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ABSTRACT
We present an adaptive method for the automatic scaling of random-
walk Metropolis–Hastings algorithms, which quickly and robustly iden-
tifies the scaling factor that yields a specifiedoverall sampler acceptance
probability. Our method relies on the use of the Robbins–Monro search
process, whose performance is determined by an unknown steplength
constant. Based on theoretical considerations we give a simple estima-
tor of this constant for Gaussian proposal distributions. The effective-
ness of our method is demonstrated with both simulated and real data
examples.

1. Introduction

Markov chain Monte Carlo (MCMC) algorithms are routinely used in Bayesian statisti-
cal inference. In particular, the Metropolis–Hastings algorithm is highly popular due to its
simplicity and general applicability (Brooks et al., 2011). The most frequently implemented
variant, the random-walk Metropolis–Hastings (RWMH) sampler, uses a Gaussian proposal
distribution centered on the current value of the Markov chain, with some specified scale
parameter σ 2 > 0. The overall acceptance rate, and hence efficiency of RWMH, depends
strongly on the value of σ 2, which typically produces a smaller acceptance probability for
a proposed move when it is large, and a larger acceptance probability when it is small.

In this article, we propose the use of a stochastic search algorithm – the Robbins–
Monro process (Robbins and Monro, 1951) – to automatically tune the scale parameter of a
Gaussian RWMH algorithm for a prespecified value of the RWMH acceptance probability.
The scale parameter is optimized to achieve a user-specified overall sampler acceptance prob-
ability. Theoretical arguments for target distributions of certain forms suggest optimal accep-
tance rates of 0.234 (Roberts et al., 1997) and 0.44 (Roberts and Rosenthal, 2001) for multi-
variate and univariate proposal distributions, respectively. In essence, the resulting adaptive
sampler will increase the value of σ if the previous MCMC proposed move was likely to have
been accepted and decrease σ if the proposal was likely to have been rejected. The amount by
which σ is changed, termed the ‘step size’, decreases log-linearly with the number of iterations
in the Markov chain.
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Within the context of the RWMH algorithm, the Robbins–Monro process guarantees the
convergence of an estimate of σ for any specified acceptance probability, while other more
ad-hoc search methods (e.g., Roberts and Rosenthal, 2009) do not have such convergence
properties. The primary contribution of this paper is to develop a simple estimator of the
optimum steplength constant of the Robbins–Monro process, based on theoretical arguments.
This constant controls the magnitude of the step size and therefore the rate of convergence of
the Robbins–Monro process. Andrieu and Thoms (2008) review a variety of adaptiveMCMC
methods, including several that use variants of the Robbins–Monro process. However, none of
the algorithms they describe estimate the optimal value of the steplength constant. A previous
attempt to estimate this constant (Andrieu andRobert, 2001) required combining information
from three separate Markov chains, making the accuracy of the estimate questionable. This
work is not mentioned in the review of Andrieu and Thoms (2008). Our proposed procedure
offers a far simpler estimate for the steplength constant and requires minimal changes to the
vanilla RWMH algorithm. It can therefore be easily included in existing MCMC software.
For other recent work on adaptive MCMCmethods, see, e.g., Roberts and Rosenthal (2009),
Haario et al. (2005), and Craiu et al. (2009).

2. Robbins–Monro and estimation of the steplength constant

Consider a binary response with probability of success p(σ ), where σ > 0 is a parameter
that can be controlled. It is assumed that p(σ ) is a monotonic function of σ and here it is
appropriate to suppose that the function ismonotonically decreasing. This assumption usually
holds in RWMH, as a smaller scale parameter, σ , generally corresponds to a larger acceptance
rate, p(σ ), and vice versa. The aim is to find the value of σ that gives a specified probability of
success, p∗. Let σ ∗ denote this value, so that p(σ ∗) = p∗. FollowingVihola (2011), we conduct
the search for σ ∗ on the logarithmic scale, so that θ = ln(σ ) and θ∗ = ln(σ ∗), to constrain
the scale parameter σ to positive values. The Robbins–Monro process conducts a stochastic
search in which a sequence of Bernoulli trials is implemented. Let θi denote the estimate of
θ∗ at the ith trial, i = 1, 2, . . .. The standard Robbins–Monro process (Robbins and Monro,
1951) updates θi → θi+1 according to the rule

θi+1 =
{

θi + c(1 − p∗)/i if the ith trial is a success
θi − cp∗/i if the ith trial is a failure,

where the size of the change is controlled by a chosen steplength constant c > 0. If pi is the
probability that the ith trial is a success, then the expected size of the ith step is c(pi − p∗)/i.
The randomness introduced by the Bernoulli trial can then be avoided by writing

θi+1 = θi + c(pi − p∗)/i. (1)

With RWMH, the Bernoulli trial consists of generating a value from the proposal distribution
at the ith sampler iteration, and pi is the corresponding acceptance probability.

