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A Nonparametric Test for Granger Causality in
Distribution With Application to Financial
Contagion

Bertrand CANDELON
Insti7/IPAG Chaire in Financial Stability and Systemic Risks, IPAG Business School, Paris, France
(candelonb@gmail.com)

Sessi TOKPAVI
EconomiX-CNRS, University of Paris Ouest, France (sessi.tokpavi@u-paris10.fr)

This article introduces a kernel-based nonparametric inferential procedure to test for Granger causality in
distribution. This test is a multivariate extension of the kernel-based Granger causality test in tail event.
The main advantage of this test is its ability to examine a large number of lags, with higher-order lags
discounted. In addition, our test is highly flexible because it can be used to identify Granger causality in
specific regions on the distribution supports, such as the center or tails. We prove that the test converges
asymptotically to a standard Gaussian distribution under the null hypothesis and thus is free of parameter
estimation uncertainty. Monte Carlo simulations illustrate the excellent small sample size and power
properties of the test. This new test is applied to a set of European stock markets to analyze spillovers
during the recent European crisis and to distinguish contagion from interdependence effects.

KEY WORDS: Financial spillover; Kernel-based test; Tails.

1. INTRODUCTION

Analysis of causal relationships is an important aspect of the-
oretical and empirical contributions in quantitative economics
(see the special issues of the Journal of Econometrics in 1988
and 2006). Although the concept of causality as defined by
Granger (1969) is broad and consists of testing transmission
effects between the whole distribution of random variables, ex-
tensions of this concept have recently been proposed, such as
causality in the frequency domain or for specific distribution
moments. For instance, Granger causality in the mean (Granger
1980, 1988) is widely used in macroeconomics. For example,
Sims (1972, 1980) test for Granger causality in the mean of
money and income. Granger, Robins, and Engle (1986) also
introduced the concept of Granger causality in variance to test
for causal effects in the second-order moment between finan-
cial series. This concept was further explored by Cheung and
Ng (1996), Kanas and Kouretas (2002), and Hafner and Her-
wartz (2008), among others. A unified treatment of Granger
causality in the mean and variance is formalized by Comte and
Lieberman (2000).

More recent contributions have focused on the concept of
Granger causality in quantiles, a particularly important issue
for non-Gaussian distributions that exhibit asymmetry, fat-tail
characteristics, and nonlinearity (Lee and Yang 2012; Jeong,
Härdle, and Song 2012). Indeed, for these distributions, the dy-
namic in the tails can differ substantially from that of the center
of the distribution. In this case, the information content of the
quantiles provides greater insight into the distribution than the
content provided by the mean. Lee and Yang (2012) developed
a parametric methodology for Granger causality in quantiles
based on the conditional predictive ability (CPA) framework of
Giacomini and White (2006). Jeong, Härdle, and Song (2012)

introduced a nonparametric approach to test for causality in
quantiles and apply it to the detection of causal relations be-
tween the price of crude oil, the USD/GBP exchange rate, and
the price of gold. A closely related but different concept is
Granger causality in tail events by Hong, Liu, and Wang (2009).
A tail event occurs when the value of a time series is lower than
its value-at-risk at a specified risk level. Hence, the test deter-
mines if an extreme downside movement for a given time series
has predictive content for an extreme downside movement for
another time series, with numerous potential applications in risk
management.

All tests of causality in quantiles and tail events share the limit
that statistical inference is exclusively performed at a specific
fixed level of the quantile. At this given level, the null hy-
pothesis should not be rejected, while the opposite conclusion
should hold for another quantile level. Indeed, as emphasized
by Granger (2003) and Engle and Manganelli (2004), the time-
series behavior of quantiles can vary considerably across the
distribution because of long memory or nonstationarity. Hence,
a Granger causality test in quantiles or tail events that does not
consider a large number of quantiles simultaneously over the
distribution support would be too restrictive. Because the pre-
dictive distribution of a time series is entirely determined by its
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quantiles, testing for Granger causality for the range of quantiles
over the distribution support is equivalent to testing for Granger
causality in the distribution.

Testing procedures for Granger causality in the whole dis-
tribution in a time series context are developed only in Su and
White (2007, 2008, 2012, 2014), Bouezmarni, Rombouts, and
Taamouti (2012), and Taamouti, Bouezmarni, and El Ghouch
(2014). For example, Su and White (2012) introduced a condi-
tional independence specification test that can be used to test
for Granger causality in quantiles over a continuum of values
of quantile levels between (0, 1). Bouezmarni, Rombouts, and
Taamouti (2012) constructed a nonparametric Granger causal-
ity test in distribution based on conditional independence in the
framework of copulas. Taamouti, Bouezmarni, and El Ghouch
(2014) also developed alternative Granger causality tests using
the copulas theory. The present article adds to this literature by
proposing a new nonparametric test for Granger causality in the
whole distribution between two time series. To summarize, our
testing procedure consists of dividing the distribution support of
each series into a multivariate process of dynamic interquantile
event variables. The test for causality in the distribution between
the two series is enabled by an analysis of the cross-correlation
structures of the multivariate processes and relies on the gener-
alized portmanteau test for independence between multivariate
processes developed by Bouhaddioui and Roy (2006).

Although our approach examines the strong version of the
Granger causality concept (Granger 1969), it is sufficiently flex-
ible that it can be used to test for causality in specific regions on
the distribution supports, such as the center or the tails (left or
right). While Candelon, Joëts, and Tokpavi (2013) introduced
a parametric test to check for Granger causality in distribution
tails, that methodology, in contrast to the tests developed in
this article, does not apply to other regions of the distribution
such as the center. For example, the test can be used to test for
causality in the left-tail distribution for two time series. In this
case, the multivariate process of interquantile event variables
should be defined to focus the analysis exclusively on this part
of the distribution. This flexibility constitutes a clear advan-
tage of our methodology compared to those based on copulas
theory (Bouezmarni, Rombouts, and Taamouti 2012; Taamouti,
Bouezmarni, and El Ghouch 2014) and allows us to go beyond
the simple rejection of the null hypothesis of Granger causality
for the whole distribution because it identifies the specific re-
gions for which Granger causality is rejected. Our test statistic is
also a multivariate extension of the kernel-based nonparametric
Granger causality test in tail events by Hong, Liu, and Wang
(2009) and therefore shares its main advantage: the ability to
examine a large number of lags by discounting higher-order
lags. This characteristic is consistent with empirical evidence
in finance that recent events have a greater influence on current
market trends than older ones. Thus, our Granger causality test
in distribution is different from those available in the literature
that checks for causality uniformly for a limited number of lags.

Technically, we demonstrate that the test has a standard
Gaussian distribution under the null hypothesis, which is free
of parameter estimation uncertainty. Monte Carlo simulations
confirm that the Gaussian distribution provides a good approx-
imation of the distribution of our test statistic, even in small
samples. Moreover, the test has the power to reject the null

hypothesis of causality in distribution stemming from different
sources, including linear and nonlinear causality in the mean
and causality in the variance.

To illustrate the importance of this test for the empirical lit-
erature, we explore the spillovers that have occurred within
European stock markets during the recent crisis. Our Granger
causality test in distribution allows us to consider asymmetry
between markets (which is not possible using correlation), to
take into account a break in volatility (as suggested by Forbes
and Rigobon 2002) and to distinguish between contagion and
interdependence. Indeed, interdependence is a long-run path
that occurs during “normal periods” and therefore concerns the
center of the distribution exclusively. By contrast, contagion is
detected by a short-run abrupt increase in the causal linkages
that occur during crisis periods, that is, only in the tails of the
distribution. Because our test is designed to check for causality
in specific regions of the distribution, it can be used to check
for interdependence or contagion. Anticipating our results, we
find weak (respectively, strong) support for interdependence (re-
spectively, contagion) during the recent crisis. Interestingly, we
observe a strong asymmetry between causal tests in the right and
left tails: whereas spillovers are important in crisis periods, they
are only weakly present during upswing periods. Such a result
constitutes an important feature of European stock markets.

The article is organized as follows: the second section presents
the Granger causality test in distribution. The properties of this
test are analyzed in Section 3 via a Monte Carlo simulation
experiment. Section 4 proposes the empirical application, and
Section 5 concludes.

2. NONPARAMETRIC TEST FOR GRANGER
CAUSALITY IN DISTRIBUTION

This section presents our kernel-based test for Granger causal-
ity in distribution between two time series. Because this test is a
multivariate extension of the Granger causality test in tail events
introduced by Hong, Liu, and Wang (2009), we first present their
test and then introduce the new approach.

2.1 Granger Causality in Tail Event

For two time series Xt and Yt , the Granger causality test in tail
events developed by Hong, Liu, and Wang (2009) determines
whether an extreme downside risk from Yt can be considered
a lagged indicator for an extreme downside risk for Xt . Hong,
Liu, and Wang (2009) identified an extreme downside risk as
a situation in which Xt and Yt are lower than their respec-
tive value-at-risk (VaR) at a prespecified level α. VaR is a risk
measure often used by financial analysts and risk managers to
measure and monitor the risk of loss for a trading or investment
portfolio. The VaR of an instrument or a portfolio of instruments
is the maximum dollar loss within the α%-confidence interval
(Jorion 2007). For the two time series Xt and Yt , we have

Pr
[
Xt < VaRX

t

(
θ0
X

) ∣∣FX
t−1

] = α, (1)

Pr
[
Yt < VaRY

t

(
θ0
Y

) ∣∣FY
t−1

] = α, (2)

where VaRX
t

(
θ0
X

)
and VaRY

t

(
θ0
Y

)
are the VaR of Xt and Yt ,

respectively, at time t; and θ0
X and θ0

Y are the true unknown



242 Journal of Business & Economic Statistics, April 2016

finite-dimensional parameters related to the specification of the
VaR model for each variable. The information sets FX

t−1 and
FY

t−1 are defined as

FX
t−1 = {Xl, l ≤ t − 1} , (3)

FY
t−1 = {Yl, l ≤ t − 1} . (4)

In the framework of Hong, Liu, and Wang (2009), an extreme
downside risk occurs at time t for Xt if the tail event variable
ZX

t

(
θ0
X

)
is equal to one, with

ZX
t

(
θ0
X

) =
⎧⎨
⎩

1 if Xt < VaRX
t

(
θ0
X

)
0 else.

