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Maximum-Entropy Prior Uncertainty and
Correlation of Statistical Economic Data

João F. D. RODRIGUES
Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands
(j.rodrigues@cml.leidenuniv.nl)

Empirical estimates of source statistical economic data such as trade flows, greenhouse gas emissions,
or employment figures are always subject to uncertainty (stemming from measurement errors or confi-
dentiality) but information concerning that uncertainty is often missing. This article uses concepts from
Bayesian inference and the maximum entropy principle to estimate the prior probability distribution, un-
certainty, and correlations of source data when such information is not explicitly provided. In the absence
of additional information, an isolated datum is described by a truncated Gaussian distribution, and if an
uncertainty estimate is missing, its prior equals the best guess. When the sum of a set of disaggregate
data is constrained to match an aggregate datum, it is possible to determine the prior correlations among
disaggregate data. If aggregate uncertainty is missing, all prior correlations are positive. If aggregate
uncertainty is available, prior correlations can be either all positive, all negative, or a mix of both. An
empirical example is presented, which reports relative uncertainties and correlation priors for the County
Business Patterns database. In this example, relative uncertainties range from 1% to 80% and 20% of data
pairs exhibit correlations below −0.9 or above 0.9. Supplementary materials for this article are available
online.

KEY WORDS: Bayesian methods; Maximum entropy principle; Suppressed information.

1. INTRODUCTION

1.1 Motivation

Source statistical economic data are compiled by national
statistical offices, and later used in economic analysis and related
fields to perform calculations such as changes in employment
or carbon emissions embodied in final consumption (Miller and
Blair 2009).

Source statistical data are always subject to errors from mea-
surement and processing (Dagum and Cholette 2006; Man-
ski 2014) although only occasionally are such errors reported
(Clemen and Winkler 1985; Nicoletti, Peracchi, and Foliano
2011; Cunningham et al. 2012; Meijer, Rohwedder, and Wans-
beek 2012). Furthermore, for reasons of statistical confiden-
tiality, very detailed data are sometimes censored (Guldmann
2013). The uncertainty of source statistical data then affects the
posterior processing (Stone, Champernowne, and Meade 1942;
Ten Raa and Rueda-Cantuche 2003; Wood 2009; Chen 2012)
or economic analysis (Hyslop and Imbens 2001; Dietzenbacher
2006), which makes use of that data.

Although information on the stochastic properties of data,
that is, their uncertainty and correlation, may not be available,
there may exist ancillary information that can be used to obtain
estimates of those quantities. For example, it is often the case
that statistical data are subject to accounting identities, which
express a statistical economic datum as the sum of a set of
other data (e.g., employment in a sector equals the sum of
employment in every subsector). It may also happen that upper
and/or lower bounds can be obtained (e.g., number of jobs is a
nonnegative number).

The present article applies the theory of Bayesian inference
developed by Jaynes (2003) and the maximum entropy principle
(MEP) in particular to determine the stochastic properties of
statistical economic data (probability distribution, uncertainty,

and correlation) when such information is directly missing but
ancillary information is available.

This article presents general formulas that are agnostic con-
cerning either the source of uncertainty or the subsequent use
of the generated information. That is, the uncertainty (or imper-
fect information) can result either from measurement errors or
from nondisclosure (or suppressed data), which from the prac-
tictioner’s point of view are indistinguishable. The formulas
derived here can be useful at the stage of data compilation if, for
example, the resulting priors are used to improve the balancing
conflicting estimates; or they can be useful at the later stage of
studying uncertainty propagation.

1.2 Problem Formulation

According to Weise and Woger (1992), a numerical datum
subject to measurement error is described by a random vari-
able t and a probability distribution p(q), which expresses the
belief that the “true” value of the poorly known datum t takes
realization q.

Besides the probability distribution p(q), the datum is char-
acterized by a best guess or expectation, m = E[t], and by an
uncertainty estimate or standard deviation, s = √

var[t]. The
best guess is the observable quantity, for example, the published
point estimate. The uncertainty expresses a degree of confidence
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that the best guess is close to the true value of the statistical eco-
nomic datum.

Furthermore, statistical economic data are often constrained
by accounting identities (e.g., total output equals the sum of sales
to different institutional sectors), whose general formulation
is

t0 =
n∑

i=1

ti , (1.1)

where t0 is an aggregate datum and ti where i > 0 are disag-
gregate data (Hendry and Hubrich 2011). The existence of ac-
counting identities implies that there are correlations, rij , which
show how pairs of data co-vary:

rij = cov[ti , tj ]√
var[ti]

√
var[ti]

.

If a correlation is zero, rij = 0, then the data points are uncor-
related, meaning that the realization that datum i takes does not
affect the realization of j. If a correlation is one, rij = 1, then the
data points are perfectly correlated, and knowing the realization
of i determines the realization of j. For example, if both i and
j have Gaussian distribution, perfect correlation implies that if
qi = mi + zsi , then qj = mj + zsj , where z is a real number. In
general, a correlation can take any value in the range (−1, 1).

This article uses the MEP (Jaynes 1957) to determine the prior
probability distribution, uncertainty, and correlation of statisti-
cal data. A prior parameter is a parameter for which no previous
estimate was available but which can be obtained by inductive
inference from contextual information (Jaynes 2003).

In the present work, this problem is addressed in the context
of statistical economic data and the following concrete questions
are addressed:

1. What is the prior probability distribution, p(q), which char-
acterizes a datum in isolation, t, when only a best guess, m,
and uncertainty estimate, s, are available?

