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ABSTRACT
We make available simple and accurate closed-form approximations to
the marginal distribution of Markov-switching vector auto-regressive
(MS VAR) processes. The approximation is built upon the property of
MS VAR processes of being Gaussian conditionally on any semi-infinite
sequence of the latent state. Truncating the semi-infinite sequence and
averaging over all possible sequences of that finite length yields a mix-
ture of normals that converges to the unknownmarginal distribution as
the sequence length increases. Numerical experiments confirm the via-
bility of the approach which extends to the closely related class of MS
state space models. Several applications are discussed.

1. Introduction

Markov-switching vector auto-regressive (MSVAR)models have provenmost useful to detect
non linearities due to interventions, structural changes, and abnormal events. Thanks to their
ability to fit time series subject to changes in pattern, thesemodels have entertained a large suc-
cess in empirical works over a wide variety of disciplines. They have been applied for instance
in macroeconomics to the analysis of the business cycle (Hamilton, 1989; McConnell and
Perez-Quiros, 2000) and monetary policy (Sims and Zha, 2006), in finance to asset pricing
(Cecchetti et al., 1990, 1993), in environmental science to characterize wind time series (Ail-
liot and Monbet, 2012), in medicine for clinical monitoring (Gordon and Smith, 1990), in
speech recognition (Juang and Rabiner, 1985), as well as in many other fields. General discus-
sions and additional references can be found in West and Harrison (1997), Kim and Nelson
(1999), Scott (2002), Fruhwirth-Schnatter (2006), and Ang and Timmermann (2011).

The statistical properties of MS VAR models have been analyzed by, among others, Tim-
mermann (2000), Yang (2000), Francq and Zakoian (2001, 2002), Stelzer (2009), and Fioren-
tini, Planas, and Rossi (2015). These studies center on stationarity issues, on the uncondi-
tional mean and variance, and on skewness and kurtosis. In this paper, we complete this
stream by focusing on the marginal distribution. Knowledge of the marginal distribution of
MS VAR processes is advantageous in several circumstances. By summarizing the non lin-
ear features of the model, the marginal law sheds light on noteworthy characteristics such
as multi-modalities and regions of probability mass concentration. A comparison with the
empirical distribution offers a simple yet powerful tool for model validation. The marginal
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distribution also gives all necessary information for long-term forecasting. It can thus help
analysts involved in risk management to infer the value-at-risk over long horizons (Cotter,
2007). Since it enters the likelihood function via the distribution of the first observation,
knowledge of the marginal law makes possible the exact calculation of the likelihood func-
tion, thus enhancing inference. This is particularly relevant in Bayesian analysis via Markov
chain Monte Carlo methods where parameters and latent variables need to be sampled.

In spite of its usefulness, the marginal law of MS VAR processes is still unknown. The
approximation we offer exploits the property of MS VAR models to be Gaussian condition-
ally on any semi-infinite sequence of the latent discrete state. Truncating the semi-infinite
sequence to a finite length and averaging over all possible sequences of that length yields a
mixture of normals that converges to the unknown marginal distribution as the sequence
length increases. The mean and covariance matrix of each normal mixture component are
set equal to the first two moments of the MS VAR process given the finite sequence of dis-
crete states, while the probability of occurrence of the sequences gives the mixing weights.
The approximation applies as well to the closely related class of MS state space (MS SS) mod-
els which have been popularized in the statistical literature by Harrison and Stevens (1976).
Numerical experiments confirm the viability of the approach.

The paper is structured as follows. The generalMSVAR andMS SS framework is presented
in Sec. 2 together with assumptions and notations. We focus on models with finite number of
states and time-invariant transition probabilities. Approximating mixtures for the marginal
distribution of MS processes are derived in Sec. 3. The accuracy of the approximation is ana-
lyzed through a Monte Carlo experiment. Section 4 reviews applications where knowledge of
the marginal law enhances inference. Section 5 concludes the paper. All proofs are gathered
in the Appendix. A Matlab code that implements the results shown in the paper is available
from the authors.

2. Model and assumptions

Let {εt} be n-dimensional Gaussian white noise and {St} an homogeneous K-state irreducible
Markov chain defined at discrete time t . The first-order MS VAR process is generated by the
stochastic difference equation:

xt = αSt + �St xt−1 + �St εt (2.1)

where xt = (x1t , . . . , xnt )′. The n × 1 vector αSt and the n × nmatrices�St ,�St takeK differ-
ent values depending on the realization of the discrete latent variable St . Specifications involv-
ing more lags can easily be cast into the formulation above through the VAR(1) companion
form. The joint process {(�St , αSt + �St εt ), t ∈ N } inherits strict ergodic stationarity from
{(St , εt ), t ∈ N }. We assume that the top Lyapunov exponent associated to the process (2.1)
is negative so the MS VAR model (2.1) is strictly stationary (see Brandt, 1986; Bougerol and
Picard, 1992).

The variable xt may be unobserved. In this case it is typically related to a vector ofm obser-
vations yt through the measurement equation:

yt = aSt + HSt xt + γSt ut (2.2)

Equations (2.1) and (2.2) make up an MS SS model. We assume that the m × 1 vector ut is a
Gaussian standardwhite noise independent of εt . Like in (2.1), them × 1 vector aSt , them × n
matrix HSt , and them × mmatrix γSt take K different values depending on the realization of
the discrete latent variable St .
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Further notations are needed. For any generic variable zt , we denote zts = (zs, zs+1, . . . , zt )
and zt = (z1, z2, . . . , zt ). We also denote by 1K the K × 1 vector with all elements equal
to 1, e� the K × 1 unit vector e� = [0′

�−1, 1, 0′
K−�]′ for � = 1, . . . ,K, In the n × n identity

matrix, andM the K × K backward transition probability matrix with generic elementmji =
P(St = i|St+1 = j). Backward and forward transition probabilities pi j = P(St+1 = j|St = i)
are related through the equation mjiπ j = pi jπi, where πk = P(St = k) represents the prob-
ability of being in state k. For k = 1, . . . ,K, we also denote Jk the n × nK matrices Jk =
[0n×n(k−1), In, 0n×n(K−k)] which all together sum to J = ∑K

k=1 Jk. Following Yang (2000), we
define the K-block diagonalization operator for any n1K × n2 matrix Q as

diagKQ = diagK

⎡
⎢⎣
Q1
...