(5)

Similarly, an extreme downside risk for Yt corresponds to
ZY

t

(
θ0
Y

)
taking a value of one, with

ZY
t

(
θ0
Y

) =
⎧⎨
⎩

1 if Yt < VaRY
t

(
θ0
Y

)
0 else.

(6)

Hence, the time series Yt does not Granger-cause (in downside
risk or tail event at level α) the time series Xt if the following
hypothesis holds

H0 : E
[
ZX

t

(
θ0
X

) ∣∣FX&Y
t−1

] = E
[
ZX

t

(
θ0
X

) ∣∣FX
t−1

]
, (7)

with

FX&Y
t−1 = {(Xl, Yl) , l ≤ t − 1} . (8)

Under the null hypothesis and at the risk level α, spillovers
of extreme downside movements from Yt to Xt do not exist.
Hong, Liu, and Wang (2009) proposed a nonparametric ap-
proach for testing for the null hypothesis in (7) based on the
cross-spectrum of the estimated bivariate process of tail event
variables

{
ẐX

t , ẐY
t

}
, with components

ẐX
t ≡ ZX

t

(
θ̂X

)
, ẐY

t ≡ ZY
t

(
θ̂Y

)
, (9)

where θ̂X and θ̂Y are consistent estimators of the true unknown
parameters θ0

X and θ0
Y , respectively. To present their test statistic,

let us define the sample cross-covariance function between the
estimated tail event variables as

Ĉ (j ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T −1
T∑

t=1+j

(
ẐX

t − α̂X

) (
ẐY

t−j − α̂Y

)
, 0 ≤ j ≤ T − 1

T −1
T∑

t=1−j

(
ẐX

t+j − α̂X

) (
ẐY

t − α̂Y

)
, 1 − T ≤ j ≤ 0,

(10)
where T is the sample length and α̂X and α̂Y are the sample
mean of ẐX

t and ẐY
t , respectively. The sample cross-correlation

function ρ̂ (j ) is then equivalent to

ρ̂ (j ) = Ĉ (j )

SXSY

, (11)

where S2
X and S2

Y are the sample variances of ẐX
t and ẐY

t ,
respectively. Using the cross-correlation function, the kernel
estimator for the cross-spectral density of the bivariate process

of tail event variables corresponds to

f̂ (ω) = 1

2π

T −1∑
j=1−T

κ (j M ) ρ̂ (j ) e−ijω, (12)

where κ (.) is a given kernel function and M is the truncation
parameter. The truncation parameter M is a function of the
sample size T such that M → ∞ and M/T → 0 as T → ∞.

The kernel is a symmetric function defined on the real line and
taking value in [−1, 1]. It must be continuous at zero, with at
most a finite number of discontinuity points such that

κ (0) = 1, (13)
∞∫

−∞
κ2 (z) dz < ∞. (14)

Under the null hypothesis of non-Granger causality in tail
events from Yt to Xt , the kernel estimator for the cross-spectral
density is equal to

f̂ 0
1 (ω) = 1

2π

0∑
j=1−T

κ (j /M ) ρ̂ (j ) e−ijω. (15)

This equation suggests that the distance between the two
estimators f̂ (ω) and f̂ 0

1 (ω) can be used to test for the null hy-
pothesis. Hong, Liu, and Wang (2009) considered the following
quadratic form

L2
(
f̂ , f̂ 0

1

) = 2π

π∫
−π

∣∣f̂ (ω) − f̂ 0
1 (ω)

∣∣2
dω, (16)

which is equivalent to

L2 (
f̂ , f̂ 0

1

) =
T −1∑
j=1

κ2 (j /M ) ρ̂2 (j ) . (17)

The test statistic is a standardized version of the quadratic
form given by

UY→X =
⎡
⎣T

T −1∑
j=1

κ2 (j /M ) ρ̂2 (j ) − CT (M)

⎤
⎦/

DT (M)
1
2 ,

(18)
and follows under the null hypothesis a standard Gaussian dis-
tribution, with CT (M) and DT (M) as the location and scale
parameters

CT (M) =
T −1∑
j=1

(1 − j /T ) κ2 (j /M ) , (19)

DT (M) = 2
T −1∑
j=1

(1 − j /T ) (1 − (j + 1) / T ) κ4 (j /M ) . (20)

2.2 Granger Causality in Distribution

In this section, we present our multivariate extension of the
test of Hong, Liu, and Wang (2009); this extension permits
the identification of Granger causality in the whole distribution
between two time series.
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2.2.1 Notations and the Null Hypothesis. The setting of
our testing procedure is as follows. We consider a set A =
{α1, . . . , αm+1} of m + 1 VaR risk levels that covers the distri-
bution support of both variables Xt and Yt , with 0 ≤ α1 < · · · <

αm+1 ≤ 100%. For the first time series Xt , the corresponding
VaRs at time t are VaRX

t,s

(
θ0
X, αs

)
, s = 1, . . . , m + 1, with

VaRX
t,1

(
θ0
X, α1

)
< · · · < VaRX

t,m+1

(
θ0
X, αm+1

)
, (21)

where the vector θ0
X is once again the true unknown finite-

dimensional parameter related to the specification of the VaR
model for Xt . We adopt the convention that VaRX

t,s

(
θ0
X, αs

) =
−∞ for αs = 0% and VaRX

t,s

(
θ0
X, αs

) = ∞ for αs = 100%. We
divide the distribution support of Xt into m disjoint regions,
each related to the indicator or event variable

ZX
t,s

(
θ0
X

) =

⎧⎪⎪⎨
⎪⎪⎩

1 if Xt ≥ VaRX
t,s

(
θ0
X, αs

)
and Xt

< VaRX
t,s+1

(
θ0
X, αs+1

)
0 else,

(22)

for s = 1, . . . , m. For illustration, let m + 1 = 5,
and suppose that the set A = {α1, α2, α3, α4, α5} =
{0%, 20%, 40%, 60%, 80%}. Figure 1 displays the sup-
port of Xt , along with the VaRs and the event variables defining
the m = 4 distinct regions. We do not consider the event
variable corresponding to the extreme m + 1 region identified
by Xt ≥ VaRX

t,m+1

(
θ0
X, αm+1

)
; this variable is implicitly defined

by the first m event variables.
Now, let HX

t

(
θ0
X

)
be the vector of dimension (m, 1) with

components of the m event variables

HX
t

(
θ0
X

) = (
ZX

t,1

(
θ0
X

)
, ZX

t,2

(
θ0
X

)
, . . . , ZX

t,m

(
θ0
X

))T
. (23)

We similarly define for the second time series Yt these event
variables collected in the vector HY

t

(
θ0
Y

)
, with

HY
t

(
θ0
Y

) = (
ZY

t,1

(
θ0
Y

)
, ZY

t,2

(
θ0
Y

)
, . . . , ZY

t,m

(
θ0
Y

))T
. (24)

The time series Yt does not Granger-cause the time series Xt

in distribution if the following hypothesis holds

H0 : E
[
HX

t

(
θ0
X

) ∣∣FX&Y
t−1

] = E
[
HX

t

(
θ0
X

) ∣∣FX
t−1

]
. (25)

Therefore, Granger causality in the distribution from Yt to Xt

corresponds to Granger causality in the mean from HY
t

(
θ0
Y

)
to

HX
t

(
θ0
X

)
. When the null hypothesis of noncausality in distribu-

tion holds, the event variables defined for the variable Yt along

its distribution support do not have any predictive content for
the dynamics of the same event variables over the distribution
support of Xt .

Our null hypothesis is sufficiently flexible that it can be used
to check for Granger causality in specific regions on the dis-
tribution supports, such as the center or tails (left or right), by
restricting the set A = {α1, . . . , αm+1} of VaR levels to selected
values. For instance, we can check for Granger causality in the
left-tail distribution by setting A to A = {0%, 1%, 5%, 10%}. In
this case, the rejection of the null hypothesis is of great impor-
tance in financial risk management because it indicates spillover
effects from Yt to Xt in the lower tail. Similarly Granger causal-
ity in the center of the distribution can be checked by setting, for
example, A = {20%, 40%, 60%, 80%}. In the next subsection,
we construct a nonparametric kernel-based test statistic to test
for our general null hypothesis of noncausality (25) and analyze
its asymptotic distribution.

2.2.2 Test Statistic and Asymptotic Distribution. The con-
struction of this test statistic is closely related to the article of
Bouhaddioui and Roy (2006), which proposes a generalized
portmanteau test for the independence of two infinite-order vec-
tor auto regressive (VAR) series. Nevertheless, the asymptotic
analysis differs because (i) we are not in a VaR framework,
(ii) and the event variables we are considering, ZX

t,s

(
θ0
X

)
and

ZY
t,s

(
θ0
Y

)
, are indicator variables, which are therefore not dif-

ferentiable with respect to the unknown parameters θ0
X and θ0

Y ,
respectively. To address this lack of differentiability, we con-
sider several asymptotic results derived in Hong, Liu, and Wang
(2009).

To present the test statistic for our general null hypothesis
of noncausality, consider ĤX

t ≡ HX
t

(
θ̂X

)
and Ĥ Y

t ≡ HY
t

(
θ̂Y

)
the estimated counterparts of the multivariate processes of event
variables HX

t

(
θ0
X

)
and HY

t

(
θ0
Y

)
, respectively, with θ̂X and θ̂Y as√

T consistent estimators of the true unknown parameter vectors
θ0
X and θ0

Y . Let �̂ (j ) denote the sample cross-covariance matrix
between ĤX

t and Ĥ Y
t , with

�̂ (j ) ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T −1
T∑

t=1+j

(
ĤX

t − 	̂X

) (
Ĥ Y

t−j − 	̂Y

)T
0 ≤ j ≤ T − 1

T −1
T∑

t=1−j

(
ĤX

t+j − 	̂X

) (
Ĥ Y

t − 	̂Y

)T
1 − T ≤ j ≤ 0,

(26)

Figure 1. Distribution support of X and localization of VaRs and event variables.
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where the vector 	̂X (respectively, 	̂Y ) of length m is the sam-
ple mean of ĤX

t (respectively, Ĥ Y
t ). As in the univariate setting

of Hong, Liu, and Wang (2009), we can replace 	̂X and 	̂Y by
	X = E

(
HX

t

(
θ0
X

))
and 	Y = E

(
HY

t

(
θ0
Y

))
, respectively, with-

out affecting the asymptotic distribution of our test statistic. The
corresponding sample cross-correlation matrix R̂ (j ) equals

R̂ (j ) = D
(

̂X

)−1/2
�̂ (j ) D

(

̂Y

)−1/2
, (27)

where D (.) represents the diagonal form of a matrix and 
̂X

and 
̂Y are the sample covariance matrices of ĤX
t and Ĥ Y

t ,
respectively.