The optimum choice of the steplength constant is c∗ = −1/[dp(σ )/dθ]θ=θ∗ , where the
derivative is evaluated at the target value θ = θ∗ (Hodges and Lehmann, 1955). The method
has good asymptotic properties (Hodges and Lehmann, 1955; Wetherill, 1963; Schwabe and
Walk, 1996). In particular, as i → ∞, θi − θ∗ is asymptotically distributed as N(0, p∗(1 −
p∗)c2c∗/i(2c − c∗)), provided that c > c∗/2. If c is set equal to its optimal value, c∗, then the
asymptotic variance of θi equals the Cramer–Rao lower bound to the variance of any non
parametric unbiased estimator of θ∗ (Wetherill, 1975). Moreover, the asymptotic variance is
relatively insensitive to the precise value chosen for c (Wetherill, 1963), especially if c overesti-
mates c∗ so that steps are larger than their optimal size: the variance is one-third greater than
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its lower bound when c = 2c∗ or c = 2c∗/3. In general, the optimal value c∗ is not known and
must be estimated.

In the context of theMetropolis–Hastings algorithm, suppose that the posterior target dis-
tribution is f (x) ∝ f #(x), where f #( · ) is known. Let g(· | x, σ ) be the proposal distribution
when currently at x, and σ denote the scale parameter. Then

p(x, σ ) =
∫

min
{
f #(y) g(x | y, σ )

f #(x) g(y | x, σ )
, 1

}
g(y | x, σ ) dy

is the probability of accepting a proposed move from x, using proposals from g(· | x, σ ). We
assume that g(· | x, σ ) is a normal distribution and that, for any x, p(x, σ ) is a monotonic
decreasing function of σ . The overall acceptance probability of the sampler is given as p(σ ) =∫
p(x, σ ) f (x) dx, and under standard regularity conditions

dp(σ )

dθ
=

∫ ∫
min

{
f #(y)
f #(x)

, 1
}(

dg(y | x, σ )

dσ

)
dσ

dθ
f (x) dy dx, (2)

where θ = ln(σ ). The quantity (2) evaluated at θ∗ determines the optimal value of the
steplength constant.

However, even in the usual Robbins–Monro context it is difficult to estimate the steplength
constant from variation in p(σ ) (Wetherill, 1963; Ruppert, 1991). In the present context, esti-
mating c∗ from variation in p(x, σ ) is orders of magnitude harder, as p(x, σ ) is as sensitive
to change in x as to change in σ . In the following, we develop a procedure that avoids this
problem.

Garthwaite and Buckland (1992) and Garthwaite (1996) provide an algorithm for find-
ing confidence limits in Monte Carlo tests, in which the steplength constant is not estimated
through variation in p(σ ). Instead, the estimate of c∗ is based on the distance between the cur-
rent estimate of one endpoint of the confidence interval and the point estimate of the quantity
for which the interval is required. The ratio of this distance to the optimal steplength constant,
c∗, is reasonably similar across a broad range of distributions – sufficiently similar to provide
an adequate estimate of the steplength constant and an efficient search algorithm; see Lee and
Young (2003). For the RWMH algorithm, our results suggest that the relationship between
c∗ and p∗ may be sufficiently similar across distributions for c∗ to be adequately estimated
from p∗. Propositions 1–5 motivate the choice of the estimator for c∗. Propositions 2 and 4
are proved in Appendix A.

Proposition 1. Suppose that g(y|x, σ ) is anm-dimensional multivariate Gaussian proposal dis-
tribution, y ∼ MVN(x, σ 2A), where A does not depend on σ . Then a lower bound on c∗ is
(mp∗)−1.

Proof. Differentiating g(y| x, σ ) gives dg(y| x, σ )/dσ = {σ−3(y − x)′A−1(y − x) −
mσ−1}g(y| x, σ ). Also, dσ/dθ = σ . Substituting Eq. (2) gives

dp(σ )/dθ = −mp(σ ) + φ, (3)

where

φ = σ−2
∫ ∫

min
{
f #(y)
f #(x)

, 1
}

(y − x)′A−1(y − x) g(y | x, σ ) f (x) dy dx. (4)

Since φ > 0 is positive, dp(σ )/dθ > −mp(σ ). It follows that c∗ > (mp∗)−1, as c∗ =
−1/[dp(σ )/dθ]θ=θ∗ and p(σ ∗) = p∗. �
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Proposition 2. Let m = 1 and suppose the conditions of Proposition 1 hold and that f (·) has
finite variance. Then c∗ → 1/p∗ as σ ∗ → ∞, where (σ ∗)2A is the variance of the proposal
distribution.