QK

⎤
⎥⎦ =

⎡
⎢⎣
Q1 . . . 0
...

. . .
...

0 . . . QK

⎤
⎥⎦

n1K×n2K

where the blocks Qk are n1 × n2 matrices. The nK × K matrix α and the nK × nK matrices
� and � are defined accordingly:

α = diagK

⎡
⎢⎣

α1
...

αK

⎤
⎥⎦ � = diagK

⎡
⎢⎣

�1
...

�K

⎤
⎥⎦ and � = diagK

⎡
⎢⎣

�1
...

�K

⎤
⎥⎦

Note that thematrix J ′ inverts the diagK operator, i.e., for any nK × nmatrixQ, diagKQJ ′ = Q.
Lemma 1 below defines an operator which is useful to remove the blocks of zeroes when
vectorizing a block-diagonal matrix.

Lemma 1. Let A be a nK × nK block-diagonal matrix made up of K blocks of dimension n × n.
Then vec(A) = Hvec(AJ ′) for the n2K2 × n2K matrix H such that H = ∑K

k=1 J
′
k ⊗ (J ′kJk).

3. Themarginal distribution

There are two special cases where the marginal distribution of the MS VAR process (2.1) is
exactly known: (i) there is no autoregressive term, i.e., �St = 0, and (ii) the model is parame-
terized in terms of conditional mean instead of intercept, and both the autoregressive coeffi-
cients and the shock-loading matrices are time-invariant, i.e., xt − μSt = � (xt−1 − μSt−1 ) +
�εt . These two cases are important as (i) arises in many empirical finance applications due to
the efficient market hypothesis (see Ang and Timmermann, 2011) and (ii) corresponds to the
model proposed by Hamilton (1989). In these two cases the marginal distribution of xt can
be written as

f (xt ) =
∑
St

P(St )φ(xt;E(xt |St ),V (xt |St )) (3.1)

where φ(·;E,V ) denotes the normal density with mean E and variance-covariance matrix
V . The conditional moments involved in (3.1) are such that E(xt |St ) = αSt and V (xt |St ) =
�St�

′
St in the case (i), while in the case (ii) E(xt |St ) = μSt and vec[V (xt |St )] = [In2 − � ⊗

�]−1��′ (see also Albert and Chib, 1993).
In the unrestricted general case the marginal distribution of the MS VAR process is

unknown. However, conditionally on semi-infinite realizations of the discrete latent variable,
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the MS VAR process is Gaussian so the marginal distribution verifies the limit expression:

f (xt ) = lim
p→∞

∑
Stt−p+1

P
(
Stt−p+1

)
φ
(
xt;E

(
xt |Stt−p+1

)
,V

(
xt |Stt−p+1

))
(3.2)

As integrating over all possible semi-infinite regime paths is numerically infeasible, no direct
use can be made of the expression (3.2). Rather, for any integer p > 0, we define fp(·) as the
finite mixture of Kp-normals:

fp(xt ) =
∑
Stt−p+1

P
(
Stt−p+1

)
φ
(
xt;E

(
xt |Stt−p+1

)
,V

(
xt |Stt−p+1

))
(3.3)

The Gaussian mixture fp(xt ) has several properties: (a) it conserves the first two uncon-
ditional moments of xt for all p > 0, i.e., if Ep(·) denotes the unconditional moment
under fp(xt ), then Ep(xt ) = E(xt ) and Ep(xtx′

t ) = E(xtx′
t ); (b) it reproduces exactly the

marginal distribution f (xt ) when the conditional density f (xt |Stt−p+1) is Gaussian, i.e.,
f (xt |Stt−p+1) = φ(xt;E(xt |Stt−p+1),V (xt |Stt−p+1))∀Stt−p+1 ⇒ fp(xt ) = f (xt ); and (c) it con-
verges to the marginal distribution f (xt ) as p increases, i.e., limp→∞ fp(xt ) = f (xt ). The
mixture fp(xt ) can thus be expected to provide an accurate approximation to the unknown
marginal law f (xt ).

To evaluate fp(xt ), the conditional moments E(xt |Stt−p+1) andV (xt |Stt−p+1) are necessary.
Results for the simplest case p = 1 can be found in Francq and Zakoian (2001); see also
Lemma 2 below. Given E(xt |St ) and V (xt |St ), the conditional moments E(xt |Stt−p+1) and
V (xt |Stt−p+1) can be obtained by iterating for q = 2, 3, . . . until q = p the recursions:

E(xt | St = ı1, St−1 = ı2, . . . , St−q+1 = ıq) = αı1 + �ı1E(xt | St = ı2, . . . , St−q+2 = ıq)

and

E(xtx′
t | St = ı1, St−1 = ı2, . . . , St−q+1 = ıq)

= αı1α
′
ı1 + �ı1�

′
ı1 + �ı1E(xtx′

t | St = ı2, . . . , St−q+2 = ıq)�′
ı1

+ αı1E(x′
t | St = ı2, . . . , St−q+2 = ıq)�′

ı1 + �ı1E(xt | St = ı2, . . . , St−q+2 = ıq)α′
ı1

(3.4)

where the realizations ı j, j = 1, 2, . . . , q take values 1, 2, . . . ,K.
These recursions are appealingwhen the conditionalmoments are needed for all sequences

of increasing length, i.e., St , Stt−1, . . . , Stt−p+1. Otherwise, it is preferable to use the general
closed-form expressions that are given in the following lemma.