The test statistic can thus be expressed as the following
weighted quadratic form that accounts for the dependence be-
tween the current value of ĤX

t and the lagged values of Ĥ Y
t

T̂ =
T −1∑
j=1

κ2 (j /M ) Q̂ (j ) , (28)

where κ (.) is a kernel function, M is the truncation parameter,
and Q̂ (j ) is equal to

Q̂ (j ) = T vec
(
R̂ (j )

)T (
�̂−1

X ⊗ �̂−1
Y

)
vec

(
R̂ (j )

)
, (29)

where �̂X and �̂Y are the sample correlation matrices of ĤX
t and

Ĥ Y
t , respectively. The restrictions on the truncation parameter

M and the kernel function κ (.) are the same as those considered
by Hong, Liu, and Wang (2009) in their univariate setting (see
Section 2.1). Most common kernels used in spectral analysis
(Daniell, Parzen, Bartlett, truncated uniform) satisfy these
restrictions. Moreover, as discussed by Hong, Liu, and Wang
(2009), the choice of kernel is not important because they lead
to comparable powers except for the uniform kernel, which
does not discount higher-order lags. See Bouhaddioui and Roy
(2006) for the same conclusion in a multivariate setting.

Following Bouhaddioui and Roy (2006), our test statistic is a
centered and scaled version of the quadratic form in (28), that
is,

VY→X = T̂ − m2CT (M)(
m2DT (M)

)1/2 , (30)

where CT (M) and DT (M) are as defined in (19) and (20),
respectively. The above test statistic generalizes the one in Hong,
Liu, and Wang (2009) in a multivariate setting. When m is equal
to one, which corresponds to the univariate case in which each
of the vectors ĤX

t and Ĥ Y
t has only one event variable, the test

statistic VY→X in (30) is exactly equal to the test statistic in (18).
The following proposition yields the asymptotic distribution of
our test statistic.

Proposition 1. Suppose that the assumptions of Theorem 1
in Hong, Liu, and Wang (2009) hold. Then, under the null
hypothesis of no Granger causality in distribution as stated in
(25), we have

VY→X = T̂ − m2CT (M)(
m2DT (M)

)1/2 −→d N (0, 1) .

The assumptions of Theorem 1 in Hong, Liu, and Wang
(2009) impose several regulatory conditions on the time se-

ries Xt and Yt ; on the VaR models used, including smoothness,
moment conditions, and adequacy; on the kernel function κ (.);
and on the truncation parameter M. The latter should be equal to
M = cT v with 0 < c < ∞, 0 < v < 1/2, v < min

(
2

d−2 , 3
d−1

)
if d ≡ max (dX, dY ) > 2 and dX (respectively, dY ) is the di-
mension of the parameter θX (respectively, θY ). See Hong, Liu,
and Wang (2009, pp. 275) for a complete discussion of these
assumptions.

The proof of Proposition 1 proceeds as follows. Consider the
following decomposition of our test statistic

VY→X = T ∗ − m2CT (M)(
m2DT (M)

)1/2 + T̂ − T ∗(
m2DT (M)

)1/2 , (31)

where T ∗ is the pseudo version of the weighted quadratic form
in (28) and (29) computed using the true correlation matrices
�X and �Y , that is,

T ∗=
T −1∑
j=1

κ2 (j /M ) Q̂∗ (j ) , (32)

Q̂∗ (j ) = T vec
(
R̂ (j )

)T (
�−1

X ⊗ �−1
Y

)
vec

(
R̂ (j )

)
. (33)

Under the decomposition in (31), the proof of Proposition 1
is given by the following two lemmas:

Lemma 1. Under the null hypothesis of no Granger causality
in distribution and the assumptions of Theorem 1 in Hong, Liu,
and Wang (2009), we have

T ∗ − m2CT (M)(
m2DT (M)

)1/2 −→d N (0, 1) . (34)

Lemma 2. Under the assumptions of Theorem 1 in Hong,
Liu, and Wang (2009), we have

T̂ − T ∗(
m2DT (M)

)1/2 −→p 0. (35)

The proofs of these two Lemmas are reported in
Appendix A.

3. SMALL SAMPLE PROPERTIES

In this section, we study the finite sample properties of our
test via Monte Carlo simulation experiments. We analyze the
size in the first part of the section, while the remainder of the
section is devoted to an analysis of the power.

3.1 Empirical Size Analysis

We simulate the size of the nonparametric test of Granger
causality in distribution assuming the following data-generating
process (DGP) for the second time series Yt :⎧⎪⎪⎨

⎪⎪⎩
Yt = 0.5Yt−1 + ut,Y ,

ut,Y = σt,Y vt,Y ,

σ 2
t,Y = 0.1 + 0.9σ 2

t−1,Y + 0.08u2
t−1,Y ,

vt,Y

iid∼ N (0, 1),

(36)
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which corresponds to an AR(1)-GARCH(1,1) model. We make
the assumption that the first time series Xt follows the same pro-
cess. Because the two processes are generated independently,
there is no Granger causality in distribution between them. For
a given value of sample size T ∈ {500, 1000, 2000}, for each
simulation we compute our test statistic in (30) and make in-
ferences using the asymptotic Gaussian distribution. For the
computation of the test statistic, we need to specify a model
to estimate the VaRs (at the risk level α1, . . . , αm+1) and the m
event variables for each variable Xt and Yt . The m + 1 VaRs
are computed using an AR(1)-GARCH(1,1) model estimated by
quasi-maximum likelihood. The estimated values of the m + 1
VaRs at time t are

VaRX
t,s = μ̂t,X + σ̂t,Xq

(̂
vt,X, αs

)
, s = 1, . . . , m + 1, (37)

where μ̂t,X and σ̂t,X are the fitted conditional mean and
standard deviation at time t, respectively, and q

(̂
vt,X, αs

)
is

the empirical quantile of order αs of the estimated stan-
dardized innovations. We proceed similarly to compute the
m + 1 VaRs and the corresponding m event variables for
the second time series Yt . Note that we set the parame-
ter m + 1 to 14 and the set A to A = {α1, α2, . . . , α14} =
{0%, 1%, 5%, 10%, 20%, . . . , 90%, 95%, 99%}, which covers
regions in the tails and the center of the distribution support of
each time series. For αs = 0%, the VaR corresponds to −∞. We
must also make a choice about the kernel function to compute
our test statistic. We consider the four different standard ker-
nels, that is, the Daniell (DAN), the Parzen (PAR), the Bartlett
(BAR), and the truncated uniform (TR) kernels. See Appendix
B for the description of the four kernel functions.

Finally, for the choice of truncation parameter M, we use
three different values: M = [ln (T )], M = [

1.5T 0.3
]
, and M =[

2T 0.3
]
, where [.] is the integer portion of the argument.

These rates lead to the values M = 6, 10, 13 for T = 500,
M = 7, 12, 16 for T = 1000, and M = 8, 15, 20 for T = 2000.
These values cover a range of lag orders for the sample sizes
considered. Table 1 displays the empirical sizes of our test
over 1000 simulations and for two different significance levels
η ∈ (5%, 10%). The results in Table 1 indicate that our test is ad-
equately sized. Indeed, the rejection frequencies are close to the
significance levels. Hence, the standard Gaussian distribution
asymptotically provides a good approximation of the distribu-
tion of our test statistic. This result appears to hold regardless
of the kernel function used and the value of the truncation pa-
rameter M.

3.2 Empirical Power Analysis

We now simulate the empirical power of our test. Because
causality in distribution springs from causality in moments such
as mean or variance, we assume different DGPs corresponding
to these cases. The first DGP assumes the existence of a linear
Granger causality in the mean to generate data under the alter-
native hypothesis. Hence, we assume that the second time series
Yt has the DGP in (36) and that the first time series Xt is the

Table 1. Empirical sizes of the Granger causality test in distribution

T M η DAN BAR PAR TR

6 5% 5.90 6.00 5.60 5.60
10% 11.20 10.60 10.70 10.30

500 10 5% 5.50 5.40 5.70 4.50
10% 10.20 9.70 10.70 11.40

13 5% 5.50 5.40 5.00 6.00
10% 9.90 10.00 10.20 10.70

7 5% 5.30 5.40 4.70 6.10
10% 9.60 9.50 10.80 12.10

1000 12 5% 5.70 6.00 5.00 6.00
10% 11.90 10.50 9.70 10.10

16 5% 6.00 5.90 5.50 5.90
10% 10.60 11.20 10.30 10.60

8 5% 4.40 4.30 5.70 5.50
10% 10.30 10.80 10.00 9.80

2000 15 5% 5.40 5.30 4.70 5.10
10% 8.60 9.20 10.20 8.90

20 5% 5.90 5.60 4.80 4.70
10% 9.30 9.40 9.60 9.10

NOTES: The table displays the empirical sizes (in %) of the Granger causality test in
distribution. Rejection frequencies are reported over 1000 simulations for two signifi-
cance levels η, where T is the sample size and M is the truncation parameter. DAN,
BAR, PAR, and TR refer to the Daniell, Bartlett, Parzen, and truncated uniform kernels,
respectively.

following

⎧⎪⎪⎨
⎪⎪⎩

Xt = 0.5Xt−1 + 0.4Yt−1 + ut,X,

ut,X = σt,Xvt,X,

σ 2
t,X = 0.1 + 0.9σ 2

t−1,X + 0.08u2
t−1,X,

vt,X

iid∼ N (0, 1).

