of heterogeneous populations, the modified Anderson–Darling test
statistic (Sinclair et al., 1990) is of interest. It attributes a different weight function for the
upper and the lower tail

AU 2 = n
∫ ∞
−∞

[F(x)− G(x)]2

1− G(x)
dG(x)
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Table . Correlation coefficient statistic. Empirical critical values of the correlation coefficient statistic.

a = 0.000001 a = 0.0001 a = 0.01

n α b = 0.08 b = 0.10 b = 0.12 b = 0.14 b = 0.08 b = 0.10 b = 0.12 b = 0.14 b = 0.08 b = 0.10

 . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

 . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

 . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

 . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

 . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

 . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

 . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

a = 0.01 a = 0.1 a = 0.2

n α b = 0.12 b = 0.14 b = 0.08 b = 0.10 b = 0.12 b = 0.14 b = 0.08 b = 0.10 b = 0.12 b = 0.14

 . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

 . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

 . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

 . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

 . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

 . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

 . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

= n
2
− 2

n∑
i=1

G
(
X(i)

)− n∑
i=1

(
2− 2i− 1

n

)
log

[
1− G

(
X(i)

)]
(5)

and

AL2 = n
∫ ∞
−∞

[F(x)− G(x)]2

G(x)
dG(x)

= −3n
2
+ 2

n∑
i=1

G
(
X(i)

)− n∑
i=1

2i− 1
n

logG
(
X(i)

)
, (6)
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respectively. In a model where individuals have different levels of frailty (Vaupel et al., 1979)
that acts multiplicatively on their baseline level of mortality, there would be more robust indi-
viduals (lower level of frailty) that would deviate in the upper tail from the homogeneous (all
individuals having the same frailty) distribution.

.. Anderson–Darling test for the Gompertz distribution
As previously, the null hypothesis of the Anderson–Darling test is

H0 : F(x) = G(x; θ ).
In case of the Gompertz distribution, θ = (a, b). By substituting

G(x; a, b) = 1− e−
a
b

(
ebx−1

)

in either (4), (5), or (6), the Anderson–Darling test statistic is immediately given. Large val-
ues of the statistic reject the null hypothesis. The critical values are defined by Monte Carlo
simulations (Table 2).

2.3 Moments test for the Gompertz distribution

An interesting, yet not very popular, goodness-of-fit test using moments was suggested by Li
and Papadopoulos (2002). Suppose X1, . . . ,Xn are i.i.d. random variables characterized by a
c.d.f. F(x). We test a null hypothesis

H0 : F belongs to a parametric family Fθ , θ ∈ 

Suppose the k-th (k ∈ N) momentmk =

∫
xkdFθ (x) of Fθ exists and

g(m1, . . . ,mk) = 0 ∀θ ∈ 

for some function g. Then

√
n g(m̂1, . . . , m̂k)→d N(0,V (θ ))

m̂i =
∑n

j=1 X
i
j/n denotes the sample moment of order i (i = 1, . . . , k) and

V (θ ) = ∇g(m1, . . . ,mk)
T � ∇g(m1, . . . ,mk),

where� = ||σi j||ki, j=1 has elements σi j = mi+ j −mimj and∇g(m1, . . . ,mk) denotes the gra-
dient of g. We can choose g(x, y, z) = z − 3xy+ x3 and construct the following statistic:

T =
√
n (m̂3 − 3m̂1m̂2 + 2m̂3

1)√
V (â, b̂)

−→
n→∞

N(0, 1),

where â and b̂ are the maximum likelihood estimates of the Gompertz parameters. For mi,
i = 1, . . . , 6 , we use the expressions calculated in Lenart (2012).