Lemma 2. The first and second moment of xt conditionally on the sequence Stt−p+1 of length p,
p > 0, verify:

(a)

E
(
xt | Stt−p+1

)

= αSt +
p∑

i=2

i∏
j=2

�St− j+2αSt−i+1 +
p∏

j=1

�St− j+1JSt−p+1 [InK − (M ⊗ In)�]−1(M ⊗ In)α1K

(3.5)
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(b)

E
(
xtx′

t | Stt−p+1

)
= αStα

′
St + �St�

′
St +

p−1∑
j=1

j∏
i=1

�St−i+1 (αSt− jα
′
St− j

+ �St− j�
′
St− j

)

×
( j∏

i=1

�St−i+1

)′

+
p∏

i=1

�St−i+1JSt−p+1AJ
′
St−p+1

( p∏
i=1

�St−i+1

)′

+ � + �′

(3.6)

where the nK × nK block-diagonal matrix A is such as

vec(A) = H{In2K − [J� ⊗ ((M ⊗ In)�)]H}−1vec(A0J ′), (3.7)

and the n2K2 × n2K matrix H is given in Lemma 1 whereas the nK × nK matrix A0 is
defined by:

A0 = diagK{(M ⊗ In)(αα′ + ��′)J ′} (3.8)

The n × n matrix � is equal to

� =
p−1∑
k=1

k∏
i=1

�St−i+1αSt−kα
′
St +

p−2∑
j=1

p−1∑
k= j+1

k∏
i=1

�St−i+1αSt−kα
′
St− j

(
k∏

i=1

�St−i+1

)′

(3.9)

+
p∏

i=1

�St−i+1JSt−p+1 [InK − (M ⊗ In)�]−1 (M ⊗ In)α1K
p−2∑
j=0

α′
St− j

( j∏
i=1

�St−i+1

)′

(3.10)

+
p∏

i=1

�St−i+1JSt−p+1B0e′St−p+1
α′
St−p+1

(p−1∏
i=1

�St−i+1

)′

(3.11)

+
p∏

i=1

�St−i+1JSt−p+1BJ
′
St−p+1

( p∏
i=1

�St−i+1

)′

(3.12)

where the nK × K block-diagonal matrix B0 is such that

B0 = diagK{[InK − (M ⊗ In)�]−1B011K} (3.13)

with B01 = diagK{(M ⊗ In)α1K} (3.14)

and the nK × nK block-diagonal matrix B is given by

vec(B) = H{In2K − [J� ⊗ ((M ⊗ In)�)]H}−1vec((M ⊗ In)�B0α
′J ′) (3.15)

All quantities involved in Lemma 2 are straightforwardly available from the specifica-
tion (2.1). Compared to the recursive procedure (3.4), the closed-form formulae (3.5)–(3.15)
reduce the total storage by a factor equal to (Kp − K)/(K − 1), so Lemma 2 has the advantage
of storage minimization. Plugging E(xt |Stt−p+1) andV (xt |Stt−p+1) into (3.3) yields the density
components of fp(xt ).
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Table . Parameter values for six MS AR models.

Density α1, α2 �1,�2 �1, �2 p11, p22

# Weakly skewed −., . ., . ,
√
2 ., .

# Kurtotic ,  ., . , . ., .
# Strongly skewed ,  ., . .,  ., .
# Bimodal ,− ., . ,  ., .
# Separated bimodal ,− ., . ,  ., .
# Asymmetric trimodal .,−. ., . ,

√
0.06 ., .

Lemma 2 extends readily to MS SS models, with the first two moments being such as

E
(
yt |Stt−p+1

)
= cSt + HSt E

(
xt |Stt−p+1

)
V
(
yt |Stt−p+1

)
= HStV

(
xt |Stt−p+1

)
H ′

St + γStγ
′
St (3.16)

These moments can be plugged into formula (3.3) to build the mixture fp(yt ) which approx-
imates the marginal law of the MS SS process f (yt ).

In the examples belowwe analyze the quality of the approximation to the truemarginal law
through a Monte Carlo experiment. First we consider six two-state MS univariate processes
with parameter values displayed in Table 1. These models have been chosen to yield marginal
densities whose main features are frequently encountered in practice (see Marron andWand,
1992).

Figure 1 shows histograms of N = 107 realizations, say x(1), . . . , x(N), simulated from the
ergodic distribution of each process; i.e., starting from the initial condition xt−500 = 0, we
simulate each process until xt , collect x(1) = xt , and repeat the procedure N times. The first
three models generate marginal distributions that are unimodal: the first histogram is weakly

Figure . Density approximations. Notes: the histograms are produced from 107 simulations of each model;
the approximating densities fp(xt ) are shown by solid lines for p = 1, . . . , 10.
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Table . Rejection frequencies for Cramer-von Mises test at the % level.

p Model # # # # # # GT

Sample size N = 5, 000

 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .

Sample size N = 20, 000

 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .

