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ABSTRACT
This short paper proves inequalities that restrict the magnitudes of the
partial correlations in star-shaped structures in Gaussian graphicalmod-
els. These inequalities have to be satisfied by distributions that are used
for generating simulated data to test structure-learning algorithms, but
methods that have been used to create such distributions do not always
ensure that they are. The inequalities are also noteworthy because stars
are common and meaningful in real-world networks.

1. Introduction and definitions

Networks that model real-world phenomena often have few edges but several hubs, which
are vertices that are connected to many others. Hubs are often important. For example, when
Gaussian graphical models (GGMs) are used tomodel gene regulation networks, as for exam-
ple in Friedman et al. (2000), Castelo and Roverato (2006, 2009), and Edwards et al. (2010),
hubs are likely to correspond to genes that code for transcription factors that regulate other
genes. If a GGM is used to model currency values, as in Carvalho et al. (2007), then a hub
might correspond to a country that has large-scale trade with many others.

In a GGM the strength of the direct association between two vertices is measured by
the magnitude of their partial correlation. The partial correlation is the correlation between
the two vertices given the values of all the other vertices, and if there is no edge between the
vertices then the partial correlation is zero (Lauritzen, 1996, section 5.1). This paper shows
that the magnitudes of the partial correlations are always small, in a certain sense, in the case
of a star, which is a structure that consists of a hub and a set of vertices that have edges to the
hub but not to each other. (We use the term “star” because the results do not apply to a hub
where two or more of the vertices that have edges to the hub also have edges to each other.)

Several definitions and relations will be needed. Let G = (V,E) be an undirected graph,
V = {1, ..., n}, and X ∼ Nn(μ, �), and suppose that G is the graph for a graphical model
that includes the distribution of X ; this means that if (i, j) /∈ E then Xi ⊥⊥ Xj | XV\{i, j} (Xi

is conditionally independent of Xj given XV\{i, j}). For the multivariate Gaussian distribution,
Xi ⊥⊥ Xj | XV\{i, j} ⇔ �i j = 0, where � = �−1 is the precision matrix. Let M be the stan-
dardized precision matrix, which means thatM = D−1/2�D−1/2, where di j = 0 for i �= j and
dii = ωii. It follows thatmij = ωi j/

√
ωiiω j j and−1 ≤ mij ≤ 1. The partial correlation between

Xi and Xj is then pi j = −mij, for i �= j.

CONTACT Edmund Jones epaj@medschl.cam.ac.uk Cardiovascular Epidemiology Unit, Department of Public Health
and Primary Care, Strangeways Research Laboratory, Worts’Causeway, Cambridge, CB RN, UK.
Published with license by Taylor & Francis Group, LLC © Edmund Jones and Vanessa Didelez
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/.), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The
moral rights of the named author(s) have been asserted.

http://dx.doi.org/10.1080/03610926.2014.953696
mailto:epaj2@medschl.cam.ac.uk


COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 5991

2. Sylvester’s criterion

Sylvester’s criterion states that a matrix is positive-definite if and only if the determinants of
all its square upper-left submatrices are positive—these determinants are called the leading
principal minors of the matrix. The origins of this result are obscure but some light is shed on
them by Smith (2008). A proof is given in Gilbert (1991).

For GGMs it is common to assume that � is positive-definite, which is equivalent to the
support ofX beingRn. This assumption ismade in the propositions below. It is also equivalent
to � orM being positive-definite.

If� is not assumed to be positive-definite, it must at least be positive-semidefinite. It might
be conjectured that Sylvester’s criterion could be adapted to this case, to state that a matrix is
positive-semidefinite if and only if all its leading principal minors are non-negative. But this
is not true, and a counterexample is given by Swamy (1973).

3. The inequalities

This section presents four inequalities. The first two are the main results and the other two
are corollaries. Proposition 1 is about graphs that consist entirely of a single star-structure.

Proposition 1. Suppose E = {{1, 2}, {1, 3}, ..., {1, n}}, so that G is a star-shaped graph cen-
tered at vertex 1. Then a necessary and sufficient condition for M to be positive-definite is that∑n

i=2 p
2
1i < 1.