(38)

The empirical powers of our test are computed over 1000 sim-
ulations for T ∈ {500, 1000, 2000}. As in the analysis of size,
we consider three values of the truncation parameter M, and two
significance levels η = 5%, 10%. The results for the four kernels
used in the analysis of size are reported in Table 2. For compar-
ison, Table 2 also displays the results of the Granger causality
test in mean in parentheses. To ensure an appropriate compari-
son, we do not use the usual parametric Granger causality test in
mean derived from a vector autoregressive model but consider
instead the kernel-based nonparametric Granger causality test in
mean introduced by Hong (1996). The results in Table 2 indicate
that our kernel-based nonparametric test for Granger causality
in distribution has appealing power properties. For instance,
with the Daniell kernel, the rejection frequencies of the null
hypothesis for (T ,M) = (500, 6) equal 84.40% and 89.80% for
η = 5% and 10%, respectively. For T = 2000, the powers are,
in most cases, equal to one. The rejection frequencies of the
Granger causality test in mean are always equal to or close to
100% and hence are higher than the ones obtained by applying
our Granger causality test in distribution for the smallest sample
size. This result is expected because the assumed causality in
distribution springs from causality in the mean. In all configu-
rations, the uniform kernel leads to the smallest powers because
its uniform weighting scheme does not discount higher-order
lags. Moreover, we observe as Hong, Liu, and Wang (2009) did
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Table 2. Empirical powers of the Granger causality test in
distribution: DGP1

T M η DAN BAR PAR TR

6 5% 84.40
(99.80)

87.20
(99.80)

91.20
(99.80)

55.40
(99.80)

10% 89.80
(99.80)

91.60
(99.80)

94.20
(99.80)

64.00
(99.80)

500 10 5% 73.20
(99.80)

78.60
(99.80)

85.60
(99.80)

42.80
(99.80)

10% 79.60
(99.80)

84.60
(99.80)

90.20
(99.80)

50.20
(99.80)

13 5% 67.80
(99.80)

73.80
(99.80)

79.60
(99.80)

35.00
(99.80)

10% 74.60
(99.80)

80.20
(99.80)

86.00
(99.80)

44.80
(99.80)

7 5% 99.40
(100.00)

99.60
(100.00)

99.60
(100.00)

90.80
(100.00)

10% 99.60
(100.00)

99.60
(100.00)

100.00
(100.00)

95.20
(100.00)

1000 12 5% 98.00
(100.00)

99.20
(100.00)

99.20
(100.00)

79.80
(100.00)

10% 98.80
(100.00)

99.40
(100.00)

99.60
(100.00)

87.60
(100.00)

16 5% 96.00
(100.00)

97.80
(100.00)

99.20
(100.00)

71.60
(100.00)

10% 96.80
(100.00)

99.00
(100.00)

99.20
(100.00)

78.40
(100.00)

8 5% 100.00
(100.00)

100.00
(100.00)

100.00
(100.00)

100.00
(100.00)

10% 100.00
(100.00)

100.00
(100.00)

100.00
(100.00)

100.00
(100.00)

2000 15 5% 100.00
(100.00)

100.00
(100.00)

100.00
(100.00)

99.60
(100.00)

10% 100.00
(100.00)

100.00
(100.00)

100.00
(100.00)

99.60
(100.00)

20 5% 100.00
(100.00)

100.00
(100.00)

100.00
(100.00)

99.00
(100.00)

10% 100.00
(100.00)

100.00
(100.00)

100.00
(100.00)

99.40
(100.00)

NOTES: The table displays the empirical powers (in %) of the Granger causality test in
distribution. Rejection frequencies are reported over 1000 simulations for two significance
levels η, where T is the sample size and M is the truncation parameter. For comparison,
we also report (in parentheses) the rejection frequencies of the kernel-based nonparametric
test in mean. DAN, BAR, PAR, and TR refer to the Daniell, Bartlett, Parzen, and truncated
uniform kernels, respectively. Data are generated under the alternative hypothesis assuming
linear Granger causality in mean.

that the rejection frequencies of the null hypothesis decrease
with the truncation parameter M.

To stress the relevance of our testing approach, we consider
a second type of alternative DGP that assumes causality in dis-
tribution stemming from a nonlinear form of causality in the
mean. Precisely, we generate data for the time series Yt using
the specification in (36), and the first time series is generated as
follows:

⎧⎪⎪⎨
⎪⎪⎩

Xt = 0.5Xt−1 + 0.3Y 2
t−1 + ut,X,

ut,X = σt,Xvt,X,

σ 2
t,X = 0.1 + 0.9σ 2

t−1,X + 0.08u2
t−1,X,

vt,X

iid∼ N (0, 1).

(39)

Table 3 reports the rejection frequencies over 1000 simula-
tions. The presentation is similar to that in Table 2. We observe
that our test continues to exhibit good power in detecting this
nonlinear form of causality. Indeed, the rejection frequencies are
in all cases close to or even equal to one, even when considering
the uniform kernel. By contrast, the Granger causality test in
mean fails to reject the null hypothesis for approximately half
of the simulations, and the rejection frequencies do not seem to
increase significantly with the sample size. For illustration, the
rejection frequency of the null hypothesis for (T ,M) = (500, 6)

Table 3. Empirical powers of the Granger causality test in
distribution: DGP2

T M η DAN BAR PAR TR

6 5% 100.00
(48.60)

100.00
(49.20)

100.00
(50.80)

98.20
(40.80)

10% 100.00
(52.80)

100.00
(52.40)

100.00
(53.20)

98.80
(47.40)

500 10 5% 99.60
(48.20)

99.80
(48.20)

100.00
(48.60)

94.60
(42.00)

10% 99.80
(51.20)

100.00
(52.00)

100.00
(51.80)

97.40
(47.60)

13 5% 99.20
(47.60)

99.60
(49.20)

99.80
(48.00)

90.00
(41.20)

10% 99.60
(51.20)

99.80
(52.20)

100.00
(52.00)

93.40
(48.60)

7 5% 100.00
(51.00)

100.00
(50.20)

100.00
(50.00)

100.00
(45.20)

10% 100.00
(54.00)

100.00
(53.20)

100.00
(52.80)

100.00
(49.40)

1000 12 5% 100.00
(49.40)

100.00
(50.80)

100.00
(50.80)

100.00
(48.20)

10% 100.00
(54.40)

100.00
(54.40)

100.00
(52.80)

100.00
(53.80)

16 5% 100.00
(50.60)

100.00
(50.60)

100.00
(50.80)

100.00
(48.20)

10% 100.00
(53.80)

100.00
(54.80)

100.00
(53.40)

99.60
(55.40)

8 5% 100.00
(52.20)

100.00
(52.20)

100.00
(51.00)

100.00
(52.20)

10% 100.00
(56.60)

100.00
(56.00)

100.00
(55.00)

100.00
(56.60)

2000 15 5% 100.00
(55.40)

100.00
(54.80)

100.00
(52.60)

100.00
(55.60)

10% 100.00
(60.40)

100.00
(59.80)

100.00
(56.60)

100.00
(60.60)

20 5% 100.00
(57.40)

100.00
(56.60)

100.00
(53.60)

100.00
(56.20)

10% 100.00
(62.20)

100.00
(61.80)

100.00
(57.60)

100.00
(61.80)

NOTES: The table displays the empirical powers (in %) of the Granger causality test in
distribution. Rejection frequencies are reported over 1000 simulations for two significance
levels η, where T is the sample size and M is the truncation parameter. For comparison,
we also report (in parentheses) the rejection frequencies of the kernel-based nonparametric
test in mean. DAN, BAR, PAR, and TR refer to the Daniell, Bartlett, Parzen, and truncated
uniform kernels, respectively. Data are generated under the alternative hypothesis assuming
nonlinear Granger causality in mean.

amounts to 100% for the Daniell kernel and η = 5%, while it is
only equal to 48.60% for the causality test in mean.

Finally, we generate data under the alternative hypothesis,
assuming Granger causality in variance. Formally, we suppose
once again that Yt has the specification in (36), and Xt is gener-
ated as⎧⎪⎪⎨

⎪⎪⎩
Xt = 0.5Xt−1 + ut,X,

ut,X = σt,Xvt,X,

σ 2
t,X = 0.1 + 0.8σ 2

t−1,X + 0.08u2
t−1,X + 0.8u2

t−1,Y ,

vt,X

iid∼ N (0, 1).

(40)

Frequency rejections are displayed in Table 4 and are qualita-
tively similar to those reported in Table 3. Our causality test in
distribution performs quite well in rejecting the null hypothesis,
while the causality test in mean is less robust and rejects the null
in few cases. Finally, we observe that the rejection frequencies
are lower than those reported in Tables 2 and 3. This result oc-
curs because (i) causality in variance occurs mainly in the tails
and (ii) the dynamics of the tails are more difficult to fit due to
the lack of data.

