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ABSTRACT
Simple linear regression in the functional errors-in-variables (EIV)model
is revisited from a different perspective, where the problem is addressed
by using the small-sigma model instead of large sample theory. A gen-
eral analysis is developed to study the slope’s estimator thatminimizes a
family of objective functions, ofwhich the least-squares fit and themaxi-
mum likelihood estimator areminimizers of such special functions. Gen-
eral formulas for the higher-order terms of the bias, the variance, and
themean square error are derived. Accordingly, two efficient estimators
are proposed after implementing the pre- and the post-bias elimination
techniques.Numerical tests confirmthe superiority of theproposedesti-
mators over others.

1. Introduction

Suppose that two variables, y and x, are linearly related through the relationship y = α +
βx, where α is the y-intercept and β is the slope of the line. In the classical regression, the
regressor x is considered error free, while the dependent variable y is contaminated by some
error. If n experimental observations, saymi = (xi, yi)T , i = 1, . . . , n, were recorded, then the
“maximum likelihood estimator” (MLE) of (α, β) is equivalent to minimizing the objective
function

F0(α, β) =
n∑

i=1

d2
i , di = yi − α − βxi. (1)

Itsminimum is attained at α̂0 = ȳ − βx̄ and β̂0 = sxy/sxx. These estimators (α̂0, β̂0) are known
as the classical least-squares fit (LS) or ordinary least-squares regression. Here we used the stan-
dard statistical notations for the sample means; that is, x̄ = 1

n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi are

the samplemeans of x = (x1, . . . , xn)T and y = (y1, . . . , yn)T . Also, we used sxx = ∑n
i=1(xi −

x̄)2, syy = ∑n
i=1(yi − ȳ)2, and sxy = ∑n

i=1(xi − x̄)(yi − ȳ) as the components of the so-called
“scatter matrix.” Moreover, we will use the notations x∗

i = xi − x̄ and y∗
i = yi − ȳ as the “cen-

tered” coordinates of xi and yi.
The classical linear regression was published by Legendre in 1805 and Gauss in 1809. The

estimators α̂0 and β̂0 have excellent statistical properties. They are optimal in all senses. How-
ever, in the case where some regressors have beenmeasuredwith errors, the standard assump-
tion leads to inconsistent estimates. For instance, the biases of the least-squares estimators
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persist even in very large samples, and thus the above estimators (α̂0, β̂0) lose their appealing
features.

This “new”model is known asmeasurement error (ME)model or errors-in-variables (EIV)
model, which dates back to the 1870s when Adcock (Adcock, 1877, 1878) derived the formu-
las for the slope and the intercept estimates. However, all of his calculations were based on
geometric rather than statistical considerations. Statisticians have been studying this prob-
lem since 1901 (Pearson, 1901). Intensive research focused on a line fitting in the twentieth
century because of its applications in economics, sciences, image processing, and computer
vision (Cheng and Van Ness, 1999; van Huffel, 2002). See Gillard (2006) for a nice overview
and (Jung, 2007; Soderstrom, 2007; Amiri-Simkooeii and Jazaeri, 2012) for other recent pub-
lications.

The EIV regression problem is quite different from and more difficult than the classical
regression. In the EIV linear model, the observable measurement (x, y) is regarded as a per-
turbation of a true point (x̃, ỹ) that lies on the true line, ỹ = α̃ + β̃x̃. But the true point (x̃, ỹ) is
unobservable and the observed point (x, y) is regarded as the true point (x̃, ỹ) contaminated
by some noisy errors. That is,

xi = x̃i + δi, yi = ỹi + εi, i = 1, . . . , n, (2)

where α̃ and β̃ represent the true values of intercept α and slope β . The noisy vector (δi, εi),
i = 1, . . . , n is assumed to be i.i.d. normally distributed random vectors with zero mean (0,0)
and variance–covariance matrix � = diag(σ 2

δ , σ 2
ε ). Here, we will assume that the ratio λ =

σ 2
ε

σ 2
δ

is known. For simplicity, we write σ 2
δ = σ 2 and σ 2

ε = λσ 2. Also, through our discussion,
we often use some vector notations.We will express Equation (2) as x = x̃ + δ and y = ỹ + ε,
where δ and ε represent the vectors of all noisy errors that corrupt the first and the second
coordinates of the true vectors x̃ = (x̃1, . . . , x̃n)T and ỹ = (ỹ1, . . . , ỹn)T .

There are also two standard statistical assumptions about the nature of true points (x̃i, ỹi):
If true points are unknown but fixed then the model is known in the literature as a functional
model. In this case, the true points are regarded as nuisance or latent variables. The second
model is called structural model, which regards the true points as random variables (i.e., real-
izations of some random numbers); see (Fuller, 1987; Gillard, 2006) for more details. The
primary concern in this article is only in the functional model.

The MLEs, say (α̂1, β̂1), of (α, β) in the functional EIV have been known in the literature
since long time (Deming, 1943). They have the formal expression

β̂1 =
syy − λsxx +

√
(syy − λsxx)2 + 4λs2xy
2sxy

, α̂1 = ȳ − β̂1x̄. (3)

However, only in 1976 were explicit formulas derived for the pdfs of the MLE α̂1 and β̂1;
(see Anderson, 1976; Anderson and Sawa, 1982). It turns out that they are not normal and
do not belong to any standard family of probability distributions. Those formulas are overly
complicated and involve double-infinite series, and it was promptly noted (Anderson, 1976)
that they are not very useful for practical purposes. Moreover, the estimates α̂1 and β̂1 do not
have finite moments (Anderson, 1976). As a result, they have infinite variances and infinite
mean squared errors, though such an erratic behavior is barely seen in practice (Anderson,
1976; Anderson and Sawa, 1982; Chernov, 2010; Al-Sharadqah and Chernov, 2011). Another
difficulty in studying the simple linear regression in the functional EIV model stems from
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dealing with large sample problem n → ∞. In this case, an infinite number of latent variables
and the problem of inconsistency (Cheng and Van Ness, 1999) immediately appear.

This article, however, is tailored for image processing applications, where the number of
observed points (pixels) is limited, but the noise is small. Therefore, we will study estima-
tors whenever σ → 0, which is known as the small-sigma model. This regime is not new; for
instance, Anderson and Sawa (Anderson, 1976; Anderson and Sawa, 1982) investigated the
asymptotic properties of the MLE α̂ and β̂ assuming that n is fixed and σ → 0. They treated
σ as a small parameter and employed the Taylor expansion (up to σ 4) to derive approxima-
tions for those distributions. However, statisticians have completely focused only on the large
sample theory as the main tool to study the statistical properties of estimator. Therefore, they
completely ignored this asymptotic regime despite its wide range of applications.

The small-sigma model has a great impact on many research topics in image processing,
signal processing, computer vision, andmany other research topics (Kanatani, 1993; Chernov,
2010). Its importance stems from the following reason. On an image, the number of observed
points (pixels on a computer screen) n is usually strictly limited, but the noise level σ is small.
In the analog of consistency of an estimator, we call an estimator geometrically consistent if it
returns the true values of parameters if all points are observed with no noise (i.e., the dataset
is noiseless). Informally, limσ→0 θ̂(m1, . . .mn) = θ̃, where θ̃ is the true value of the parameter
vector.

1.1. Goals and outlines

Our goal is to develop a simplified error analysis that nonetheless allows us to effectively
develop new estimators for the line slope with excellent properties. Our ultimate goal is to
generalize our approach in this article to more complex situations, such as multivariate linear
regression, polynomial regression, or other non linear regression problems. Thus, studying
simple linear regression in depth is a must.