Proposition 3. Suppose that g(y| x, σ ) is the Gaussian distribution defined in Proposition 1.
Also, suppose that p(σ ) has a continuous first derivative and a finite second derivative within
an interval (0, δ) and that p(σ ) → 1 as σ → 0. Then c∗ ≈ 1/(1 − p∗) as p∗ → 1.

Proof. For small σ , p(σ ) ≈ p(ε) + σ dp/dσ for arbitrarily small ε > 0. The result follows as
p(σ ∗) = p∗, p(ε) → 1 as ε → 0 and [σ dp(σ )/dσ ]σ=σ∗ = [dp(σ )/dθ]θ=θ∗ = −1/c∗. �
Proposition 4. Suppose that the target distribution is unimodal and the conditions of
Proposition 2 hold. Then another lower bound on c∗ is (1 − p∗)−1.

Wenow determine a simple relationship between c∗ and p∗ that will be taken as representa-
tive of the relationship for target distributions in general. Undermild regularity conditions on
the target distribution, p∗ → 0 only as σ ∗ → ∞. Hence, whenm = 1, Proposition 2 implies
that the relationship should satisfy c∗ → 1/p∗ as p∗ → 0. Also, from Propositions 1 and 3, c∗

should exceed 1/(mp∗) for all p∗ and c∗ → 1/(1 − p∗) as p∗ → 1.Whenm = 1, the simplest
function that meets these conditions is

ĉ∗ = 1
/ [

p∗ (
1 − p∗)] . (5)

We examined the true relationship between c∗ and p∗ for a broad range of univariate target
distributions, based on a univariate N(x, σ 2) random-walk proposal. Specifically, we consid-
ered the standard normal, t (with 5 d.f.), Cauchy, uniform, logistic, and double exponential
distributions, a gamma(5, 1) and beta(3, 7) distribution, and the bimodal and trimodal nor-
mal mixtures 1

2 [N(0, 1) + N(5, 5)] and 1
3 [N(5, 1) + N(10, 2) + N(15, 3)]. For each target

distribution, and for a range of values of p∗ ∈ [0.05, 0.95], Monte Carlo methods were used
to determine c∗ by first solving p(σ ) = ∫

p(x, σ ) f (x) dx for σ and then evaluating dp/dθ at
that value of σ , using (2). Large sample sizes were used to ensure that Monte Carlo variability
was negligible.

In Fig. 1, the dotted lines plot c∗ against p∗ for each of these distributions. The closeness
of the 10 lines indicates that the relationship is broadly similar across these distributions,
although the dashed line, corresponding to the Cauchy distribution, is slightly higher for low
p∗. The thick solid line illustrates relationship (5) indicating its suitability, although many
other choices would also be satisfactory and could be made without greatly affecting the per-
formance of the method. A useful feature of (5) is that it generally yields an estimate of c∗ that
is a little too large rather than too small: in the Robbins–Monro context, it is better to over-
estimate c∗ than to underestimate it. The lowest lines in Fig. 1 are the lower bounds given by
Propositions 1 and 4. Together they provide a bound that can be quite tight for much of the
range of p∗. They show that our choice of c∗ will never be excessively large for any unimodal
distribution.

In terms of multivariate distributions, we follow Roberts et al. (1997) who considered m-
dimensional target distributions of the form

f (x) = h(x1)h(x2) . . . h(xm) (6)

for some univariate smooth density h, where x = (x1, . . . , xm)′. They showed that with
an m-dimensional Gaussian proposal distribution, y ∼ MVN(x, σ 2Im), then p(σ ) =
2�(−σBm1/2/2) as m → ∞, where B > 0 is a constant that depends on h. Roberts and
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Rosenthal (2001) derive similar results for the case where the target distribution is a mul-
tivariate Gaussian with an m-dimensional multivariate Gaussian proposal distribution, y ∼
MVN(x, σ 2A), or if f (x) = ∏m

i=1Cih(Cixi), where the {Ci} are i.i.d draws from some fixed
distribution. They show that as m → ∞, then p(σ ) → 2�(−βσ ) for some β > 0. The fol-
lowing proposition gives c∗ whenever p(σ ) has this form. An attraction of the result is that c∗

does not depend on β .

Proposition 5. Suppose that p(σ ) = 2�(−βσ ), where β > 0 is a constant and � is the cdf of
the standard normal distribution. Denoting α = −�−1(p∗/2), then

c∗ = (2π)1/2 exp
(
α2/2

)
/(2α).