For the DGP in (40), we slightly decrease the persistence
of volatility for the process Xt , which is equal to αX + βX =
0.08 + 0.8 = 0.88. This calibration differs from those consid-
ered in previous simulations, in which the persistence was set to
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Table 4. Empirical powers of the Granger causality test in
distribution: DGP3

T M η DAN BAR PAR TR

6 5% 35.2
(17.80)

33.60
(16.40)

27.80
(14.40)

36.60
(18.40)

10% 46.60
(22.00)

45.40
(20.20)

38.00
(17.00)

45.00
(25.40)

500 10 5% 39.60
(20.80)

39.60
(20.20)

34.60
(17.80)

34.00
(25.40)

10% 50.60
(24.60)

50.60
(22.80)

46.80
(21.60)

43.00
(31.40)

13 5% 40.20
(21.20)

40.80
(20.40)

38.40
(19.40)

33.00
(25.80)

10% 51.00
(27.20)

51.00
(25.20)

48.60
(22.60)

42.00
(31.20)

7 5% 48.20
(20.40)

46.20
(17.00)

41.20
(13.40)

43.00
(25.80)

10% 57.60
(23.60)

57.80
(21.40)

51.40
(16.00)

57.00
(31.40)

1000 12 5% 52.00
(25.80)

52.60
(23.60)

49.00
(18.80)

36.20
(30.80)

10% 61.00
(31.40)

61.20
(29.40)

58.60
(23.20)

48.20
(35.80)

16 5% 49.60
(28.80)

52.00
(27.20)

52.80
(22.40)

31.80
(30.20)

10% 60.20
(34.60)

62.60
(33.00)

60.60
(27.80)

42.40
(37.80)

8 5% 78.60
(25.00)

77.80
(22.20)

72.20
(18.60)

69.20
(27.60)

10% 85.60
(31.80)

83.80
(29.00)

79.60
(24.80)

79.40
(33.40)

2000 15 5% 79.20
(28.80)

80.80
(28.40)

78.80
(24.60)

59.40
(33.60)

10% 85.60
(36.00)

87.20
(33.40)

85.80
(31.00)

71.60
(38.80)

20 5% 77.80
(31.60)

81.20
(29.20)

79.80
(27.00)

52.80
(38.60)

10% 85.00
(38.40)

86.00
(36.20)

86.80
(33.00)

64.20
(35.80)

NOTES: The table displays the empirical powers (in %) of the Granger causality test in
distribution. Rejection frequencies are reported over 1000 simulations for two significance
levels η, where T is the sample size and M is the truncation parameter. For comparison,
we also report (in parentheses) the rejection frequencies of the kernel-based nonparametric
test in mean. DAN, BAR, PAR, and TR refer to the Daniell, Bartlett, Parzen, and truncated
uniform kernels, respectively. Data are generated under the alternative hypothesis assuming
Granger causality in variance.

αX + βX = 0.98. We decrease the persistence of volatility be-
cause if the volatility of the process Xt is highly persistent, the
current volatility σ 2

t,X must be mainly driven by its past values
rather than u2

t−1,Y , lowering the effect of causality. To provide
further insight on this point, Figure 2 displays the power curve:
we fix the parameter αX to 0.08 and consider different values
of βX, with βX = 0.5, 0.6, 0.7, 0.8, 0.9. We observe indeed that
the rejection frequencies decrease with persistence.

4. EMPIRICAL PART

Recent financial crises have been characterized by rapid, large
regional spillovers of negative financial shocks. For example,
consecutive to the Greek distress, southern European countries
have been contaminated and face skyrocketing refinancing rates.
Northern European states have been impacted in an opposite
manner. Considered safe harbors for investors, these countries
were able to refinance their debt on markets at lower rates. It
is obvious that the degree of globalization within the European
Union as well as the low degree of fiscal federalism has fostered
the speed as well as the amplitude of the transmission mech-
anism of such a shock. Because southern European countries
used foreign capital markets to finance their domestic invest-
ments and boost their growth, they have been highly subject to
financial instability.

Empirical studies must evaluate the importance of these
spillovers. Theoretically it relies on crisis-contingent theories,
which explain the increase in market cross-correlation after
a shock issued in an origin country as the result of multiple
equilibria based on investor psychology; endogenous liquid-
ity shocks causing a portfolio recomposition; and/or political
disturbances affecting the exchange rate regime. By contrast,
according to noncrisis-contingent theories, the propagation of
shocks does not lead to a shift from a good to a bad equilib-
rium; the increase in cross-correlation is the continuation of
linkages (trade and/or financial) that existed before the crisis.
The presence of spillovers during a crisis can thus be tested
empirically by a significant and transitory increase in cross-
correlation between markets (see inter alia King and Wadhwani
1990; Calvo and Reinhart 1995; Baig and Goldfajn 1998). Nev-
ertheless, this intuitive approach, which has the advantage of
simplicity because it avoids the identification of transmission
channels, presents many shortcomings.

First, Forbes and Rigobon (2002) demonstrated that an in-
crease in correlation can be exclusively driven by higher volatil-
ity during crisis periods. In such a case, the increase in cor-
relation could not be attributed to stronger economic inter-
dependence. To correct for this potential bias, they propose
the use of the unconditional correlation rather than the con-
ditional one and test for its temporary increase during crisis
periods.

Figure 2. Rejection frequencies when considering DGP3 and several values of βX.
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Second, correlation is a symmetrical measure: an increase
in the correlation between markets i and j does not provide
any information on the direction of the contagion (from i to
j, from j to i, or both). For this reason, Bodart and Candelon
(2009) preferred to consider an indicator of causality to measure
spillovers. It is thus possible to evaluate asymmetrical spillovers
that can then move from i to j, j to i, or in both directions.
In addition, using the Granger causality approach requires the
estimation of multivariate dynamic models, which are less prone
to potential misspecification issues.

Addressing both these shortcomings in a classical framework
is relatively feasible. However, although comparing causality
between precrisis and crisis periods permits the evaluation of
spillovers, it does not permit the separation of interdependence
from contagion. Interdependence addresses the long-run struc-
tural causality between markets and thus provides information
on the extent to which markets are integrated. Therefore, inter-
dependence should be tested independently of extreme positive
or negative events. By contrast, contagion addresses short-run
abrupt increases in causal linkages and occurs exclusively dur-
ing crisis periods. Thus, testing for contagion requires an ex-
clusive focus on the extreme left tail of the distribution, as in
extreme value theory (see Hartmann et al. 2004). Consider-
ing the whole distribution to evaluate contagion would hence
alter the conclusions. Our new causality test allows all these is-
sues to be addressed because causality can be tested for the
whole distribution as well as for specific percentiles of the
distribution.

As an illustration, we analyze the recent European crisis con-
sidering a set of 12 European daily stock market indices (Aus-
tria, Belgium, Finland, France, Germany, Greece, Ireland, Italy,
Luxemburg, the Netherlands, Portugal and Spain), yielding 132
pairwise systems. Data are downloaded from Datastream rang-
ing from January 1, 2007 to May 6, 2011 (i.e., T = 1134 ob-
servations). The first empirical illustration consists of testing
for interdependence, which is performed by implementing the
pairwise Granger causality for the center of the distribution, that
is, removing extreme events located on the right and left tails.
A large share of rejection of the noncausality null hypothesis
would support the hypothesis of interdependence. Then, in a
second analysis, we implement the causality test exclusively for
the left tail to test for contagion during crisis. Such a hypoth-
esis would be supported if we observed a higher percentage
of noncausality rejection than that previously obtained when
considering the center of the distribution. Similarly, the test is
conducted for the right tail, that is, the upswing period. We
can then compare the strength of contagion during crises and
boom periods and determine which period contagion is the most
significant.

4.1 The General Design of the Granger Causality Test
in Distribution to Test for Spillover

To implement the Granger causality test in distribution in
our empirical illustration, we first need to compute for each
index m + 1 series of VaRs corresponding to m + 1 risk level
αs s = 1, . . . , m + 1, which cover its distribution support. As for
the Monte Carlo simulations, we consider the following set for
the VaR levels A = {0%, 1%, 5%, 10%, . . . , 90%, 95%, 99%}

with m + 1 = 14. To compute the VaRs, we use a semiparamet-
ric model. Formally, we suppose that each index returns series
Ri,t i = 1, . . . , 12, following an AR (m)-GARCH (p, q) model,
with

Ri,t =
∑m

j=1
φi,jRi,t−j + εi,t , (41)

εi,t = σi,t vi,t , (42)

σ 2
i,t = κi +

∑q

j=1
γi,j ε

2
i,t−j +

∑p

j=1
βi,j σ

2
i,t−j , (43)

and vi,t is an iid innovation with mean zero and unit variance.
The choice for an AR (m)-GARCH (p, q) is consistent with the
Forbes and Rigobon (2002) correction and accounts for a volatil-
ity increase that biases the causality analysis. For each index,
this model is estimated using the quasi-maximum likelihood
method. Hence, the m + 1 series of VaRs are obtained as

VaRi
t,s =

∑m

j=1
φ̂i,jRi,t−j + σ̂i,t q

(̂
vi,t , αs

)
, s = 1, . . . , m + 1,

(44)
where σ̂i,t is the fitted volatility at time t for the index num-
ber i and q

(̂
vi,t , αs

)
is the empirical quantile of order αs of

the estimated standardized innovations v̂i,t . Table 5 displays the
estimation results of the AR(m)-GARCH(p, q) models for the
indices. As shown by the Ljung–Box test applied to the resid-
uals and their squares, the retained specifications successfully
capture the dependence in the first two moments.

With the fitted series of VaRs at hand, we calculate for each
index the multivariate process of dynamic interquantiles events
variables and compute for each couple (i, j ) of indices our
kernel-based nonparametric test statistic Vj→i as defined in (30).
For the computation, we use the Daniell kernel and set the
truncation parameter M to

[
1.5T 0.3

]
, which yields a value of

M = 12 for the whole sample of length T = 1134.