2. What is the prior uncertainty estimate, s, which characterizes
a datum in isolation, t, when only a best guess, m, is available?

3. What is the prior correlation, rij , which characterizes two
data points, ti and tj , constrained by an accounting identity,
Equation (1.1)?

4. What is the prior uncertainty, s0 of an aggregate datum, t0,
when only the uncertainties, si , of disaggregate data points,
ti with i > 0, are available?

1.3 Outline of the Article

Sections 2 and 3 present the theoretical and computational
developments, which are organized as follows.

Section 2 determines the probability distribution that char-
acterizes an isolated datum, answering the first two questions
presented in Section 1.2.

Section 3 determines the probability distribution and the cor-
relation among data connected by an accounting identity, and
thus addresses the other questions presented in Section 1.2.

To clarify the results the theoretical sections are accompanied
by illustrative examples. Section 2 describes the probability
density of a strictly positive datum with unitary best guess, as a
function of relative uncertainty. Section 3 studies the different

correlation patterns that emerge in an accounting identity with
only three disaggregate data points.

Section 4 presents a real-world application that shows the
range of uncertainties and correlations displayed by a statistical
economic dataset.

Section 5 concludes. Auxiliary material (Appendices A–F) is
reported as supplementary information (available online).

2. UNCERTAINTY OF AN ISOLATED DATUM

2.1 Review and Assumptions

In the past, different families of probability distributions have
been assigned to statistical data. For example, Golan, Judge,
and Robinson (1994) considered a discrete uniform distribu-
tion, Golan and Vogel (2000) considered a discrete triangular
distribution, Dietzenbacher (2006) considered a gamma distri-
bution, Dı́az and Morillas (2011) considered a beta distribution,
and Lenzen, Wood, and Wiedmann (2010, p. 46) considered a
log-normal distribution. Nonetheless, the most popular proba-
bility distribution used is the nontruncated symmetric Gaussian
(Lenzen, Wood, and Wiedmann 2010, p. 44).

In contrast to this literature, in the present article a proba-
bility distribution is not postulated but is instead derived from
first principles. According to the Bayesian paradigm (Jaynes
2003), the best inference takes into account all available in-
formation and no other. This implies that the prior probability
distribution of a statistical economic datum is obtained by the
MEP. This principle, formulated by Jaynes (1957) and based
on the work of Shannon (1948), states that the least informative
probability distribution consistent with a given set of constraints
is the one which maximizes entropy. Thus, if an unknown da-
tum can take discrete values qj , with j = 1, . . . , nL, and its
first nM moments, Mi = ∑nL

j=1(qj )ip(qj ), are known, then its
least informative probability distribution, p(qj ), maximizes the
Lagrangian

L = −
nL∑

j=1

p(qj ) log
(
p(qj )

)

+
nM∑
i=1

λi

⎛
⎝Mi −

nL∑
j=1

(qj )ip(qj )

⎞
⎠ .

The first term on the right-hand side is the entropy of distribu-
tion p(qj ), and the second term is the set of constraints, where
the λi’s are Lagrange multipliers. The MEP determines a prior,
when it is possible to express the available information in terms
of moments, by making sure that no other information is being
used (i.e., maximizing ignorance or uncertainty).

Statistical economic data (monetary transactions, employ-
ment, carbon emissions, etc.) are reported by statistical offices
as real numbers with a finite number of digits (e.g., multiples of
103 euros, full-time jobs, or tons of CO2). Furthermore, the pre-
cision with which the data are reported is usually independent
of the scale. For example, with a precision of two decimal cases
the data points 1.2345 and 123.456789 are reported as 1.23 and
123.46 (due to roundoff).

Under these conditions, it is reasonable to approximate p(q)
by a continuous distribution and to replace the discrete version of
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the MEP, described above, by differential entropy with uniform
measure. If the precision is not uniform but exponential, for
example, if the possible values for the numerical datum are 1, 2,
4, 8, etc., then a different measure should be used. This choice
would lead to a probability density function different from the
one derived below (Frank and Smith 2010).

In this work it is assumed that the realization, q, of a statistical
economic datum, t, can take any value in the range (0,∞) as
most statistical economic data are nonnegative by definition
(e.g., an economic transaction or GHG emissions). A negative
number may appear for conventional reasons (e.g., a positive
number as an input and a negative number as an output), and
can therefore be converted to a positive number by means of
a topological transformation, as described in appendix A.1 of
Rodrigues (2014).

2.2 Analytical Solutions

Following Weise and Woger (1992), the best guess, m, and
uncertainty, s, of the source data are interpreted as the expected
value, E(t) = m, and the standard deviation, var(t) = s2, where
E(f (t)) = ∫∞

0 dqp(q)f (q) and var(t) = E(t2) − E(t)2. Under
these conditions the Lagrangian is

L = −
∫ ∞

0
dqp(q) ln (p(q)) + λ(E(1) − 1) (2.1)

+α (E(t) − m) + β
(
E(t2) − E(t)2 − s2

)
.

The first term on the right-hand side of Equation (2.1) is the
differential entropy of the unknown distribution. The remaining
terms on the right-hand side of Equation (2.1) are the set of
known constraints: the zeroth-order constraint is the normal-
ization, the first-order constraint is the expected value, and the
second-order constraint is the variance. λ, α, and β are the re-
spective Lagrange multipliers. If the uncertainty is not known,
then the second-order constraint is removed from Equation (2.1),
and β = 0.