Proof. Differentiating p(σ ) = 2
∫ −βσ

−∞ (2π)−1/2 exp(−z2/2)dz gives dp(σ )/dθ = σdp(σ )/

dσ = −2βσ (2π)−1/2 exp{−(βσ )2/2).Writeα = βσ ∗, so thatα = −�−1(p∗/2). The propo-
sition follows as c∗ = −1/[dp(σ )/dθ]θ=θ∗ . �

To determine how c∗ varies with the dimension of multivariate target distributions, m,
we examined target distributions of the form (6), and m-dimensional multivariate-t(ν) dis-
tributions. For fixed p∗, and with an m-dimensional Gaussian proposal distribution, y ∼
N(x, σ 2Im), experimentation indicated that c∗ was close to a linear function of 1/m. Assum-
ing that Proposition 5 holds as m → ∞, and that (5) holds when m = 1, then this suggests
the linear function

ĉ∗ =
(
1 − 1

m

)
(2π)1/2eα2/2

2α
+ 1

mp∗(1 − p∗)
, (7)

where α = −�−1(p∗/2).
To examine the utility of (7) for target distributions of the form f (x) = ∏m

i=1 h(xi), each
univariate distribution considered in Fig. 1 was taken in turn as the component distribu-
tion h(·). As before, Monte Carlo methods were used to determine c∗ for a range of values
of p∗ ∈ [0.05, 0.95], and the resulting true relationships are shown in Fig. 2 (panels (a)–(d))

Figure . Plots of c∗ against p∗ for  univariate distributions: (dotted lines) standard normal, t (with  d.f.),
uniform, logistic, and double exponential distributions, a gamma (, ) and beta (, ) distribution, bimodal
and tri-modal normal mixtures, and (dashed line) a standard Cauchy. The thick solid line denotes the rela-
tionship ĉ∗ = 1/[p∗(1 − p∗)]. The lowest two lines that intersect at p∗ = 0.5 are the lower bounds 1/p∗
and 1/(1 − p∗).
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Figure . Plots of c∗ against p∗ form-dimensional multivariate distributions. Panels (a)–(d) represent dis-
tributions of the form f (x) = ∏m

i=1 h(xi), where h(·) is given by the  univariate distributions in Figure 
(dotted lines). The dashed line denotes the standard Cauchy distribution. The solid lines denote the rela-
tionship given by (). Panels (a)–(d) representm = 2, 4, 8, and 20 dimensions. Panels (e) and (f ) represent
m-dimensional t(ν) distributions with ν degrees of freedom. Panel (e) showsm = 2with ν = 2, , and 
and panel (f ) showsm = 5with ν = 5, , and .

for m = 2, 4, 8, and 20 dimensions. Similarly, Fig. 2 (panels (e) and (f)) examines the rela-
tionship between c∗ and p∗ for multivariate t(ν) distributions with ν = 2, 10, 25 (form = 2)
and ν = 5, 10, 25 (for m = 5). For each model dimension, the relationship between c∗ and
p∗ is similar for all distributions. Function (7) (solid line) exhibits a strong similarity with the
other curves, implying itmodels the relationship acrossmodel dimensionswell for thesemod-
els. As with (5), the form of (7) generally represents a practically convenient overestimate of
c∗.
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In summary, Figs. 1 and 2 show that c∗ is largely determined by the values of p∗ andm for
a range of distributions. Propositions 1–5 suggest that this should hold more generally. Thus,
(7) gives a good estimate of c∗ to be used in an implementation of the Robbins–Monro process
within a Gaussian RWMH sampler. If σ̂c is the estimate of σ ∗ after i steps of a Robbins–Monro
search with a steplength constant of c, then Var(σ̂c) = p∗(1 − p∗)c2/{i(2c/c∗ − 1)} (Hodges
and Lehmann, 1955). This is minimized when c = c∗ so the efficiency of a search is defined
to be

100% × Var(σ̂c∗ )/Var(σ̂c) = 100% × (2c − c∗)c∗/c2.

In Fig. 1, the solid line shows the value of c = ĉ∗ given by (5) for any value of p∗ and the dotted
lines show the values of c∗ for each of 10 distributions. For these distributions, the efficiency
of the search is at least 96% when p∗ = 0.234 and at least 91% when p∗ = 0.440.

3. Search algorithms for optimal scaling

For the univariate target distribution f (x) ∝ f #(x), under a Gaussian RWMH sampler with
proposal distribution y ∼ N(x, σ 2), we suppose that p∗ = 0.44 is appropriate (Roberts and
Rosenthal, 2001). Similarly, for an m-dimensional multivariate target distribution, f (x) ∝
f #(x), where all components of x are updated simultaneously using a Gaussian random-walk
proposal MVN(x, σ 2A), for some positive-definite matrix A, we suppose that p∗ = 0.234
(Roberts et al., 1997). In order to find a value of σ that gives an overall sampler acceptance
probability of p∗, we use the Robbins–Monro search process to improve the estimate of θ∗ =
ln(σ ∗) after each iteration of the Markov chain. If θi denotes the estimate of θ∗ after the ith
step of the search, we determine pi, the probability that the proposed move was accepted. The
value of θi is then updated by (1), where c is given by estimate (7).