2.4 Nested test against the truncated generalized extreme value distribution for the
minima

Let fGEV (x) be truncated at x = 0 (Elandt-Johnson, 1976), then

ftGEV (x) = 1
σ

[
1+ ξ (−x−m)

σ

]− 1
ξ
−1

exp

{(
1− ξm

σ

)− 1
ξ −

[
1+ ξ (−x−m)

σ

]− 1
ξ

}
(7)
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Table . Anderson–Darling statistic. Empirical critical values of the Anderson–Darling statistic.

a = 0.000001 a = 0.0001 a = 0.01

n α b = 0.08 b = 0.10 b = 0.12 b = 0.14 b = 0.08 b = 0.10 b = 0.12 b = 0.14 b = 0.08 b = 0.10
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n α b = 0.12 b = 0.14 b = 0.08 b = 0.10 b = 0.12 b = 0.14 b = 0.08 b = 0.10 b = 0.12 b = 0.14
 . . . . . . . . . . .
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. . . . . . . . . . .
. . . . . . . . . . .
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Table . Alternative distributions. Density and support of alternative distributions.

Distribution Density Support

Weibull(x;a,b) a
b

( x
b

)a−1 e−( x
b
)a

[0,∞)
Log-normal(x;μ,σ ) 1

xσ
√
2π

e−
(log(x)−μ)2

2σ2 (0,∞)
Normal(x;μ,σ ) 1

σ
√
2π

e−
(x−μ)2
2σ2 (−∞,∞)
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Logistic(x;μ,σ ) 1
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Log-logistic(x;a,b) b
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a
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Inverse Gaussian(x;μ,λ)
(

λ

2πx3

) 1
2 e
−λ(x−μ)2

2μ2x (0,∞)
Gamma(x;k,σ ) 1

σ k�(k)
xk−1e−

x
σ (0,∞)

Gamma–Gompertz(x;a,b,γ ) aebx

1+γ a
b (e

bx−1)
[
1+ γ a

b

(
ebx − 1

)]− 1
γ [0,∞)

∗φ(·) and�(·) denote the normal density and distribution functions, respectively.

is the density function of the truncated generalized extreme value distribution for theminima
with support on [0,∞), wherem is the location, ξ is the shape, and σ is the scale parameter.

To test whether the Gompertz distribution fits the data as well as the truncated generalized
extreme value distribution for the minima,

H0 : ξ = 0

a likelihood ratio test is employed

−2 log
L

(
g(x; â, b̂)

)
L

(
ftGEV (x; â, b̂, ξ̂ )

) ∼ χ 2(1),

where L(·) denotes the likelihood function and g(·) the Gompertz distribution. The likeli-
hood ratio is evaluated at the maximum likelihood estimates of the two log-likelihood func-
tions and by Wilks (1938) the limiting distribution of the likelihood ratio test statistic is the
χ 2 distribution with degrees of freedom equal to the number of constraints under the null
hypothesis.

3. Power of the tests

To compare the tests, n = 50 and n = 200 samples were simulated from alternative distribu-
tions repeated 50,000 times each. For the density and support of the alternative distributions
please see Table 3. These alternative distributions were Weibull, log-normal, normal, logistic,
gamma, and GG distributions. As the main application area of the Gompertz distribution is
the analysis of life times, two sets of parameter values of the alternatives were each chosen as
likely parameters describing current human longevity distributions with modal age at death
and life expectancy (i.e., expected value) either about 80–85 years (Canudas-Romo, 2000) or
remaining life expectancy of about 5 years and Gompertz b parameter 0.1–0.13 (Canudas-
Romo, 2000; Barbi, 2003). The former case might correspond to a 0 starting age of observa-
tion and it is termed negatively skewed Gompertz in Tables 4 and 5. The latter case might
rather describe situations when the youngest observed individual is 85 years old and the cor-
responding power comparisons can be found under positively skewed Gompertz in Tables 4
and 5.
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Table . Small sample power comparisons. Power of the goodness-of-fit statistics against alternative distri-
butions with n = 50, α = 0.05.