Notes: #  Weakly skewed, #  Kurtotic, #  Strongly skewed, #  Bimodal, #  Separate bimodal, #  Asymmetric trimodal. The
% critical value of the CvM test is equal to . for the univariate cases  to  (Csorgo and Faraway, ), and to . for
the bivariate GT case (Cotterill and Csorgo, ); the rejection rates are calculated over , Monte Carlo simulations.

skewed, the second is heavily kurtotic, and the third one is strongly skewed and sharply
peaked. The fourth and fifth histograms are bimodal, the two modes of the fifth one being
separated by a region of low probability density. The sixth histogram is trimodal, each mode
receiving a different weight. Figure 1 also shows the approximating densities fp(xt ) for p rang-
ing from one to ten. The approximating densities get closer to the histograms as p increases.
In most cases a good matching is obtained with low values of p such as p = 1, 2. For the kur-
totic case, the convergence to the target distribution is slower but the main features of the
histogram seem well captured with p = 10.

To statistically assess the quality of the approximation, we simulate 20,000 samples of var-
ious lengths N from the ergodic distribution of each process and test the hypothesis that the
simulated samples come from the mixture fp(xt ), p = 1, 2, . . . , 10, using the Cramer–von
Mises (CvM) statistics. We record the empirical rejection rate at the usual 5% level of sig-
nificance; close matching between the empirical rejection rate and the theoretical test size
indicates that a sample of length N is not enough to distinguish statistically between the tar-
get and the approximating density. In such cases we conclude that fp(xt ) approximates very
well the unknown marginal law. Of course we expect the empirical rejection rate to increase
with N and to decrease with p.

Table 2 shows the results for 20,000 simulated samples of length N = 5, 000 and N =
20, 000. In five out of the six models, setting p equal to 5 is sufficient to get an approxima-
tion which is statistically indistinguishable from the marginal density according to the CvM
statistic although the samples contain a number of observations as large asN = 20, 000.With
shorter samples ofN = 5000 observations, setting p = 4 is sufficient to get Gaussianmixtures
which are indistinguishable from the target density. The kurtotic unimodal process is the only
case where convergence of the empirical power to the actual size, as p increases, is slow: with
N = 20, 000 observations, using p = 10 yields a rejection rate of 7%. The test significance
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level is reached with p = 10 when the sample size is 5000. Overall, the mixture density (3.2)
withmoderate values of p approximates reasonably well the complex and highly nonGaussian
marginal distributions considered in the experiment.

To gauge the quality of the approximation in a multivariate setting we use the model esti-
mated by Guidolin and Timmermann (GT, 2005) who fit a MS VAR model to the UK stock
and bond monthly excess returns over the period 1976–2 to 2000–12. They consider three
regimes that impact the intercept, the autoregressive matrix, and the variance-covariance
matrix of the shocks. GT interpret the regimes as bear, normal, and bull market periods
with steady state probabilities equal to 13%, 68%, and 19%, respectively. To approximate the
ergodic bivariate distribution of stocks and bonds we build the Gaussian mixture (3.3) using
the parameter values reported in Table 4 of GT’s paper. Like in Example 1 we evaluate the
quality of the approximation by implementing the CvM test on simulated observations. We
actually resort to the multivariate version of the CvM test discussed in Cotterill and Csorgo
(1982). The last column of Table 2 labeled GT shows the empirical rejection frequencies over
20,000 bivariate samples of length N = 5000 and N = 20, 000. With samples of dimension
N = 20, 000, setting p equal to 3 is enough to get an approximating mixture which is indis-
tinguishable from the true distribution according to the CvM statistic. Setting p equal to 2
appears to be sufficient for samples that do not exceed 5,000 points.

4. Applications

In this section, we discuss several circumstances where knowledge of the marginal distribu-
tion of MS VAR and MS SS processes enhances inference.

Likelihood evaluation and filtering inMS VARmodels

Exact evaluation of the likelihood function of MS VAR models requires knowledge of the
marginal distribution. This appears clearly when factorizing the joint distribution of a sample
(x1, x2, . . . , xT ) into the contribution of the innovations times the density weight attached to
the first observation:

f (x1, x2, . . . , xT ) = f (x1)
T∏
t=2

f (xt |xt−1)

where the conditioning on model parameters is omitted. Ignorance of f (x1) leads to con-
sider the conditional likelihood f (x2, . . . , xT |x1). In regression model with autoregressive
errors, Beach and MacKinnon (1978) argue that, albeit disregarding the contribution of the
first observation makes no difference asymptotically, in small samples maximizing the exact
likelihood yields efficiency gains and small-sample bias reduction. Diebold and Schuermann
(1996) reach a similar conclusion in the context of ARCHmodels. The results in Sec. 3 serve
not only to approximate f (x1) but also to launch the recursions that are needed to evaluate
the density of the innovation in the second time-period since:

f (x2|x1) =
∑
S2

f (x2|S2, x1)P(S2|x1)

=
∑
S2

f (x2|S2, x1)
∑
S1

P(S1|x1)P(S2|S1)
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where P(S1|x1) ∝ f (x1|S1)P(S1). The filtered probability P(S1|x1) can be approximated
using:

fp(x1|S1) =
∑
S01−p

P
(
S01−p|S1

)
φ
(
x1;E

(
x1|S11−p

)
,V

(
x1|S11−p

))

All necessary ingredients to evaluate the expression above are given in Sec. 3.