In this article, we will study the EIV linear regression in a new perspective. We will adopt
the small-sigma regime to study the statistical properties of any estimator in a general setting.
Wewill also study theminimizers of a family of objective functions parameterized by a weight
function, say g(β), and as such, a family of estimators can be obtained. That is, wewill consider
in this article a general class of objective functions:

F (α, β) = g(β)

n∑
i=1

d2
i , di = yi − α − xi (4)

where g is a smooth function that depends only upon β .
The LS fit β̂0 = sxy

sxx
minimizes the objective function F0 in (1) , which is a special case of

(4) with g(β) = 1 = g0(β) (say) . Another special case is the MLE that comes if we consider
g(β) = 1

β2+λ
= g1(β) (say). That is, in the functional linear EIV model, the MLE of the slope

β and the intercept α, with the aforementioned assumptions, minimize

F1(α, β) = (β2 + λ)−1
n∑

i=1

d2
i . (5)

Then after simple algebraic manipulations, the MLE (Cheng and Van Ness, 1999) is one of
the roots of the quadratic equation

sxyβ2 − (syy − λsxx)β − λsxy = 0. (6)

Now one can easily show that the MLE of β is the expression given in (3).
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In the literature, researchers usually studied an estimator that either minimizes a specific
objective function, such as the MLE, or solves certain equation, such as the method of the
moments estimators (MMEs). As a result, this limits the number of choices to obtain other
good estimators, especially when the sample size is small. However, our treatment for the
general family of the objective functions as in (4) gives us more flexibility to propose estima-
tors with excellent properties.That is, having an unbiased estimator up to certain orders (as
O(σ 4) or evenO(σ 4/n2)) with the smallest mean square error (MSE) (up to orderO(σ 6)) is
our ultimate goal.

Furthermore, instead of approximating the probability distribution of an estimator (such
as the MLE that has infinite moment!), the Taylor expansion will be employed here to
approximate the general form of the estimators themselves. Consequently, general formu-
las for the mean, the variance, and the MSE of estimators will be presented after very
lengthy calculations. It turns out that these formulas are very useful. For instance, the
formula for the second-order error bias helps us to propose the first efficient estima-
tor with zero second-order bias. This can be done by appropriately choosing its associ-
ated function g2(β) (as will be shown shortly). We will call this process of correction the
bias procedure pre-bias-elimination technique and we will denote the resulting estimator
by β̂2.

On the other hand, if one substitutes g1(β) = (β2 + λ)−1 in the general formula of the
second-order bias, then the second-order bias of the MLE β̂1 will be obtained. This estimator
can be corrected to obtain a more accurate estimator. That is, subtracting an unbiased esti-
mator of theMLE’s bias from theMLE itself gives second-order unbiased estimator. Therefore,
we call this adjustment post-bias elimination.

Our numerical experiments for these two corrections show the superiority of the pre-bias
correction over theMLE and its post-bias correction. This motivates us enough to go one step
further and derive general formulas for the higher-order bias (up to orderO(σ 4/n2)) and the
MSE (up to orderO(σ 6)). SmallerMSE gives better estimator. Based on this principle and the
formulas for higher-order terms of the MSE, we will rigorously demonstrate why our choice
for g2(β) gives an estimator β̂2 with zero second-order bias and has the smallest MSE among
all other estimators.

Moreover, with the aid of those formulas, we will show that although the proposed estima-
tor β̂2 has zero second-order bias, its higher-order bias of magnitude σ 4/n2 persists. Hence,
an adjustment is necessary to correct this term, and as such, a more accurate estimator can be
obtained if this bias is removed.We denote this adjustment by β̌2.We finally conclude that the
pre-bias elimination technique—if its is followed by post-bias elimination step—yields more
accurate estimators. Their excellent performances appear in all cases and for any sample size,
and this can be greatly seen when the same size is relatively small.

The structure of this article is outlined as follows: In Section 2, some previous results are
summarized and our new approach is proposed, followed by our first proposed estimator for
the slope. In Section 3, general formulas for higher-order terms of the MSE and the bias are
derived. It also discusses another new estimator and a comparison between several estimators.
Section 4 is devoted to an experimental validation of our error analysis scheme. We probe it
on several test cases to demonstrate its superiority. These numerical simulations confirm the
superiority of our proposed estimators. They also validate our approach; that is, an estimator
produced by adopting pre-bias elimination procedure (with or without post-bias elimination)
will always be better than the MLE and its adjustment. Section 4 concludes our findings . The
Appendix provides technical proofs.
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2. General perspective

In the small-sigma model, Kanatani (1998) derived a general Cramér–Rao (CR) lower bound
for arbitrary curves for any unbiased estimators. In geometric fitting problems, all estimators,
however, are biased. This makes the natural CR lower bound not practical. In the early 2000s,
Chernov and Lesort (2004) realized that Kanatani’s formula does not work for any practical
estimator in curve-fitting problems. To overcome this situation, Chernov and Lesort (2004)
employed first-order analysis for any geometrically consistent estimators.

They have shown that Kanatani’s formula works for all geometrically consistent estimators,
up to the leading order. Thus, they called it the Kanatani–Cramér–Rao (KCR) lower bound.
From that time on, the KCR has been used as a measure of efficiency for any meaningful
estimator. In the course of linear regression, the KCR lower boundmeans that the first leading
term of the “approximative” covariance matrix V for any geometrically consistent estimators
of (α, β) has a natural bound. The KCR lower bound is given by

V ≥ σ 2Vmin, Vmin = β̃2 + λ

sx̃x̃

[
x̃x̃ − ¯̃x
− ¯̃x 1

]
. (7)

Here A ≥ Bmeans A − B is a positive semidefinite matrix.
Chernov and Lesort (2004) considered a general curve fitting. They proved that an estima-

tor θ̂ is efficient if and only if it minimizes the weighted objective function F (θ) = ∑
wid2

i .
The weights wi’s must be proportional to the square of gradient of di with respect tomi, i.e.,
wi = a(θ)

‖∇m̃i
di‖2 and a(θ) in an arbitrary function on θ.

In linear regression, di = yi − α − βxi and wi = a(α,β)

β2+λ
. Note here, if a(α, β) = 1, the

objective function associated with the MLE, i.e., F1 (5), is obtained, while if a(α, β) =
(β2 + λ), the objective function associated with LS estimator, i.e., F0 (1), is obtained. This
demonstrates that both of the MLE and LS are efficient in the KCR sense.

Note that both of the denominator β2 + λ and the function a(α, β) depend only upon α

and β but not on the observations; thus one can define the weight wi as wi = g(α, β), where
g(α, β) is an arbitrary smooth function of α and β . The weight function g will play a key role
to obtain estimators for (α, β) that are unbiased and their variances, up to leading term, attain
their minimal values as given in Equation (7). To keep our analysis simple, we will assume at
this point that the weight function g depends upon β only.

Using the step-by-step minimization technique, we eliminate α by first differentiating F
with respect to α and equating its derivative to zero to get α̂ = ȳ − β̂x̄. Substitute its value in
F (α, β) to obtain

F (β) = g(β)
∑

d∗
i
2
, (8)

We emphasize here that F (β) is a function of β only and d∗
i = y∗

i − βx∗
i . Now suppose that

β̂ is the slope’s estimator that minimizes (8) and let β̂Q = β̃ + 	1β̂ + 	2β̂ be its quadratic
approximation obtained by expanding the β̂ up to the second-order term. That is, β̂ = β̂Q +
OP(σ

3), where 	1β̂ and 	2β̂ are the first- and the second-order errors, respectively. More
precisely ,

	1β̂ =
∑

βxiδi +
∑

βyiεi, 	2β̂ = 1
2

[∑
i, j

βxix jδiδ j +
∑
i, j

βxiy jδiε j +
∑
i, j

βyiy jεiε j

]
.