According to Dowson and Wragg (1973), the maximization
of Equation (2.1) with respect to p(q) leads to

p(q) = C exp
(
αq + β

(
q2 − 2mq

))
, (2.2)

where C is a constant. Since Equation (2.1) defines a concave
function, differentiation yields a unique maximum. There are
two cases, depending on whether an uncertainty estimate is
available or not.

If uncertainty is not known, β = 0, and Equation (2.2) leads
to an exponential distribution

p(q) = αe−αq . (2.3)

The expected value and the standard deviation of the exponen-
tial distribution are m = s = 1/α, so if no uncertainty estimate
is provided, the MEP determines a prior uncertainty s = m.

If an uncertainty estimate is available, Equation (2.2) leads to
a truncated Gaussian distribution

p(q) = 1

Z

1√
2πs̃2

exp

(
− (q − m̃)2

2s̃2

)
, (2.4)

with the substitution 2β = 1/s̃2 and α − 2mβ = −m̃/s̃2, where
Z is a normalization constant. Note that since this distribution

is truncated, the Gaussian parameters m̃ and s̃2 are not the ob-
servable expectation and variance of the distribution, m and s2.
The properties of the truncated Gaussian distribution have been
studied in the past (Cohen 1950; Castillo 1994) but unfortu-
nately, there is no closed form analytical expression connecting
(m, s) and (m̃, s̃) (Tallis 1961). Using the inverse Mills ratio
it is possible to express observables as a function of Gaussian
parameters (Greene 2008), but the reverse is not true. Johnson
and Kotz (1970, pp. 81–87) reviewed several methods to per-
form this conversion, including the method of Pearson and Lee
(1908), but all of these methods involved numerical root finding.
Appendix A (see online supplementary materials) presents ex-
pressions that allow for the explicit conversion from parameters
to observables and vice versa.

2.3 Transition Between Solutions

There is a smooth transition between the first- and second-
order MEP distributions (Cover and Thomas 1991; Castillo
1994). If the relative uncertainty, s/m, is small, the truncated
Gaussian distribution is well approximated by its nontruncated
cognate. However, as relative uncertainty increases, the prob-
ability mass gets increasingly skewed to the left, until it be-
comes indistinguishable from the exponential distribution, when
s/m � 1 (Dowson and Wragg 1973).

Figure 1 shows the probability density function of the trun-
cated Gaussian distribution, for different levels of observable
relative uncertainty. When relative uncertainty is below 0.3, the
truncated Gaussian is well-approximated by its nontruncated
cognate. When relative uncertainty rises to 0.75, the peak of the
function smashes against the zero boundary and the function
becomes monotonic.

The limit behavior of high relative uncertainty can be de-
duced analytically. Let the probability density of the truncated
Gaussian (Equation (2.4)) be expanded as

p(q) = C exp

(
− (q − m̃)2

2s̃2

)
= C exp

(
− q2

2s̃2
+ 2qm̃

2s̃2
− m̃2

2s̃2

)
,

where the C’s in the previous and following expression are
appropriately chosen constants. In the limit case of high un-
certainty, m̃ → −∞ and s̃ → ∞, but the bulk of probability
mass is constrained in the lower positive range, 0 < q � ∞.
Under these conditions, q2/s̃2 � 0 and m̃2/s̃2 is a constant, so

Figure 1. Probability density function of the truncated Gaussian
distribution, for five different levels of observable relative uncertainty,
s/m.
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the previous expression simplifies to

π (q) = C exp

(
−|m̃|

s̃2
q

)
.

That is, the far-right tail of a truncated Gaussian distribution
exhibits an exponential shape and, in this limit case, there is
an explicit link between Gaussian and observable parameters:
|m̃|/s̃2 = 1/m = 1/s.

Thus, the prior relative uncertainty of an isolated numerical
datum, u = s/m is bound, 0 ≤ u ≤ 1, and if no uncertainty
estimate is provided, then prior relative uncertainty is unitary,
u = 1 and s = m.

3. CORRELATIONS AMONG CONNECTED DATA

3.1 Constraints on Aggregate Uncertainty

Thus far, this article studied the properties of a statistical eco-
nomic datum in isolation. However, statistical economic data
are often connected to one another through accounting iden-
tities, Equation (1.1), linking one aggregate datum to several
disaggregate data.

From standard probability theory, it follows from Equa-
tion (1.1) that

m0 =
n∑

i=1

mi ; (3.1)

s2
0 =

n∑
i=1

s2
i + 2

n∑
i=2

i−1∑
j=1

rij sisj , (3.2)

where rij in Equation (3.2) is the correlation between disaggre-
gate data i and j. Thus, Equation (3.2) places constraints on the
correlation between disaggregate data and the uncertainty of the
aggregate datum.

Recall that correlations have the following properties: rii = 1,
rij = rji , and −1 ≤ rij ≤ 1. The presence of correlations de-
fines an uncertainty range for the uncertainty of the aggregate
datum, which is narrower than the uncertainty range of disag-
gregate data.

Consider that all correlations have the highest possible value,
rij = 1. Equation (3.2) becomes

s2
0 =

n∑
i=1

s2
i + 2

n∑
i=1

i−1∑
j=1

sisj =
(

n∑
i=1

si

)2

.

Because correlations cannot be larger than one, the previous
expression implies that an upper bound for aggregate uncertainty
is

smax =
n∑

i=1

si . (3.3)

Combining Equations (3.3) and (3.1) leads to the observation
that the upper bound of the relative uncertainty of the aggregate
datum, u0 = s0/m0, is the average of the relative uncertainties
of the disaggregate data, ui = si/mi :

u0 ≤
n∑

i=1

mi

m0
ui ≤ 1.