Starting values for a search can be arbitrary, such as θ1 = 0, or more considered, such as
one based on an estimated standard deviation of f (·). Either way, θ1 need not be well chosen,
as the Robbins–Monro process can be monitored and a search restarted if the starting value
seems poor (e.g., Garthwaite, 1996; Matsui and Ohashi, 1999). On a restart, the most recent
estimate of θ∗ is taken as the starting value and the value of i is reset. Note that we start/restart
a search with i = n0, where n0 is a moderate size so as to avoid too rapid steplength changes
in the early stages of a search. We choose n0 to be the integer closest to 5/{p∗(1 − p∗)}, which
works well in practice. We also restart the search if the estimate of θ∗ changes by ln(3) from
its value fromwhen the search started, or last restarted, so the search restarts if the estimate of
σ changes by more than a factor of 3. Many other criteria for restarts would also be suitable,
as the only requirement is to restart if a poor starting value was used.

It seems conceivable that a search might oscillate between σ tripling in value and reduc-
ing in value by two-thirds, so that the search is continually restarting. Our implementation
includes simple safeguards to limit the number of restarts, though they have never been
needed. Together with a finite number of restarts, the search algorithm satisfies the diminish-
ing adaptations criterion (Roberts and Rosenthal, 2009; Rosenthal, 2011), in that changes to
the scale parameter vanish as the length of theMarkov chain goes to infinity. Ergodicity of the
Markov chain is preserved if an adaptive scheme also satisfies the containment (or bounded
convergence) condition (Bai et al., 2008; Roberts andRosenthal, 2009). Containment typically
holds under very general conditions for all but pathological counterexamples (Bai et al., 2008;
Rosenthal, 2011). Readers uncomfortable with these conditions could simply stop adapting
after a fixed, finite amount of time. See Vihola (2011) for further discussion on convergence
of related samplers.
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Table . Sampler performancebasedon  chain replicates of length , iterations, under a target accep-
tance probability of p∗ = 0.44, for each of the  univariate target distributions in Fig. . Optimal values of
σ ∗, and ., ., and . quantiles of the empirical distribution of the estimates of σ ∗ are given, together
with quantiles of the sampler acceptance rates, based on the last , iterations.

Estimated σ ∗ quantile Acceptance rate quantile
Optimal

Target distribution σ ∗ . median . . median .

N(0, 1) . . . . . . .
t(5) . . . . . . .
Cauchy . . . . . . .
Logistic . . . . . . .
Double exponential . . . . . . .
Gamma(,) . . . . . . .
Beta(,) . . . . . . .
Uniform . . . . . . .
Bimodal normal mixture . . . . . . .
Tri-modal normal mixture . . . . . . .

3.1. Example: Univariate RWMHupdates

The above search algorithm was applied in turn to each of the ten univariate target distribu-
tions considered earlier. Two hundred samplers of length 2,000 iterations were run for each
target distribution, and a search for the value of σ ∗ that gave an overall acceptance probabil-
ity of p∗ = 0.44 was conducted within each chain. Each search was initialized by randomly
setting σ1 ∼ Exp(1) and θ1 = ln(σ1). The final estimate of σ ∗ and the acceptance rate of the
sampler over the last 1,000 iterations was recorded for each chain. The results are summarized
in Table 1.

For each target distribution, the second column in Table 1 provides the theoretical value of
σ ∗ and the next three columns give the 0.05, 0.50 and 0.95 quantiles of the final estimate of σ ∗

from each search. The last three columns present the same quantiles of the acceptance rates in
the final 1,000 steps of each search. The results indicate that the Robbins–Monro search has
low bias and good accuracy: the median estimate of σ ∗ is close to σ ∗ for each of the ten distri-
butions, the median values of the sampler acceptance rate are close to their target of 0.44, and
the 0.05 and 0.95 quantiles for both σ ∗ and the acceptance rate are close together. This perfor-
mance exceeds practical requirements, as the efficiency of theMetropolis–Hastings algorithm
is not sensitive to the precise value of p∗.

To demonstrate that the search procedure is relatively insensitive to a poor starting value
for θ1, Fig. 3 illustrates the search with a gamma(5,1) target distribution when the starting
value is either much too large or much too small. The position of each restart is marked with
a cross, and it can be seen that the restarts yield fast convergence. Each path is close to its
optimal value of θ within 500 iterations.