(9)
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From now on, we denote the partial derivative of β̂ with respect to xi by β̂xi = ∂β̂

∂xi
and its

second partial derivatives with respect to xi and y j by β̂xiy j = ∂2β̂
∂xi∂y j

. Also, we will use the
notations βxi and βxiy j as their true values, i.e., when those expressions are evaluated at the
true values, β̃ and (x̃k, ỹk) for all k = 1, . . . , n. Accordingly,

Var(β̂ ) = E
(
	1β̂

2)+ O(σ 4) = σ 2
n∑

i=1

(
β2
xi + λβ2

yi

)
+ O(σ 4) (10)

and

Bias(β̂ ) = E(	2β̂ ) = σ 2

2

[ n∑
i

βxixi + λβyiyi

]
(11)

are the first leading terms for each of the variance and the bias of β̂ .
It turns out that the explicit formulas for the expressions of bias and the variance can be

expressed in terms of β̃ , g(β̃ ), and ‖x̃∗‖. That is, since β̂ minimizes Equation (8), it satisfies
the “first derivative test,” say Fβ (β̂ ) = 0. Differentiating this equation with respect to xi and
yi gives us

Fβββ̂xi + Fβxi = 0, Fβββ̂yi + Fβyi = 0. (12)

When the true values are substituted in Equation (12), we get

βxi = −F̃βxi/F̃ββ, βyi = −F̃βyi/F̃ββ, (13)

where F̃ββ and F̃βxi are Fββ and Fβxi , respectively, evaluated at the true point (x̃i, ỹi). These
second-order partial derivatives of F can be derived by first differentiating Equation (8)
directly with respect to β , i.e.,

Fβ (β) = g′∑ d∗
i
2 − 2g

∑
d∗
i x

∗
i . (14)

Then, differentiating Fβ with respect to β , xi, and yi gives us

Fββ = g′′∑ d∗
i
2 − 4g′∑ d∗

i x
∗
i + 2g

∑
[x∗

i ]
2, (15)

Fβxi = −2βg′d∗
i − 2gy∗

i + 4βgx∗
i , (16)

Fβyi = 2g′d∗
i − 2gx∗

i . (17)

Note here that at the true points d̃∗
i = ỹ∗

i − β̃x̃∗
i = 0 for every i; hence F̃β = 0, which is con-

sistent with the equation Fβ (β̃ ) = 0. Moreover, if we use the notation
∑

[x̃∗
i ]2 = sxx = nS,

where S ∼ O(1) represents the “spread” or “scatter” of the true x-coordinates x̃1, . . . , x̃n, then
the true values of the partial derivatives in Equations (15)–(17) are

F̃ββ = 2g̃nS, F̃βxi = 2β̃ g̃x̃∗
i , F̃βyi = −2g̃x̃∗

i , (18)

where g̃ = g(β̃ ). Now, according to Equation (13), we obtain

βxi = − β̃x̃∗
i

nS
, βyi = x̃∗

i

nS
. (19)

The main term of the variance is

Var(β̂ ) =
[∑

β2
xi + λ

∑
β2
yi

]
σ 2 = (β̃2 + λ)σ 2

nS
= MSE(	1β̂ ), (20)
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which is the most important term in the expression of the MSE and it represents the leading term
of the variance. Since it coincides the KCR bound, and it does not depend on g, then any estimator
minimizing F is optimal in the KCR sense. However, estimators such as MLE and LS behave
differently in practice. To analytically compare between estimators, we must track the second
most important term of the MSE. Therefore, we go one step further and study the main term
of the bias.

To compute the second-order bias, the second-order partial derivatives ofF must be evalu-
ated. Differentiating the first equation in Equation (12) with respect to x j, the second equation
in Equation (12) with respect to y j, and the first equation in Equation (12) with respect to y j,
respectively, gives us the following:

0 = Fβββ̂xix j + Fββββ̂xi β̂x j + Fββxi β̂x j + Fββx j β̂xi + Fβxix j , (21)

0 = Fβββ̂xiy j + Fββββ̂xi β̂y j + Fββxi β̂y j + Fββy j β̂xi + Fβxiy j , (22)

0 = Fβββ̂yiy j + Fββββ̂yi β̂y j + Fββyi β̂y j + Fββy j β̂yi + Fβyiy j . (23)

Consequently, their true values are

βxix j = − F̃ββββxiβx j + F̃ββxiβx j + F̃ββx jβxi + F̃βxix j

F̃ββ

, (24)

βxiy j = − F̃ββββxiβy j + F̃ββxiβy j + F̃ββy jβxi + F̃βxiy j

F̃ββ

, (25)

βyiy j = − F̃ββββyiβy j + F̃ββyiβy j + F̃ββy jβyi + F̃βyiy j

F̃ββ

. (26)

The true values of these partial derivatives are summarized in the following lemma.

Lemma 2.1. Denotes the Kronecker symbol with δi j and define δ̂i j = δi j − 1
n . Then, we have

F̃βββ = 6g̃′nS, F̃ββxi = 4(β̃ g̃′ + g̃)x̃∗
i , F̃ββyi = −4g̃′x̃∗

i ,

F̃βxix j = [2β̃2g̃′ + 4β̃ g̃]δ̂i j, F̃βxiy j = −[2β g̃′ + 2g̃]δ̂i j, F̃βyiy j = 2g̃′δ̂i j. (27)

The proof of the deferred lemma is moved to the Appendix. Now we can compute deriva-
tives according to Equations (24)–(26):

βxix j = −(β̃2g̃′ + 2β̃ g̃)δ̂i j + (β̃2g̃′ + 4β̃ g̃)
x̃∗
i x̃

∗
j

nS

g̃nS
. (28)

βxiy j = (β̃ g̃′ + g̃)δ̂i j − (β̃ g̃′ + 2g̃)
x̃∗
i x̃

∗
j

nS

g̃nS
. (29)

βyiy j = −g̃′δ̂i j + g̃′ x̃
∗
i x̃

∗
j

nS

g̃nS
. (30)

Let us define κ = (β2 + λ)g, i.e., κ ′ = (β2 + λ)g′ + 2βg. The function κ and its derivative
depends on g and they will play a key role in the sequel analysis. Now substituting Equations
(28) and (30) in Equation (11) reduces the second-order bias to

Bias (β̂ ) = −nκ̃ ′ + 2(β̃2 + λ)g̃′ + 6β̃ g̃
2g̃nS

σ 2 = −κ̃ ′σ 2

2g̃S
+ (κ̃ ′ + β̃ g̃)σ 2

g̃nS
+ O(σ 4). (31)



7046 A. AL-SHARADQAH

It is clear that the second-order bias can be decomposed into two components. The most
important part is of the order of magnitude σ 2, which represents the essential bias. That is,

Biasess (β̂ ) = −κ̃ ′σ 2

2g̃S
= − (β̃2 + λ)g̃′ + 2β g̃

2g̃S
σ 2. (32)

The second part of Equation (31), i.e., (κ̃ ′+β̃ g̃)σ 2

g̃nS , is of the order σ 2/n and we call it the non
essential bias.

We can now eliminate the essential bias by solving the separable first-order differential
equation (β̃2 + λ)g̃′ = −2β̃ g̃, from which d

dβ̃
ln g̃(β) = − d

dβ̃
ln(β̃2 + λ); therefore g(β) =

C
β2+λ

, whereC is an arbitrary constant. This constant obviously does not affect the minimum
of the function (8); hence we can set C = 1. This leads to g1(β) = (β2 + λ)−1, which is the
weight associated with the MLE (cf., Equation (5)). Since g̃′

1 = −2β̃(β̃2 + λ)−2, then κ̃ ′ = 0.
After simple calcluation, we obtain Bias(β̂1) = σ 2β̃

nS = σ 2β̃
‖x̃∗‖2 . This means that the MLE has

only the non essential bias.
Post-Bias Elimination. It is standard in statistics to use a bias-correction technique to

get an unbiased estimator. Accordingly, since the bias of the quadratic approximation of β̂1 is
σ 2β̃

‖x̃∗‖2 , then one can verify that the adjusted MLE (AMLE) defined by β̌1 = (1 − σ̂ 2
1

‖x∗‖2 )β̂1 has
zero second-order bias, where σ̂ 2

1 is an estimate of σ 2. Here

σ̂ 2
1 = (n − 2)−1F1(β̂1) = 1

(n − 2)(β̂2
1 + λ)

n∑
i=1

(y∗
i − β̂1x∗

i )
2.