Frequentist and Bayesian inference inMS SSmodels

Inference in MS SS models involves further difficulties that depend on which approach, fre-
quentist or Bayesian, is adopted. Kim (1994) devised the gold standard algorithm for the fre-
quentist approach. To calculate the likelihood function, Kim resorts to pre-sample conditions
and additional continuous state variables to be estimated. The factor f (y1) can instead be
approximated as in (3.3) with yt substituted to xt and using themoments given in (3.16). Next,
evaluating the contribution of the first available innovation f (y2|y1) requires initializing the
filter for both the discrete and the continuous latent variable, i.e., St and xt . The conditional
probability P(S0, S1|y1) ∝ f (y1|S0, S1)P(S0, S1) can be approximated using

fp(y1|S0, S1) =
∑

S−1,...,S−p

P(S−1, . . . , S−p|S0, S1)φ
(
y1;E

(
y1|S1−p

)
,V

(
y1|S1−p

))

The filter for the continuous latent variable can be initialized using E(x1|S1, S0) and
V (x1|S1, S0) which are given in Lemma 2. The contribution of the first available innovation
then amounts to

f (y2|y1) =
∑
S1

∑
S2

P(S1, S2|y1) f (y2|S1, S2, y1)

where P(S1, S2|y1) = P(S2|S1)P(S1|y1) is easily derived from P(S0, S1|y1). In Kim’s algorithm
the term f (y2|S1, S2, y1) is evaluated as

f (y2|S1, S2, y1) = φ(y2;HS2E(x2|S1, S2, y1),HS2V (x2|S1, S2, y1)H ′
S2 + γS2γ

′
S2 )

The conditional moments E(x2|S1, S2, y1) and V (x2|S1, S2, y1) can be obtained by Kalman
recursions starting from E(x1|S1, S0) andV (x1|S1, S0) given in Lemma 2.

In the Bayesian context, the discrete latent variable is most efficiently sampled using the
algorithm proposed by Gerlach, Carter, and Kohn (GCK, 2000). The GCK algorithm follows
a Gibbs scheme to draw the discrete latent variable one-at-a-time from the full conditional
distributions:

P
(
St |yT , St−1

1 , STt+1

) ∝ f
(
yTt+1|yt , ST

)
f
(
yt |yt−1, St

)
P
(
St |St−1

1 , STt+1

)
, t = 1, 2, . . . ,T

For t = 1, the full conditional P(S1|yT , ST2 ) involves f (y1|S1) which is generally unknown.
Like for the Kim’s filter, it can be approximated by

fp(y1|S1) =
∑

S0,...,S1−p

P
(
S0, . . . , S1−p|S1

)
φ
(
y1;E

(
y1|S11−p

)
,V

(
y1|S11−p

))

The block-sampler version of the GCK algorithm derived by Fiorentini et al. (2014) benefits
similarly from the knowledge of the marginal distribution.
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Figure . Density estimates for Guidolin and Timmermann () case. Notes: empirical marginal distribu-
tions are shown as histograms; the continuous lines show themarginal distribution and the contours of the
bivariate distribution obtained by setting p = 3 in (.) and using the parameter estimates given in Table
 of GT (); the dotted lines refer to the % quantile, the mode, and the % quantile; the points in the
central plot represent the data.

Model validation

The marginal distribution also offers a simple diagnostic tool. Indeed comparing the uncon-
ditional distribution implied by the model to the empirical distribution yields insights about
the model fit. Let us consider for instance GT’s application discussed in Sec. 3. Figure 2
shows the model-based marginal distribution of UK stocks and bonds. The figure shows
the contours of the joint distribution as well as the two univariate distributions. The joint
distribution appears to be close to normal in the neighbourhood of the mode, the departures
being mostly concentrated in the tails. To visualise the model fit, Figure 2 also displays the
data points in the central panel as well as histograms of the data in the lateral panels. Several
outlying observations are noticeable. The model-based distribution seems broadly congruent
with the data: no mismatch indicating mispecification appears.

5. Conclusion

We build mixtures of Gaussians that converge to the true marginal distribution of MS VAR
processes as the number of components increases. These mixtures make use of model-based
quantities such as the first twomoments given a finite sequence of regimes as well as the prob-
ability attached to each regime sequence. These results readily extend to the closely related
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class of MS SS models. The marginal distribution so-obtained has several utilities: it can be
used to exactly initialize the filter for the discrete latent variable, to compute the exact like-
lihood function, and to sample efficiently the discrete latent variable in Bayesian analysis. It
also provides a simple yet powerful tool for model validation.
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Appendix

Proof of Lemma 1. For any nK × n matrix Q, the diagK operator verifies
diagKQ = ∑K

k=1 J
′
kJkQJk. Hence A = diagK{AJ ′} = ∑K

k=1 J
′
kJkAJ

′Jk and thus vec(A) =∑K
k=1 vec(J

′
kJkAJ

′Jk) = ∑K
k=1[J

′
k ⊗ (J ′kJk)]vec(AJ

′). �
Proof of Lemma 2 (a). Conditionally on current and past history of the discrete latent vari-
able, model (2.1) can be expressed as

xt =
∞∑
j=0

�(t, j)(αSt− j + �St− jεt− j) (A.1)

where {
�(t, j) = In if j = 0

�(t, j) = �St�St−1 . . . �St− j+1 if j > 0

Taking expectation conditional on Stt−p+1 yields

E
(
xt
∣∣Stt−p+1

)
= αSt +

p∑
i=2

i∏
j=2

�St− j+2αSt−i+1 +
∞∑
j=p

E
[
�(t, j)αSt− j

∣∣Stt−p+1

]

since E(εt− j|Stt−p+1) = 0. To solve the infinite sum above we proceed as follows.
For j = p

E[�(t, p)αSt−p

∣∣Stt−p+1] =
p∏

i=1

�St−i+1

∑
St−p

αSt−pP(St−p|St−p+1) =
p∏

i=1

�St−i+1 JSt−p+1 (M ⊗ In)α1K

For j = p+ 1

E
[
�(t, p+ 1)αSt−p−1

∣∣Stt−p+1

]
=

p∏
i=1

�St−i+1

∑
St−p

∑
St−p−1

�St−pαSt−p−1
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× P(St−p−1|St−p)P(St−p|St−p+1)

