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ABSTRACT
This note proposes a new criterion for the determination of the num-
ber of factors in an approximate static factor model. The criterion is
strongly associated with the scree test and compares the differences
between consecutive eigenvalues to a threshold. The size of the
threshold is derived from a hyperbola and depends only on the sample
size and the number of factors k. Monte Carlo simulations compare its
properties with well-established estimators from the literature. Our cri-
terion shows similar results as the standard implementations of these
estimators, but is not prone to a lack of robustness against a too large
a priori determined maximum number of factors kmax.
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1. Introduction

A wide range of methods has been proposed to determine the number of common fac-
tors for static approximate factor models concerning a data set with a large number of
cross-section units (n) and time series observations (T). Bai and Ng (2002) propose to
estimate the number of factors (r) by minimizing information criterion functions
employing a penalty that depends on both n and T. Onatski (2010) develops data-
dependent methods for a threshold value, which ideally should be slightly larger than

the magnitude of the ðr þ 1Þth eigenvalue. Both methods require a pre-specified max-
imum possible number of factors. Ahn and Horenstein (2013) propose to look at ratios
of eigenvalues thereby circumventing the need to specify a threshold.1

Similar to the latter two methods, our criterion for the determination of the number
of factors is strongly associated with the scree test of Cattell (1966), which consists of
plotting the eigenvalues kk of the scaled sample covariance matrix in descending order
of magnitude against their corresponding ordinal eigenvalue numbers k, and deciding at
which r they level off. The break between the ‘steep’ slope to the left of r and the level-
ing off to the right indicates an ‘elbow’ in the graph.

CONTACT Jan P. A. M. Jacobs j.p.a.m.jacobs@rug.nl Faculty of Economics and Business, University of Groningen,
PO Box 800, 9700 AV Groningen, the Netherlands.�The present version of this note has benefited from suggestions of anonymous referees, Paul Bekker, Kees Bouwman,
Tom Wansbeek and Mark Watson, and from comments received following several conferences, workshops and seminars.
Moreover, we thank Alexei Onatski for providing his simulation code. Views expressed are those of the individual
authors and do not necessarily reflect official positions of Sveriges Riksbank.
� 2020 The Author(s). Published with license by Taylor & Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS
2021, VOL. 50, NO. 18, 4293–4299
https://doi.org/10.1080/03610926.2020.1713376

http://crossmark.crossref.org/dialog/?doi=10.1080/03610926.2020.1713376&domain=pdf&date_stamp=2021-08-09
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.tandfonline.com


Our proposed criterion is based on the comparison of surfaces under the scree plot.
Like Onatski (2010), we look for the maximum k for which the difference between adja-
cent eigenvalues, i.e., kk � kkþ1 is larger than its corresponding threshold, i.e., �kkþ1:

Based on a no-factor structure benchmark, the threshold �kkþ1 is derived as the recipro-
cal function of kþ 1, horizontally scaled by an harmonic number. Hence, the corre-
sponding benchmark scree plot f�kkþ1, kþ 1g, for all k is an hyperbola, which does not
show an ‘elbow’. In accordance with Bai and Ng (2002), our proposed threshold �kk is a
function only of sample size n and T and thereby, unlike Onatski (2010), not data-
dependent. Moreover, as our proposed threshold �kkþ1 varies with k, there is no need to
pre-specify a maximum number of factors kmax.
The rest of the note is structured as follows. Section 2 derives our criterion as an

application of Onatski (2010). Section 3 compares our criterion with the ones of Bai
and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013) in a Monte Carlo simu-
lation. Section 4 concludes.

2. Method

Let the approximate factor model with the number of unobserved factors r be given by

X ¼ KF0 þ n (1)

where X is an n�T matrix with observations, n an n�T matrix with idiosyncratic
components. The common components are determined by the matrix of factor loadings
K and the matrix of factors F with rank r. The scaled sample covariance matrix XX0=nT
has eigenvalues in descending order of their magnitude k1 � ::: � kn:

2

Let
Pk

j¼1 kj be the cumulative explanatory power of the first k factors, which can be

rewritten as
Pk

j¼1 kj ¼ kkk þ
Pk

j¼1ðkj � kkÞ: Define JðkÞ � kkk, which can be inter-

preted as the minimum possible explanatory power of the k factors. Define the no-fac-
tor structure benchmark as the condition that JðkÞ ¼ JðlÞ, 8k, l: For the corresponding
eigenvalues �kk, it then holds that �k1 ¼ k�kk: Moreover, the unity sum of scaled eigenval-
ues 1 ¼ Pn

j¼1
�kj ¼ �k1Hn, with harmonic number Hn ¼

Pn
j¼1

1
j enables to quan-

tify �kk ¼ 1
kHn

:

Figure 1 shows the hyperbola �k together with the empirical scree plot k obtained
from a simulated factor-model with r¼ 3. Decomposing kk ¼ �kk þ dk, the figure shows
that the first r diverging eigenvalues explain by assumption more than their no-factor
benchmark equivalents, i.e., dk � 0 for k � r: As by definition