Alternatives for a negatively skewed Gompertz distribution r AD M LR

Weibull(,) . . . .
Log-normal(.,.) . . . .
Normal(,) . . . .
Logistic(,) . . . .
Log-logistic(,) . . . .
Inverse Gaussian(,) . . . .
Gamma(,.) . . . .
Gamma-Gompertz(.,.,.) . . . .
Gompertz(.,.) . . . .

Alternatives for a positively skewed Gompetz distribution r AD M LR

Weibull(.,) . . . .
Truncated Normal(,,,∞) . . . .
Inverse Gaussian(,.) . . . .
Log-logistic(,.) . . . .
Gamma(.,.) . . . .
Gamma-Gompertz(.,.,.) . . . .
Gompertz(.,.) . . . .

TheWeibull distribution is an asymmetric distribution often used in survival analysis and
reliability engineering. The mode of Weibull(10,80) is 79.2 with fitted Gompertz b ≈ 0.125.
The expected value ofWeibull(1.5,6) that corresponds to the positively skewedGompertz case
is 5.4

The log-normal distribution is also asymmetrical and used as a statistical model for life
times (Lawless, 2011). The modal age at death in a log-normal(4.4,0.01) life time distribution
would be about 81.4 and estimate of Gompertz b ≈ 0.11. As its density function is not likely to
characterize an observed density of a positively skewedGompertz distribution, it was dropped
from the list of alternatives to test the power of positively skewed Gompertz distributions.

Adult life times were often assumed to follow a normal distribution (Véron andRohrbasser
(2003) citingWilhelm Lexis) with standard deviation 9.3 (Ediev (2012) citingWilhelm Lexis)

Table . Larger sample power comparisons. Power of the goodness-of-fit statistics against alternative dis-
tributions with n = 200, α = 0.05.

Alternatives for a negatively skewed Gompertz distribution r AD M LR

Weibull(,) . . . .
Log-normal(.,.) . . . .
Normal(,) . . . .
Logistic(,) . . . .
Log-logistic(,) . . . .
Inverse Gaussian(,) . . . .
Gamma(,.) . . . .
Gamma-Gompertz(.,.,.) . . . .
Gompertz(.,.) . . . .

Alternatives for a positively skewed Gompetz distribution r AD M LR

Weibull(.,) . . . .
Truncated Normal(,,,∞) . . . .
Inverse Gaussian(,.) . . . .
Log-logistic(,.) . . . .
Gamma(.,.) . . . .
Gamma-Gompertz(.,.,.) . . . .
Gompertz(.,.) . . . .
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and modal age at death 80 for modern populations. However, in the case a positively skewed
Gompertz distribution as the support of the normal distribution is on (−∞,∞), a signifi-
cant portion of a likely alternative normal distribution’s probability density would be on the
negative axis. Therefore, instead of the normal distribution, a truncated normal distribution
from below at 0 was used as an alternative.

The logistic distribution is often cited as the observed shape of the hazard function inmany
biological studies (Wilson, 1994) and logistic (80,5) yield a similar but less dispersed distribu-
tion of life times as the normal (80,10). However, similarly to the normal distribution, it has
support on the whole real axis and cannot be used as an alternative for the positively skewed
Gompertz case.

The log-logistic and inverse Gaussian distributions are also sometimes used as sur-
vival distributions (Folks and Chhikara, 1978; Bennett, 1983). The log-logistic(81,15), log-
logistic(5,1.8), inverse Gaussian(81,4554), and inverse Gaussian(6,1.6) distributions have a
modal value of 80.3, 2.5, 81, and 5, respectively.

The gamma distribution has a flexible shape and is also used as a life time distribution
(Lawless, 2011) with gamma (71,1.1) giving modal longevity of 77 and fitted Gompertz b
parameter≈ 0.12. Themodal value of gamma (1.5,0.25) is 0.125. TheGGdistribution (Vaupel
et al., 1979) is a generalized form of the Gompertz distribution with a logistic shape of the
hazard. A GG (0.001,0.1,0.2) correspond to the distribution of remaining lifespan of modern
populations at about age 70 (Missov, 2013). The GG (0.1,0.1,0.2) relate to the remaining life
time of current populations at about age 85. Note that the normal and the logistic distributions
are the only symmetric distributions among the alternatives for the power comparison.