=
p∏

i=1

�St−i+1JSt−p+1 (M ⊗ In)�(M ⊗ In)α1K

For j > p the general term is such as

E[�(t, j)αSt− j

∣∣Stt−p+1] =
p∏

i=1

�St−i+1JSt−p+1 [(M ⊗ In)�] j−p (M ⊗ In)α1K

Hence, under stationarity, the infinite sum verifies

∞∑
j=p

E[�(t, j)αSt− j

∣∣Stt−p+1] =
p∏

j=1

�St− j+1JSt−p+1 [InK − (M ⊗ In)�]−1(M ⊗ In)α1K (A.2)

which proves result (a) in Lemma 2. �

Proof of Lemma 2 (b). Expression (A.1) also implies

E(xtx′
t

∣∣Stt−p+1)

=
∞∑
j=0

E
[
�(t, j)(αSt− j + �St− jεt− j)(αSt− j + �St− jεt− j)

′�(t, j)′∣∣Stt−p+1

]

+
∞∑
j=0

∞∑
k= j+1

E
[
�(t, k)(αSt−k + �St−kεt−k)(αSt− j + �St− jεt− j)

′�(t, j)′∣∣Stt−p+1

]

+
∞∑
j=0

∞∑
k= j+1

E
[
�(t, j)(αSt− j + �St− jεt− j)(αSt−k + �St−kεt−k)

′�(t, k)′∣∣Stt−p+1

]

We treat the terms of the right-hand side above separately.
(i)

∑∞
j=0 E

[
�(t, j)(αSt− j + �St− jεt− j)(αSt− j + �St− jεt− j)

′�(t, j)′∣∣Stt−p+1

]
The sum of the first p terms verifies

p−1∑
j=0

E
[
�(t, j)(αSt− j + �St− jεt− j)(αSt− j + �St− jεt− j)

′�(t, j)′∣∣Stt−p+1

]

= αStα
′
St + �St�

′
St +

p−1∑
j=1

j∏
i=1

�St−i+1 (αSt− jα
′
St− j

+ �St− j�
′
St− j

)

( j∏
i=1

�St−i+1

)′

which corresponds to the first row of (3.6).
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For j = p, the (p+ 1)th term of the sum is such as

E
[
�(t, p)(αSt−p + �St−pεt−p)(αSt−p + �St−pεt−p)

′�(t, p)′
∣∣∣∣ Stt−p+1

]

=
p∏

i=1

�St−i+1

⎡
⎣∑

St−p

(αSt−pα
′
St−p

+ �St−p�
′
St−p

)P(St−p|St−p+1)

⎤
⎦( p∏

i=1

�St−i+1

)′

=
p∏

i=1

�St−i+1JSt−p+1 (M ⊗ In)(αα′ + ��′)J ′
( p∏

i=1

�St−i+1

)′

=
p∏

i=1

�St−i+1JSt−p+1A0J ′St−p+1

( p∏
i=1

�St−i+1

)′

The last equality results from the definition of A0 given in (3.8).
For j = p+ 1:

E
[
�(t, p+ 1)(αSt−p−1 + �St−p−1εt−p−1)(αSt−p−1 + �St−p−1εt−p−1)

′�(t, p+ 1)′∣∣Stt−p+1

]

=
p∏

i=1

�St−i+1

∑
St−p

�St−p

⎡
⎣∑

St−p−1

(αSt−p−1α
′
St−p−1

+ �St−p−1�
′
St−p−1

)P(St−p−1|St−p)

⎤
⎦�′

St−p

× P(St−p|St−p+1)

( p∏
i=1

�St−i+1

)′

=
p∏

i=1

�St−i+1

∑
St−p

�St−pJSt−pA0J ′St−p
�′

St−p
P(St−p|St−p+1)

( p∏
i=1

�St−i+1

)′

=
p∏

i=1

�St−i+1JSt−p−1 (M ⊗ In)�A0�
′J ′
( p∏

i=1

�St−i+1

)′

Defining the nK × nK block-diagonal matrix A1 such as A1 = diagK{(M ⊗ In)�A0�
′J ′}, the

last equation above can be written as

E
[
�(t, p+ 1)(αSt−p−1 + �St−p−1εt−p−1)(αSt−p−1 + �St−p−1εt−p−1)

′�(t, p+ 1)′∣∣Stt−p+1

]

=
p∏

i=1

�St−i+1JSt−p+1A1J ′St−p+1

( p∏
i=1

�St−i+1

)′
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For j > p, the general term verifies

E
[
�(t, j)(αSt− j + �St− jεt− j)(αSt− j + �St− jεt− j)

′�(t, j)′∣∣Stt−p+1

]

=
p∏

i=1

�St−i+1JSt−p+1Aj−pJ ′St−p+1

( p∏
i=1

�St−i+1

)′

where the nK × nK block-diagonal matrix Aj−p satisfies the recursion Aj−p = diagK{(M ⊗
In)�Aj−p−1�

′J ′}. Hence for j ≥ p the sum verifies
∞∑
j=p

E
[
�(t, j)(αSt− j + �St− jεt− j)(αSt− j + �St− jεt− j)

′�(t, j)′∣∣Stt−p+1

]

=
p∏

i=1

�St−i+1JSt−p+1

∞∑
j=p

Aj−pJ ′St−p+1

( p∏
i=1

�St−i+1

)′

To solve for A = ∑∞
j=p Aj−p we observe that

JSt−p+1A0J ′St−p+1
= JSt−p+1 (M ⊗ In)(αα′ + ��′)J ′

JSt−p+1A1J ′St−p+1
= JSt−p+1 (M ⊗ In)�A0�

′J ′

...