Proof. One of the square upper-left submatrices ofM is the whole matrixM itself.

M =

⎛
⎜⎜⎜⎜⎜⎝

1 m12 m13 · · · m1n

m12 1 0 · · · 0
m13 0 1 · · · 0
...

...
...

. . .
...

m1n 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

.

The determinant ofM is 1 − ∑n
i=2 m

2
1i, and this being positive is equivalent to

∑n
i=2 m

2
1i <

1. If this inequality holds then the other determinants in Sylvester’s criterion are also positive.
So this inequality on its own is a necessary and sufficient condition for M being positive-
definite, and it is obviously equivalent to

∑n
i=2 p

2
1i < 1.

Proposition 2 is about graphs that contain star-shaped subgraphs. It states that ifG contains
a star as an induced subgraph (Lauritzen, 1996, section 2.1.1), then a similar inequality to
Proposition 1 holds in that subgraph as a necessary condition.

Proposition 2. Suppose {i, j1}, ..., {i, js} ∈ E and { ja, jb} /∈ E for all a, b ∈ {1, ..., s}. Then∑s
a=1 p

2
i ja < 1.

Proof. Relabel the vertices as follows: i → 1, j1 → 2, …, js → s + 1. Sylvester’s criterion
implies that the determinant of the upper-left (s + 1) × (s + 1) matrix must be positive.
This implies that

∑s+1
i=2 m

2
1i < 1 and

∑s+1
i=2 p

2
1i < 1, which is equivalent to the inequality in

the proposition.

Proposition 3 is a corollary of Proposition 2 in which the inequality may be easier to
interpret.
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Proposition 3. If the graph is as in Proposition 2, then the mean magnitude of the partial cor-
relations pi j1, ..., pi js must be less than 1/

√
s.

Proof. Suppose that q1, ..., qs ≥ 0 and
∑s

a=1 q
2
a = 1. The method of Lagrange multipliers can

be used to show that the maximum value of (
∑s

a=1 qa)/s is 1/
√
s. Proposition 2 implies that

|pi j1 |, ..., |pi js | satisfy the same conditions as q1, ..., qs, except that the equals sign is replaced
by a less-than sign. It follows that (

∑s
a=1 |pi ja |)/s < 1/

√
s.

For example, in a star with s edges, at least one of these edges must have the magnitude
of the corresponding partial correlation being less than

√
1/s. In any graph that contains a

V-shape (three vertices with two edges), whichmeans any graph that does not consist entirely
of disjoint cliques, theremust be at least one partial correlation on an edge that hasmagnitude
less than

√
1/2 ≈ 0.707.

Two classes of graphs that contain many stars are forests and trees. Forests can be defined
as graphs that have no cycles, and trees are connected forests. These are very restricted classes
of graphs, but forest and tree graphical models have several advantages and have been widely
studied and used (Willsky et al., 2002; Meilă and Jaakkola, 2006; Eaton and Murphy, 2007;
Edwards et al., 2010; Anandkumar et al., 2012). If G is a forest or tree, then Proposition 2
holds with i as any of the vertices. In Proposition 4 this fact is used to make an inequality on
the partial correlations throughout the graph.

Proposition 4. Suppose G is a forest, for i ∈ V let deg(i) = |{ j ∈ V : (i, j) ∈ E}| be the degree
of i, and let L = {i ∈ V : deg(i) = 1} be the set of leaves in G. Then

2
∑

(i, j)∈E,

i/∈L and j/∈L

p2i j +
∑
(i, j)∈E,

i∈L or j∈L
but not both

p2i j < n − |L| .

Proof. Apply Proposition 2 to all the vertices in V \ L in turn, and sum all these n − |L|
inequalities. For each (i, j) ∈ E, if i /∈ L and j /∈ L then p2i j will appear twice on the left-hand
side, if i ∈ L or j ∈ L but not both then it will appear once, and if both i ∈ L and j ∈ L then it
will not appear at all.