Pr
j¼1 dj ¼ �Pn

j¼rþ1 dj,

the empirical scree plot k must cross the hyperbola �k: As it holds that kr � krþ1 ¼
dr � drþ1 þ wðrÞ, a lower bound wðrÞ ¼ 1

rðrþ1ÞHn
can be obtained for the empirical scree

plot between the points of crossing, i.e., between k¼ r and k ¼ r þ 1: However, we pro-
pose a tighter threshold as r � wðrÞ ¼ �krþ1, thereby requiring that the difference
between kr and krþ1 meets the cumulative minimum of the r preceding eigenvalues.
The approach fits within Onatski’s (2010, Equation (10)) family of estimators:

r̂ðâðnkÞ, kmaxÞ ¼ maxfk � kmax : kk � kkþ1 � âðnkÞg (2)
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with constant âðnkÞ obtained by a regression involving nk:3 Onatski (2010, p1007)
writes in his Theorem 1 that for k> r, nkk is finite and that the difference nðkk � kkþ1Þ
converges to zero, while the difference nðkr � krþ1Þ diverges to infinity with probability
one as n,T ! 1:

We propose ~rð~að�k, kÞÞ, which deviates from r̂ðâðnkÞ, kmaxÞ in three ways: i) the vary-
ing threshold ~að�k, kÞ ¼ �kkþ1 ¼ 1

ðkþ1ÞHn
is a function of the ordered eigenvalue number k

that converges to zero for either k, minfn,Tg ! 1, while Onatski’s (2010) threshold is
constant 8k; ii) the threshold ~að�k, kÞ is a function of Hn and can thereby a priori be
determined as a function of sample size fn,Tg, while Onatski’s (2010) threshold âðnkÞ
is a function of the empirical k and can thereby only be determined a posteriori; and
iii) as kk � kkþ1 � kk � �kk, the varying threshold cannot be passed (apart from random
error) for k> r. So, there is no need to specify a kmax parameter even though ~að�k, kÞ !
0 for k ! 1:

3. Monte Carlo simulation

We compare finite-sample simulations of our proposed criterion with the estimators
proposed by Bai and Ng (2002) (BN),4 Onatski (2010) (ON) and the two alternatives
proposed by Ahn and Horenstein (2013), the Eigenvalue Ratio (ER) and the Growth
Ratio (GR). The ER estimator of k is obtained by maximizing the ratio of two adjacent
eigenvalues arranged in descending order.
We employ the data generating process as specified in Ahn and Horenstein (2013),

which is also used by Onatski (2010). The foundation of the simulation exercise is the
following approximate factor model:

xit ¼
Xr

j¼1

bijfjt þ
ffiffiffi
h

p
uit; uit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1þ 2Jb2

s
eit (3)

Figure 1. Graphical illustration of our criterion in a scree plot. Find the maximum k for which the dif-
ference between adjacent eigenvalues, i.e., kk � kkþ1 (blue plus yellow-blue) is larger than its corre-
sponding threshold, i.e., �kkþ1 (yellow plus yellow-blue).
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where eit ¼ qei, t�1 þ ð1� bÞ�it þ b
PminðiþJ, nÞ

h¼maxði�J, 1Þ �ht and the �ht, bij and fjt are all drawn

from Nð0, 1Þ: The idiosyncratic components uit are normalized such that their variances
are equal to one for most of the cross-section units J.5 The control parameter h is the
inverse of the signal to noise ratio (SNR) for the individual factors because

varðfjtÞ=var
ffiffiffi
h

p
uit

� �
¼ 1=h: The magnitude of the time series correlation in the idiosyn-

cratic component is controlled by parameter q. Note that Equation (3) describes an
approximate static factor model and assumes no autocorrelation for the factors.
Parameter b governs the magnitude of cross-sectional correlation and parameter J the
number of correlated units. We will focus on the specification with r¼ 3 factors, h¼ 1
and both serially and cross-sectionally correlated errors, q ¼ 0:5, b ¼ 0:2, J ¼
maxð10, n=20Þ: Despite the fact that the means of the factors, the factor loadings and
the idiosyncratic component are all zero in the data generating process (3), we use dou-

ble demeaned data, i.e., xit � T�1 P xit � n�1 P xit þ ðnTÞ�1 P xit , in order to avoid
the one-factor bias problem as identified by Brown (1989).6

3.1. Simulation results

Based on 1000 simulations for each of the sample sizes in the grid
n ¼ T ¼ 25, 50, 75, 100, 150, 200, 300, 500, 7 we compute the estimated number of factors

k̂, i.e., the mode, and three performance statistics, the mean error, the root mean
squared error (RMSE) and the frequency of incorrect estimated number of factors. To

illustrate the measures, suppose 1000 simulations produce 700 correct outcomes of k̂ ¼

