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1. Introduction

Suppose that two variables, y and x, are linearly related through the relationship y = o +
Bx, where « is the y-intercept and B is the slope of the line. In the classical regression, the
regressor x is considered error free, while the dependent variable y is contaminated by some
error. If n experimental observations, say m; = (x;, y,»)T,i =1,..., n,wererecorded, then the
“maximum likelihood estimator” (MLE) of («, B) is equivalent to minimizing the objective
function

Folw.py=> d'. di=y—a—px (1)
i=1

Its minimum is attained at &y = y — fxand Bo = Sy /5xx- These estimators (d, ,30) are known
as the classical least-squares fit (LS) or ordinary least-squares regression. Here we used the stan-
dard statistical notations for the sample means; thatis, x = - 7 | x;and y =1 3", y; are
the sample means of x = (xy, ..., x,)  andy = (y1, ..., y,)T. Also, we used s, = Yo —
%)% s =2 (i — )i and sy, = Y (x; — %) (y; — y) as the components of the so-called
“scatter matrix.” Moreover, we will use the notations x} = x; — x and y; = y; — y as the “cen-
tered” coordinates of x; and y;.

The classical linear regression was published by Legendre in 1805 and Gauss in 1809. The
estimators &, and 8, have excellent statistical properties. They are optimal in all senses. How-
ever, in the case where some regressors have been measured with errors, the standard assump-
tion leads to inconsistent estimates. For instance, the biases of the least-squares estimators
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persist even in very large samples, and thus the above estimators (&, Bo) lose their appealing
features.

This “new” model is known as measurement error (ME) model or errors-in-variables (EIV)
model, which dates back to the 1870s when Adcock (Adcock, 1877, 1878) derived the formu-
las for the slope and the intercept estimates. However, all of his calculations were based on
geometric rather than statistical considerations. Statisticians have been studying this prob-
lem since 1901 (Pearson, 1901). Intensive research focused on a line fitting in the twentieth
century because of its applications in economics, sciences, image processing, and computer
vision (Cheng and Van Ness, 1999; van Huffel, 2002). See Gillard (2006) for a nice overview
and (Jung, 2007; Soderstrom, 2007; Amiri-Simkooeii and Jazaeri, 2012) for other recent pub-
lications.

The EIV regression problem is quite different from and more difficult than the classical
regression. In the EIV linear model, the observable measurement (x, y) is regarded as a per-
turbation of a true point (%, 7) thatlies on the trueline, j = & + B%. But the true point (%, 7) is
unobservable and the observed point (x, y) is regarded as the true point (x, y) contaminated
by some noisy errors. That is,

X =X + 6, i =9+ &, i=1,...,n, (2)

where & and f represent the true values of intercept o and slope 8. The noisy vector (§;, &;),
i=1,...,nisassumed to be i.i.d. normally distributed random vectors with zero mean (0,0)
and variance-covariance matrix ¥ = diag(oy, 02). Here, we will assume that the ratio A =

2
% is known. For simplicity, we write oy = o* and 0 = Ao, Also, through our discussion,
: :

we often use some vector notations. We will express Equation (2)asx =X+ dandy =¥y + ¢,
where § and e represent the vectors of all noisy errors that corrupt the first and the second
coordinates of the true vectors X = (%1, ...,%,)  andy = (j1, ..., .)T.

There are also two standard statistical assumptions about the nature of true points (x;, y;):
If true points are unknown but fixed then the model is known in the literature as a functional
model. In this case, the true points are regarded as nuisance or latent variables. The second
model is called structural model, which regards the true points as random variables (i.e., real-
izations of some random numbers); see (Fuller, 1987; Gillard, 2006) for more details. The
primary concern in this article is only in the functional model.

The MLEs, say (&1, 31 ), of (r, B) in the functional EIV have been known in the literature
since long time (Deming, 1943). They have the formal expression

Sy — Asex + \/ (5 — Asw)? + 4082,

255y

A

pr =

. =y—pBix (3)

However, only in 1976 were explicit formulas derived for the pdfs of the MLE &; and ,31;
(see Anderson, 1976; Anderson and Sawa, 1982). It turns out that they are not normal and
do not belong to any standard family of probability distributions. Those formulas are overly
complicated and involve double-infinite series, and it was promptly noted (Anderson, 1976)
that they are not very useful for practical purposes. Moreover, the estimates ¢&; and B: do not
have finite moments (Anderson, 1976). As a result, they have infinite variances and infinite
mean squared errors, though such an erratic behavior is barely seen in practice (Anderson,
1976; Anderson and Sawa, 1982; Chernov, 2010; Al-Sharadqah and Chernov, 2011). Another
difficulty in studying the simple linear regression in the functional EIV model stems from
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dealing with large sample problem n — 0. In this case, an infinite number of latent variables
and the problem of inconsistency (Cheng and Van Ness, 1999) immediately appear.

This article, however, is tailored for image processing applications, where the number of
observed points (pixels) is limited, but the noise is small. Therefore, we will study estima-
tors whenever ¢ — 0, which is known as the small-sigima model. This regime is not new; for
instance, Anderson and Sawa (Anderson, 1976; Anderson and Sawa, 1982) investigated the
asymptotic properties of the MLE & and B assuming that n is fixed and ¢ — 0. They treated
o as a small parameter and employed the Taylor expansion (up to o*) to derive approxima-
tions for those distributions. However, statisticians have completely focused only on the large
sample theory as the main tool to study the statistical properties of estimator. Therefore, they
completely ignored this asymptotic regime despite its wide range of applications.

The small-sigma model has a great impact on many research topics in image processing,
signal processing, computer vision, and many other research topics (Kanatani, 1993; Chernov,
2010). Its importance stems from the following reason. On an image, the number of observed
points (pixels on a computer screen) # is usually strictly limited, but the noise level o is small.
In the analog of consistency of an estimator, we call an estimator geometrically consistent if it
returns the true values of parameters if all points are observed with no noise (i.e., the dataset
is noiseless). Informally, lim, ¢ (;’(ml, ...my,) = 0, where @ is the true value of the parameter
vector.

1.1. Goals and outlines

Our goal is to develop a simplified error analysis that nonetheless allows us to effectively
develop new estimators for the line slope with excellent properties. Our ultimate goal is to
generalize our approach in this article to more complex situations, such as multivariate linear
regression, polynomial regression, or other non linear regression problems. Thus, studying
simple linear regression in depth is a must.

In this article, we will study the EIV linear regression in a new perspective. We will adopt
the small-sigma regime to study the statistical properties of any estimator in a general setting.
We will also study the minimizers of a family of objective functions parameterized by a weight
function, say g(8), and as such, a family of estimators can be obtained. That is, we will consider
in this article a general class of objective functions:

Fl.p)y=gB) Y d. d=y—a—x (4)
i=1
where g is a smooth function that depends only upon B.