The most powerful test was the Anderson–Darling test for all except the Weibull and the
GG distributions. Not surprisingly, the likelihood ratio test was the best to identify the differ-
ences between the Gompertz and the Weibull distribution and was also effective against the
GG distribution. Themodified Anderson–Darling test, with emphasis on the upper tail of the
distribution could distinguish between Gompertz and GG distributions 12% of the samples
of size 50.

The rejection rate of the tests increases for larger samples with the exception of the test for
the sample mean. It seems that the most powerful tests for the Gompertz distribution are the
Anderson–Darling and the correlation coefficient tests, especially if they tests against a less
related distribution (log-normal, normal, logistic, or gamma). If the test is against a related
distribution such as Weibull or GG, the efficiency of all tests drop. Against the Weibull dis-
tribution, the likelihood ratio against the generalized extreme value distribution works the
best, its efficiency is lower for the GG model as the test is not explicitly against it. When the
alternative is a positively skewedWeibull distribution, all of the tests perform better. It is more
difficult to evaluate the power of the likelihood ratio test against non extreme value distribu-
tions. It has a relatively high rejection rate against all of the other distribution but it is not an
appropriate test against them as they are not members of the family of extreme value distri-
butions. It is especially apparent against the test of inverse Gaussian(6,1.6). The moments test
performs best in the Weibull and GG cases, yet has the weakest power in all other settings.

4. Application: Goodness-of-fit to laboratory rat data

The goodness-of-fit tests defined above can be readily used to check if empirical data is
Gompertz distributed. As an example, individual life span data of rats will be used. The
analyzed data was collected by Vladimir N. Anisimov at the N.N. Petrov Research Insti-
tute of Oncology, St. Petersburg, Russia, to test carcinogenicity and it is now published in
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Figure . Hazard and survival of the rat data. On the left panel, the solid line corresponds to the non para-
metric hazard estimate, the dashed line to the Gompertz fit, and the dotted lines are the % confidence
intervals of the fitted Gompertz hazard.

Table . Rat survival. Descriptive statistics of life spans of  female and  male rats (days).

Sex n Min q1 x̃ x̄ q3 Max s IQR

Female  . . . . . . . 
Male  . . . . . . . 

the Biodemographic Database (BDB). Here we will use only the rats in the control group,
n = 51 females and n = 46 males. The data is fully observed and the number of survivors
was recorded every day. Please see Fig. 2 for the estimated hazard and the Kaplan–Meier sur-
vival function and Table 6 for descriptive statistics of the dataset. The hazard estimation was
carried out by the same varying kernel width estimation procedure as mentioned earlier. The
Gompertz fit to the data show very wide confidence intervals which were estimated by the
delta method.

The goodness-of-fit statistics in general do not reject the null hypothesis that both the dis-
tribution of death of both the male and the female rats is Gompertz (Table 7). While the
maximum likelihood estimate of a of the male rats is higher than â of the female rats, the
estimated daily rate of aging parameter, b̂ is lower, leading to a cross-over of mortality later
in life (Fig. 2). This result is corroborated by the non parametric estimates. However, because
of the low sample size, the confidence bands are very wide. In spite of that, by looking at the
goodness-of-fit statistics and their respective critical values in the Appendix, it can be seen

Table . Goodness-of-fit of the rat data. Calculated Gompertz goodness-of-fit test statistics to the dataset
of  female and  male rats (in parentheses the associated p-values).