The previous expression defines an upper limit for the uncer-
tainty of an aggregate datum, which may be lower than the upper
uncertainty limit of a disaggregate datum, given in Section 2 as
ui ≤ 1. Heijungs and Suh (2002, p. 140–144) have previously
identified this constraint in the field of life-cycle assessment.

Likewise, there is a lower bound for aggregate uncertainty:

smin = max

{
0, s1 −

n∑
i=2

si

}
, (3.4)

where it is assumed that disaggregate uncertainties are ordered
by decreasing size, so that s1 is the largest uncertainty.

This lower bound arises because the lowest possible aggregate
uncertainty of two disaggregate data occurs when the correlation
between them is −1. Furthermore, according Equation (3.3), the
highest uncertainty of the subset of i = 2, . . . , n disaggregate
data is obtained when they are all perfectly correlated.

Hence, if the uncertainty of the largest disaggregate datum is
larger than the sum of the uncertainties of all other disaggregate
data, there is a positive lower bound for aggregate uncertainty.

Finally, a situation of particular interest is the aggregate cor-
relation that occurs when all correlations are zero

szero =
√∑n

i=1 s2
i . (3.5)

Values smin and smax are the lower and upper bound for aggre-
gate uncertainty, s0, and the configuration of prior correlations
will depend on how s0 is positioned in relation to szero.

3.2 Determination of Correlations

According to the Bayesian paradigm, the best inference takes
into account all available information and no other. Accounting
identities are a very strong piece of information to which the
assignment of priors must conform. In fact, the combination of
accounting identities and the MEP allows the determination of
correlation priors.

Appendix B (see online supplementary materials) presents
the derivation of the analytical solution of correlation priors
constrained by Equation (1.1) when all uncertainties are known.
The solution is

w̃ij

s̃i s̃j

= β, (3.6)

for every i �= j , where β is the Lagrange parameter and w̃ij is the
(i, j ) entry of the inverse correlation matrix W̃ = S̃−1. Recall
that all parameters adjoined by a tilde,˜, are Gaussian param-
eters, which differ from observable parameters when relative
uncertainty is high.

Appendix B (see online supplementary materials) also ad-
dresses the problem of determining correlations when the ag-
gregate uncertainty prior is unknown. In this case, correlation
priors are given by Equation (3.6) and the aggregate datum prior
uncertainty is given by

1

s̃2
0

= −β. (3.7)

Notice that, in comparison to Equation (3.6), the right-hand
side of Equation (3.7) has a minus sign.

Let us consider that all uncertainties are known and that all
correlations are unknown. Furthermore, consider that relative
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uncertainties are low, so that observable and Gaussian param-
eters are interchangeable. Substitution of Equation (3.6) in the
matrix product I = WR leads to the following constraints:

1 = wiis
2
i + β

∑
k �=i

riksisk;

0 = wiirij sisj + βs2
j + β

∑
k �=i,j

rkj sksj .

In the previous and following expressions, summation is al-
ways in the range k = 1, . . . , n, except for the referred iterator
(e.g., k �= i). Using the first expression to eliminate wii from the
second expression leads to

0 = rij + β

⎛
⎝sisj + si

∑
k �=i,j

rkj sk − rij si

∑
k �=i

riksk

⎞
⎠ . (3.8)

The full algorithm for the determination of prior correlations
is a two-stage Newton method (Press et al. 2007). First, the
root of Equation (3.8) can be solved for a given parameter β.
Then the parameter β itself is obtained by finding the root of
Equation (3.2).

3.3 Prior Correlations and Missing Aggregate
Uncertainty

Few studies consider nonzero prior correlations among sta-
tistical economic data in a given year, such as Weale (1988)
or Antonello (1990) in the case of data balancing, Rypdal and
Zhang (2000) or Flugsrud and Hoem (2011) in the case of green-
house gas emissions, or Ballantyne et al. (2012) in the case of
time-series carbon concentrations. Yet, most work on the uncer-
tainty of calculations based on statistical economic data consid-
ers only zero correlations (Lenzen 2001; Dietzenbacher 2006;
Rampa 2008).

On this subject, Rassier et al. (2007, p. 9) stated that “given the
lack of information regarding correlations among the initial es-
timates, covariance measures are assumed to be zero. While this
assumption results in an estimator that is less than efficient, the
inefficiency is less than may be introduced if the correlations are
incorrectly determined.” Also, according to Dagum and Cholette
(2006), one justification of zero correlation is that for a large
system the covariance matrix may become ill-conditioned.

This situation is very different for the case of time-series data,
in which a large literature for the estimation of correlations and
their subsequent use in statistical analysis is available (Chow and
Lin 1971a, 1971b; Cholette and Dagum 1994; Dagum, Cholette,
and Chen 1998; Engle and Kelly 2012).

Consider that there are independent estimates of each disag-
gregate best guess, mi , that there may or may not be independent
estimates of disaggregate uncertainties, si (it will not affect the
remainder of the analysis), and that no estimate of the aggregate
uncertainty, s0, is available. The value of prior correlations, rij ,
will depend on whether an independent estimate of the aggre-
gate best guess, m0, is available or not. The formal analysis of
this matter is reported in Appendix C (see online supplemen-
tary materials). An informal discussion of the results is now
presented.