This can be easily verified if one proves that E(σ̂ 2
1 ) = σ 2 + O(σ 4); hence E(β̌1 − β̃ ) =

O(σ 4). This bias-correction technique used here is regarded as post-bias elimination.
Pre-Bias Elimination. Another unbiased estimator can be proposed but in a different

approach. The idea here is equating Equation (31) with zero. Then, one tries to find a weight
function g that solves the new differential equation. In this case, the function g(β)must satisfy
the differential equation (n − 2)κ ′ + 2βg = 0. In terms of g, it can be written as

(n − 2)(β2 + λ)g′ = −2(n − 3)βg. (33)

Separating the variables and solving the resulting differential equation give d
dβ

ln g(β) =
− n−3

n−2
d
dβ

ln(β2 + λ). Therefore,

g(β) = C(β2 + λ)− n−3
n−2 , (34)

where n ≥ 3 and C is an irrelevant factor. Hence, we can set C = 1. Accordingly, the weight
function g2(β) = (β2 + λ)− n−3

n−2 is associated with the estimator that has zero second-order
bias. Note that whenever n = 3, g2 equals 1, which turns to be the problem of classical least
squares. This is the particular case when the least-squares estimator has zero second-order
bias. The next theorem summarizes our first contribution in this article.

Theorem 2.1. Up to an irrelevant scalar factor, the fit (8) has zero essential bias if and only if
g = g1(β) = 1

β2+λ
. Moreover, for n ≥ 4, the fit given in Equation (8) has zero second-order bias

if and only if g = g2 (up to an irrelevant scalar factor).

Now we turn our attention to how we compute β̂2. Since β̂2 minimizes

F2(β) = (β2 + λ)− n−3
n−2

∑
d∗
i
2
, (35)
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then it is the critical that solves ∂F2
∂β

= 0. The latter turns to be the cubic equation

sxxβ3 + (n − 4)sxyβ2 − [(n − 3)syy − λ(n − 2)sxx]β − λ(n − 2)sxy = 0. (36)

It might seem a hopeless problem. However, recall that the MLE β̂1 is the solution of the
quadratic equation given in Equation (6), and as such, Equation (36) can be regarded as a
“correction” of Equation (6), for finite-sample size. For relatively largen, Equation (36) reduces
to Equation (6). Now, Equation (36) can be solved either numerically and choose the solution
of in Equation (3) as its initial guess; or using the mathematical expression of the solution of
the cubic equation and selecting the root that minimizes the objective function.

Theorem 2.1 proposes a new estimator β̂2 that is optimal in two aspects: β̂2 attains the
KCR lower bound and has zero second-order bias. It also sheds more light about the linear
EIV models by distinguishing the MLE given in Equation (3) from the classical least squares
that minimizes Equation (8).

It is a common fact that the MLE β̂1 is more accurate than the least-squares fit β̂0. This is
what Anderson and others explained in great detail in 1976–1984 (Anderson, 1984). This can
also be demonstrated as a special case of our general conclusion. To compare the biases of the
two classical estimators, note that

Bias (β̂0) = −β̃(n − 3)
nS

σ 2 + O(σ 4), Bias (β̂1) = β̃

nS
σ 2 + O(σ 4). (37)

Remark 2.1. For n = 2, both estimators, β̂0 and β̂1, just find the unique line passing through
the two observed points; hence they give identical estimates, and for this reason, their biases
coincide. The above formulas show that both biases are equal to β̃

2S σ 2 + O(σ 4).

Remark 2.2. For n = 3, the classical least squares (α̂0, β0) has zero second-order bias and is
better than the MLE (3), which is a weird exceptional case. For n > 3, the classical estimate is
biased toward smaller values of β , and the bias is heavy. It does not get smaller as n increases.
On the other hand, the MLE given in Equation (3) is biased toward larger values of β̃ , but the
bias gets smaller as n increases.

3. Higher-order analysis

In Section 2, a general form of the second-order bias has been derived. Interestingly enough,
theMLE β̂1 only has the non essential second-order bias, while the proposed estimator β̂2 has
zero second-order bias. However, we still do not know how they behave in practice and what
are their MSEs. Indeed, since the leading term of the MSE does not depend on g(β) and it
attains the KCR lower bound, the higher-order error analysis for theMSEmust be derived. In
this section, we will derive the general expression of the MSE for any estimator minimizing
F in Equation (4). Then, we will analytically compare between the three estimators, the LS
β̂0 and the MLE β̂1 and the proposed estimator β̂2.

Using the Taylor expansion of β̂ = β̃ + 	1β̂ + · · · , one can decompose the MSE into

MSE(β̂ ) = MSE(	1β̂ ) + MSE(	2β̂ ) + 2E(	1β̂	3β̂ ) + O(σ 6). (38)

At this point, recall that MSE(	1β̂ ) = (β̃2+λ)σ 2

‖x̃∗‖2 . The other terms must be carefully handled
by tracing all terms with orders of magnitude σ 4, σ 4/n, and σ 4/n2, while other less important
terms are discarded. We start with MSE(	2β̂ ) = E(	2β̂

2). i.e.,

E(	2β̂
2) = [Bias(	2β̂ )]2 + Var(	2β̂ )), (39)
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where

Var(	2β̂ ) = σ 4

2

∑
i, j

(
β2
xix j + 2β2

xiy j + β2
yiy j

)
. (40)

The variance of 	2β̂ consists of terms with different magnitudes: σ 4/n and σ 4/n2. Also, its
components are simply

n∑
i, j

β2
xix j = [γ̃ ′]2

g̃2nS2
− 2β̃2(g̃′γ̃ ′ + 2β̃ g̃g̃′ + 2g̃ 2)

g̃2n2S2
,

n∑
i, j

β2
yiy j = [g̃′]2

g̃2nS2

(
1 − 2

n

)
, (41)

and
n∑
i, j

β2
xiy j = [β g̃′ + g̃]2

g̃2nS2
+ g̃2 − 2(β̃ g̃′ + g̃)2

g̃2n2S2
, (42)

where γ = β2g and κ = (β2 + λ)g. Substitute Equations (41) and (42) into Equation (40) and
use the identities γ̃ ′ = β̃2g̃′ + 2β̃ g̃ and κ̃ ′ = γ̃ ′ + λg̃′ to get

Var(	2β̂ ) = σ 4

2

(
[κ̃ ′]2 + 2λg̃2

ng̃2S2
+ −2[κ̃ ′]2 + 2(2β̃2 − λ)g̃2

n2g̃2S2

)
, (43)

and, as such,

Var(	2β̂ ) = σ 4

nS2

(
λ + 2β̃2 − λ

n

)
+ σ 4(n − 2)[κ̃ ′]2

2n2g̃2S2
. (44)

Squaring the bias of 	2β̂ (cf., Equation (31)) gives

[E(	2β̂ )]2 = σ 4

4g̃2n2S2
(n2[κ̃ ′]2 − 4nκ̃ ′(κ̃ ′ + β̃ g̃) + 4[κ̃ ′ + β̃ g̃]2). (45)

Combine the expressions (44) and (45) to get the MSE of 	2β̂ . That is,

MSE(	2β̂ ) = σ 4

nS2

(
λ + 2β̃2 − λ

n

)
+ σ 4

4g̃2nS2

(
(n − 2)[κ̃ ′]2 − 4κ̃ ′β̃ g̃ + 4(2β̃ g̃κ̃ ′ + β̃2g̃2)

n

)
.