Sex â b̂ μ̄
α=0.01 r AD M LR

Female .× 10−5 . −.–. . . −. .
Male .× 10−3 . −.–. . . −. .
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that the null is not rejected either by the Anderson–Darling (0.384 < 0.63 and 0.55 < 0.62)
and the correlation coefficient (0.991> 0.973 and 0.983> 0.976) test statistics at α = 0.1. The
likelihood ratio test also confirms that the Gompertz distribution fits the data as well as the
generalized extreme value distribution (its shape parameter equals to 0) at α = 0.1 for both
females (0.895 < 2.71) and males (2.165 < 2.71). The moments test similarly does not reject
the null withM = −1.149 (p = 0.251) andM = −0.833 (p = 0.405) for females and males,
respectively.

5. Discussion

The comparison of the power of the tests show that the Anderson–Darling statistic is the
most powerful in rejecting the null that the empirical distribution comes from the Gompertz
distribution when it was simulated from an alternative distribution. The Anderson–Darling
statistic implemented by its computing formula is also the simplest and the quickest to run,
and an important advantage of it is that for low values of a, the distribution of the statistic is
independent from the Gompertz a and b parameters.

The correlation coefficient test also efficiently refutes other alternative distributions, how-
ever, when the alternative distribution is closely related to the Gompertz, such as in the case of
Weibull and GG distributions, the power of the correlation coefficient test drops. As Legates
and McCabe (1999) noted, the tests based on correlation are overly sensitive to outliers and
insensitive to proportional differences between the expected and the observed values.

Juxtaposed with the results for the Gumbel distribution (Pérez-Rodríguez et al., 2009), the
Kullback–Leibler test, not shown here, performs unexpectedly poorly relative to the other
tests. The main disadvantage of the Kullback–Leibler test lies in the estimation of the sample
entropy. The critical values obtained by the numerical procedure of Song (2002) vary sub-
stantially from dataset to dataset with similar sample sizes.

The likelihood ratio test is a powerful test when the alternative distribution is from the
generalized extreme value family. A positive externality of the test is that the shape parameter
of the generalized extreme value distribution, ξ has to be estimated during the testing proce-
dure. If ξ < 0 and the likelihood ratio at the chosen significance level rejects the null hypoth-
esis that ξ = 0, than the empirical distribution can be better fitted by a Weibull distribution
than by a Gompertz. If ξ > 0, the empirical distribution is more likely to be Fréchet-type than
Gompertz (Jenkinson, 1955).
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Appendix. Empirical critical values

The Gompertz distribution is a truncated Gumbel distribution for the minima. The Gum-
bel distribution is a member of the location-scale family of distributions, therefore its test
statistics are independent of the location or scale parameters and simple Monte Carlo meth-
ods yield unbiased empirical critical values (Pérez-Rodríguez et al., 2009). However, as the
Gompertz distribution is truncated from below at 0, its parameters are negatively correlated
(Strehler and Mildvan, 1960; Lestienne, 1988) and it ceases to come from the location-scale
family. Simply sampling from the distribution function would give biased critical values for



2934 A. LENART AND T. I. MISSOV

the test statistics. In this case, the distribution of the test statistic should be simulated “after
replacing the nuisance parameters by a consistent point estimate” (Dufour, 2006, 446) such as
the maximum likelihood estimate.

Therefore, empirical critical values were calculated by parametric bootstrapping (Hall,
1992) where N∗ = 7, 000 samples were drawn from the Gompertz distribution for each
combination of a = {0.000001, 0.0001, 0.01, 0.1, 0.2}, b = {0.08, 0.1, 0.12, 0.14}, and sam-
ple size n = {50, 75, 100, 150, 200, 300, 500, 1000}. Following a maximum likelihood esti-
mation to each sample, NB∗ = 1, 000 samples were simulated from Gompertz(â, b̂) with the
fitted parameters â and b̂ and their respective correlation coefficient and Anderson–Darling
test statistics were calculated.Finally, the empirical critical values of the test statistics were
calculated as the means of the (1− α)-quantiles of the test statistics. Algorithm 1 shows the
structure of the simulations in pseudocode.