If no independent prior for m0 is available, then the correlation
data is obtained by maximizing the entropy of joint disaggregate
data but not of the aggregate datum: it must be so because the
latter is, literally, outside the scope of the study. In this case,
the correlations are zero, rij = 0, and the aggregate relative
uncertainty is obtained from Equation (3.5).

If an independent prior for m0 is available, then the correlation
data is obtained by maximizing the entropy of joint disaggre-
gate data and of the aggregate datum. Whereas the former is
maximized when correlations are zero, the latter is maximized
when correlations are unitary. Because both are monotonic in
the range 0 < rij < 1, it follows that the MEP solution occurs
when all correlations are positive.

Hence, the conventional assumption of zero correlations cor-
responds to a particular empirical situation of interest (absence
of an initial estimate of the aggregate best guess), and is consis-
tent with the constraint posed by the accounting identity (Equa-
tion (3.2)) if aggregate uncertainty conforms to Equation (3.5).

However, in the conventional literature the information con-
tent of accounting identities is sometimes overlooked. For
example, both Golan, Judge, and Robinson (1994), in their
generalized cross-entropy problem, and Lenzen (2011, p. 76)
considered that disaggregate data have positive uncertainty, that
aggregate data have zero uncertainty, and that all correlations
among disaggregate data are zero.

These assumptions are mutually inconsistent, since they vio-
late Equation (3.2). On the one hand, if correlations are all zero,
then the uncertainty of the aggregate datum is not independent
but should be obtained by Equation (3.5). On the other hand, if
the uncertainty of the aggregate datum is zero, it follows from the
analysis above that the correlations between disaggregate data
must be negative on average. Furthermore, Section 3.1 found
that depending on the configuration of disaggregate uncertain-
ties, it may even be impossible for the aggregate uncertainty to
be zero.

3.4 Qualitative Patterns

The precise configuration of prior correlations will naturally
depend on the uncertainty values, but several qualitative pat-
terns hold in general, defined by the dispersion in disaggregate
uncertainties and, especially, by the gap between the largest
disaggregate datum and the sum of all other disaggregate data.

To illustrate these qualitative patterns we now present a series
of examples. Each example consists of an accounting identity
with three disaggregate data and is defined by a particular com-
bination of disaggregate uncertainties, s1, s2, and s3. For each
example the configuration of correlations is shown in a figure,
as a function of aggregate relative uncertainty.

To aid interpretation, key values of aggregate uncertainty are
reported: smax, given by Equation (3.3), is the upper bound of
aggregate uncertainty; smin, given by Equation (3.4), is the lower
bound of aggregate uncertainty; szero, given by Equation (3.5),
is the zero-correlation uncertainty; and smep, given by Equa-
tion (3.7), is the aggregate uncertainty prior when an aggregate
best guess is initially available.

Figure 2 illustrates what happens when the largest disaggre-
gate uncertainty exceeds the sum of the remainder disaggregate
uncertainty. In this case, there is a nonzero lower bound for
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Figure 2. Correlations between disaggregate data as a function of
aggregate uncertainty, when disaggregate uncertainties are s1 = 5, s2 =
3, and s3 = 1.

aggregate uncertainty, smin > 0, such that when aggregate un-
certainty falls far below the zero-correlation uncertainty (at 4,
in this particular case) there is a divergence among disaggregate
correlations. Correlations between the lower uncertainty and
the largest uncertainty become negative, while the correlation
among lower uncertainty data become positive. When aggre-
gate uncertainty takes the minimum value, these correlations
become, respectively, −1 and 1.

Figure 3 shows the results when there is still some variation
between disaggregate uncertainties but the largest disaggregate
uncertainty does not exceed the sum of the remainder. Here
the situation is similar to the previous example except in the
limit of low aggregate uncertainty, in which the correlations
between disaggregate data do not become perfectly correlated
or perfectly anti-correlated.

Figure 4 shows the results when disaggregate uncertainties
are very similar. In this case the pattern is more regular, with
all correlations remaining negative if aggregate uncertainty is
below the zero-correlation uncertainty.

Appendix D (see online supplementary materials) presents
a more exhaustive characterization of the different correlation
patterns that emerge from the combination of disaggregate un-
certainties.

4. EMPIRICAL ILLUSTRATION

4.1 Scope

The goal of this section is to present an empirical illustration
of the correlation patterns that are obtained using the MEP. These

Figure 3. Correlations between disaggregate data as a function of
aggregate uncertainty, when disaggregate uncertainties are s1 = 4, s2 =
3, and s3 = 2.

Figure 4. Correlations between disaggregate data as a function of
aggregate uncertainty, when disaggregate uncertainties are s1 = 3.25,
s2 = 3, and s3 = 2.75.

patterns will be contrasted with the conventional assumption of
zero correlations.

It may happen that, for a particular accounting identity, the
uncertainties satisfy Equation (3.5), in which case MEP correla-
tions are zero. If that condition is not satisfied, then the conven-
tional assumption does not hold and nonzero correlations must
be explicitly taken into account.

The example will also look at relative uncertainties. If rel-
ative uncertainties is less than one-third, the MEP probability
distribution (the truncated Gaussian) is indistinguishable from
the conventional nontruncated Gaussian. If relative uncertainty
is higher than one-third, then the nontruncated Gaussian is no
longer acceptable, as it would violate the nonnegativity condi-
tion.

The example uses employment data of the County Business
Patterns (CBP) for the Autauga county of the state of Alabama
in the year 2000. This dataset was chosen for several reasons:
it is of open access and thus allows validation of the present
results by a third party; it is amenable to a transparent processing
procedure; it is topologically simple (one employment estimate
per industry, county and year) and can thus be described briefly;
and it offers a wide variety of empirical patterns (accounting
identities with different number of data points and uncertainties).