3.2. Example: Multivariate RWMHupdates

We follow the example of Roberts and Rosenthal (2009) in which the target distribution is
f (x) = MVN(0, �), where� = MM′ andM is anm × mmatrix whose elements are gener-
ated randomly from aN(0, 1) distribution. As typically�will be close to singular, we increase
each diagonal element by 1%. In many circumstances the convergence rate of the Markov
chain can only be optimized ifA is proportional to Cov(x). Although� is typically unknown,
its value may be estimated as the Markov chain runs (Craiu et al., 2009).
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Figure . Trace plots of acceptance rate, in the left panel, and θ = ln(σ ), in the right panel, for starting
points of θ = ln(0.001), ln(1), ln(500), for a gamma(,) target distribution. Target values are indicated by
horizontal line. Crosses indicate search restarts.

Here we use an adaptive MCMC strategy (Roberts and Rosenthal, 2009; Rosenthal, 2011)
whereby after each iteration, A is set equal to the current sample estimate of �, given by

�̂i =
{
Im, i ≤ 100
1

i−1

∑i
j=1(x j − x̄i)(x j − x̄i)′ i > 100. (8)

We follow Haario et al. (2001) and use �̂i + εIm (where ε > 0) as a positive-definite estimate
of�. Specifically, we use ε = σ 2

i /i so thatAi = �̂i + σ 2
i Im/i is the estimate of�. Thus, we use

the proposal distributionMVN(xi−1, σ 2
i Ai) after i steps of the Robbins–Monro search.

When the dimension of x is large, a substantial number of sampler iterationsmay be needed
before the estimate of � stabilizes (Roberts and Rosenthal, 2009). For the Robbins–Monro
process to achieve the target sampler overall acceptance probability, p∗, it must not converge
before the estimate of� stabilizes. To achieve this, we deliberately slow down the convergence
of the Robbins–Monro search by replacing i with max{200, i/m} in the denominator in (1).
Alternative heuristics would also be satisfactory. Trace plots of �̂i can be monitored to assess
their stability and speed of convergence.

We consider three versions of the RWMH sampler. The first (the RM method) follows the
above, where σi is estimated using the Robbins–Monro procedure. The second sampler (the
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Table . RWMH sampler performance summaries using a multivariate normal proposal. Values correspond
to means and standard errors of each quantity over the last , chain iterations, based on  sampler
replicates. Columns denote σ 2 (the mean value of σ 2

i ; optimal value is .); the overall acceptance prob-
ability (OAP); posterior mean and standard deviation; the integrated autocorrelation time (ACT); and the
average squared jumping distances (ASD) for the parameter x1.

Statistics for x1

σ 2 OAP Mean sd ACT ASD

RMmethod . (.) . (.) . (.) . (.) . (.) . (.)
Optimal� . (–) . (.) − . (.) . (.) . (.) . (.)
Fixed-scaling . (–) . (.) . (.) . (.) . (.) . (.)

Optimal method) implements a RWMH sampler with the theoretically optimal (fixed) pro-
posal distribution MVN(xi−1, 2.382�/m) (Roberts et al., 1997). This sampler is unavailable
in practice, as the true value of� is typically unknown, but its performance provides a bench-
mark for the other methods. The final sampler (the fixed-scaling method) is the same as the
RMmethod, but with σ 2

i = 2.382/m fixed at its optimal value.
Setting m = 50 and p∗ = 0.234, we implement ten replicate samplers, each of length

100,000 iterations, for each of the sampler variants. Results are based on discarding the first
half of a chain as burn-in. As a measure of algorithm efficiency, we follow Roberts and
Rosenthal (2009) inmonitoring the integrated auto-correlation time (ACT) (e.g., Roberts and
Rosenthal, 2001). We also monitor the average squared jumping distance (ASD) between the
iterates of the chain. A smaller value of the ACT indicates less auto-correlation, and hence
greater efficiency. Similarly, the larger the jumping distance, the faster themixing of the chain.
All ACT and ASD values are calculated using full length of the chain (including the burn-in
period).

A summary of the results is provided in Table 2, which includes specific results for the
first coordinate, x1. The RM method consistently estimates σ 2 with good accuracy and the
OAPs for all methods are close to the target value of 0.234. The optimal method benefits from
the unrealistic advantage of knowing �, and it has a noticeably better ASD than the other
methods. However, all threemethods give good estimates of themean and standard deviation
of x1 (whose true values are 0 and 7.48, respectively).