The LS fit ,3 Xy minimizes the objective function Fy in (1) , which is a special case of
(4) with g(,B) =1= go (B) (say) . Another special case is the MLE that comes if we consider
gB) = ﬂz =& (B) (say). That is, in the functional linear EIV model, the MLE of the slope
B and the intercept «, with the aforementioned assumptions, minimize

Fila,py= B +17" Y d. (5)
i=1

Then after simple algebraic manipulations, the MLE (Cheng and Van Ness, 1999) is one of
the roots of the quadratic equation

Sxy,BZ - (Syy - }"Sxx)ﬂ - )\Sxy =0. (6)

Now one can easily show that the MLE of g is the expression given in (3).
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In the literature, researchers usually studied an estimator that either minimizes a specific
objective function, such as the MLE, or solves certain equation, such as the method of the
moments estimators (MMEs). As a result, this limits the number of choices to obtain other
good estimators, especially when the sample size is small. However, our treatment for the
general family of the objective functions as in (4) gives us more flexibility to propose estima-
tors with excellent properties.That is, having an unbiased estimator up to certain orders (as
O(c*) or even O(o*/n?)) with the smallest mean square error (MSE) (up to order O(0®)) is
our ultimate goal.

Furthermore, instead of approximating the probability distribution of an estimator (such
as the MLE that has infinite moment!), the Taylor expansion will be employed here to
approximate the general form of the estimators themselves. Consequently, general formu-
las for the mean, the variance, and the MSE of estimators will be presented after very
lengthy calculations. It turns out that these formulas are very useful. For instance, the
formula for the second-order error bias helps us to propose the first efficient estima-
tor with zero second-order bias. This can be done by appropriately choosing its associ-
ated function g (8) (as will be shown shortly). We will call this process of correction the
bias procedure pre-bias-elimination technique and we will denote the resulting estimator
bY ﬂz.

On the other hand, if one substitutes g;(8) = (8> + A)~! in the general formula of the
second-order bias, then the second-order bias of the MLE ,31 will be obtained. This estimator
can be corrected to obtain a more accurate estimator. That is, subtracting an unbiased esti-
mator of the MLE’s bias from the MLE itself gives second-order unbiased estimator. Therefore,
we call this adjustment post-bias elimination.

Our numerical experiments for these two corrections show the superiority of the pre-bias
correction over the MLE and its post-bias correction. This motivates us enough to go one step
further and derive general formulas for the higher-order bias (up to order O(c*/n?)) and the
MSE (up to order O(c®)). Smaller MSE gives better estimator. Based on this principle and the
formulas for higher-order terms of the MSE, we will rigorously demonstrate why our choice
for g, (B) gives an estimator B, with zero second-order bias and has the smallest MSE among
all other estimators.

Moreover, with the aid of those formulas, we will show that although the proposed estima-
tor ,@z has zero second-order bias, its higher-order bias of magnitude o*/ n* persists. Hence,
an adjustment is necessary to correct this term, and as such, a more accurate estimator can be
obtained if this bias is removed. We denote this adjustment by Ba. We finally conclude that the
pre-bias elimination technique—if its is followed by post-bias elimination step—yields more
accurate estimators. Their excellent performances appear in all cases and for any sample size,
and this can be greatly seen when the same size is relatively small.

The structure of this article is outlined as follows: In Section 2, some previous results are
summarized and our new approach is proposed, followed by our first proposed estimator for
the slope. In Section 3, general formulas for higher-order terms of the MSE and the bias are
derived. It also discusses another new estimator and a comparison between several estimators.
Section 4 is devoted to an experimental validation of our error analysis scheme. We probe it
on several test cases to demonstrate its superiority. These numerical simulations confirm the
superiority of our proposed estimators. They also validate our approach; that is, an estimator
produced by adopting pre-bias elimination procedure (with or without post-bias elimination)
will always be better than the MLE and its adjustment. Section 4 concludes our findings . The
Appendix provides technical proofs.
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2. General perspective

In the small-sigma model, Kanatani (1998) derived a general Cramér-Rao (CR) lower bound
for arbitrary curves for any unbiased estimators. In geometric fitting problems, all estimators,
however, are biased. This makes the natural CR lower bound not practical. In the early 2000s,
Chernov and Lesort (2004) realized that Kanatani’s formula does not work for any practical
estimator in curve-fitting problems. To overcome this situation, Chernov and Lesort (2004)
employed first-order analysis for any geometrically consistent estimators.

They have shown that Kanatani’s formula works for all geometrically consistent estimators,
up to the leading order. Thus, they called it the Kanatani-Cramér-Rao (KCR) lower bound.
From that time on, the KCR has been used as a measure of efficiency for any meaningful
estimator. In the course of linear regression, the KCR lower bound means that the first leading
term of the “approximative” covariance matrix V for any geometrically consistent estimators
of («, B) has a natural bound. The KCR lower bound is given by

g2 4a [ X% —%
A% = Uszina Vmin = IB + = . (7)
Six —x 1

Here A > B means A — B is a positive semidefinite matrix.

Chernov and Lesort (2004) considered a general curve fitting. They proved that an estima-
tor @ is efficient if and only if it minimizes the weighted objective function F () = Y w;d?.
The weights w;’s must be proportional to the square of gradient of d; with respect to m, i.e.,

w; = ||va~(0d)<u2 and a(#) in an arbitrary function on 6.
m; 1

In linear regression, d; = y; — o — Bx; and w; = ‘;j;’ﬁ) . Note here, if a(a, B) = 1, the
objective function associated with the MLE, ie., F; (5), is obtained, while if a(«, B) =
(B* + 1), the objective function associated with LS estimator, i.e., 5o (1), is obtained. This
demonstrates that both of the MLE and LS are efficient in the KCR sense.

Note that both of the denominator 8% + A and the function a(e, 8) depend only upon «
and B but not on the observations; thus one can define the weight w; as w; = g(«, B), where
g(a, B) is an arbitrary smooth function of o and . The weight function g will play a key role
to obtain estimators for (o, 8) that are unbiased and their variances, up to leading term, attain
their minimal values as given in Equation (7). To keep our analysis simple, we will assume at
this point that the weight function g depends upon § only.

Using the step-by-step minimization technique, we eliminate « by first differentiating F
with respect to « and equating its derivative to zero to get& = y — pBx. Substitute its value in
F(a, B) to obtain

FB)=gpB) Y d, (8)

We emphasize here that F(B) is a function of 8 only and df = yf — Bx;. Now suppose that
,8 is the slope’s estimator that minimizes (8) and let ,BQ = ,B + Ay ,B + A, ,B be its quadratlc
approximation obtained by expanding the B up to the second-order term. That is, B = ,BQ +
Op(c?), where A ,8 and Azﬂ are the first- and the second-order errors, respectively. More
precisely,

Al,é = Z,Bx,-(si + Z,Byigi, Az,é = %[Z Brix;0i8 + Z,Bx,-yj(sigj + Z ,By,-ngiej]'
i j ij ij

(9)
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From now on, we denote the partial derivative of B with respect to x; by ,Bx, = and its

Also, we w111 use the

2
second partial derivatives with respect to x; and y; by ﬂwj = di iy

notations B, and By, as their true values, i.e., when those expressions are evaluated at the

true values, ,5 and (xi, y;) forallk =1, ..., n. Accordingly,

Var(B) = E(A1f%) + O(ch) =02 ) (/35,. + kﬁﬁ) +0(a%) (10)
i=1
and
Bias() = E(A,f) = & [Z Bux, + wy,.y,.] (11)

are the first leading terms for each of the variance and the bias of B.