This type of regional employment data is used for different
purposes, including the calibration of regional economic models
(Treyz and Stevens 1985; Lahr and Stevens 2002).

4.2 Data Source and Processing

The CBP database (http://www.census.gov/econ/cbp/), main-
tained by the U.S. Census Bureau, reports the number of em-
ployees per industry following the NAICS 2002 classification
scheme (http://www.census.gov/eos/www/naics/) up to six dig-
its. These data are reported for each county of every state in the
United States.

The remainder of this subsection describes a particular pro-
cessing procedure for the extraction of best guess and uncer-
tainty estimates from this source data, which is not only con-
ceptually sound but also simple and transparent enough to allow
for easy reproducibility. More sophisticated methods can be
found in Fischetti and Salazar (2005), Isserman and Westervelt
(2006), Zhang and Guldmann (2009), Chen (2012), Guldmann
(2013), and Zhang and Guldmann (2015).

http://www.census.gov/econ/cbp/
http://www.census.gov/eos/www/naics/
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The CBP database reports a single employment figure (the
number of jobs in mid-March) for industries with a large number
of establishments. This number is taken as the prior best guess.
For such industries, two wage values are reported: first quarter
payroll, FQPi , and annual payroll, APi . Payroll is used as a
proxy for the number of jobs so that the relative uncertainty of
the number of jobs is |4 × FQPi − APi |/|4 × FQPi + APi |.

To protect confidentiality (Doyle et al. 2001), the employment
data of industries with a small number of establishments is
flagged and the total number of employees is not disclosed but
instead a range is presented (1–19, 20–99, etc.). Furthermore, for
each industry (whether flagged or not), the dataset also indicates
the number of establishments by employee size class (1–4, 5–9,
10–19, etc.).

For flagged industries, a lower and an upper bound, LBi

and UBi , were obtained as the narrower bound defined by the
industry flag and the employee size classes. As an example,
consider industry 1133 (logging) of the Autauga county of the
state of Alabama in the year 2000. According to the industry flag,
there are between 0 and 19 employees in this industry. However,
the industry contains three establishments, each with a number
of employees in the range 1 to 4. Hence, for this industry, LBi =
3 and UBi = 12. From the lower and upper bound, the best
guess was obtained as (LBi + UBi)/2 and relative uncertainty
as |LBi − UBi |/(LBi + UBi).

In a few instances, the source information between the in-
dustry flag and the employee size to class was found to be
inconsistent, that is, they expressed disjoint sets. This probably
resulted from a misspecification problem (Abowd and Vilhuber
2005), and in this case the inconsistency was solved by manually
adjusting one of the flags.

The NAICS hierarchy provides a set of accounting identities
that constrain employment values between industries of sequen-
tial digit levels. For example, with the priors obtained using the
procedure above, industry 113 (forestry and logging) employed
11 ± 0.25 workers, which were divided into 2.5 ± 2 jobs in
industry 1131 (timber tract operations) and 7.5 ± 4.5 jobs in
industry 1133 (logging).

The set of prior best guesses thus obtained was found to
be inconsistent (i.e., first-moment accounting identities did not
hold) and was balanced using the linear method of Rodrigues
(2014). The linear method is able to handle constraints of arbi-
trary structure, a hierarchy of information quality, and reliability
weights. The method is iterative and, when reliability weights
are identical for all elements and constraints are row and column
sums, reduces to conventional biproportional adjustment (Lahr
and Mesnard 2004). The method yields a set of balanced poste-
rior best guesses and preserves relative uncertainties. Technical
details are summarized in Appendix E (see online supplemen-
tary materials). Ideally, information on correlations would even
be used in the balancing procedure itself, as in the generalized
least squares method of Rodrigues (2014). However, that would
make the balancing algorithm computationally and conceptually
more complex.

The uncertainties of aggregate data were then adjusted to con-
form with the upper and lower bounds described in Section 3.1.
The resulting set of valid uncertainties and balanced best guesses
was used as input data to estimate the maximum entropy prior
correlations.

Figure 5. Relative uncertainty of balanced disclosed and flagged
employment estimates as a function of the best guess of the number of
employees.

To test the robustness of the empirical patterns to the
processing procedure, several variations on the definition of
best guess priors and the balancing algorithm were consid-
ered, as described in Appendix F (see online supplementary
materials).

4.3 General Results

The dataset under study reports employment estimates for
different industries scattered across six NAICS digit levels.
The county contains 20 two-digit, 75 three-digit, 171 four-digit,
245 five-digit, and 257 six-digit industries. There is a total of
388 nonredundant industries (since often a higher-level indus-
try branches into a single lower-level industry), of which 118
have disclosed employment data and 270 are flagged. Figure 5
shows the relative uncertainty of balanced disclosed and flagged
industry employment estimates, as a function of the best guess
of the number of employees.

In the balanced configuration, the best guesses of employment
figures of disclosed industries are scattered from 4 to around
2000 employees (not counting the county total), with 5% of
industries with more than a thousand employees, 50% having
more than 70 and 80% having more than 20. The correspond-
ing values for flagged data are scattered from 1 to around 600
employees, with 50% of industries having a best guess smaller
than eight and 90% smaller than 100.