The empirical critical values show that the distribution of the test statistics are independent
of parameter bwhen parameter a is relatively small compared to it as in this case theGompertz
distribution behaves as a Gumbel distribution for the minima. However, when parameter a
becomes large relative to parameter b, the distribution of the test statistics depend on both
parameters.

Algorithm 1 Calculation of empirical critical values by parametric bootstrapping
Require: n > 0, a > 0, b ∈ R, 0 < α < 1, N∗ > 0, NB∗ > 0
Define vector of n, a, b, α, N = 0 and NB = 0
for each n do
for each a do
for each b do
repeat
simulate Gompertz(a,b) of size n
Fit Gompertz(a,b) by ML and obtain MLEs â and b̂
repeat
simulate Gompertz(â, b̂) of size n
calculate r and AD
NB← NB+ 1

until NB = NB∗

cr,n,a,b,α,N ← (1− α)-quantile of rn,a,b
cAD,n,a,b,α,N ← (1− α)-quantile of ADn,a,b

N ← N + 1
until N = N∗

for each α do
cr,n,a,b,α ← 1

N

N∑
i=1

cr,n,a,b,α,N

cAD,n,a,b,α ← 1
N

N∑
i=1

cAD,n,a,b,α,N

end for
end for

end for
end for
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A. Critical values of the correlation coefficient statistic
For sample sizes over 300, the critical values of the correlation coefficient statistic was omitted
as the numerical computation of the statistic is not entirely reliable as it requires to calculate
high values of factorials. In practice, the n!/b(i− 1)!(n− i)! term can be more efficiently
calculated by 1/β(i, (n− i+ 1)) as the beta function can be counted until higher values than
the factorials separately. For even larger samples, the samples can be drawn from the quantile
function by (3) by noting that the rank percentiles (rank of the observation divided by sample
size+1) are also bounded by 0 and 1 (see, e.g., Kinnison, 1989).

A. Critical values of the Anderson–Darling statistic
Please note that the Anderson–Darling statistics are stable over all low values of â and increas-
ing by â. The critical values also increase slightly as the sample size increases. Similar trend
was found by Shin et al. (2011) for the modified Anderson–Darling test.

References

Abramowitz, M., Stegun, I. (1965). Handbook of Mathematical Functions. Washington, DC: US Gov-
ernment Printing Office.

Anderson, T., Darling, D. (1952). Asymptotic theory of certain “goodness of fit” criteria based on
stochastic processes. Ann. Math. Stat. 23:193–212.

Bali, T. (2003). The generalized extreme value distribution. Econ. Lett. 79:423–427.
Barbi, E. (2003). Trajectories of extreme survival in heterogeneous populations (English edition). Pop-

ulation 58:43–66.
Benjamin, B., Haycocks, H., Pollard, J. (1980). The Analysis of Mortality and Other Actuarial Statistics.

London: Heinemann.
Bennett, S. (1983). Log-logistic regression models for survival data. Appl. Stat. (2):165–171.
Canudas-Romo, V. (2000). The modal age at death and the shifting mortality hypothesis. Demogr. Res.

19:1179–1204.
Doblhammer,G. (2000). Reproductive history andmortality later in life: a comparative study of england

and wales and austria. Popul. Stud. 54:169–176.
Dufour, J.-M. (2006). Monte carlo tests with nuisance parameters: a general approach to finite-sample

inference and nonstandard asymptotics. J. Economet. 133:443–477.
Ediev, D.M. (2012). A note on the compression of mortality. In: Annual Meeting of the Population Asso-

ciation of America 2012, San Francisco.
Elandt-Johnson, R. (1976). Conditional failure time distributions under competing risk theory with

dependent failure times and proportional hazard rates. Scand. Actuarial J. 1976:37–51.
Erdélyi, A. (1953). Higher Transcendental Functions (Vol. 1). New York: McGraw-Hill.
Filliben, J. (1975). The probability plot correlation coefficient test for normality. Technometrics 17:111–

117.
Finch, C., Pike, M. (1996). Maximum life span predictions from the Gompertz mortality model. J.

Gerontol. Ser. A: Biol. Sci. Med. Sci. 51:B183.
Finch, C., Pike, M., Witten, M. (1990). Slow mortality rate accelerations during aging in some animals

approximate that of humans. Science (New York, NY) 249:902.
Folks, J., Chhikara, R. (1978). The inverse Gaussian distribution and its statistical application – a review.