It turns out that the explicit formulas for the expressions of bias and the variance can be
expressed in terms of B, g(,g ), and ||x*||. That is, since ,é minimizes Equation (8), it satisfies
the “first derivative test,” say Jp (B) =0. Differentiating this equation with respect to x; and
yi gives us

FpBei+ Fp =0,  FapBy + Fpy, = 0. (12)
When the true values are substituted in Equation (12), we get
B = —FpulFops By = —Fuy/ Fip, (13)

where fﬂﬂ and Fj,, are Fyg and Fp,,, respectively, evaluated at the true point (%, 7). These
second-order partial derivatives of F can be derived by first differentiating Equation (8)
directly with respect to 8, i.e.,

Fe(B) =g d? —2¢) dix;. (14)
Then, differentiating 75 with respect to B, x;, and y; gives us
Fep=g' Y di’—4g ) dixi+2g) [T, (15)
Fpx, = —2Bgd; — 2gy} + 4Bgx;, (16)
Fpy = 28d; — 2gx]. (17)

Note here that at the true points d~1* = §* — B%* = 0 for every i; hence F = 0, which is con-
sistent with the equation Fp (,é) = 0. Moreover, if we use the notation Y [%}]* = s,, = nS,
where § ~ O(1) represents the “spread” or “scatter” of the true x-coordinates x1, . . ., X,,, then
the true values of the partial derivatives in Equations (15)-(17) are

Fop =2gnS, Fo = 2855, Fpy, = — 285, (18)
where g = g(,é ). Now, according to Equation (13), we obtain

B_— _, 6—— —. 19
X S i S ( )

The main term of the variance is

5 (B + 2)o? .
Var(8) = [Zﬂz +AZ/BJ = = MSE(AB), (20)
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which is the most important term in the expression of the MSE and it represents the leading term
of the variance. Since it coincides the KCR bound, and it does not depend on g, then any estimator
minimizing F is optimal in the KCR sense. However, estimators such as MLE and LS behave
differently in practice. To analytically compare between estimators, we must track the second
most important term of the MSE. Therefore, we go one step further and study the main term
of the bias.

To compute the second-order bias, the second-order partial derivatives of 7 must be evalu-
ated. Differentiating the first equation in Equation (12) with respect to x;, the second equation
in Equation (12) with respect to y;, and the first equation in Equation (12) with respect to y;,
respectively, gives us the following:

0 = FypBue; + FoppPub; + Fopnib; + Fopn B + Fn (21)
0 = FppBuy, + FrppPrby, + Fopuby, + Fhy,Be + Foay,- (22)
0= "Fﬁﬁﬁ)’i}’j + "Fﬁﬂﬂﬂ}’ilg}’j + ‘Fﬂﬂyiﬂyj + fﬂﬂ)’jﬂ}’i + fﬁm;- (23)

Consequently, their true values are

]:/3/3/3:3):,',8):]- + fﬁﬁxiﬂx}- + fﬂﬁxj'lgxi + fﬁxin

.Bxixv = - = (24)
' Fpp
]:ﬂﬂﬂﬁxiﬁ)’j + ‘FﬂﬁxilByj + fﬁﬂyj,gx,- + ‘Fﬁxiyj
IBX,'/‘V]' = - J_:_ ) (25)
BB
Fﬁﬁﬂﬂ)’iﬂ)’j + ]:,Bﬁ)’i'B)’j + ‘FﬂﬂYjﬁ)’i + fﬁyi}’j
IBJ’i}’j == 7 . (26)
BB

The true values of these partial derivatives are summarized in the following lemma.

Lemma 2.1. Denotes the Kronecker symbol with 8;; and define Sij =8 — % Then, we have
Fipp = 6§nS, Fypy = 4(BY + DX, Fpy, = —47%,
Fie; = 2B°F +4P@18ij,  Fpuy, = —[288 + 2818, Fpyy, = 28855. (27)

The proof of the deferred lemma is moved to the Appendix. Now we can compute deriva-
tives according to Equations (24)-(26):

ok Sk

Ty AR (R oS
,Bx,-xj _ (B¢ + 2ﬂg)51,~+ (B°g +4B%8) " (28)
gns
By, = (Bg + 85 - (Bg +28)— . (29)
gns
—g8; +8~jﬁ
B == g5 (30)

Let us define k = (B2 + A)g, ie., k' = (B* + A)¢ + 2Bg. The function « and its derivative
depends on g and they will play a key role in the sequel analysis. Now substituting Equations
(28) and (30) in Equation (11) reduces the second-order bias to

—nk +2(B° + 1) +6pg_, _ —K'a* (& +pgo’

2gnS 2¢S gns

Bias () = +0@6Y. (3l
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It is clear that the second-order bias can be decomposed into two components. The most
important part is of the order of magnitude 0%, which represents the essential bias. That is,

—Kk'o? (ﬂ2+k)g’+2/3g 2
288 2¢S

Biase () = (32)

The second part of Equation (31), i.e., %
essential bias.

We can now eliminate the essential bias by solving the separable first-order differential
equation (8% + A)¢ = —2pg, from which d% Ing(B) = —d% In(B* + A); therefore g(8) =
/32%, where C is an arbitrary constant. This constant obviously does not affect the minimum
of the function (8); hence we can set C = 1. This leads to g;(8) = (ﬂ2 + A)~L, which is the
weight associated with the MLE (cf., Equatlon (5)). Since g’1 —2B(B* + 1)72, thenk’ = 0.
After simple calcluation, we obtain Blas(,Bl) = —Sﬁ ”‘;*ffz This means that the MLE has
only the non essential bias.

Post-Bias Elimination. It is standard in statistics to use a bias-correction technique to
get an unbiased estimator. Accordingly, since the bias of the quadratic approx1mat10n of B is

||x*||2’ then one can verify that the adjusted MLE (AMLE) defined by ﬂl =(1- Hx*H2 ) /31 has
zero second-order bias, where 6 is an estimate of o*. Here

, is of the order o%/n and we call it the non

= ( —2)*1f<A>— o — Bix).
n 1(B1 2)(51 L Z yi— Bix

This can be easily verified if one proves that E(67) = o> + O(o*); hence E(,B1 ,é) =

O(o*). This bias-correction technique used here is regarded as post-bias elimination.
Pre-Bias Elimination. Another unbiased estimator can be proposed but in a different

approach. The idea here is equating Equation (31) with zero. Then, one tries to find a weight

function g that solves the new differential equation. In this case, the function g(8) must satisfy
the differential equation (n — 2)x’ + 28g = 0. In terms of g, it can be written as

(n—2)(B*+1)g = —2(n—3)pg. (33)

Separating the variables and solving the resulting differential equation give % Ing(B) =

—n= ;dﬂ In(B? + 1). Therefore,

g(B) = C(B> + ) 72, (34)

where n > 3 and C is an irrelevant factor. Hence, we can set C = 1. Accordingly, the weight
function g, (B) = (B> + X)_g is associated with the estimator that has zero second-order
bias. Note that whenever n = 3, g, equals 1, which turns to be the problem of classical least
squares. This is the particular case when the least-squares estimator has zero second-order
bias. The next theorem summarizes our first contribution in this article.