(46)
For simplicity, define the function τ (β) such that its derivative τ ′ satisfies τ ′ = 0, where

τ ′ = (n − 2)(β2 + λ)g′ + 2(n − 3)βg, i.e., τ ′ = (n − 2)κ ′ − 2βg, (47)

then MSE(	2β̂ ) can be written as

MSE(	2β̂ ) = σ 4

nS2

(
λ + 2β̃2 − λ

n

)
+ σ 4

4g̃2nS2

(
κ̃ ′(τ̃ ′ − 2β̃ g̃) + 4(2β̃ g̃κ̃ ′ + β̃2g̃2)

n

)
. (48)

It is worth mentioning here that the first term of the MSE(	2β̂ ) is free of g, while the sec-
ond term is the product of κ ′ and (τ ′ − 2βg). The definitions of κ ′ and τ ′ have a meaningful
explanation here. For instance, solving κ ′ = 0 represents equating the second-order essential
bias with zero, and as such solving this ordinary differential equation (ODE) gives us g1(β).
On the other hand, the solution of the ODE τ ′ = 0 (cf., Equation (33)) is g2(β).

Remark 3.1. For n > 4,

MSE(	2β̂0) > MSE(	2β̂1) > MSE(	2β̂2).
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Remark 3.1 demonstrates that the quadratic approximation of β̂2 performs better than the
quadratic approximation of β̂1, which, in turn, outperforms β̂0. However, it does not show
that MSE(β̂2) is less thanMSE(β̂1), because other terms of order σ 4 must be taken in account
in the expression of the MSE of β̂ before we assess the performance of such estimators. These
terms come from 2E(	1β̂	3β̂ ). Since

	3β̂ = 1
6

[∑
i, j,k

βxix jxkδiδ jδk + 3βxix jykδiδ jεk + 3βxiy jykδiε jεk + βyiy jykεiε jεk

]
,

then

E(	1β̂	3β̂ ) = E

⎡
⎣1
6

∑
i, j,k,l

βxix jxkβxlδiδ jδkδl + 3βxix jykβylδiδ jεkεl

+ 3βxiy jykβxlδiδlε jεk + βyiy jykβylεiε jεkεl

]
.

Recall that δi and εi are i.i.d. random variables, then E(	1β̂	3β̂ )

= 1
6

[∑
i, j,k,l

(βxix jxkβxl + λ2βyiy jykβyl )E[δiδ jδkδl] + 3βxix jykβylE[δiδ jεkεl]

+ 3βxiy jykβxlE[δiδlε jεk]
]

= σ 4

6

[ n∑
i=1

3(βxixixiβxi + λ2βyiyiyiβyi ) +
∑
i 
= j

3(βxixix jβx j + λ2βyiyiy jβy j )

+
∑
i, j

3λ(βxixiy jβy j + βxiy jy jβxi )

]
,

from which

E(	1β̂	3β̂ ) = σ 4

2

n∑
i, j=1

ζi, j, (49)

where

ζi, j = βxixix jβx j + λ2βyiyiy jβy j + λβxixiy jβy j + λβxiy jy jβxi . (50)

The next lemma helps us compute each term of ζi, j. Its full proof is quite lengthy so we only
provide the derivation ofO(σ 4) terms in the Appendix.

Lemma 3.1. Define γ = β2g, then

− SF̃ββ

n∑
i, j=1

βxiy jy jβxi = 2
(
1 − 2

n

)[
β̃2g̃′′ + 2β̃ g̃′ − β̃2(g̃′)2

g̃

]
. (51)

−SF̃ββ

n∑
i, j=1

βyiyiy jβy j = 2
(
1 − 2

n

)[
g̃′′ − (g̃′)2

g̃

]
. (52)

−SF̃ββ

n∑
i, j=1

βxixiy jβy j = 2
(
1 − 2

n

)[
(γ̃ ′′ − γ̃ ′g̃′

g̃

]
− 4

n
g. (53)
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Moreover,

− SF̃ββ

n∑
i, j=1

βxixix jβx j = 2
(
1 − 2

n

)[
β̃2γ̃ ′′ + 2β̃γ̃ ′ − β̃2γ̃ ′g̃′

g̃

]
− 12β̃2

n
g̃. (54)

Now,we are in a position to findEquation (49). Recall that κ = (β2 + λ)g = γ + λg. Then

κ ′ = γ ′ + λg′ = (β2 + λ)g′ + 2βg.

Then, summing up all terms in Lemma 3.1 gives us

− SF̃ββ

n∑
i, j=1

ζi, j = 2
(
1 − 2

n

)[
(β̃2 + λ)κ̃ ′′ +

(
2β̃ − (β̃2 + λ)g̃′

g̃

)
κ̃ ′
]

− 4(3β̃2 + λ)g̃
n

+ O(σ 6). (55)

Consequently, up to orderO(σ 6), the expectation

E(	3β̂	1β̂ ) = − σ 4

4g̃nS2

{
2
(
1 − 2

n

)[
(β̃2 + λ)κ̃ ′′ +

(
2β̃ − (β̃2 + λ)g̃′

g̃

)
κ̃ ′
]

− 4(3β̃2 + λ)g̃
n

}
. (56)

Finally, substitute Equation (48) and Equation (56) with Equation (38) to get the general form
of the MSE for any estimator that minimizes (4).

MSE(β̂ ) = (β̃2 + λ)σ 2

nS
+ σ 4

nS2

(
λ + 2β̃2 − λ

n

)
+ σ 4

4g̃2nS2

×
[
(τ̃ ′ − 2β̃ g̃)κ̃ ′ + 4

(
1 − 2

n

)
(−(β̃2 + λ)g̃κ̃ ′′ − (2β̃ g̃ − (β̃2 + λ)g̃′) κ̃ ′)

+ 8β̃ g̃κ̃ ′ + 4(7β̃2 + 2λ)g̃2

n

]
+ O(σ 6).

In an attempt to compare the new estimator β̂2 and the MLE β̂1 and β̂0, we use the derived
formulas to decompose their O(σ 4) MSEs.

As shown in Table 1, while E(	1β̂1	3β̂1) is always positive, E(	1β̂2	3β̂2) turns out to be
exactly zero. This means that the MSE of β̂2 depends only on the MSEs of the first- and the
second-order errors (i.e.,	1β̂2 and	2β̂2). Based on this observation and Remark 3.1, we con-
clude that β̂2 is superior to β̂1 for all values of β and n > 4. Consequently, since the weight
function g2(β) is the solution for the ODE τ ′ = 0 (up to scalar), one would think of looking
for another weight function, say g3, which also solves τ ′ = 0 such that its corresponding esti-
mator, say β̂3, minimizes F3 = g3(β)

∑
i(y

∗
i − βx∗

i )
2 and satisfies E(	1β̂3	3β̂3) = 0 while

MSE(	2β̂3) attains its minimal value.
The weight function g3 should incorporate α and g2(β) together. Let us define g3(α, β) =

c(α)g2(β). Then, it is easy to show that g3 is also a solution for τ ′ = 0 (see Equation (47)).
Substituting g3(α, β) in Equation (48) gives the same expression g2. This proves that c(α) is
irrelevant and can be set to 1, and as such, β̂3 = β̂2. Hence no possible further reduction in
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Table . Mean squared error (and its components) for estimators: least-squares estimator β̂0, the MLE β̂1,
and the new proposed estimator β̂2.

Method E(	1β̂ )2 E(	2β̂ )2 2E
(
	1β̂	3β̂

)

β̂0

(
β̃2 + λ

)
σ 2

nS
σ 4

nS2

[
λ + 2β̃2 − λ

n

]
+ σ 4β̃2

nS2

[
n − 4 + 5

n

]
− 2σ 4

nS2
(
1 − 3

n

)
(3β̃2 + λ)

β̂1

(
β̃2 + λ

)
σ 2

nS
σ 4

nS2

[
λ + 2β̃2 − λ

n

]
+ σ 4β̃2

n2S2
2σ 4(3β̃2 + λ)

n2S2

β̂2 (τ̃
′ = 0, κ̃ ′ = 2βg2

n − 2
)

(β̃2 + λ)σ 2

nS
σ 4

nS2

[
λ + 2β̃2 − λ

n

]
+ 2σ 4β̃2

n2(n − 2)S2


MSE. Accordingly, we conclude that

MSE(β̂2) = Var(	1β̂2) + Var(	2β̂2) + O(σ 6)

is smaller than the MSE of any other estimator of β . This shows that β̂2 is the best estimator
among all other estimators: it has zero bias up to order σ 4/n2 and has minimal variance, i.e.,

MSE(β̂2) = (λ + β̃2)σ 2

‖x̃∗‖2 + σ 4

nS2

(
λ + 2β̃2 − λ

n

)
+ 2σ 4β̃2

n2(n − 2)S2
.