Table 5. Estimation results of the AR-GARCH models

Index φi,1 κi γi,1 γi,2 γi,3 βi,1 LBv̂i,t
(6) LBv̂2

i,t
(6)

AT 0.000
(4.148)

0.150
(7.752)

0.839
(44.371)

5.217 1.840

BEL 0.000
(5.597)

0.137
(10.559)

0.839
(63.863)

4.738 2.857

FI 0.000
(3.590)

0.081
(8.170)

0.907
(75.696)

5.750 0.758

FR 0.000
(4.310)

0.127
(8.340)

0.857
(50.623)

3.445 7.400

GER 0.000
(4.568)

0.117
(7.773)

0.863
(50.254)

3.717 6.317

GRE 0.072
(2.184)

0.000
(3.057)

0.116
(7.549)

0.881
(62.744)

10.665 8.400

IE 0.000
(3.792)

0.131
(6.687)

0.853
(40.945)

7.161 1.985

IT 0.000
(4.670)

0.000
(0.000)

0.179
(4.831)

0.797
(34.446)

3.523 5.840

LU 0.000
(3.289)

0.081
(9.318)

0.912
(96.818)

2.789 1.073

NL 0.000
(4.574)

0.129
(8.913)

0.854
(56.663)

4.441 3.166

PT 0.000
(4.185)

0.183
(8.490)

0.800
(39.230)

5.986 1.622

ES 0.000
(5.356)

0.058
(1.787)

0.034
(0.799)

0.160
(4.377)

0.708
(21.312)

3.374 9.580

NOTES: For each index, the table displays the estimation results of the AR-GARCH model
in Equations (41)–(43). We report the parameter estimates followed in brackets by the
student statistics. The two last columns give the results of the Ljung–Box test applied to the
series of the standardized innovations v̂i,t and its square, respectively, with 6 as the number
of lags. The critical value for the rejection of the null hypothesis at the 5% significance
level is 12.59.
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Table 6. Results of bilateral tests of Granger causality in the center of the distribution

AT BEL FI FR GER GRE IE IT LU NL PT ES SUM

AT 100.0 2.3 27.1 14.0 27.0 38.9 79.1 2.7 48.2 1.0 19.7 29.6 3
BEL 0.5 100.0 27.6 19.9 64.4 53.9 4.2 5.3 18.3 31.5 85.6 6.4 2
FI 80.9 98.3 100.0 10.4 90.8 22.6 21.0 70.2 60.1 79.8 21.8 3.7 1
FR 42.0 28.0 38.6 100.0 8.2 0.0 39.4 10.2 2.6 58.3 0.1 44.7 3
GER 95.9 26.1 27.4 8.6 100.0 0.2 36.9 98.4 5.1 16.3 14.0 98.4 1
GRE 54.1 47.3 28.7 50.7 60.6 100.0 28.3 30.3 55.6 92.1 72.8 70.2 0
IE 42.4 59.6 5.2 11.8 15.7 90.6 100.0 15.9 25.4 85.6 23.4 42.6 0
IT 65.0 42.6 80.9 72.9 9.6 46.2 77.3 100.0 45.3 44.0 46.4 91.9 0
LU 37.6 97.7 65.3 7.2 12.0 91.6 29.7 30.7 100.0 95.0 48.3 11.0 0
NL 94.9 99.3 75.4 15.5 23.7 73.7 35.6 16.1 53.1 100.0 25.8 43.0 0
PT 99.1 86.9 84.4 40.3 0.2 9.2 21.2 73.2 42.7 1.3 100.0 69.2 2
ES 58.2 71.7 96.6 61.5 64.7 34.9 81.2 9.7 64.6 71.9 4.0 100.0 1
SUM 1 1 0 0 1 2 1 1 1 2 2 1 13

NOTES: Each entry of the table gives the p-value (in %) of the test of causality in the center of the distribution from the index j in the column toward the index i in the row. Entries
with the rejection of the null hypothesis at the 5% significance level are emphasized in bold. The last column, labeled “Sum,” indicates the number of times a given index in a row is
Granger-caused by the others. Similarly, the last row, labeled “Sum,” indicates the number of times a given index in a column Granger-causes the other indices. The entry corresponding
to the last row and the last column gives the total number of significant Granger causalities in the system. The tests are performed over the period ranging from January 1, 2007, to May
6, 2011, with a total of T = 1134 observations.

4.2 Testing for Interdependence

To test for interdependence, we follow the general design
of the pairwise test of Granger causality in distribution as de-
scribed above, except that we remove the extreme events from
the distribution. The new set A of VaRs risk levels is equal to
A = {20%, 30%, . . . , 70%, 80%} with m + 1 = 7. Table 6 dis-
plays the results of the test. The reported values are the p-values
in percentages. Hence, for a significance level of 5%, we reject
the null hypothesis of no causality from index j to index i when
the reported value is lower than 5%. p-Values corresponding to
the rejection of the null hypothesis of no causality are shown in
bold. The last column, labeled “Sum,” indicates the number of
times a given index in a row is Granger-caused by the others.
Similarly, the last row labeled “Sum” indicates the number of
times a given stock market index Granger-causes other stock
market indices. Finally, the entry corresponding to the last row
and last column reports the total number of rejections of the

null of no causality for our set of countries. Thus, interdepen-
dence (defined as causality in the center of the distribution) is
supported in only 9.8% of the cases (13 cases out of 132). This
result indicates that European stock market integration is far
from being achieved. Among the country results, we observe
that the Austrian and French stock markets are the most inte-
grated because they are each affected by three other European
markets. By contrast, Greece, Ireland, Italy, Luxembourg, and
the Netherlands appear to be independent from the other mar-
kets. Interestingly, the causal matrix is not symmetric: France,
which is among the most caused markets, does not affect any
market. This result supports our choice of causality rather than
correlation as a measure of spillover. The most causal markets
are the Netherlands, Greece, and Portugal. The identification of
these two last countries is interesting because they were among
the main drivers of the European crisis. Their causal importance,
which can be qualified as systemic for the rest of Europe, should
have constituted a signal of alarm at the edge of the crisis.

Table 7. Results of bilateral tests of Granger causality in the left-tail distribution

AT BEL FI FR GER GRE IE IT LU NL PT ES SUM

AT 100.0 13.2 4.6 37.1 92.6 0.0 61.1 0.9 0.1 0.0 0.0 1.2 7
BEL 0.3 100.0 23.9 0.3 62.9 0.0 0.0 0.0 64.7 0.0 0.0 10.0 7
FI 76.8 26.8 100.0 71.3 93.5 25.3 41.8 69.8 8.1 21.9 0.3 84.3 1
FR 0.0 41.0 57.0 100.0 16.2 2.5 2.3 0.2 79.8 34.7 0.0 73.1 5
GER 57.5 43.0 94.5 36.9 100.0 43.3 10.4 0.2 41.7 44.1 0.5 59.1 2
GRE 14.2 0.0 0.0 16.1 82.7 100.0 45.9 9.9 96.0 4.4 0.0 68.2 4
IE 60.1 61.3 31.4 5.9 94.1 72.0 100.0 1.7 27.8 50.1 20.3 59.8 1
IT 0.0 0.0 56.4 9.9 35.5 0.5 0.0 100.0 83.9 0.0 0.0 41.3 6
LU 5.5 0.0 16.0 90.0 88.2 36.5 0.4 79.5 100.0 0.8 3.8 1.4 5
NL 8.5 11.1 0.0 83.1 9.9 6.4 1.3 14.0 96.6 100.0 0.0 64.8 3
PT 74.1 15.5 79.1 4.5 46.9 4.0 61.4 79.5 28.1 2.0 100.0 21.1 3
ES 36.1 38.4 67.7 0.0 9.6 82.5 20.3 0.0 91.2 15.6 1.2 100.0 3
SUM 3 3 3 3 0 5 5 6 1 6 10 2 47

NOTES: Each entry of the table gives the p-value (in %) of the test of causality in the left-tail distribution from the index j in the column toward the index i in the row. Entries with the
rejection of the null hypothesis at the 5% significance level are indicated in bold. The last column, labeled “Sum,” indicates the number of times a given index in a row is Granger-caused
by the others. Similarly, the last row, labeled “Sum,” indicates the number of times a given index in column Granger-causes the other indices. The entry corresponding to the last row and
the last column gives the total number of significant Granger causalities in the system. The tests are performed over the period ranging from January 1, 2007, to May 6, 2011, with a total
of T = 1134 observations.
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Table 8. Results of bilateral tests of Granger causality in the right-tail distribution

AT BEL FI FR GER GRE IE IT LU NL PT ES SUM

AT 100.0 7.7 13.5 69.5 13.8 2.6 90.1 85.4 84.5 83.5 90.3 34.2 1
BEL 39.2 100.0 2.7 68.5 76.7 12.3 10.3 15.5 32.8 58.3 47.9 3.6 2
FI 19.5 80.2 100.0 72.7 5.8 8.0 71.4 58.0 16.1 58.2 42.1 2.1 1
FR 35.4 28.5 18.7 100.0 17.5 47.6 31.2 42.0 56.1 6.4 31.8 6.4 0
GER 10.1 36.2 5.5 8.7 100.0 56.0 59.3 16.7 94.3 1.5 38.0 4.0 2
GRE 86.5 11.5 34.8 30.3 14.1 100.0 21.5 62.6 7.5 76.9 85.5 56.4 0
IE 29.2 6.9 47.8 67.5 22.4 10.9 100.0 59.4 82.3 94.7 74.5 85.1 0
IT 29.3 21.8 20.3 47.3 42.9 12.1 21.9 100.0 33.8 14.0 11.6 10.1 0
LU 31.7 90.3 24.9 2.6 10.5 73.8 77.4 1.0 100.0 10.7 23.5 4.1 3
NL 14.1 42.5 28.6 10.7 66.6 64.9 16.4 45.2 91.2 100.0 44.1 36.9 0
PT 62.3 56.5 6.0 47.3 14.8 30.7 2.7 99.3 61.7 48.6 100.0 86.2 1
ES 73.8 85.7 13.4 39.2 7.3 59.0 62.4 56.5 31.9 77.7 54.1 100.0 0
SUM 0 0 1 1 0 1 1 1 0 1 0 4 10

NOTES: Each entry of the table gives the p-value (in %) of the test of causality in the right-tail distribution from the index j in a column toward the index i in a row. Entries with the
rejection of the null hypothesis at the 5% significance level are indicated in bold. The last column, labeled “Sum,” indicates the number of times a given index in a row is Granger-caused
by the others. Similarly, the last row, labeled “Sum,” indicates the number of times a given index in a column Granger-causes the other indices. The entry corresponding to the last row
and the last column gives the total number of significant Granger causalities in the system. The tests are performed over the period ranging from January 1, 2007, to May 6, 2011, with a
total of T = 1134 observations.

4.3 Testing for Contagion

As explained previously, contagion is apprehended by im-
plementing our Granger causality test in the left-tail distri-
bution. The set A of VaRs risk levels is now set as A =
{0%, 1%, 5%, 10%} with m + 1 = 4. Table 7 displays the
outcomes of the tests. The pairs for which we find a rejec-
tion of the null of no causality in the left tail of the distribution
amount to 35.6% of the cases (47 rejections over 132 cases).
This result is clearly higher than that obtained considering the
center of the distribution, hence supporting the presence of con-
tagion. Moreover, we observe that the most causal markets are
Portugal, Italy, the Netherlands, Greece, and Ireland, and except
for the Netherlands, this group includes all countries in turmoil
(Portugal, Italy, Greece, and Ireland) around which the crisis
was built. By contrast, the most caused markets are Austria,
Belgium, Italy, France, Luxembourg, and Greece. Remark the
predominant role in the system of Italy and Greece, which cause
and are caused in many cases.