3.3. Metropolis–Hastings within Gibbs: respiratory infection in children

To illustrate a multivariate application, wemodel respiratory infection in Indonesian children
(Diggle et al., 1995; Lin and Carroll, 2001). The data contain longitudinal measurements on
275 children, with a binary indicator for respiratory infection. Covariates include age, height,
indicators for vitamin A deficiency, gender, stunting, and visit numbers. Following Zhao et al.
(2006) and Fan et al. (2008), we use a Bayesian logistic additive mixed model of the form

logit
{
P

(
respiratory infectioni j = 1

)}
= β0 +Ui + βββ ′Xi j + f

(
agei j

)
for 1 ≤ i ≤ 275 children and 1 ≤ j ≤ ni repeated measures within a child. The random child
effect isUi

ind.∼ N(0, σ 2
U ), Xi j is the measurement vector of the 11 covariates,

f (age) = β0 + β1age + Zageu with Zage =
[∣∣∣∣age − κk

1≤κ≤K

∣∣∣∣3
][∣∣∣∣κk − κk′

1≤k,k′≤K

∣∣∣∣3
]−1/2

,
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Figure . Boxplots of overall acceptance rates and mean σ 2 values for all univariate Robbins–Monro (RM)
and penalized quasi-likelihood (PQL)-based searches, based on the second half of the sampler output. Left
and right panels, respectively, indicate full-conditional and block-conditional samplers.

whereu ∼ N(0, σ 2
u I), κk is the (k + 1)/(K + 2)th quantile of the unique predictor values, and

K = 20. All remaining model specifications follow Zhao et al. (2006) and Fan et al. (2008).
We consider two Metropolis–Hastings within Gibbs samplers. The first implements sepa-

rate univariate Robbins–Monro searches for each of the t = 1, . . . 306 parameters based on
independent RWMH updates with proposal distributions N(xt,i−1, σ

2
t ), and p∗ = 0.44. The

second scheme additionally block-updates the 11 βββ parameters and the 20 knot locations {κk}
withMVN(x(β)

i−1, σ
2
(β)A

β ) andMVN(x(κ)
i−1, σ

2
(κ)A

κ ) proposals, respectively, where p∗ = 0.234
in each case. In both schemes, σ s

U and σ 2
u are updated using Gibbs updates. Fan et al. (2008)

used penalized quasi-likelihood (PQL) (Breslow and Lin, 1995) to obtain an approximate
maximum-likelihood estimate of the covariance matrix of all 306 parameters for the above
model. To provide comparison with the Robbins–Monro method, we re-implement the pre-
vious two samplers by fixing the σ 2

t as the diagonal elements of the PQL matrix, replacingAβ

and Aκ by the appropriate blocks of the PQL matrix, and optimally setting σ 2
(β) = 0.51 and

σ 2
(κ) = 0.28. Chains of length 10,000 and 50,000 were used for the full- and block-conditional

samplers, respectively.
Results for all univariate proposal distributions are summarized in Fig. 4, which illustrates

overall acceptance probabilities and the finalmean estimates of (σ ∗)2 based on the second half
of each chain, for each of the 306 or 275 parameters. Results for the full-conditional sampler
and block-conditional sampler are given in the left and right panels, respectively. Within each
panel, the left boxplot displays results for the Robbins–Monro method, and the right boxplot
the PQL matrix approach.

Both Robbins–Monro samplers led to acceptance rates that were very close to the target
of 0.44, ranging from 0.427 to 0.457 and 0.429 to 0.446 for the full- and block-conditional
samplers, respectively. To achieve these rates, the search varied σ 2

t substantially: the mean
values of σ 2

t ranged from 0.002 to 82.08 in the full-conditional sampler. In contrast, the PQL-
based samplers produced more variable acceptance rates. Ranging from 0.337 to 0.880, these
rates were frequently and substantially different from the ideal target. The Robbins–Monro
searches were also effective with the multivariate proposals. With a target of p∗ = 0.234, the
block updates achieved an acceptance rate of 0.233 for the 11 βββ coefficients and 0.234 for the
block of 20 knots {κk}.

4. Discussion

This paper provides new results on the optimal steplength constant, c∗, of the Robbins–Monro
process, when used in the context of automatically determining the scaling factor of the
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RWMH algorithm. Figures 1 and 2 demonstrate that the true values of c∗ are remarkably
similar for a wide range of distributions. Hence, function (7), which is within the span of
these optimum values, will work well in practice. While (7) will not be optimal for all target
distributions, Propositions 1–5 and our examples suggest that this choice of c∗ should work
well in many applications.

Our adopted rules regarding restarts (Section 3) are obviously arbitrary to a degree, and
alternative choices may also work well. However, there is no clear optimal restart strategy, as
any such approach would vary with the (unknown) accuracy of the starting value for σ : a
very inaccurate starting value would benefit from a procedure that restarts quickly, whereas
an accurate starting value would benefit from a procedure that rarely restarts unnecessarily.
Our choices aim to balance these ideas, while excluding the possibility of infinite restarts.