3.1. Higher-order bias

The numerical experiments (presented shortly) confirm that β̂2 outperforms not only the
MLE, but also the AMLE, β̌1, which was obtained using the post-bias elimination technique.
Then, one might wonder what happened to the higher-order terms of the bias for these esti-
mators. Here, we will derive a general expression for the fourth-order bias with a hope to get
another estimator that outperforms all other estimators, including β̂2, by applying post-bias
elimination step to the fourth-order bias. However, including all terms of order σ 4 might be
a difficult task; hence terms of order of magnitude σ 4 will be considered here while terms of
order σ 4/n, or less, will be discarded.

With the aid of the Taylor expansion, β̂ can be expressed as β̂ = β̃ + 	1β̂ + 	2β̂ +
	3β̂ + 	4β̂ + O(σ 5). Therefore,

Bias(β̂ ) = E(	2β̂ ) + E(	4β̂ ) + · · · .

The first term is given in Equation (31) sowe only need to findE(	4β̂ ). After long derivations
(see the Appendix), we get

E(	4β̂ ) = σ 4κ̃ ′

4g̃2S2

[
2κ̃ ′′ − 3g̃′κ̃ ′

g̃

]
+ O(σ 4/n), (57)

where S = ‖x̃∗‖2/n. We call this part of the bias “the fourth-order essential bias.” For the MLE
β̂1, κ̃ ′ = 0, and this term is zero. Also, β̂2 has zero fourth-order essential bias. In fact, after
simple algebra, one gets

E(	4β̂2) =
2
(
λ(n − 2) + (2n − 5)β̃2

)
β̃

S2(n − 2)3(β̃2 + λ)
σ 4 + O(σ 4/n2). (58)
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It is interesting to determine a general form of g(β) such that the estimator that minimizes
F (β) also has zero fourth-order essential bias. This exactly represents solving the ODE
d(κ ′(β))2

d β
= 3g′(κ ′(β))2

g(β)
, or equivalently, d(κ ′(β))2

(κ ′(β))2
= 3g′(β)d β

g . Thus, κ ′(β) = C[g(β)]3/2 for some
constantC. This is exactly a Bernoulli linear differential equation, and as such, its solution is

g(β) = 4λ2

C
(
Cβ2 − 4Dλβ

√
β2 + λ

)
+ 4λ2D2(β2 + λ)

, (59)

whereC andD are constants. Note that g1(β) = (β2 + λ)−1 is a special case of Equation (59)
that appears whenever C = 0 and D = 1, and it is the only member of this family associated

Figure . NRMSE(β̂ ) for MLE, AMLE (Adj. β1), and the proposed estimators β̂2 and Adj. β2 versus σ . The
horizontal line represents the KCR divided by σ .
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with an estimator that has a very nice property: zero essential bias of the second and fourth
orders.

Adjusted β̂2.Although β̂2 has zeroO(σ 2) bias, it has a non zero bias of order of magnitude
σ 4/n2. Therefore, this estimator could be adjusted by subtracting the unbiased estimator from
its O(σ 4/n2) bias. Then, the new estimator will have zero bias up to order σ 6. Its formula
depends on ‖x̃∗‖2 = S/n and σ 4, so if replaced by ‖x∗‖2 and σ̂ 4

2 = (n − 2)−2[F2(β̂2)]2, then
it is easy to verify that the new estimator

β̌2 =
⎡
⎣1 −

2n2
(
n − 2 + (2n − 5)β̂2

2

)
σ̂ 4
2

‖x∗‖4(n − 2)3(1 + β̂2
2 )

⎤
⎦ β̂2 (60)

is an unbiased estimator of β , up to order σ 6. This adjustment improves the accuracy of the
estimator for small n.

Figure . NRMSE(β̂ ) for MLE, AMLE (Adj. β1), and the proposed estimators β̂2 and Adj. β2 versus σ . The
horizontal line represents the KCR divided by σ .
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4. Numerical experiments and conclusion

To demonstrate our findings, we turn our attention to some numerical experiments. In our
experiments, we considered the estimators β̂1 and β̂2 and their adjustments: AMLE (β̌1) and
β̌2. Since the MLE is invariant under translations, the value of α is irrelevant. The sample size
n was set to 10 (see Figure 1) and 40 (see Figure 2). For β , we tested two values: β = 2 and
β = 6. For each case, we positioned n-equally spaced true points on the line (spanning an
interval of length L = 1; i.e., the distance between the first and last true point was one). For a
given noise level σ , N = 106 samples of size n were simulated, and then the normalized-root-
mean-squared-error (NRMSE) of β̂ was estimated for each fit by

NRMSE(β̂ ) =
√√√√ N∑

i=1

(β̂ − β̃ )2

Nσ 2 . (61)

We plotted the NRMSE of β̂ against the noise level σ . The noise level σ was varied from 0 up
to the point, at which the values of NRMSE(β̂) became large.

As a general observation, as σ is approaching 0, the NRMSE approaches the KCR (repre-
sented by the horizontal line). However, the higher-order terms of the MSE play a key role
in the performances of the estimators as σ increases. This numerically demonstrates our the-
oretical results. As seen in Figures 1 and 2, β̂2 and its adjustment outperform the AMLE β̌1,
which performs better than theMLE for each value of σ , n, andβ . The adjustment of β̂2 always
outperforms β̂2, especially whenever n is relatively small. For relatively large sample size, the
improvement gained by this adjustment is small as being of order σ 4/n2.

Moreover, the proposed estimators aremore robust than theMLE and its adjustment. Some
other numerical experiments show that when the noise level σ becomes large, the MLE and
its adjustment start returning very unsatisfactory results while the proposed estimators return
very reasonable estimates.

5. Conclusion

The first contribution in this article is applying the error analysis to a general class of objective
functions, of which the MLE of the slope is a special case. Accordingly, we proposed the first
novel estimator, β̂2, whichminimizes the objective functionF2 = g2(β)(syy − 2βsxy + sxxβ2).
Theweight function g2(β)was chosen such that theminimumof its associated objective func-
tionF2(β) has zero bias (up to order σ 4). This estimator came as a result of using the pre-bias
elimination technique that developed here. The solution was computed by solving the cubic
equation (36). Moreover, another estimator was proposed by applying the post-bias elimina-
tion technique to the MLE β̂1. The idea in the post-bias elimination technique is simple. We
subtracted the unbiased estimator of its second-order bias from β̂1. We called this estimator
AMLE.

We also derived general formulas for the higher-order bias and the MSE for the slope’s
estimators up to orders σ 4 and σ 4/n2, respectively. Consequently, we applied the post-bias
elimination technique to the proposed estimator β̂2, and as such, another unbiased estimator
up (to order σ 6) is obtained. We called this new estimator adjusted β̂2 and we denoted it by
β̌2. We also compared three estimators (least-squares fit β̂0, MLE (β̂1), and β̂2) based on the
bias and theMSE criteria. We showed why β̂2 outperforms β̂1, which also outperforms β̂0. We
validated our findings through a series of numerical experiments where four estimators were
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tested: MLE β̂1, AMLE β̌1, β̂2, and its adjustment β̌2. Our proposed estimators are superior to
other estimators for any sample size, especially when the sample size is small.
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Appendix

Proof of Lemma 2.1 Differentiating Equation (15) with respect to β , xi, and yi gives

Fβββ = gβββ

∑
d∗
i
2 − 6gββ

∑
d∗
i x

∗
i + 6gβ

∑
[x∗

i ]
2, (A.1)

Fββxi = −2βgββd∗
i − 4gβy∗

i + 8βgβx∗
i + 4gx∗

i , (A.2)
Fββyi = 2gββd∗

i − 4gβx∗
i . (A.3)