The Granger causality test is now repeated for the right-tail
distribution with A = {90%, 95%, 99%, 100%}, that is, m +
1 = 4. The results are reported in Table 8. Contagion in positive
periods is only supported in 7.5% of the cases (10 rejections over
132 cases) and concerns mainly Spain as the driver of spillover
and Luxembourg, Germany, and Belgium as spillover receivers.
The huge difference in causal links for the right (7.5%) and
left tails (35.6%) is striking. Whereas spillovers are important
in crisis periods, they are only weakly present during upswing
periods. This feature emphasizes the substantial vulnerability
of European stock markets to negative shocks. European policy
makers should acknowledge this vulnerability and implement
structural measures to limit it.

5. CONCLUSION

A kernel-based nonparametric test for Granger causality in
distribution between two time series is proposed in this article.

The test checks for spillovers between the multivariate pro-
cesses of dynamic interquantile event variables are associated
with each variable. Our testing approach has two main advan-
tages over existing approaches. First, it can be used to test for
Granger causality in specific regions of the distributions, such
as the center or the tails (left and right). Second, it checks for
a large number of lags by discounting higher-order lags and
hence is consistent against causality, which carries over long
distributional lags.

We demonstrate that the test has a standard Gaussian dis-
tribution under the null hypothesis, which is free of parameter
estimation uncertainty. A Monte Carlo simulation exercise re-
vealed that the Gaussian distribution is valid in small samples.
The test also has very appealing power properties in various
settings, including linear and nonlinear causality in mean and
causality in variance.

In the empirical section, we implement our testing procedure
for 12 European daily stock market indices to analyze spillover
during the recent European crisis. Because our test is designed
to check for causality in specific regions of the distribution
(center or tails), it can be used to test for the presence of inter-
dependence as well as contagion. Indeed, interdependence can
be determined through Granger causality in the center of the
distribution because interdependence is a long-term path that
occurs during normal periods. By contrast, contagion refers to a
short-term, abrupt increase in the causal linkages occurring ex-
clusively during crisis periods and can be tested via the Granger
causality in the distribution’s tails.

The empirical results indicate that European stock market in-
tegration is far from achieved because we observe few cases
of an interdependent pairwise relationship. By contrast, our
results support the presence of contagion, with a strong dif-
ference between contagion in the right and left tails. More
precisely, contagion is frequent among countries during cri-
sis periods and comparatively infrequent during upswing pe-
riods. This result reveals an important feature of the Euro-
pean stock markets, and policy makers should acknowledge
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this feature in designing structural measures for financial
stability.

APPENDIX A: PROOF OF LEMMAS

A.1 Proof of Lemma 2

Lemma 2. Under the null hypothesis of no Granger causality in
distribution and the assumptions of Theorem 1 in Hong, Liu, and Wang
(2009), we have

T ∗ − m2CT (M)(
m2DT (M)

)1/2 −→d N (0, 1) .

Proof. Consider the following decomposition

T ∗ − m2CT (M)(
m2DT (M)

)1/2 = T −m2CT (M)(
m2DT (M)

)1/2 + T ∗−T(
m2DT (M)

)1/2 ,

where T is the test statistic involving the cross-correlation matrix R (j )
of the true processes of event variables HX

t

(
θ 0
X

)
and HY

t

(
θ 0
Y

)
and their

respective correlation matrices �X and �Y , that is,

T =
T −1∑
j=1

κ2 (j/M) Q (j ) ,

Q (j ) = T vec (R (j ))T
(
�−1

X ⊗ �−1
Y

)
vec (R (j )) .

With this decomposition, the proof of Lemma 2 is given by the
following two Lemmas:

Lemma 2.1. Under the assumptions of Theorem 1 in Hong, Liu, and
Wang (2009), we have

T ∗−T = op

(
M1/2

)
.

Lemma 2.2. Under the null hypothesis of no Granger causality in
distribution, we have

T −m2CT (M)(
m2DT (M)

)1/2 −→d N (0, 1) .

A.1.1 Proof of Lemma 2.1. The following notations are required.
Let b

(1)
t = 


−1/2
X

(
HX

t

(
θ 0
X

) − 	X

)
and b

(2)
t = 


−1/2
Y

(
HY

t

(
θ 0
Y

) − 	Y

)
,

be the centered and scaled multivariate processes of event variables,
with 	X = E

(
HX

t

(
θ 0
X

))
and 	Y = E

(
HY

t

(
θ 0
Y

))
, 
X and 
Y being the

covariance matrices of HX
t

(
θ 0
X

)
and HY

t

(
θ 0
Y

)
, respectively. We denote

b̂
(1)
t = 


−1/2
X

(
ĤX

t − 	X

)
and b̂

(2)
t = 


−1/2
Y

(
Ĥ Y

t − 	Y

)
their analogs

based on the estimated processes of multivariate event variables ĤX
t and

Ĥ Y
t . We denote Cb̂ (j ) the sample cross-covariance matrix at lag-order

j between b̂
(1)
t and b̂

(2)
t , with Cb̂ (j ) = 


−1/2
X �̂ (j ) 


−1/2
Y , and �̂ (j ) is

the cross-covariance matrix at lag-order j between ĤX
t and Ĥ Y

t . Finally,
Cb (j ) is the pseudo version of Cb̂ (j ), with Cb (j ) = 


−1/2
X � (j ) 


−1/2
Y ,

and � (j ) is the cross-covariance matrix at lag-order j between HX
t

(
θ 0
X

)
and HY

t

(
θ 0
Y

)
.

With these notations and based on Bouhaddioui and Roy (2006,
proof of Lemma 2, pp. 538), T − T ∗ can be rewritten as T − T ∗ =
A

(1)
T + A

(2)
T , with

A
(1)
T = T

T −1∑
j=1

κ2 (j/M) ‖vec (Cb̂ (j )) − vec (Cb (j ))‖2 ,

A
(2)
T = 2T

T −1∑
j=1

κ2 (j/M) 〈vec (Cb (j )) , vec (Cb̂ (j )) − vec (Cb (j ))〉 ,

where ‖x‖ is the Euclidean norm and 〈x, y〉 = xT y is the inner product.
Hence, the rest of the proof proceeds by showing that A

(1)
T = op

(
M1/2

)
and A

(2)
T = op

(
M1/2

)
.

For the first term A
(1)
T , using the property vec (ABC) =(

CT ⊗ A
)

vec (B), we have

A
(1)
T = T

T −1∑
j=1

κ2 (j/M)
∥∥∥(



−1/2
Y ⊗ 


−1/2
X

) (
vec

(
�̂ (j )

) − vec (� (j ))
)∥∥∥2

,

and we obtain

A
(1)
T ≤ T

T −1∑
j=1

κ2 (j/M)
∥∥∥


−1/2
Y ⊗ 


−1/2
X

∥∥∥2

F

∥∥vec
(
�̂ (j )

) − vec (� (j ))
∥∥2

,

with ‖A‖2
F = trace(AT A) the square of the Frobenius norm of the

matrix A. For the rest of the proof, it suffices to show that L
(1)
T =

op

(
M1/2/T

)
, with

L
(1)
T =

T −1∑
j=1

κ2 (j/M)
∥∥vec

(
�̂ (j )

) − vec (� (j ))
∥∥2

.

Note that we have

L
(1)
T =

m,m∑
u,v=1

T −1∑
j=1

κ2 (j/M)
(
Ĉu,v (j ) − Cu,v (j )

)2
,

where Ĉu,v (j ) and Cu,v (j ) are the (u, v) elements of the matri-
ces �̂ (j ) and � (j ), respectively. Hence, using the result of Propo-
sition A.1. in Hong, Liu, and Wang (2009, pp. 282), that is,∑T −1

j=1 κ2 (j/M)
(
Ĉu,v (j ) − Cu,v (j )

)2 = op

(
M1/2/T

)
, we conclude

that L
(1)
T = op

(
M1/2/T

)
, and A

(1)
T = op

(
M1/2

)
.

For the second term A
(2)
T , we have

A
(2)
T = 2T

T −1∑
j=1

κ2 (j/M)
{
vec (Cb (j ))T (vec (Cb̂ (j )) − vec (Cb (j )))

}
,

and using once again the property vec (ABC) = (
CT ⊗ A

)
vec (B),

and the property (A ⊗ B) (C ⊗ D) = (AC) ⊗ (BD), simple calculus
give

A
(2)
T = 2T

T −1∑
j=1

κ2 (j/M)
{
vec (� (j ))T P

(
vec

(
�̂ (j )

) − vec (� (j ))
)}

,

with P = 
−1
Y ⊗ 
−1

X . Let Ĉs (j ), s = 1, . . . , m2 be the elements of
vec

(
�̂ (j )

)
, and Cs (j ), s = 1, . . . , m2 the elements of vec (� (j )).

Then A
(2)
T is equal to

A
(2)
T = 2T

T −1∑
j=1

κ2 (j/M)

⎧⎨
⎩

m2,m2∑
s,r=1

Cs (j )
(
Ĉr (j ) − Cr (j )

)
Psr

⎫⎬
⎭ ,

where Psr is the (s, r) element of the matrix P, and we have

A
(2)
T = 2T

m2,m2∑
s,r=1

Psr

T −1∑
j=1

κ2 (j/M)
{
Cs (j )

(
Ĉr (j ) − Cr (j )

)}
.

Based on the result of Proposition A.2. in Hong, Liu, and Wang
(2009, pp. 282), that is,∑T −1

j=1
κ2 (j/M)

{
Cs (j )

(
Ĉr (j ) − Cr (j )

)} = op

(
M1/2/T

)
, (A.1)

we conclude that A
(2)
T = op

(
M1/2

)
, and this completes the proof of

Lemma 2.1.
Note that Proposition A.2. in Hong, Liu, and

Wang (2009) is about the following quadratic form∑T −1
j=1 κ2 (j/M)

{
Cr (j )

(
Ĉr (j ) − Cr (j )

)}
, in which the expres-

sion in the brace involves the product of two terms that have the same
index. This differs from our expression in (A.1) with the two terms of
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the product having different indices. However, by going through their
proof of Proposition A.2., results do not change considering different
indices.