Sixty percent of disclosed industries have relative uncertainty
below 0.1, while 90% of disclosed industries have relative un-
certainty below 0.2. The lowest and highest uncertainties of a
disclosed industry are 0.0035 and 0.36, respectively. Forty per-
cent of flagged industries have an uncertainty higher than 0.6,
and 90% of flagged industries have an uncertainty higher than
0.3. The lowest and highest uncertainties of a flagged industry
are 0.03 and 0.8, respectively.

All disclosed employment data have a relative uncertainty be-
low (or close to) one-third. Hence, according to Section 2.3 they
are well described by the Gaussian approximation. Most flagged
data is not well approximated by the Gaussian distribution, al-
though they are also not well approximated by the exponen-
tial limit either (uncertainty above 90%), falling somewhere in
between.

There is a total of 131 nonredundant accounting identities,
connecting a higher-digit parent industry to more than one
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Figure 6. Correlations by range, as a function of the best guess estimates of the number of employees.

lower-digit daughter industries, of which 77 include two dis-
aggregate data points, 34 include three, 17 include between four
and eight, and the largest three include 12, 15, and 20. Because
the number of distinct correlations constrained by an accounting
identity is n(n − 1)/2, where n is the number of disaggregate
data points, the set of accounting identities defines a total of
722 (possibly nonzero) correlations between industry employ-
ment figures in the Autauga county of Alabama in the year
2000.

Figure 6(a) and 6(b) show the correlations between differ-
ent data points, as a function of best guesses. Eight percent of
correlations are lower than −0.9, 11% are between −0.9 and
−0.1, 47% are between −0.1 and 0.1, 22% between 0.1 and
0.9, and 12% higher than 0.9. Hence, although almost half of
all correlations are close to zero, there is a significant number
that is quite different from zero.

In Figure 6(a) and 6(b), it is possible to see that the corre-
lations that are closer to zero are scattered all over the range
of best guess values. However, correlations that are signif-
icantly different from zero occur mostly between industries
with small employment best guesses. Industries whose corre-
lation is lower than −0.9 have a median employment best guess
of 31 jobs, those whose correlations are between −0.9 and
−0.1 of 36, between −0.1 and 0.1 of 86, between 0.1 and
0.9 of 35, and higher than 0.9 of 9. Hence, very high correla-
tions are concentrated among industries with a small number of
employees.

Table 1. Properties of selected aggregate industries

Code u0 m0 s0 smin szero smep smax

621 0.03 311.74 8.18 0.00 5.90 7.43 11.70
48 0.10 86.51 8.49 5.31 11.18 12.10 15.78
4441 0.01 115.13 0.83 0.00 22.21 25.90 36.47
4461 0.04 201.30 7.83 0.00 10.82 13.11 19.88

NOTE: Code = NAICS codes (see Table 6); u0 = relative uncertainty; m0 = best guess;
s0 = absolute uncertainty; smin = lower bound; szero = zero-correlation uncertainty; smep
= maximum-entropy uncertainty; smax = upper bound.

Table 2. Properties of disaggregate industries constrained by NAICS
industry 621 (Ambulatory health care services)

Code u m s R 6213 6214 6211 6212

6213 0.16 22.07 3.48 6213 1.00 0.35 0.33 0.31
6214 0.12 25.20 3.07 6214 0.35 1.00 0.31 0.29
6211 0.01 221.73 2.66 6211 0.33 0.31 1.00 0.27
6212 0.06 42.75 2.48 6212 0.31 0.29 0.27 1.00

NOTE: Code = NAICS codes (see Table 6); u = relative uncertainty; m = best guesses; s
= absolute uncertainty; = absolute uncertainties; R = correlations.

Table 3. Properties of disaggregate industries constrained by NAICS
industry 48 (Transportation and warehousing)

Code u m s R 484 485 481 488

484 0.14 75.56 10.55 484 1.00 −0.59 −0.36 −0.06
485 0.70 4.67 3.27 485 −0.59 1.00 0.13 0.02
481 0.80 2.16 1.73 481 −0.36 0.13 1.00 0.01
488 0.06 4.13 0.24 488 −0.06 0.02 0.01 1.00

NOTE: Same description as in Table 2.

Table 4. Properties of disaggregate industries constrained by NAICS
industry 4441 (building material and supplies dealers)

Code u m s R 44413 44411 44412 44419

44413 0.43 40.56 17.44 44413 1.00 −0.98 −0.77 −0.68
44411 0.43 30.05 13.06 44411 −0.98 1.00 0.66 0.58
44412 0.42 8.31 3.50 44412 −0.77 0.66 1.00 0.46
44419 0.07 36.21 2.47 44419 −0.68 0.58 0.46 1.00

NOTE: Same description as in Table 2.

Table 5. Properties of disaggregate industries constrained by NAICS
industry 4461 (health and personal care stores)

Code u m s R 44611 44619 44612 44613

44611 0.05 166.92 8.20 44611 1.00 −0.30 −0.28 −0.12
44619 0.30 16.12 4.84 44619 −0.30 1.00 −0.10 −0.04
44612 0.30 15.52 4.66 44612 −0.28 −0.10 1.00 −0.04
44613 0.80 2.74 2.19 44613 −0.12 −0.04 −0.04 1.00

NOTE: Same description as in Table 2.