JSt−p+1Aj−pJ ′St−p+1
= JSt−p+1 (M ⊗ In)�Aj−p−1�

′J ′

...

Hence, for St−p+1 = 1, . . . ,K the infinite sum A verifies

J1AJ ′1 = J1(M ⊗ In)(αα′ + ��′)J ′ + J1(M ⊗ In)�A�′J ′

...

JKAJ ′K = JK (M ⊗ In)(αα′ + ��′)J ′ + JK (M ⊗ In)�A�′J ′

Using the definition of A0 in (3.7) the system above can be written as

AJ ′ = A0J ′ + (M ⊗ In)�A�′J ′

Since vec(A) = Hvec(AJ ′) where H is defined in Lemma 1, we can easily obtain (3.7).
(ii) To find � we split the double-sum in three components:

� =
∞∑
j=0

∞∑
k= j+1

E
[
�(t, k)(αSt−k + �St−kεt−k)(αSt− j + �St− jεt− j)

′�(t, j)′∣∣Stt−p+1

]

=
p−2∑
j=0

p−1∑
k= j+1

E
[
�(t, k)αSt−kα

′
St− j

�(t, j)′|Stt−p+1

]

+
p−2∑
j=0

∞∑
k=p

E
[
�(t, k)αSt−kα

′
St− j

�(t, j)′∣∣Stt−p+1

]
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+
∞∑

j=p−1

∞∑
k= j+1

E
[
�(t, k)αSt−kα

′
St− j

�(t, j)′∣∣Stt−p+1

]

Given Stt−p+1 the first sum in the equation above verifies

p−2∑
j=0

p−1∑
k= j+1

E
[
�(t, k)αSt−kα

′
St− j

�(t, j)′∣∣Stt−p+1

]

=
p−1∑
k=1

k∏
i=1

�St−i+1αSt−kα
′
St +

p−2∑
j=1

p−1∑
k= j+1

k∏
i=1

�St−i+1αSt−kα
′
St− j

(
k∏

i=1

�St−i+1

)′

which gives (3.9). The second sum can be solved using (A.2) as in

p−2∑
j=0

∞∑
k=p

E
[
�(t, k)αSt−kα

′
St− j

�(t, j)′∣∣Stt−p+1

]

=
p−2∑
j=0

⎡
⎣ ∞∑

k=p

E(�(t, k)αSt−k |Stt−p+1)

⎤
⎦α′

St− j
�(t, j)′

=
p∏

i=1

�St−i+1JSt−p+1 [InK − (M ⊗ In)�]−1 (M ⊗ In)α1K
p−2∑
j=0

α′
St− j

( j∏
i=1

�St−i+1

)′

which gives (3.10).
To calculate the last sum, we first focus on j = p− 1.
For j = p− 1 and k = p

E
[
�(t, p)αSt−pα

′
St−p+1

�(t, p− 1)′∣∣Stt−p+1

]

=
p∏

i=1

�St−i+1JSt−p+1 (M ⊗ In)α1Kα′
St−p+1

(p−1∏
i=1

�St−i+1

)′

=
p∏

i=1

�St−i+1JSt−p+1B01eSt−p+1α
′
St−p+1

(p−1∏
i=1

�St−i+1

)′

where B01 = (M ⊗ In)α1K as in (3.14).
For j = p− 1, k = p+ 1

E
[
�(t, p+ 1)αSt−p−1α

′
St−p+1

�(t, p− 1)′|Stt−p+1

]

=
p∏

i=1

�St−i+1JSt−p+1 (M ⊗ In)�B011Kα′
St−p+1

(p−1∏
i=1

�St−i+1

)′

=
p∏

i=1

�St−i+1JSt−p+1B02eSt−p+1α
′
St−p+1

(p−1∏
i=1

�St−i+1

)′

where B02 is the nK × K block-diagonal matrix such that B02 = diagK{(M ⊗ In)�B011K}.



COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 6621

For j = p− 1, the general term for k > p+ 1 is such as

E
[
�(t, k)αSt−kα

′
St−p+1

�(t, p− 1)′∣∣Stt−p+1

]

=
p∏

i=1

�St−i+1JSt−p+1 (M ⊗ In)�B0k−p1Kα′
St−p+1

(p−1∏
i=1

�St−i+1

)′

=
p∏

i=1

�St−i+1JSt−p+1B0k−p+1eSt−p+1α
′
St−p+1

(p−1∏
i=1

�St−i+1

)′

where B0k−p+1 is the nK × K block-diagonal matrix which satisfies the recursion B0k−p+1 =
diagK{(M ⊗ In)�B0k−p1K}. Hence, for j = p− 1 we have

∞∑
k=p

E
[
�(t, k)αSt−kα

′
St−p+1

�(t, p− 1)′∣∣Stt−p+1

]

=
p∏

i=1

�St−i+1JSt−p+1

∞∑
k=p

B0k−p+1eSt−p+1α
′
St−p+1

(p−1∏
i=1

�St−i+1

)′

The sum B0 = ∑∞
k=p B0k−p+1 satisfies the system

J1B0J ′1 = J1(M ⊗ In)α1K + J1(M ⊗ In)�B01K
...