A.1.2 Proof of Lemma 2.2. The result of Lemma 2.2. is ob-
tained from a simple modification of the proof of Lemma 1 in
Bouhaddioui and Roy (2006, pp. 529), putting bt = (b(1)

t , b
(2)
t )T , with

b
(1)
t ≡ 


−1/2
X (HX

t

(
θ 0
X

) − 	X), b(2)
t ≡ 


−1/2
Y (HY

t

(
θ 0
Y

) − 	Y ). Note that
the asymptotic normality result of Lemma 1 in Bouhaddioui and Roy
(2006) is obtained under two assumptions: (i), b

(1)
t and b

(2)
t are mul-

tivariate iid sequences, respectively, (ii) and the two processes are
independent. In our framework, the assumption (i) is satisfied because
b

(1)
t and b

(2)
t are the centered and scaled versions of the true multivari-

ate processes of interquantile event variables HX
t

(
θ 0
X

)
and HY

t

(
θ 0
Y

)
,

and both HX
t

(
θ 0
X

)
and HY

t

(
θ 0
Y

)
are multivariate iid sequence. Indeed,

the m components of HX
t

(
θ 0
X

)
(or HY

t

(
θ 0
Y

)
) although cross-sectionally

dependent, do not have lag-dependence between them. Note that the
absence of lag-dependence is the usual hypothesis that is checked
when validating value-at-risk models through backtesting procedures.
Finally, for the second assumption (ii), we do not need here the full
assumption of independence between b

(1)
t and b

(2)
t , but only that b

(1)
t

is independent of
{
b(2)

s , s < t
}
, which is satisfied under our null hy-

pothesis of no Granger causality from Yt to Xt . This supposes that
we must allow here for the reverse possibility that Xt Granger-causes
Yt . However, the normality result of our Lemma 2.2. remains valid, if
by going through their proof of Lemma 1, we consider only positive
lags (j > 0), excluding the cases j ≤ 0, which include instantaneous
causality and causality from Xt to Yt .

A.2 Proof of Lemma 3

Lemma 3. Under the assumptions of Theorem 1 in Hong, Liu, and
Wang (2009), we have

T̂ − T ∗(
m2DT (M)

)1/2 −→p 0.

Proof. The proof of Lemma 3 proceeds by combining elements in
the proofs of Proposition 3 in Bouhaddioui and Roy (2006), Theo-
rems A.1. and A.3. in Hong, Liu, and Wang (2009). Formally, given
that

DT (M) = M

∫ ∞

0
κ4 (z) dz [1 + o (1)] ,

as M → ∞, the proof of Lemma 3 can be established by showing
that T̂ − T ∗ = Op

(
M/T 1/2

)
. Based on Lemma 4.1 in El Himdi and

Roy (1997), the quadratic forms T̂ and T ∗ can be rewritten in term of
cross-covariances as

T̂ = T

T −1∑
j=1

κ2 (j/M) vec
(
�̂ (j )

)T (

̂−1

X ⊗ 
̂−1
Y

)
vec

(
�̂ (j )

)
,

T ∗ = T

T −1∑
j=1

κ2 (j/M) vec
(
�̂ (j )

)T (

−1

X ⊗ 
−1
Y

)
vec

(
�̂ (j )

)
,

where �̂ (j ) is the sample cross-covariance matrix at lag-order j, 
X

and 
Y are the covariance matrices of the true multivariate processes of
event variables HX

t

(
θ 0
X

)
and HY

t

(
θ 0
Y

)
, and 
̂X and 
̂Y are their sample

counterparts given by the covariance matrices of ĤX
t ≡ HX

t

(
θ̂X

)
and

Ĥ Y
t ≡ HY

t

(
θ̂Y

)
, respectively. It follows that

T̂ − T ∗ = T

T −1∑
j=1

κ2 (j/M) vec
(
�̂ (j )

)T {

̂−1

X ⊗ 
̂−1
Y − 
−1

X ⊗ 
−1
Y

}
vec

(
�̂ (j )

)
. (A.2)

Now, let us study the asymptotic behavior of 
̂X . The components
of this matrix are given by the covariance between the estimated event
variables ẐX

t,k , k = 1, . . . , m. Let Ĉk,p be a typical element of 
̂X with
Ĉk,p = cov

(
ẐX

t,k, Ẑ
X
t,p

)
. Let C0

k,p be the true value of Ĉk,p , that is, the
covariance between the true event variables ZX

t,k

(
θ 0
X

)
and ZX

t,p

(
θ 0
X

)
.

Note that C0
k,p is a typical element of 
X . The difference between Ĉk,p

and C0
k,p can be decomposed as follows:

Ĉk,p − C0
k,p = M̂1

(
θ̂0
X

) + M̂2

(
θ̂0
X

) + M̂3

(
θ̂ 0
X

)
,

with

M̂1

(
θ̂0
X

) = T −1
T∑

t=1

[
ẐX

t,k − ZX
t,k

(
θ 0
X

)] [
ZX

t,p

(
θ 0
X

) − πX
p

]

M̂2

(
θ̂0
X

) = T −1
T∑

t=1

[
ZX

t,k

(
θ 0
X

) − πX
k

] [
ẐX

t,p − ZX
t,p

(
θ 0
X

)]

M̂3

(
θ̂0
X

) = T −1
T∑

t=1

[
ẐX

t,k − ZX
t,k

(
θ 0
X

)] [
ẐX

t,p − ZX
t,p

(
θ 0
X

)]
,

where we replace the sample means π̂X
k and π̂X

p of Ẑt,k and Ẑt,p by their
true respective values πX

k = E
(
ZX

t,k

(
θ 0
X

))
and πX

p = E
(
ZX

t,p

(
θ 0
X

))
. Us-

ing the following result in the proof of Theorem A.3. in Hong, Liu, and
Wang (2009, pp. 286), that is, sup

θX∈�X

∣∣M̂1 (θX)
∣∣ = Op

(
T −1/2

)
, where

θX is any
√

T -consistent estimator of θ0
X in the space �X , we have

for the first term M̂1

(
θ̂0
X

) = Op

(
T −1/2

)
. Similar arguments apply for

the last two terms, with the consequence that M̂2

(
θ̂0
X

) = Op

(
T −1/2

)
,

M̂3

(
θ̂ 0
X

) = Op

(
T −1/2

)
. We deduce that Ĉk,p − C0

k,p = Op

(
T −1/2

)
and


̂X − 
X = Op

(
T −1/2

)
.

Using the same reasoning for the elements of 
̂Y , we have 
̂Y −

Y = Op

(
T −1/2

)
and


̂−1
X ⊗ 
̂−1

Y − 
−1
X ⊗ 
−1

Y = Op

(
T −1/2

)
.

Hence Equation (A.2) becomes

T̂ − T ∗ = T

T −1∑
j=1

κ2 (j/M) vec
(
�̂ (j )

)T
Op

(
T −1/2

)
vec

(
�̂ (j )

)
(A.3)

= Op

(
T 1/2

) T −1∑
j=1

κ2 (j/M) vec
(
�̂ (j )

)T
vec

(
�̂ (j )

)
.

The rest of the proof proceeds by showing that

B (T ) =
T −1∑
j=1

κ2 (j/M) vec
(
�̂ (j )

)T
vec

(
�̂ (j )

) = Op (M/T ) .

We decompose B (T ) into two parts: B (T ) = B1 (T ) + B2 (T ), with

B1 (T ) =
T −1∑
j=1

κ2 (j/M)
{
vec

(
�̂ (j )

)T
vec

(
�̂ (j )

) − vec (� (j ))T

vec (� (j ))
}
,

B2 (T ) =
T −1∑
j=1

κ2 (j/M) vec (� (j ))T vec (� (j )) ,

where � (j ) is the cross-covariance matrix at lag-order j of the true
event variables HX

t

(
θ 0
X

)
and HY

t

(
θ 0
Y

)
. Let us first consider B1 (T ). We

have

B1 (T ) =
T −1∑
j=1

κ2

(
j

M

) m,m∑
u,v=1

{
Ĉ2

u,v (j ) − C2
u,v (j )

}
,

with Ĉu,v and Cu,v the (u, v) element of the matrices �̂ (j ) and � (j ),
respectively. Using the result of Theorem A.1. in Hong, Liu, and
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Wang (2009, pp. 282), that is,
∑T −1

j=1 κ2 (j/M)
(
Ĉ2

u,v (j ) − C2
u,v (j )

) =
op

(
M1/2/T

)
, we obtain B1 (T ) = Op

(
M1/2/T

)
.

For the second term B2 (T ), using the Markov inequality, we have

B2 (T ) =
T −1∑
j=1

κ2

(
j

M

)
vec (� (j ))T vec (� (j )) = Op (M/T ) .

(A.4)
We deduce that B (T ) = B1 (T ) + B2 (T ) = Op (M/T ) and T̂ −

T ∗ = Op

(
T 1/2

)
Op (M/T ) = Op

(
M/T 1/2

)
. This completes the proof

of Lemma 3.

APPENDIX B: DESCRIPTION OF THE KERNEL
FUNCTIONS

The four usual kernels are defined as follows:

• the Daniell (DAN) kernel

κ (z) = sin (πz)

πz
, z ∈ R, (B.1)

• the Parzen (PAR) kernel

κ (z) =
⎧⎨
⎩

1 − 6z2 + 6 |z|3 if |z| ≤ 0.5
2 (1 − |z|)3 if 0.5 < |z| ≤ 1
0 otherwise,

(B.2)

• the Bartlett (BAR) kernel

κ (z) =
{

1 − |z| if |z| ≤ 1
0 otherwise, (B.3)

• the truncated uniform (TR) kernel

κ (z) =
{

1 if |z| ≤ 1
0 otherwise. (B.4)
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