It might be conjectured that if the inequality in Proposition 2 is satisfied for all stars that
appear as induced subgraphs of G, then M is positive-definite. But this does not hold. For
example, if n = 4, E = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}, and p12 = p23 = p34 = p41 = 0.7, then
this condition is satisfied but M is not positive-definite. It might then be conjectured that
if you add the further condition that G is decomposable thenM will be positive-definite, but
this does not hold either—for example, let E = {{1, 2}, {2, 3}, {3, 4}, {4, 1}, {1, 3}}, and p12 =
p23 = p34 = p41 = p13 = 0.7.

For shapes other than stars, there do not seem to be any inequalities that are as notable as
Propositions 1 and 2. It is possible to write down the inequalities that result from Sylvester’s
criterion, but it is generally not easy to rearrange them into a meaningful form.

The conditional independence relations shown by graphs also imply conditions on the
marginal correlations (which are usually just called correlations). These can be found by
invertingM and then standardizing to find the correlationmatrixC. For example, if the graph
is as in Proposition 1 then c jk = c1 jc1k for all j, k ∈ {2, ..., n}. This is a special case of the fact
that the correlation between two vertices in a tree is the product of the correlations along the
edges that connect them (Pearl, 1988, section 8.3.4; Tan et al., 2010).
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4. Relevance to experiments on structure-learning algorithms

Proposition 2 arises when doing a certain type of experiment on algorithms for learning the
structure of GGMs from data. In these experiments, simulated data is generated from amulti-
variate Gaussian distribution that corresponds to a known graph, then the structure-learning
algorithm is used on the data, and finally the output of the algorithm is compared with the
original graph. The first step in making the simulated data is to create a covariance matrix
� that corresponds to the original graph, and naturally this � has to fulfil the inequality in
Proposition 2.

Numerous publications describe experiments of this type, for example Friedman et al.
(2007), Moghaddam et al. (2009), Albieri (2010), Wang and Li (2012), Wang (2012), and
Green and Thomas (2013). Most of these do not mention the issue of ensuring that � is
positive-definite, suggesting that it was not a problem. One experiment that does mention
the issue appears in Meinshausen and Bühlmann (2006). They used large graphs whose ver-
tices have maximum degree 4, and chose all the partial correlations to be 0.245. They state
without proof that absolute values less than 0.25 guarantee that � is positive-definite—this
condition is stronger than Proposition 2, which implies only that the mean absolute value has
to be less than 0.5.

One detailed procedure for creating � is described for the first example in section 4.1 of
Guo et al. (2011). This procedure presumably gave positive-definitematrices when it was used
for this example, with n = 100 and small numbers of extra edges, but it does not always do so.
The procedure startswithV = {1, ..., n},E = {{1, 2}, {2, 3}, ..., {n − 1, n}}, and� defined by
σi j = exp(−|si − s j|/2), where si − si−1 ∼ Unif (0.5, 1). (This formula for σi j guarantees that
� is tridiagonal, as required by the graph.) Extra edges are then added at random, presumably
from a uniform distribution, and for each extra edge the two corresponding elements of� are
set to be a value from Unif ([−1, −0.5]∪[0.5, 1]).

To showhow this procedure sometimes fails, it is convenient to start by considering specific
values from the uniform distributions that are used, though obviously the probability that
these exact values would be drawn is zero. Suppose that n ≥ 4, si − si−1 = 0.9 for i = 2, ..., n,
the extra edges include {1, 3} and {1, 4} but no other edges between any of the first five vertices
(the first four if n = 4), and the corresponding four new elements of � are all 0.95. The exact
value of � can now be calculated by using equation 3.2 in Barrett (1979) to calculate the
tridiagonal � and then adding the new elements. Let

α = 1
1 − e−0.9 , β = 1 − e−1.8

(1 − e−0.9)
2 , and γ = − e−0.45

1 − e−0.9 .