J. R. Stat. Soc. Ser. B (Methodol.) (3):263–289.
Garg,M., Rao, B., Redmond, C. (1970).Maximum-likelihood estimation of the parameters of the Gom-

pertz survival function. J. R. Stat. Soc. Ser. C (Appl. Stat.) 19:152–159.
Gringorten, I. (1963). A plotting rule for extreme probability paper. J. Geophys. Res. 68:813–814.
Hall, P. (1992). The Bootstrap and Edgeworth Expansion. New York: Springer.
Harter, H. (1961). Expected values of normal order statistics. Biometrika 48:151–165.
Hirsch, H., Peretz, B. (1984). Survival and aging of a small laboratory population of a marine mollusc,

Aplysia californica.Mech. Ageing Dev. 27:43–62.



2936 A. LENART AND T. I. MISSOV

Honda, S.,Matsuo,M. (1992). Lifespan shortening of the nematodeCaenorhabditis elegansunder higher
concentrations of oxygen.Mech. Ageing Dev. 63:235–246.

Hosking, J. (1984). Testing whether the shape parameter is zero in the generalized extreme-value dis-
tribution. Biometrika 71:367–374.

Jenkinson,A. (1955). The frequency distribution of the annualmaximum(orminimum) values ofmete-
orological elements. Quart. J. R. Meteorol. Soc. 81:158–171.

Kinnison, R. (1989). Correlation coefficient goodness-of-fit test for the extreme-value distribution.Am.
Statist. 43:98–100.

Landwehr, J., Matalas, N., Wallis, J. (1979). Probability weighted moments compared with some tradi-
tional techniques in estimating Gumbel parameters and quantiles. Water Resources Res. 15:1055–
1064.

Lawless, J. F. (2011). Statistical Models and Methods for Lifetime Data (2nd ed.). Hoboken, NJ: Wiley-
Interscience.

Legates, D., McCabe, Jr, G. (1999). Evaluating the use of “goodness-of-fit” measures in hydrologic and
hydroclimatic model validation.Water Resources Res. 35:233–241.

Lenart, A. (2012). The moments of the Gompertz distribution and maximum likelihood estimation of
its parameters. Scand. Actuarial J. doi:10.1080/03461238.2012.687697.

Lestienne, R. (1988). On the thermodynamical and biological interpretation of the Gompertzian mor-
tality rate distribution.Mech. Ageing Dev. 42:197–214.

Li, G., Papadopoulos, A. (2002). A note on goodness of fit tests using moments. Statistica 1:71–86.
Milgram, M. (1985). The generalized integro-exponential function.Math. Comput. 44:443–458.
Missov, T., Lenart, A. (2011). Linking period and cohort life-expectancy linear increases in Gompertz

proportional hazards models. Demogr. Res. 24:455–468.
Missov, T. I. (2013). Gamma-Gompertz life expectancy at birth. Demogr. Res. 28:259–270.
Pérez-Rodríguez, P., Vaquera-Huerta, H., Villaseñor-Alva, J. (2009). A goodness-of-fit test for the gum-

bel distribution based on Kullback–Leibler information. Commun. Stat. Theory Methods 38:842–
855.

Perozek, M. (2008). Using subjective expectations to forecast longevity: do survey respondents know
something we don’t know? Demography 45:95–113.

Pollard, J., Valkovics, E. (1992). The Gompertz distribution and its applications. Genus 48:15–29.
Preston, S., Heuveline, P., Guillot, M. (2001). Demography: Measuring and Modeling Population Pro-

cesses. Oxford: Blackwell.
Promislow, D. (1991). Senescence in natural populations of mammals: a comparative study. Evolution.