Theorem 2.1. Up to an irrelevant scalar factor, the fit (8) has zero essential bias if and only if
g=ap) = /32+/\ Moreover, for n > 4, the fit given in Equation (8) has zero second-order bias
if and only if g = g (up to an irrelevant scalar factor).

Now we turn our attention to how we compute §,. Since 8, minimizes

Ff) =B +1)7 Y d, (35)
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0
op

Sxx,33 +(n— 4)5xy,32 - [(I’l - 3)5yy —A(n— Z)Sxx],B —A(n— Z)Sxy = 0. (36)

It might seem a hopeless problem. However, recall that the MLE B, is the solution of the
quadratic equation given in Equation (6), and as such, Equation (36) can be regarded as a
“correction” of Equation (6), for finite-sample size. For relatively large n, Equation (36) reduces
to Equation (6). Now, Equation (36) can be solved either numerically and choose the solution
of in Equation (3) as its initial guess; or using the mathematical expression of the solution of
the cubic equation and selecting the root that minimizes the objective function.

Theorem 2.1 proposes a new estimator B, that is optimal in two aspects: B attains the
KCR lower bound and has zero second-order bias. It also sheds more light about the linear
EIV models by distinguishing the MLE given in Equation (3) from the classical least squares
that minimizes Equation (8).

It is a common fact that the MLE ﬁl is more accurate than the least-squares fit ,30. This is
what Anderson and others explained in great detail in 1976-1984 (Anderson, 1984). This can
also be demonstrated as a special case of our general conclusion. To compare the biases of the
two classical estimators, note that

Bias (8,) = % o2+ O, Bias (8,) = % o2+ O(@h). (37)

then it is the critical that solves = 0. The latter turns to be the cubic equation

Remark 2.1. For n = 2, both estimators, ;‘}0 and ,31, just find the unique line passing through
the two observed points; hence they give identical estimates, and for this reason, their biases

coincide. The above formulas show that both biases are equal to s07 4+ O(a?).

Remark 2.2. For n = 3, the classical least squares (&, Bo) has zero second-order bias and is
better than the MLE (3), which is a weird exceptional case. For n > 3, the classical estimate is
biased toward smaller values of 8, and the bias is heavy. It does not get smaller as # increases.
On the other hand, the MLE given in Equation (3) is biased toward larger values of B, but the
bias gets smaller as # increases.

3. Higher-order analysis

In Section 2, a general form of the second-order bias has been derived. Interestingly enough,
the MLE 8, only has the non essential second-order bias, while the proposed estimator B has
zero second-order bias. However, we still do not know how they behave in practice and what
are their MSEs. Indeed, since the leading term of the MSE does not depend on g(8) and it
attains the KCR lower bound, the higher-order error analysis for the MSE must be derived. In
this section, we will derive the general expression of the MSE for any estimator minimizing
F in Equation (4). Then, we will analytically compare between the three estimators, the LS
ﬂo and the MLE ﬂl and the proposed estimator ;82
Using the Taylor expansion of B=PB+AB+--,onecan decompose the MSE into

MSE(B) = MSE(A, ) + MSE(Azﬁ) +2E(A1BAB) + O(c9). (38)

At this point, recall that MSE(A, 8) = (B*+19° The other terms must be carefully handled

lIx*)12

by tracing all terms with orders of magnitude o o/n, and o*/n?, while other less important
terms are discarded. We start with MSE(AZ,B) E(A, ﬂ ). i.e.,

E(A,B2) = [Bias(A,8)]? + Var(A,8)), (39)
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where
4
a9 2 2 2
Var(Asf) = - §ij (B, +28%, + 8L, (40)

The variance of A, consists of terms with different magnitudes: o*/n and o*/n*. Also, its
components are simply

712 2B(@7 +2Bg + 28° ) [f 2
Z'Bxlxj - #ns? - PS Zﬂy,yj (1 - ;) ) (41)

and

— 2(BT + )2
Zﬂx,y] (B¢ + &I +§2 (Bg +9) ’

42
nS? Fn2s? (42)

wherey = 8 gandlc = (B*+ 1)g. Substitute Equatlons (41) and (42) into Equation (40) and
use the identities 7' = B2¢ + 2B8gand &’ = 7' + Ag to get

ot ([RPH22G8 20RP 208 -G
Var(A,f) = 7( I o : (43)
and, as such,
A ot 28 — A ot(n—2)[k']?
Var(A:8) = —5 </\ +— ) + Es (44)
Squaring the bias of A, ,3 (cf., Equation (31)) gives
o ~/ ~1 et ax ~/ Qs
B = (o (KT = nk' & + fi) + 4lF' + ). (45)

Combine the expressions (44) and (45) to get the MSE of AZB . That is,

MSE(Ah) = % (x+2ﬂ2_'\>+ o <(n—2)[/?/]2—4/%//§§ ‘*(2/3—“35"))

n 4¢2nS?
(46)
For simplicity, define the function 7(8) such that its derivative t’ satisfies " = 0, where
=m—-2)(B*+Ng +2(n—3)Bg, ie, T =(n-2x —28g (47)

then MSE(A, B ) can be written as

R 4 282 — 4 - 4(2Bgr’ 2
MSE(A) = (A+ ﬂn )+4§n$2 (I?’('E/—Zﬂg)—i—(ﬂ—_'_ﬁgz)). (48)

It is worth mentioning here that the first term of the MSE(A,p) is free of g while the sec-
ond term is the product of ¥’ and (t' — 28¢). The definitions of ¥’ and 7’ have a meaningful
explanation here. For instance, solving " = 0 represents equating the second-order essential
bias with zero, and as such solving this ordinary differential equation (ODE) gives us g; (8).
On the other hand, the solution of the ODE t’ = 0 (cf., Equation (33)) is g (8).

Remark 3.1. For n > 4,
MSE(A,By) > MSE(A,B;) > MSE(A,8,).
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Remark 3.1 demonstrates that the quadratic approximation of B performs better than the
quadratic approximation of ,31, which, in turn, outperforms Bo. However, it does not show
that MSE( ,32) is less than MSE(,Bl) because other terms of order o must be taken in account
in the expression of the MSE of B before we assess the performance of such estimators. These

terms come from 2 E(AlﬁAA”‘}). Since

ASﬁ = %[Z ﬂXinxkai(stk + 3,3xix}-yk5i8j€k + 3/3)61)/]}/1(518]8]( + ﬁy;y]yk‘c"tg]ek ’

i,j.k
then
AA 1
E(ABAE) =B | =Y Busyu BubdiBidi + 3Buey By 813 i
i,j,k1

+ 3By B i€ jEk + ﬂ)’i}’j)’kﬂ)’lgigjgkgl] .

Recall that §; and ¢; are i.i.d. random variables, then E(A, ﬁ As ,3)

= é|: Z (ﬂxixjxkﬁxl + )”ZﬂYi)’j}’kﬂ)’l)E[(SiSjakal] + 3ﬂxixj)’k18)’ZE[8i8j8k81]
i, j,k,1

+ 3ﬁxiyjykﬂxlE[8i815j8k]]
4
=& [ D " 3BusBe + XBryyiBr) + Y 3B Be, + X2 Byyy By,)
i=1 i#j

+ ) 30 (Bay, By, + ﬁx,.yjyjﬂx,.)}
i j
from which

E(ABA) = ”74 Z Cijs
ij=1

where

ij = lez'Xin:ij + )\’Zﬂ)’i}’i)’jﬂ)’j + )‘ﬂxz'xz'yjﬂyj + )\'ﬁxi)’j)’j'Bxi'

(49)

(50)

The next lemma helps us compute each term of ¢; ;. Its full proof is quite lengthy so we only

provide the derivation of O(c*) terms in the Appendix.