Then

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α γ 0.95 0.95 0 · · ·
γ β γ 0 0 · · ·

0.95 γ β γ 0 · · ·
0.95 0 γ β γ · · ·
0 0 0 γ β · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

For all n ≥ 6 the upper-left 5 × 5 submatrix of � is the same, and its determinant is neg-
ative, which means that � is not positive-definite; the cases n = 4 and n = 5 can be checked
separately. This argument still holds if all the instances of 0.9 and 0.95 are replaced by slightly
different values, because if the determinant of the upper-left 5 × 5 submatrix is written as a
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function of s1, ..., sn, ω13, andω14, then this function is continuous. It follows that the proce-
dure fails with positive probability for all n ≥ 4, assuming that it is possible for the new edges
between the first five vertices to be as in this counterexample.

5. Discussion

Proposition 1 is a necessary and sufficient condition for the covariance matrix to be positive-
definite, but it only applies to graphs that consist of a single star-structure. Proposition 2
applies much more widely, to graphs that contain star-structures, but it is only necessary, not
sufficient. Nevertheless, Proposition 2 is useful and important in practice. When creating a
covariance matrix it is natural to want to choose specific values for the partial correlations,
and Proposition 2 places strong restrictions on what these can be.

Proposition 2 has several other interesting consequences or interpretations. If X1 has suf-
ficiently strong direct associations (partial correlations) with X2 and X3 then there must also
be a direct association between X2 and X3. On the other hand, if X2 and X3 are both almost
deterministic functions of X1 (and not of each other), then the marginal correlations c12 and
c13 will be close to 1 or −1, but at least one of the partial correlations p12 and p13 must have
magnitude less than 1/

√
2. Obviously both of these consequences generalize to larger n.

The proofs of Propositions 1 and 2 are straightforward applications of Sylvester’s criterion.
This criterion is well known in some fields but does not seem to have been previously used or
even mentioned in connection with partial correlation matrices for GGMs.

Since Proposition 2 is not a sufficient condition, the question arises of how to create a
possible covariance matrix for an arbitrary given graph. There are several methods that are
guaranteed towork, though these do not easily allow specific values to be chosen for the partial
correlations or elements of the covariance matrix. One method is described in the appendix
of Roverato (2002). This uses the Cholesky decomposition � = 	T	, where 	 is an upper-
triangular matrix. The diagonal elements of 	 and the elements that correspond to edges
in the graph can be chosen freely, and the other elements have to be calculated according
to Roverato’s equation (10). For decomposable graphs, the calculations for this second set of
elements can be avoided—if the vertices are ordered according to a perfect vertex elimination
scheme (Lauritzen, 1996, section 2.1.3), then these elements are all zero.

An alternative method to create a covariance matrix for any graph is as follows. Start with
any n × n symmetric matrix in which the diagonal elements are positive and the elements
corresponding to absent edges are zero, find its eigenvalues, and if any of these are negative
then let −λ be the lowest one and add (λ + ε)In to the matrix, for some ε > 0. The resulting
matrix’s eigenvalues are all positive, whichmeans that it is positive-definite, and it still has the
symmetry and the zeroes in the same places.

Propositions 1–4 also apply to directed acyclic graphical models (also known as Bayesian
networks), because stars in undirected graphical models are equivalent to stars in directed
acyclic graphical models, if the edges are all directed from the hub to the other vertices. The
edges are oriented like this if the hub corresponds to a gene that codes for a transcription
factor, for example.

Inequalities that are essentially the same as Propositions 1–4 also apply to covariance
graphical models (Wermuth and Cox, 2001), in which an edge that is absent from the graph
means that the two variables are marginally independent (rather than conditionally indepen-
dent as inGGMs) and corresponds to zeroes in the covariance and correlationmatrices (rather
than the precision andpartial correlationmatrices). The four propositions hold for thesemod-
els ifM is just replaced by the correlationmatrix and pi j is replaced by the correlation between
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Xi andXj. Covariance graphical models are an active topic of research (Chaudhuri et al., 2008;
Drton and Richardson, 2008; El Karoui, 2008; Bien and Tibshirani, 2011; Wang, 2014; Wang,
2015) and can be used to analyze gene expression data, protein networks, and financial data.
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