Rodrigues: Maximum-Entropy Prior Uncertainty and Correlation of Statistical Economic Data 365

Table 6. Description of the NAICS codes of selected accounting
identities

Type Code Description

Aggregate 621 Ambulatory health care services
Disaggregate 6211 Offices of other health practitioners

6212 Outpatient care centers
6213 Offices of physicians (exc mental health)
6214 Offices of dentists

Aggregate 48 Transportation and warehousing
Disaggregate 481 Transit and ground passenger

transportation
484 Other nonscheduled air transportation
485 Truck transportation
488 Transportation support activities

Aggregate 4441 Building material and supplies dealers
Disaggregate 44411 Paint and wallpaper stores

44412 Hardware stores
44413 Home centers
44419 Other building material dealers

Aggregate 4461 Health and personal care stores
Disaggregate 44611 Pharmacies and drug stores

44612 Optical goods stores
44613 Other health and personal care stores
44619 Cosmetics, beauty supplies, and perfume

stores

4.4 Simple Examples

This section concludes with a more detailed presentation of
the uncertainty and correlation data of particular accounting
identities, which illustrate the different qualitative patterns de-
scribed in Section 3.4.

Four accounting identities were chosen, each with four dis-
aggregate data points, whose properties are summarized in
Tables 1–6. Table 1 summarizes the properties of the ag-
gregate industries, Tables 2–5 summarize the properties of
disaggregate industries, and Table 6 identifies disaggregate
data.

Table 1 shows that in the first accounting identity, whose
disaggregate data is described in Table 2, aggregate uncertainty
exceeds the zero-correlation uncertainty, while in the remainder
accounting identities, whose disaggregate data is described in
Tables 3–5, aggregate uncertainty is below the zero-correlation
uncertainty.

Furthermore, Table 1 also shows that, as expected, the
maximum-entropy aggregate uncertainty is always larger than
the zero-correlation uncertainty, but always closer to the latter
than to the maximum value. Tables 2–5 illustrate the pattern that
the highest correlations (in absolute terms) are found between
industries with the largest employment uncertainty.

In Table 3 the lower bound is positive, in which case it is
expected that if aggregate uncertainty drops to the lower bound,
then all correlations become plus or minus one.

In Table 4 there is still a large distance between the largest
disaggregate industry employment uncertainty and the next fig-
ure, but the lower bound is now zero. In this case, although there
are both positive and negative correlations, they will not rise or
fall to plus or minus one if the aggregate correlation becomes
zero.

Finally, in Table 5 the largest disaggregate industry employ-
ment uncertainty is very close to the other disaggregate uncer-
tainties. In this case, no matter how low aggregate uncertainty
drops, all correlations remain negative.

Table 6 presents the NAICS codes and description of the
disaggregate data in the selected accounting identities.

5. CONCLUSIONS

This article applies concepts and tools from Bayesian infer-
ence, and in particular the MEP, to determine the prior probabil-
ity distribution, uncertainty, and correlations of statistical eco-
nomic data, when additional information such as best guesses
and accounting identities are available.

The main findings of this article are:

1. The prior probability distribution of a statistical datum of
which a best guess and uncertainty estimate are known is a
truncated Gaussian.

2. The prior relative uncertainty of an isolated datum of which
only a best guess is known is unitary.

3. The prior correlation of data connected through an account-
ing identity can be determined by solving Equation (3.8),
and there are both a lower and an upper bound to aggregate
uncertainty.

4. If the aggregate best guess is not known, then disaggregate
data are uncorrelated whereas if the aggregate best guess
is known but aggregate uncertainty is not, then all prior
correlations are positive.

5. If the aggregate uncertainty is known, prior correlations can
be either all positive, all negative, or a mix of both, de-
pending on the relative values of aggregate and disaggregate
uncertainties.

These results represent an important contribution to the ex-
isting literature on the uncertainty of statistical economic data,
by identifying under which conditions a particular probabil-
ity distribution and set of uncertainties and correlations should
be used. In particular, the conventional assumptions of nontrun-
cated Gaussian and zero correlations were shown to be particular
cases of a more general framework corresponding, respectively,
to the situation of low relative uncertainty and absence of an
independent estimate for aggregate data.

In this study, the theoretical results were complemented by
the estimation of the uncertainties and correlations of an empir-
ical dataset, the CBP database, in which a wide range of values
of both relative uncertainties and correlations was found, with
many uncertainties outside the range in which the nontruncated
Gaussian is acceptable and many correlations being substan-
tially different from zero. Caution in generalizing these results
is required, as the distribution of data varies significantly across
counties (depending on the size and the nature of its economy)
and over time.

An important direction of future research that would comple-
ment the present study is the generalization of the expression for
the empirical determination of prior correlations, Equation (3.8),
from the nontruncated to the truncated Gaussian multivariate
case.

Another interesting open question is the derivation of a con-
centration theorem (Jaynes 1979), and the clarification of how
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large is the entropy of the MEP solution relative to other
consistent solutions, and eventually to other priors (Dias and
Shimony 1981; Gokhale and Press 1982; Uffink 1995; Kass
and Wasserman 1996; Fernandez-Alcala, Navarro-Moreno, and
Ruiz-Molina 2007; Rodriguez and Horst 2008; Sanso, Forest,
and Zantedeschi 2008; Huang and Wand 2013).

The computational challenges that lie ahead should not be un-
derestimated. The application of the two-stage Newton method
developed here to large and complex datasets is nontrivial and
requires further refinement and optimization.

Finally, the priors derived here are worst-case solutions to
which a practitioner should fall back in the absence of better
information. If the practitioner has expert knowledge suggesting
that other priors are a better description of the system being
studied, these alternative priors should be used for as long as
they are properly justified and mutually consistent.

SUPPLEMENTARY MATERIALS

Supplementary materials contain Appendices A–F.
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