(8):1869–1887.
Ricklefs, R., Scheuerlein, A. (2002). Biological implications of the Weibull and Gompertz models of

aging. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 57:B69–B76.
Sen, P. (1959). On the moments of the sample quantiles. Calcutta Stat. Assoc. Bull. 9:1–19.
Shin, H., Jung, Y., Jeong, C., Heo, J. (2011). Assessment of modified Anderson–Darling test statistics for

the generalized extreme value and generalized logistic distributions. Stochastic Environ. Res. Risk
Assess. 26:105–114.

Sinclair, C., Spurr, B., Ahmad,M. (1990).ModifiedAndersonDarling test.Commun. Stat.-TheoryMeth-
ods 19:3677–3686.

Song, K. (2002). Goodness-of-fit tests based on Kullback-Leibler discrimination information. IEEE
Trans. Inf. Theory 48:1103–1117.

Stephens,M. (1974). EDF statistics for goodness of fit and some comparisons. J. Am. Stat. Assoc. 69:730–
737.

Stephens, M. (1977). Goodness of fit for the extreme value distribution. Biometrika 64:583–588.
Strehler, B. L., Mildvan, A. S. (1960). General theory of mortality and aging. a stochastic model relates

observations on aging, physiologic decline, mortality, and radiation. Science 132(3418):14–21.
Thatcher, A. (1999). The long-term pattern of adult mortality and the highest attained age. J. R. Stat.

Soc.: Ser. A (Stat. Soc.) 162:5–43.
Vaupel, J. (1986). How change in age-specific mortality affects life expectancy. Popul. Stud. 40:147–157.
Vaupel, J., Manton, K., Stallard, E. (1979). The impact of heterogeneity in individual frailty on the

dynamics of mortality. Demography 16:439–454.
Véron, J., Rohrbasser, J. (2003). Wilhelm lexis: the normal length of life as an expression of the nature

of things (English edition). Population 58:303–322.

http://dx.doi.org/10.1080/03461238.2012.687697


COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 2937

Vogel, R. (1986). The probability plot correlation coefficient test for the normal, lognormal, and gumbel
distributional hypotheses.Water Resources Res. 22:587–590.

Watterson, I., Dix, M. (2003). Simulated changes due to global warming in daily precipitation means
and extremes and their interpretation using the gamma distribution. J. Geophys. Res 108:3-1–3-20.

Wilks, S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses.
Ann. Math. Stat. 9:60–62.

Willekens, F. (2001). Gompertz in context: the Gompertz and related distributions. In: Tabeau, E., van
den Berg Jeths, A., Heathcote, C., eds. Forecasting Mortality in Developed Countries – Insights from
a Statistical, Demographic and Epidemiological Perspective, European Studies of Population(Vol. 9,
pp. 105–126). Dordrecht (Netherlands): Kluwer Academic Publishers.

Willemse, W., Koppelaar, H. (2000). Knowledge elicitation of Gompertz’ law of mortality. Scand. Actu-
arial J. 2000:168–179.

Wilson, D. (1994). The analysis of survival (mortality) data: fitting Gompertz, Weibull, and logistic
functions.Mech. Ageing Dev. 74:15–33.

Witten, M., Satzer, W. (1992). Gompertz survival model parameters: estimation and sensitivity. Appl.
Math. Lett. 5:7–12.


	Abstract
	1.Introduction
	1.1.Properties of the Gompertz distribution

	2.Goodness-of-fit tests
	2.1.Correlation coefficient test
	2.2.Anderson–Darling test
	2.3.Moments test for the Gompertz distribution
	2.4.Nested test against the truncated generalized extreme value distribution for the minima

	3.Power of the tests
	4.Application: Goodness-of-fit to laboratory rat data
	5.Discussion
	Appendix. Empirical critical values

	References