Similarly, one can obtain

Fβxix j = [
2β2gβ + 4βg

]
δ̂i j, (A.4)
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Fβxiy j = − [2βgβ + 2g
]
δ̂i j, (A.5)

and

Fβyiy j = 2gβ δ̂i j. (A.6)

If these derivatives are evaluated at the true values β̃ and (x̃i, ỹi) for each i = 1, . . . , n, Lemma
2.1 will be established. �
Proof of Lemma 3.1 Before proceeding, we present the following lemma that gives the fourth
partial derivatives of F with respect to x, y, and β evaluated at the true data (x̃i, ỹi)′s. �

LemmaA.1. Define δ̂i j = δi j − 1
n and γ (β) = β2g(β). At the true values (x̃i, ỹi), i = 1, . . . , n,

we have the following:

F̃ββββ = 12g̃′′nS , F̃βββxi = 6(β g̃′′ + 2g̃′)x̃∗
i , F̃βββyi = −6g̃′′x̃∗

i ,

F̃ββxix j = 2γ̃ ′′δ̂i j F̃ββyiy j = 2g̃′′δ̂i j , F̃ββxiy j = −2(β̃ g̃′′ + 2g̃′)δ̂i j, (A.7)

where γ̃ ′(β̃ ) = β̃2g̃′ + 2β̃ g̃ and γ̃ ′′(β̃ ) = β̃2g̃′′ + 4β̃ g̃′ + 2g̃. Besides, for all i, j, k:

F̃βxix jxk = F̃βxix jyk = F̃βyiy jyk = F̃βxiy jyk = 0.

Proof. First, we differentiate Equation (A.1) with respect to β , xi, yi, respectively, to get

Fββββ = gββββ

∑
d∗
i
2 − 8gβββ

∑
d∗
i x

∗
i + 12gββ

∑
[x∗

i ]
2, (A.8)

Fβββxi = −2βgβββd∗
i − 6gββ (y∗

i − 2βx∗
i ) + 12gβx∗

i , (A.9)
Fβββyi = 2gβββ (y∗

i − βx∗
i ) − 6gββx∗

i . (A.10)

Note that we used the fact
∑n

i=1 x
∗
i = ∑n

i=1 y
∗
i = 0. To getFββxix j andFββxiy j , we differentiate

Equation (A.2)

Fββxix j = 2(β2gββ + 4βgβ + 2g)δ̂i j, (A.11)

Fββxiy j = −2(βgββ + 2gβ )δ̂i j. (A.12)

Finally, differentiating Fβyiy j in Equation (A.6) with respect to β gives us

Fββyiy j = 2gββ δ̂i j. (A.13)

If the true values of all (xi, yi)’s are substituted into Equations (A.8)–(A.13), the results will
be established. Finally, both derivatives of Fβxix j with respect to xk and yk equal zero, i.e.,
Fβxix jxk = 0, Fβxix jyk = 0. In the same analog, the other derivatives, such as Fβyiy jyk and
Fβxiy jxk , are all zeroes. This completes the proof of the lemma. �

Now, let us denote the total derivatives of Fββ and Fβββ with respect to xi by

ρ(1)
xi = Fββxi + Fββββ̂xi and ρ(2)

xi = Fβββxi + Fβββββ̂xi, (A.14)

respectively. At the true values, ρ(1)
xi and ρ(2)

xi reduce to

ρ̃(1)
xi = (−2β̃ g̃′ + 4g̃)x̃∗

i and ρ̃(2)
xi = 6(−β̃ g̃′′ + 2g̃′)x̃∗

i , (A.15)

respectively. Similarly, denote by ξ (1)
yi and ξ (2)

yi the total derivatives of Fββ and Fβββ (respec-
tively) with respect to yi. That is,

ξ (1)
yi = Fββyi + Fββββ̂yi and ξ (2)

yi = Fβββyi + Fβββββ̂yi . (A.16)
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At the true values, they take the form

ξ̃ (1)
yi = 2g̃′x̃∗

i and ξ̃ (2)
yi = 6g̃′′x̃∗

i . (A.17)

These quantities play a key role in the sequel analysis. Substitute j = i in Equation (21) to get

Fβββxixi + β2
xiFβββ + 2βxiFββxi + Fβxixi = 0. (A.18)

Differentiating Equation (A.18) with respect to x j gives us

Fβββ̂xixix j + ρ(1)
x j β̂xixi + ρ(2)

x j β̂2
xi + 2ρ(1)

xi β̂xix j + 2(Fββxix j + Fββxiββx j )β̂xi + Fβxixiββ̂x j = 0,
(A.19)

from which βxixix j can be evaluated. If we solve Equation (A.19) for βxixix j after we evaluated

each term at the true points, then we will get βxixix j ∼ O(n−2). Since βx j = −β̃x̃∗
j

nS ∼ O(n−1),∑
i βxixixiβxi ∼ O(n−2). Therefore, all terms in

∑
i, j βxixix jβx j with orderO(n−1) are

n∑
i 
= j

βxixix jβx j = −1
F̃ββ

n∑
i 
= j

(ρ̃(1)
x j βxixi + F̃βxixiββx j )βx j + O(n−2).

From Equation (A.15), ρ̃(1)
x j = (−2β̃ g̃′ + 4g̃)x̃∗

j , then up to the leading term, one gets

n∑
i 
= j

βxixix jβx j = −2β̃
n2S2F̃ββ

n∑
i 
= j

(
(−β̃ g̃′ + 2g̃)

γ̃ ′

g̃
+ β̃γ̃ ′′

)
[x̃∗

j ]
2,

and further,
n∑
i 
= j

βxixix jβx j = −2n(n − 1)Sβ̃
n2S2F̃ββ

(
(−β̃ g̃′ + 2g̃)

γ̃ ′

g̃
+ β̃γ̃ ′′

)
+ O(n−2).

Here, we used βxixi = − γ̃ ′
g̃nS + O(n−2) and

∑n
i=1[x̃

∗
j ]2 = nS. Moreover, since

∑
i 
= j[x̃

∗
i ]2 =

n(n − 1)S and F̃ββ = 2g̃nS, one has

n∑
i 
= j

βxixix jβx j = −
β̃2γ̃ ′′ + β̃(−β̃ g̃′ + 2g̃) γ̃ ′

g̃

g̃nS2
+ O(n−2).

Next, we find
∑n

i 
= j βyiyiy jβy j . Substitute j = i in Equation (23) to get

Fβββ̂yiyi + Fββββ̂
2
yi + 2Fββyi β̂yi + Fβyiyi = 0. (A.20)

Differentiate (A.20) with respect to y j to get

Fβββ̂yiyiy j + ξ (1)
y j β̂yiyi + ξ (2)

y j β̂2
yi + 2ξ (1)

yi β̂yiy j + 2β̂yi (Fβββyi β̂y j + Fββyiy j ) + Fββyiyi β̂y j = 0.
(A.21)

The desired results will be obtained if we follow the same procedures implemented above.
This gives us

n∑
i 
= j

βyiyiy jβy j = −1
F̃ββ

n∑
i 
= j

(ξ̃ (1)
y j βyiyi + F̃βyiyiββy j )βy j + O(n−2).
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From Equations (A.17) and (30), we obtain ξ̃ (1)
y j = 2g̃′x̃∗

j and βyiyi = −g̃′
g̃nS + O(n−2). Since

βy j = x̃∗
j

nS , then

n∑
i 
= j

βyiyiy jβy j = −2n(n − 1)S(g̃′′ − (g̃′)2/g̃)
n2S2F̃ββ

+ O(n−2),

and, as such,
n∑
i 
= j

βyiyiy jβy j = − g̃′′ − (g̃′)2/g̃
g̃nS2

+ O(n−2).