Lemma 3.1. Define y = B2g, then

_Sfﬁﬂzﬁxiyjyjﬂxi=2<1_; Zgj +2ﬂ§— B2 (g) i|
i, j=1 |
F ; 2\ [ ., 52
~SFu8 D Byowy;By; =2 (1 - _> 7 - (i;) ]
i, j=1 A

S S)

—SFpp Z leiXi}’j'B}’j =2 (1 -

i, j=1

[ ~ I )’;lg 4
) _()/ - ?} -8

(51)

(52)

(53)
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Moreover,

~ " 2 B2 12~2~
— S]:ﬁﬁ Zﬁxixixj'ng = 2< ) |:‘62y// +2,3V ,3 ;g:| _ Tﬂg (54)

i, j=1

Now, we are in a position to find Equation (49). Recall thatx = (8% + A)g = ¥ + Ag. Then

K=y +arg = (B +1g + 2pg.

Then, summing up all terms in Lemma 3.1 gives us

~Fn Y 6=2(1-2) [(gzﬂ)m (23 . M) }

= g
— —4(3B2n+ 2 O(0®). (55)
Consequently, up to order O(o®), the expectation
E(AsBAB) = _4;;:52 {2 (1 = %) {(52 + R+ (25 = (’BZJFT’\M) /z}
4GP +A)§} ' (56)
n

Finally, substitute Equation (48) and Equation (56) with Equation (38) to get the general form
of the MSE for any estimator that minimizes (4).

» (B tne ot 28> — 2 ot
MSE =—+ —|A
) nS * nS? * n * 4¢°nS?

[(f — 2B +4 (1 - —) (—(B* + 218" — 2Bg — (B> + 1)g) &)

Sﬂ”’ + 478 +20)F
n

:|+O(06).

In an attempt to compare the new estimator /§2 and the MLE ,31 and ,30, we use the derived
formulas to decompose their O(o*) MSEs.

As shown in Table 1, while E(A, ,élA3;‘§1) is always positive, (A, ,32 352) turns out to be
exactly zero. This means that the MSE of B, depends only on the MSEs of the first- and the
second-order errors (i.e., A ,32 and A, ,32) Based on this observation and Remark 3.1, we con-
clude that ,82 is superior to ,31 for all values of 8 and n > 4. Consequently, since the weight
function g, (8) is the solution for the ODE t’ = 0 (up to scalar), one would think of looking
for another weight function, say g;, which also solves 7" = 0 such that its corresponding esti-
mator, say ,83, minimizes F3 = g3(B) )_,(yF — Bx} )? and satisfies ]E(Al,Bg A3/33) = 0 while
MSE(A2/§3) attains its minimal value.

The weight function g; should incorporate o and g, (8) together. Let us define g3 («, 8) =
c(a)g2(B). Then, it is easy to show that g5 is also a solution for " = 0 (see Equation (47)).
Substituting g3 (¢, ) in Equation (48) gives the same expression g,. This proves that c(«) is
irrelevant and can be set to 1, and as such, ,33 = ,32. Hence no possible further reduction in



COMMUNICATIONS IN STATISTICS—THEORY AND METHODS . 7051

Table 1. Mean squared error (and its components) for estimators: least-squares estimator /§0, the MLE ﬁv
and the new proposed estimator ,32.

Method E(A,B)? E(A,f)? 2E (A1EA3,3)
. (BP+2)0r o[ 28— o*p? 5 20
AL LA P i —a+ 2| L (1-3)GER+x
Po nS n$? * n + nsz |” + n ns? ( )( %+ 1)
4 (B+1)o?  o* 'A L2~ A otB? 204GBR + 1)
1 nS ns2 n n2s2 n2s2
o _ 28g B +no2 ot [ 22 -] 20432
=0,k = 2 Y 0
A e 2) ns ns? + n + n2(n —2)s2

MSE. Accordingly, we conclude that
MSE(B;) = Var(A1;) + Var(8:,) + O(c°)

is smaller than the MSE of any other estimator of 8. This shows that 52 is the best estimator
among all other estimators: it has zero bias up to order o*/n* and has minimal variance, i.e.,

22\ 2 4 a2 402
MSE(fy) = P +G—(x+2ﬂ A)+ 20°p

[1x* |2 nS? n nt(n —2)8

3.1. Higher-order bias

The numerical experiments (presented shortly) confirm that B outperforms not only the
MLE, but also the AMLE, f;, which was obtained using the post-bias elimination technique.
Then, one might wonder what happened to the higher-order terms of the bias for these esti-
mators. Here, we will derive a general expression for the fourth-order bias with a hope to get
another estimator that outperforms all other estimators, including B, by applying post-bias
elimination step to the fourth-order bias. However, including all terms of order o * might be
a difficult task; hence terms of order of magnitude o* will be considered here while terms of
order */n, or less, will be discarded.

With the aid of the Taylor expansion, B can be expressed as ,3 =B+ A B + Az,é +
AsB + AuB + O(c°). Therefore,

Bias(B) = E(A2B) + E(A4B) + -

The first term is given in Equation (31) so we only need to find E(A, B). After long derivations
(see the Appendix), we get

n O_4,2/ ) 3gj~/
E(AB) = 75 |:2K i| + O(c*/n), (57)
where S = ||x*||*/n. We call this part of the bias “the fourth -order essential bias” For the MLE

,31, kK’ = 0, and this term is zero. Also, ,82 has zero fourth-order essential bias. In fact, after
simple algebra, one gets

2 (A(n —2)+ (2n— 5)52) B
$2(n —2)3(B* + 1)

E(A4B) = ot + Ot /n?). (58)
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It is interesting to determine a general form of g(8) such that the estimator that minimizes
F(B) also has zero fourth-order essential bias. This exactly represents solving the ODE
a0 (5))2 = 3g/('((//§’f)) , or equivalently, a6’ (ﬂ))); = 33/(’;)“ Thus, «'(B) = Clg(B)]*? for some
constant C. This is exactly a Bernoulli linear differential equation, and as such, its solution is

e
C (Cﬁz — 4DABVBE ¥ x) L ADA(BE 40

where C and D are constants. Note that g, (8) = (8% + 1) ! is a special case of Equation (59)
that appears whenever C = 0 and D = 1, and it is the only member of this family associated

gB) = (59)

B=

6.2¢ | T T T T T

5.8

5.6

RMSE/o

54

L 1 1 L ! 1 1 J
0.0 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.005 0.01 0015 0.02 0.025
(b) =6, n=10,A=1.