Figure 2. Performance of different estimators. Note. The different estimators consist of our proposed
criterion (CRIT), Ahn and Horenstein’s (2013) Eigenvalue Ratio (ER) and Growth Ratio (GR) and
Onatski’s (2010) estimator (ON) and Bai and Ng (2002)’s BIC3 estimator (BN). The number of factors is
determined by an argument search up to a maximum of kmax ¼ 8 factors (straight lines), alternatively
kmax ¼ 20 factors (dotted lines). Note that the dotted lines for BN lie outside the graph.
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3, 200 outcomes of k̂ ¼ 2 and 100 outcomes of k̂ ¼ 4, the latter two both incorrect.
Then the mean error equals 0.1, the RMSE is the square root of 0.3 and the frequency
of incorrect estimated number of factors is 0.3.
Figure 2 shows the performance statistics for the five estimators considered, where

the argument search is performed over k ¼ 1, :::, kmax with the standard specification of
kmax ¼ 8. As a robustness check, the three dotted lines show the equivalent statistics for
the case kmax ¼ 20. The figure shows that our proposed criterion compares well to the
alternatives in the standard simulation. First, as documented by Ahn and Horenstein
(2013) the BN alternative does not perform so well in case the idiosyncratic component
exhibits cross-sectional correlation. Second, the other alternatives show not to be robust
against the case kmax ¼ 20. Especially the ER and GR alternatives reveal small sample
sensitivity. As ER and GR consist of fractions with eigenvalues in the denominator,
both are sensitive to small random changes in case kk � 1, i.e., for large kmax.
Onatski’s (2010) estimator of the threshold âðnkÞ involves a regression on the empirical
k and hence, incorporates random instabilities in case of a large kmax.
Figure 3 shows the results of the simulation with a lower signal to noise ratio of

h¼ 2. For this edge case, all the estimators exhibit poor small-sample performance. For
medium to large sample sizes, the performance of the different alternatives is more
similar with exception of the BN-estimator. The ER and GR estimators with the argu-
ment search up to kmax ¼ 8 show some outperformance, but still exhibit a lack of
robustness against this parameter.
Finally, Figure 4 shows the results of the simulation with a higher number of factors

r¼ 5. Here again, the ER and GR estimators show some outperformance apart from the
case with small samples and a high kmax ¼ 20. Note moreover that our proposed criter-
ion shows a similar performance as compared to Onatski’s (2010) estimator.

Figure 3. Performance of different estimators (cont.). Note. Similar to Figure 3 though for simulation
with a lower signal to noise ratio of h¼ 2.
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As an empirical application, we employed the different estimators on the latest vin-
tage of FRED-MD, see McCracken and Ng (2016). This large macroeconomic database
is sampled at a monthly frequency, updated monthly using the Federal Reserve Data
(FRED) database and thereby publicly accessible.8 Based on this database consisting of
n¼ 128 series with T¼ 725months of observations, the estimated number of static fac-
tors vary between one for CRIT, two for ER and GR, five for ON and finally BN says
eight, all estimated with kmax ¼ 20. The difference in results might be due to stochas-
tics, i.e., n is relatively small, while T relatively large, possibly a dynamic factor struc-
ture9 or non linearities in the data.

4. Conclusion

This note presents a simple criterion to select the number of factors in an approximate
static factor model, based on the comparison of surfaces under the scree plot. The
criterion is an application of Onatski (2010), but with a varying threshold that is not
data-dependent and only related to the sample size. In contrast to the alternatives, our
proposed criterion does not require a pre-specified maximum number of factors kmax.
Standard Monte Carlo simulations reveal a performance in line with the alternatives

proposed by Onatski (2010) and the two alternatives of Ahn and Horenstein (2013).
However, the alternatives show a lack of robustness against larger values of kmax.

Notes
1. Recent contributions include Wu (2018) and Choi and Jeong (2019).
2. In case n>T, then ki ¼ 0 for i>T. Without loss of generality, we assume n � T for ease

of notation.

Figure 4. Performance of different estimators (cont.). Note. Similar to Figure 3 though for simulation
with a higher number of factors r¼ 5.
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3. Note that Onatski (2010) employs eigenvalues of the non scaled sample covariance matrix
XX0=T, i.e., nk in our notation.

4. Like Ahn and Horenstein (2013), we only report the BIC3 estimator being the best-
performing one of the proposed estimators in this simulation set-up.

5. More specifically for units J þ 1 � i � n� j:
6. Ahn and Horenstein (2013) employ double demeaned data for ER and GR, while Onatski

(2010) does not for ON. Our simulation results show no substantive performance differences
between plain simulation data and double-demeaned simulation data for all five estimators.

7. For reasons of space, we take n equal to T in the simulations. Results in which n and T
differ from each other lead to qualitatively similar conclusions and are available
upon request.

8. See https://research.stlouisfed.org/econ/mccracken/fred-databases/.
9. However, the static factor representation of a dynamic factor model is possible in case the

lenghts of the lags are finite.
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