From a practical perspective, in our experience, the performance of the RWMH algorithm
using a sub-optimal steplength constant in the Robbins–Monro process will typically provide
acceptable results, provided that the steplength constant is in the “ball park” of the optimal
value, c∗. From this perspective, the precision obtained through estimates (5) and (7) is prob-
ably greater than that required in terms of efficiency gain in a typical RWMH sampler, partic-
ularly for low-dimensional problems. However, problems in higher dimensions require larger
numbers of random-walk block-update steps, and hence a larger number of scale parame-
ters to specify – see our respiratory infection data analysis in Section 3.3. In these settings,
the cumulative impact of multiple sub-optimal steplength constants will impact on the per-
formance of the sampler. Good estimates of the optimal steplength constants are accordingly
invaluable for general algorithm implementation.

Code in the R programming language for the examples in this paper is available at
http://www.maths.unsw.edu.au/ ∼ yanan/RM.html.

Appendix A. Proof of propositions 2 and 4

Proof of Proposition 2.
∫
min( f #(y)/ f #(x), 1) g(y | x, σ ) dy ≤ 1, so

∫ ∫
min

{
f #(y)
f #(x)

, 1
}
x′x g(y | x, σ ) f (x) dy dx ≤

∫
x′x f (x) dx. (A.1)

As f (.) has finite variance, both sides of (A.1) are finite. Similarly, as g(y | x, σ ) = g(x | y, σ ),
we have that

∫ ∫
min( f #(y)/ f #(x), 1) y′y g(y | x, σ ) f (x) dy dx is also finite. It follows that

φ in equation (4) is O(σ−2).
Let S(r) be anm-dimensional sphere of radius r, centered at the mean of f ( . ). Let Sc(r) =

� − S(r) denote its complement. Given any ε, choose r such that
∫
Sc(r) f (y) dy < ε. Then

mp(σ ) ≈ ∫
�

∫
S(r) min( f #(y)/ f #(x), 1)mg(y | x, σ ) f (x) dy dx and

lim
σ→∞

mp(σ ) ≈
∫

�

∫
S(r)

min
{
f #(y)
f #(x)

, 1
}
m (2π)−m/2σ−m |A|−1/2 f (x) dy dx,

since limσ→∞ g(y | x, σ ) → (2π)−m/2σ−m |A|−1/2 for y ∈ S(r). As mp(σ ) is non zero for
finite σ , mp(σ ) is O(σ−m). Hence, limσ→∞{φ − mp(σ )} = limσ→∞{−mp(σ )} if m = 1,
since φ is O(σ−2). Then from (3), limσ→∞ dp(σ )/dθ = −mp(σ ) and the proposition fol-
lows from c∗ = −1/[dp(σ )/dθ]θ=θ∗ . �

http://www.maths.unsw.edu.au/
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Proof of Proposition 4. Making the transformation y = x + σ z, p(σ ) may be written as

p(σ ) =
∫ ∫

min
{
f #(x + σ z)

f #(x)
, 1

}
(2π)−1/2 exp

(−z2/2
)
f (x) dx dz.

Given σ , put h(z) = 1 − ∫ ∞
x=−∞ min{ f #(x+σ z)

f #(x)
, 1} f (x) dx. For any z > 0, there is a point a(z) such

that f (x + σ z) < f (x) if and only if x < a(z). The mode of f (x) is between a(z) and a(z) +
σ z. We have

h(z) = 1 −
∫ a(z)

−∞
f (x) dx −

∫ ∞

a(z)+σ z
f (x) dx =

∫ a(z)+σ z

a(z)
f (x) dx (A.2)

and h(z) = h(−z). From (A.2), {h(z)/ |z|} is a monotonic non increasing function of |z| as
f (x) is unimodal. Consequently,∫ ∞

−∞ z2 h(z) (2π)−1/2 exp
(−z2/2

)
dz∫ ∞

−∞ h(z) (2π)−1/2 exp (−z2/2)dz
≤

∫ ∞
−∞ z2 |z| (2π)−1/2 exp

(−z2/2
)
dz∫ ∞

−∞ |z| (2π)−1/2 exp (−z2/2)dz
.

As
∫ ∞

−∞ z2 |z| (2π)−1/2 exp (−z2/2)dz = 4 and
∫ ∞

−∞ |z| (2π)−1/2 exp (−z2/2)dz = 2, we
have ∫ ∞

−∞
z2 h(z) (2π)−1/2 exp

(−z2/2
)
dz ≤ 2

∫ ∞

−∞
h(z) (2π)−1/2 exp

(−z2/2
)
dz. (A.3)

The left-hand side of (A.3) is 1 − φ and the right-hand side is 2(1 − p(σ )). Thus, φ ≥
(2p(σ ) − 1)/σ and, from (3), dp(σ )/dθ ≥ −(1 − p(σ )). �
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