Figure 1. NRMSE(B) for MLE, AMLE (Adj. B,), and the proposed estimators 32 and Adj. g, versus o. The
horizontal line represents the KCR divided by .
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with an estimator that has a very nice property: zero essential bias of the second and fourth
orders. R

Adjusted f,. Although ,32 has zero O (o ?) bias, it has a non zero bias of order of magnitude
o*/n*. Therefore, this estimator could be adjusted by subtracting the unbiased estimator from
its O(o*/n*) bias. Then, the new estimator will have zero bias up to order o®. Its formula
depends on || X*||* = S/nand 0%, so if replaced by ||x*||* and 6, = (n — 2) > [F>(B>)]%, then
it is easy to verify that the new estimator

22 (n —2+(@2n-— 5)522) &

~ (60)
Ix*[1*(n — 2)*(1 + B3)

pr =

is an unbiased estimator of B, up to order o®. This adjustment improves the accuracy of the
estimator for small n.

33

p=2
335}
3.2}
315
©
ri}
@ 3
=
T
305
3+
295}
L
) 0.01
(a) B=2,n=40,A=2.
28—
=6
251
241
&
8x
=
T
2/
21}
| 3 g . )
0.005 001 oms ooz 0.025 ona 0,035 0.04 0045 0.05 0.055

(b) B=6,n=40, A=2.

Figure 2. NRMSE () for MLE, AMLE (Adj. B,), and the proposed estimators 32 and Adj. B, versus o. The
horizontal line represents the KCR divided by o.
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4. Numerical experiments and conclusion

To demonstrate our findings, we turn our attention to some numerical experiments. In our
experiments, we considered the estimators ,31 and ,32 and their adjustments: AMLE (,51) and
B,. Since the MLE is invariant under translations, the value of « is irrelevant. The sample size
n was set to 10 (see Figure 1) and 40 (see Figure 2). For S, we tested two values: § = 2 and
B = 6. For each case, we positioned n-equally spaced true points on the line (spanning an
interval of length L = 1; i.e., the distance between the first and last true point was one). For a
given noise level o, N = 10° samples of size n were simulated, and then the normalized-root-
mean-squared-error (NRMSE) of ,3 was estimated for each fit by

NRMSE(B) = (61)

We plotted the NRMSE of B against the noise level . The noise level o was varied from 0 up
to the point, at which the values of NRMSE(ﬁ) became large.

As a general observation, as o is approaching 0, the NRMSE approaches the KCR (repre-
sented by the horizontal line). However, the higher-order terms of the MSE play a key role
in the performances of the estimators as ¢ increases. This numerically demonstrates our the-
oretical results. As seen in Figures 1 and 2, B, and its adjustment outperform the AMLE B,
which performs better than the MLE for each value of o, , and 8. The adjustment of B always
outperforms f,, especially whenever # is relatively small. For relatively large sample size, the
improvement gained by this adjustment is small as being of order o'* /n*.

Moreover, the proposed estimators are more robust than the MLE and its adjustment. Some
other numerical experiments show that when the noise level o becomes large, the MLE and
its adjustment start returning very unsatisfactory results while the proposed estimators return
very reasonable estimates.

5. Conclusion

The first contribution in this article is applying the error analysis to a general class of objective
functions, of which the MLE of the slope is a special case. Accordingly, we proposed the first
novel estimator, 32, which minimizes the objective function 7, = g,(8) (syy — 285y + 5k« B2).
The weight function g, (8) was chosen such that the minimum of its associated objective func-
tion F,(B) has zero bias (up to order o'*). This estimator came as a result of using the pre-bias
elimination technique that developed here. The solution was computed by solving the cubic
equation (36). Moreover, another estimator was proposed by applying the post-bias elimina-
tion technique to the MLE B1. The idea in the post-bias elimination technique is simple. We
subtracted the unbiased estimator of its second-order bias from ,31. We called this estimator
AMLE.

We also derived general formulas for the higher-order bias and the MSE for the slope’s
estimators up to orders o* and o*/n?, respectively. Consequently, we applied the post-bias
elimination technique to the proposed estimator B>, and as such, another unbiased estimator
up (to order o) is obtained. We called this new estimator adjusted B, and we denoted it by
,52. We also compared three estimators (least-squares fit ,30, MLE (,31), and /§2) based on the
bias and the MSE criteria. We showed why ,32 outperforms ,31, which also outperforms ,30. We
validated our findings through a series of numerical experiments where four estimators were
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tested: MLE 31, AMLE ,él, ,32, and its adjustment ,5’2. Our proposed estimators are superior to
other estimators for any sample size, especially when the sample size is small.
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Appendix

Proof of Lemma 2.1 Differentiating Equation (15) with respect to 8, x;, and y; gives

Fiopp = gopp )" —68pp y_ dix +6g5 ) [xIT, (A1)
Fopx, = —2Bgppd; — 4gpy; + 8Bgpx; + 4gx], (A.2)
Fopy = 28ppd; — 4gp; - (A.3)

Similarly, one can obtain

‘Fﬂxixj = [Zﬂzgﬁ + 4,3g] S\ija (A.4)
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fﬂxi}’j = [Zﬁgﬂ + Zg] gija (A.5)

and
]:ﬁyiyj = Zgﬁgij' (A.6)
If these derivatives are evaluated at the true values B and (x;, ;) foreachi =1, ..., n, Lemma
2.1 will be established. U
Proof of Lemma 3.1 Before proceeding, we present the following lemma that gives the fourth
partial derivatives of F with respect to x, y, and B evaluated at the true data (X;, ¥;)’s. O

LemmaA.1. Deﬁne&j =68 — tandy(B) = B°g(B). At the true values (%, y;),i=1,...,n,
we have the following:

Foppp = 128'nS,  Foppy = 6(BF + 2057, Fappy, = —6g'%,
Fopry =278y Fppuy; =288, Fppuy; = 208 +2)55, (A7)
where 7' (B) = B2§ + 2Bg and 7" (B) = B2Z + 4B + 2. Besides, for all i, j, k:
F Bxixjxg = 7 Bxixjye = F Byivivk = 7 Bxiyjye = 0.

Proof. First, we differentiate Equation (A.1) with respect to B, x;, y;, respectively, to get

Fippe = s Y, dr" —8gppp _ dix] +12gss y (%1, (A.8)
Foppx, = —2B8ppsd; — 68ps(y; — 2Bx]) + 12gpx], (A.9)
Foppy = 28pps (Vi — Bx;) — 68ppx;. (A.10)

Note that we used the fact >
Equation (A.2)

i % = 2y ¥i = 0.To get Fppy; and Fypy,y,, we differentiate

i=1""

Fopr; = 2(Bgsp + 4Bgs + 29083, (A.11)
J:ﬁﬂxx‘yj = —2(Bgpp + zgﬂ)gij' (A.12)

Finally, differentiating Fy,,,; in Equation (A.6) with respect to B gives us

]:ﬁﬁyiyj = Zgﬂﬁgij- (A.13)

If the true values of all (x;, y;)’s are substituted into Equations (A.8)-(A.13), the results will
be established. Finally, both derivatives of ]-'ﬁxix]. with respect to x; and yi equal zero, i.e.,
Fprixpe = 05 Fpaixyy, = 0. In the same analog, the other derivatives, such as F,,,., and
Fpriyjx» are all zeroes. This completes the proof of the lemma.