JKB0J ′K = JK (M ⊗ In)α1K + JK (M ⊗ In)�B01K

Using the definition of B01 in (3.14) the system above can be written as

B01K = B011K + (M ⊗ In)�B01K

which gives B0 as in (3.13). This proves the term in (3.11).
Next we increment j to j = p and focus on

∑∞
k=p+1 Ecmd[�(t, k)αSt−k

α′
St−p+1

�(t, p)′|Stt−p+1].
For j = p and k = p+ 1

E
[
�(t, p+ 1)αSt−p−1α

′
St−p+1

�(t, p)′∣∣Stt−p+1

]

=
p∏

i=1

�St−i+1JSt−p+1 (M ⊗ In)�B01α
′J ′
( p∏

i=1

�St−i+1

)′

=
p∏

i=1

�St−i+1JSt−p+1B12J ′St−p+1

( p∏
i=1

�St−i+1

)′

where the nK × nK matrix B12 verifies B12 = diagK{(M ⊗ In)�B01α
′J ′}.

The next term for j = p and k = p+ 2 is such as

E
[
�(t, p+ 2)αSt−p−2α

′
St−p+1

�(t, p)′∣∣Stt−p+1

]

=
p∏

i=1

�St−i+1JSt−p+1 (M ⊗ In)�B02α
′J ′
( p∏

i=1

�St−i+1

)′
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=
p∏

i=1

�St−i+1JSt−p+1B13J ′St−p+1

( p∏
i=1

�St−i+1

)′

where the nK × nK matrix B13 verifies B13 = diagK{(M ⊗ In)�B02α
′J ′}.

For j = p, the general term for k > p+ 2 is given by

E
[
�(t, k)αSt−kα

′
St−p+1

�(t, p)′|Stt−p+1

]

=
p∏

i=1

�St−i+1JSt−p+1 (M ⊗ In)�B0k−pα
′J ′
( p∏

i=1

�St−i+1

)′

=
p∏

i=1

�St−i+1JSt−p+1B1k−p+1J ′St−p+1

( p∏
i=1

�St−i+1

)′

where the nK × nK matrix B1k−p+1 verifies the recursion B1k−p+1 = diagK{(M ⊗
In)�B0k−pα

′J ′}. Hence, for j = p, summing over k = p+ 1, . . . yields
∞∑

k=p+1

E
[
�(t, k)αSt−kα

′
St−p+1

�(t, p)′∣∣Stt−p+1

]

=
p∏

i=1

�St−i+1JSt−p+1

∞∑
k=p+1

B1k−p+1J ′St−p+1

( p∏
i=1

�St−i+1

)′

To solve for B1 = ∑∞
k=p+1 B1k−p+1, we observe that

J1B1J ′1 = J1(M ⊗ In)�B0α
′J ′

...
JKB1J ′K = JK (M ⊗ In)�B0α

′J ′

which implies B1J ′ = (M ⊗ In)�B0α
′J ′.

Next we consider the case j = p+ 1 focusing on
∑∞

k=p+2 E[�(t, k)αSt−k
α′
St−p+1

�(t, p+ 1)′|Stt−p+1].
For j = p+ 1 and k = p+ 2

E
[
�(t, p+ 2)αSt−p−2α

′
St−p+1

�(t, p+ 1)′∣∣Stt−p+1

]

=
p∏

i=1

�St−i+1JSt−p+1 (M ⊗ In)�B12�
′J ′
( p∏

i=1

�St−i+1

)′

=
p∏

i=1

�St−i+1JSt−p+1B23J ′St−p+1

( p∏
i=1

�St−i+1

)′

where the nK × nK matrix B23 is defined as B23 = diagK{(M ⊗ In)�B12�
′J ′}.

For j = p+ 1 the generic term k > p+ 2 is such as

E
[
�(t, k)αSt−kα

′
St−p+1

�(t, p)′∣∣Stt−p+1

]

=
p∏

i=1

�St−i+1JSt−p+1 (M ⊗ In)�B1k−p�
′J ′
( p∏

i=1

�St−i+1

)′
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=
p∏

i=1

�St−i+1JSt−p+1B2k−p+1J ′St−p+1

( p∏
i=1

�St−i+1

)′

where the nK × nK matrix B2k−p+1 verifies the recursion B2k−p+1 = diagK{(M ⊗
In)�B1k−p�

′J ′}. Hence for j = p+ 1 the infinite sum verifies:
∞∑

k=p+2

E
[
�(t, k)αSt−kα

′
St−p+1

�(t, p+ 1)′∣∣Stt−p+1

]

=
p∏

i=1

�St−i+1JSt−p+1

∞∑
k=p+2

B2k−p+1J ′St−p+1

( p∏
i=1

�St−i+1

)′

To solve for B2 = ∑∞
k=p+2 B2k−p+1 we consider the system

J1B2J ′1 = J1(M ⊗ In)�B1�
′J ′

...
JKB2J ′K = JK (M ⊗ In)�B1�

′J ′

which yields

B2J ′ = (M ⊗ In)�B1�
′J ′

Finally, for each value of j = p+ 2, p+ 3, . . . , each sum over k > j verifies
∞∑

k= j+1

E
[
�(t, k)αSt−kα

′
St−p+1

�(t, p+ 1)′∣∣Stt−p+1

]

=
p∏

i=1

�St−i+1JSt−p+1Bj−p+1J ′St−p+1

( p∏
i=1

�St−i+1

)′

where Bj−p+1 = ∑∞
k= j+1 Bj−p+1 k−p+1 and

Bj−p+1J ′ = (M ⊗ In)�Bj−p�
′J ′

Defining B = ∑∞
j=1 Bj, we have

BJ ′ = (M ⊗ In)�B0α
′J ′ + (M ⊗ In)�B�′J ′

whose solution is given in (3.15). This yields (3.12) and thus completes the proof. �
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