Now, let us denote the total derivatives of F45 and Fggs with respect to x; by

o8 = Fpps + FpppBr, and p& = Fpppe, + Fppppbus (A.14)

1

respectively. At the true values, p{!’ and p*) reduce to

PV = (—2Bg + 497 and 52 = 6(—BF +20)%;, (A.15)

respectively. Similarly, denote by £(" and &* the total derivatives of Fp4 and Fpgp (respec-
tively) with respect to y;. That is,

0 = Fupy, + FpppBy and  £7 = Fpppy, + Fppppby (A.16)
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At the true values, they take the form
£V =2¢% and£? =6g'x]. (A.17)
These quantities play a key role in the sequel analysis. Substitute j = i in Equation (21) to get
FopBussi + BrFopp + 2B Fpp; + Fpr, = 0. (A.18)

Differentiating Equation (A.18) with respect to x; gives us

]:ﬁﬂﬁx;xix]' + p;(cjl.)ﬂx,'xi + p;f)ﬂi + 2/0951-1):896,-):]' + Z(Iﬂﬂx,'xj + ]:ﬂﬂxiﬂﬂxj)ﬂxi + Fﬂxix;ﬂﬂxj = 0,
(A.19)
from which ,Bxixixj can be evaluated. If we solve Equation (A.19) for ﬂxixixj after we evaluated

. . . -
each term at the true points, then we will get Brixin; ~ O(n~?). Since Bx; = n;’ ~ O(n™h,

> Brixii B ~ O(n™?). Therefore, all terms in 3, ; By Bx; with order O(n™") are

n _ 1 n . ~ B
Z:Bxix,-x]'ﬂxj = ‘/_‘:‘_ Z(p;;)ﬂxixi + ]:,Bxixiﬁﬂxj)ﬁxj + O(I’l 2)-
i#j BB i#j
From Equation (A.15), /5)511_) = (—2B7 + 42)x7, then up to the leading term, one gets

" 2 ¥ s
P Py = 5= <(—ﬂ§ +29) =+ ﬂy”) (%1,
; Y nzsz./—';g,g ; g j

and further,

- —2n(n—1)SP ( 7 ) B
xixixiPx; = T =~ - +2g9)—= + + O .
;ﬂ i J‘B j Sy, (—Bg +29) F By (n™)

Here, we used l?x,-xi = _;T/s + O(m™?) and 2?21[927]2 = nS. Moreover, since Zi#j[if]z =
n(n —1)S and Fyg = 2gnS, one has

d P9+ B(—Pg +20%
Zﬂxixixj'ﬂxj‘ = - ~0 & + O(?’liz).
i] gns

Next, we find Z:; i Byiyiy; By;- Substitute j = i in Equation (23) to get

FosBy, + FopsBy, + 2Fppy By, + Fpyy, = 0. (A.20)

Differentiate (A.20) with respect to y; to get

‘Fﬁﬂﬁyi)’i)’j + S)'(jl)'B}’i)’i + Sy(JZ)ﬁ;, + zsjl(il)ﬁyiyj + 213%' (]:ﬂﬁﬁ)’iﬂ)’j + Fﬁﬁ)’i}’j) + ‘Fﬁﬂyi)’iﬁyj =0.
(A.21)
The desired results will be obtained if we follow the same procedures implemented above.
This gives us

n -1 n B B -
Y BBy = == 2 E B + FopsBy) By + O(n7).
i#j Fb6 iz
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From Equations (A.17) and (30), we obtain 5;(]_” =2gx; and B, = £ 4 On?). Since

i
—
By, = 7% then

gnS

- —2n(n—1)S@" — (§)*/9) .,
B, +0 ,
; ByiyyiBy; = g ]:ﬂ/s (n™)

and, as such,

)’/8 _
Zﬂ)’z}’d’]ﬂ)’] gj :lg/ g+0( 2)

i]
Next we derive (53), by first differentiating (A.18) with respect to y; in order to get ﬂxix,-yj- That

is,

2 ) I p2 & (2 2 2 A
Fﬁ/slgxixi}’j + %_y(j)leixi + Zp;gi)/gxi)’j + xi‘gy(]-) + 213xi (‘Fﬂﬁﬁxiﬁ)’j + fﬂ/sxi)’j) + ]:ﬁﬂxixiﬂ}’j =0

(A.22)
from which we obtain
~ (; - —2n(n —DSG" - 7'¢/9) S
ﬂx,xl /3 %_(-l)ﬁxix,- + ]: XiXi ﬂ i /3 = ~ + O(” )
; ity /3/3;()'1 Pxixip y;) 7 n2S2 Fyp
and further
' —=7'g/ -
Z IBx,x,yJﬂy] n—gjg + O( 2)
i#]
Finally, to get Equation (54), we differentiate (22) with respect to y; to get
fﬁﬁﬂxwm + zé'y(jl)lgxz‘yj + p;,-l)lgyj)’j + g)/(]'Z)IBXiﬁ)’j + (‘Fﬂﬁxz'yj + ’Fﬂﬂﬂxiﬂ)’j)ﬂ,"j
+ (]:ﬁﬂ}/jyj + fﬁﬁﬁyjﬂyj)ﬂxi + Fﬁﬁxiyjlgyj =0. (A.23)
With the aid of this equation, we get
" PE+BEE-BY/G -
Zﬂ?ﬁ)’j}'jﬂx;‘ = — Z(P}El)ﬂyjy] + fﬁﬂy]yjﬂx,)ﬂx, = gnsz + O(n 2).
i#] i#]

This completes the derivation of the most important terms in each of the expressions given
in the lemma. 0

Derivation of Equation (57). First, we present the following lemma without proof. This
lemma summarizes the fifth derivatives of F.

Lemma A.2. Define 8Aij =0 — %andy(ﬁ) = B’g(B). At the true values (%;, ;),i=1,...,n,
we have the following:

Fppppp = 20890, Fypppy, = —88V%,,  Fpppps, = 8805 + 24757,
Fpprxi =27 V0. Fpppayi = (—2B8% — 68081, Fpppyyi = 28535

Now, since §; and ¢; are normal random variables with mean 0 and variance o2 for each
i=1,...,n,the expected values of §;0;5x&; and ;& j&,d; are zero. Hence,
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= 24 Z ﬁxixjxkx,E(aigjsk(Sl) + 6ﬂx,-xjyky,E(6i8j€kgl) + ﬂy,‘yjyk)/lE(eigjekgl)

ikl

=2 | D Buun EGi8,8:8) + By E(€i8i842D) + 6 Y Bros iy B(8:8 E (1)
[ .ok ijk,l

Moreover, the expected values of terms such as 6,8;6x6; and ¢;¢ jex&; are non zero only if each
pair of indices are equal, for instance, when i = jandk =/, ori=kand j=1lori=1land
j = k. Also, E(8;6;jexe;) = 1 onlyifi = jand k = [ and 0, otherwise. Thus,

E(Aztﬁ) = i |: Z(ﬂx,-xixixi + )\’Z'B/Vi}’iJ’jJ’i)E((s?) + Z 3('3"1"‘1"‘1'"1' + )”ZﬂYiyiyij)E(gizalz)
i=1 i#]
+6) ﬂxixiy}.ij((Sf)E(ei)]
i, j=1
=3 [ D Buisisis + 2By VEGD) + D 3By + 2By JE(S757)
i=1 i#]
+6) wxix,.yjijwf)E(a;)].
i, j=1

The simple relations, such as E(6}) = 30* and E(6767) = o* when i # j, and E(6})E(¢7) =
o* for all , j, follow from our statistical assumptions. Thus, if we define

wij = ,Bxixixjxj + )‘zﬂyiyiyjyj + Zkﬂxixiyjyja (A24)
then
N ot
i,j=1

Including all terms of order o* in E(A4) is a very difficult task, and it results in very lengthy
formulas that might not be informative. Therefore, we will consider only terms of typical
magnitude o* and will discard other less important terms, such as, o*/n, o*/n?, though the
computations involved are still somehow awkward.

Lemma A.3. All summations
§ :ﬁxixi}vi)’i’ § :IBxixix,'xw and § :IBJ’i)’i)’i,'Vi
i=1 i=1 i=1

are of order O(n'). Moreover,
3 V' (-n 378

ﬂxixixjxj = ~ (2)// - _gl> 5 (A26)
oy g's

g
- @y
Z:Byiyiy]'yj = % <2g - %) ) (A.27)

o2
i] g



7060 (&) A.AL-SHARADQAH

n - 3 2 ’
Z'B"i"iw ~252< §+v'g - (g’g) ) (A.28)

%]
Proof of Lemma A.3 First, we differentiate Equation (A.19) with respect to x;, and we get
FipBasinsrs + 208 B + 010 Busss + 200 BeBross + 020 BL 4200 By + 208 Brsesng
+2(Fppxix; + ]:ﬂﬂﬂx,-,ij),Bxixj + 2(]:ﬁﬂﬂxix]-,3xj + (]:/Sﬁﬁﬁx,-ﬁxj + fﬁﬁﬂx,-xj)ﬁxj
+‘F5I3ﬁxi,3xjxj')/§xi + Fﬂxixfﬂﬂléfj + fﬂx;xiﬁBXij =0, (A.29)
where
,0;,1;3 = Fppra; T fﬁﬁﬁx,ﬁx, + ]:ﬁﬂﬁﬂx,x} + p,ﬁ”ﬁxl (A.30)
Prie, = Fopps; + FopppsPr; + FopppPrx, + Fppppsbs, + Fopppx)Byy  (A31)

represent the total derivatives of p{" and p*’ with respect to x;, respectively. When evaluated
at the true values of the observatlons, Equatlon (A.29) gives us Brixix ;- A careful look at each

term in Equation (A.29) shows that the order of magnitude of each term is of at most %, since

ﬁ# ~ O(n'). This shows that )", Bexxn;, ~ O(n1).
88

On the other hand, },; Buxxjx; ~ O(1). More precisely, only ,0“) - and fﬁxixiﬂ Bjx;
have the highest order of magnitude among all other terms in Equat10n (A.29). They are of
order O(1), and as such

Zﬁx iXiX X = = /5;5]191118161)6, + fﬁx xlﬁﬁxjx] + O(i’l )
oy fﬁﬂ oy

From Lemma (A.1) and Equation (28), Equation (A.30) takes the form

oY =2p" — gV +0m™ (A.32)
7% g

when evaluated at the true values (X, y). Here 8., =
this reason,

—i5 —+ O(n ) and Fypy = 6§nS. For

+0O0m™). (A.33)

5 27 (n—l)(2~” 3%)
.Bxix,-x-x- = -

i] " gS]: BB
Substituting ]:",gﬁ = 2gnS in Equation (A.33) and ignoring —1 in the numerator of Equation
(A.33) establish Equation (A.26).

Next we compute B, .. If Equation (A.21) is differentiated with respect to y;, we get
an equation that is similar in the structure to (A.29), and as such, it is easy to verify that

Zi Byiyiyiyi ~ O(n™') and

1 ~ ~
— (1)
§ :'Byi)’i}’j)’j - _]j_ E :gyj)’jﬂyi)/i + fﬁ)’i}’iﬂﬂ)’jyj’
i#] BB i#j

where

%_y,y = Fppyy; T FpppnBy; + FossBry; T (Fppssby; + Fppsy;) By, (A.34)
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=%

is the total derivative of gy(il) with respect to y;. Since, up to the leading term, 8,,,, = o and
ﬁﬂﬁy,—yi =2¢" and ]}ﬂﬁﬁ = 6¢'nS, then we have
< ~/ 6(g 2 _
Sy = 2~ (? +0n™, (A.35)
and as such
2n—1)§ (25/ _ 3%2)
Z ﬂ)’i)’i)’j}’j = . (A.36)

i#j gS]:—ﬂﬂ

Substituting Fjs = 2gnS in Equation (A.36) and ignoring —1 in the numerator establish
Equation (A.27).

Next we verify the last identity in Equation (A.28), which takes more efforts. To get By, ;>
we differentiate Equation (A.22) with respect to y;. This gives us

3 M p €] ) M p @)
fﬂﬂﬂx,-xiyjyj + zéy] ﬁxixi)’] %‘y y]ﬂxtxz + 2’0 ﬁxt}’] + 210)(,' lei}ij] %-)/]}’]/3
+2sy(j2)ﬂxiﬁxi)’j + Z(Fﬁﬁxi}’j + ‘Fﬁﬁﬁxiﬂ)’j)ﬂ"i}’j + Z(Fﬁﬂﬁxmﬂ)’j + (‘Fﬁﬂﬁﬁxiﬁyj
+f/3ﬁﬁxi}’j)13}’j + ‘Fﬂﬂﬁxiﬁyj}’j)ﬂxi + Fﬁxixi/sﬁﬁ;j + ‘Fﬂxixiﬂﬁmj =0. (A.37)

Equation (A.37) involves Briyjyi» which is given in Equation (A.23). Again it should be obvious
that ), By ~ O(n™), while

n

D Busyy, = Z (é}}}, Bu: + Fos; x,,sﬂm,) +0m™). (A.38)
oy Foo 5
Using Equation (A.35) and B, = gnS i O(n?) and .7-",3,55 = 6¢'nS reduces Equation
(A.38) to
~ 1 ~ 1 )2 ! —
Zﬂxtxr}’]}’] = < gj g/ (gJ > + O( 1) (A39)
i#j S"Fﬁﬂ g

If we substitute ]:"ﬂ,g = 2gnS in Equation (A.39) and ignore —1 in the numerator, we will get
Equation (A.28). This completes the proof of the Lemma. O

Lemma A.3 shows that the most important terms in Equation (A.25) are represented by
> 2 @i which is of order O(1), while the termsin ) | w;; are of order O(%), and as such,
they are less important and will be discarded in our analysis. Therefore, if one substitutes
Equations (A.26)-(A.28) into Equation (A.25), then up to order (’)(%)

Zw,] [2;/’ "+ 2027 + 220Gy + 208y

i#]
1 37 (k)2
:ﬂ[zk’k”——g(f) ]
gs g

3g o~ ~
%(()7')2+2)»5/V/+)~2(g’)2)1|
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where k(8) = (B* + A)g(B) (and as such «'(B) = (B> + 1)¢ +2Bg =y’ + Ag). For this
reason

n

~ 2
> wy = z%z [zlzﬁz” _ 38D } +0m™. (A.40)
i#] g &

This completes the derivation of Equation (57).
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