Next we derive (53), by first differentiating (A.18) with respect to y j in order to get βxixiy j . That
is,

Fβββ̂xixiy j + ξ (1)
y j β̂xixi + 2ρ(1)

xi β̂xiy j + β̂2
xiξ

(2)
y j + 2β̂xi (Fβββxi β̂y j + Fββxiy j ) + Fββxixi β̂y j = 0,

(A.22)
from which we obtain

∑
i 
= j

βxixiy jβy j =
−1
F̃ββ

n∑
i 
= j

(
ξ̃ (1)
y j βxixi + F̃βxixiββy j

)
βy j =

−2n(n − 1)S(γ̃ ′′ − γ̃ ′g̃′/g̃)
n2S2F̃ββ

+ O(n−2)

and further ∑
i 
= j

βxixiy jβy j = − γ̃ ′′ − γ̃ ′g̃′/g̃
g̃nS2

+ O(n−2).

Finally, to get Equation (54), we differentiate (22) with respect to y j to get

Fβββ̂xiy jy j + 2ξ (1)
y j β̂xiy j + ρ(1)

xi β̂y jy j + ξ (2)
y j β̂xi β̂y j + (Fββxiy j + Fβββxi β̂y j )β̂y j

+ (Fββy jy j + Fβββy j β̂y j )β̂xi + Fββxiy j β̂y j = 0. (A.23)

With the aid of this equation, we get
n∑
i 
= j

βxiy jy jβxi = −1
F̃ββ

n∑
i 
= j

(ρ̃(1)
xi βy jy j + F̃ββy jy jβxi )βxi = − β̃2g̃′′ + β̃ g̃′(2g̃ − β̃ g̃′)/g̃

g̃nS2
+ O(n−2).

This completes the derivation of the most important terms in each of the expressions given
in the lemma. �

Derivation of Equation (57). First, we present the following lemma without proof. This
lemma summarizes the fifth derivatives of F .

LemmaA.2. Define δ̂i j = δi j − 1
n and γ (β) = β2g(β). At the true values (x̃i, ỹi), i = 1, . . . , n,

we have the following:

F̃βββββ = 20g̃(3)nS, F̃ββββyi = −8g̃(3)x̃∗
i , F̃ββββxi = 8g̃(3)x̃∗

i + 24g̃′′x̃∗
i ,

F̃βββxix j = 2γ̃ (3)δ̂i j, F̃βββxiy j = (−2β̃ g̃(3) − 6g̃′′)δ̂i j, F̃βββyiy j = 2g̃(3)δ̂i j.

Now, since δi and εi are normal random variables with mean 0 and variance σ 2 for each
i = 1, . . . , n, the expected values of δiδ jδkεl and εiε jεkδl are zero. Hence,
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E(	4β̂ )

= 1
24

⎡
⎣∑

i, j,k,l

βxix jxkxlE(δiδ jδkδl ) + 6βxix jykylE(δiδ jεkεl ) + βyiy jykylE(εiε jεkεl )

⎤
⎦

= 1
24

⎡
⎣∑

i, j,k,l

(βxix jxkxlE(δiδ jδkδl ) + βyiy jykylE(εiε jεkεl )) + 6
∑
i, j,k,l

βxix jykylE(δiδ j)E(εkεl )

⎤
⎦ .

Moreover, the expected values of terms such as δiδ jδkδl and εiε jεkεl are non zero only if each
pair of indices are equal, for instance, when i = j and k = l, or i = k and j = l or i = l and
j = k. Also, E(δiδ jεkεl ) = 1 only if i = j and k = l and 0, otherwise. Thus,

E(	4β̂ ) = 1
24

[∑
i=1

(βxixixixi + λ2βyiyiy jyi )E(δ4i ) +
∑
i 
= j

3(βxixix jx j + λ2βyiyiy jy j )E(δ2i δ
2
j )

+ 6
∑
i, j=1

βxixiy jy jE(δ2i )E(ε2j )

]

= 1
24

[∑
i=1

(βxixixixi + λ2βyiyiy jyi )E(δ4i ) +
∑
i 
= j

3(βxixix jx j + λ2βyiyiy jy j )E(δ2i δ
2
j )

+ 6
∑
i, j=1

λβxixiy jy jE(δ2i )E(δ2j )

]
.

The simple relations, such as E(δ4i ) = 3σ 4 and E(δ2i δ
2
j ) = σ 4 when i 
= j, and E(δ2i )E(ε2j ) =

σ 4 for all i, j, follow from our statistical assumptions. Thus, if we define

ωi j = βxixix jx j + λ2βyiyiy jy j + 2λβxixiy jy j , (A.24)

then

E(	4β̂ ) = σ 4

8

n∑
i, j=1

ωi j. (A.25)

Including all terms of order σ 4 in E(	4β) is a very difficult task, and it results in very lengthy
formulas that might not be informative. Therefore, we will consider only terms of typical
magnitude σ 4 and will discard other less important terms, such as, σ 4/n, σ 4/n2, though the
computations involved are still somehow awkward.

Lemma A.3. All summations∑
i=1

βxixiyiyi,
∑
i=1

βxixixixi, and
∑
i=1

βyiyiyiyi

are of orderO(n−1). Moreover,

∑
i 
= j

βxixix jx j = γ̃ ′

g̃2S2

(
2γ̃ ′′ − 3γ̃ ′g̃′

g̃

)
, (A.26)

∑
i 
= j

βyiyiy jy j = g̃′

g̃2S2

(
2g̃′′ − 3(g̃′)2

g̃

)
, (A.27)
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n∑
i 
= j

βxixiy jy j = 1
g̃2S2

(
γ̃ ′′g̃′ + γ̃ ′g̃′′ − 3(g̃′)2γ̃ ′

g̃

)
. (A.28)

Proof of Lemma A.3 First, we differentiate Equation (A.19) with respect to x j, and we get

Fβββ̂xixix jx j + 2ρ(1)
x j β̂xixix j + ρ(1)

x j,x j β̂xixi + 2ρ(2)
x j β̂xi β̂xix j + ρ(2)

x jx j β̂
2
xi + 2ρ(1)

xi,x j β̂xix j + 2ρ(1)
xi β̂xix jx j

+ 2(Fββxix j + Fβββxi β̂x j )β̂xix j + 2(Fβββxix j β̂x j + (Fββββxi β̂x j + Fβββxix j )β̂x j

+Fβββxi β̂x jx j )β̂xi + Fβxixiβββ̂
2
x j + Fβxixiββ̂x jx j = 0, (A.29)

where

ρ(1)
xix j = Fββxix j + Fβββxi β̂x j + Fββββ̂xix j + ρ(2)

x j β̂xi, (A.30)

ρ(2)
xix j = Fβββxix j + Fββββxi β̂x j + Fβββββ̂xix j + (Fββββββ̂x j + Fββββx j )β̂xi (A.31)

represent the total derivatives of ρ(1)
xi and ρ(2)

xi with respect to x j, respectively. When evaluated
at the true values of the observations, Equation (A.29) gives us βxixix jx j . A careful look at each
term in Equation (A.29) shows that the order of magnitude of each term is of at most 1

n , since
1

F̃ββ
∼ O(n−1). This shows that

∑
i βxixixixi ∼ O(n−1).

On the other hand,
∑

i 
= j βxixix jx j ∼ O(1). More precisely, only ρ̃(1)
x jx jβxixi and F̃βxixiββx jx j

have the highest order of magnitude among all other terms in Equation (A.29). They are of
orderO(1), and as such∑

i 
= j

βxixix jx j = − 1
F̃ββ

∑
i 
= j

ρ̃(1)
x jx jβxixi + F̃βxixiββx jx j + O(n−1).

From Lemma (A.1) and Equation (28), Equation (A.30) takes the form

ρ̃(1)
x jx j = 2γ̃ ′′ − 6g̃′γ̃ ′

g̃
+ O(n−1) (A.32)

when evaluated at the true values (x̃, ỹ). Here βxixi = − γ̃ ′
g̃nS + O(n−2) and F̃βββ = 6g̃′nS. For

this reason,

∑
i 
= j

βxixix jx j =
2γ̃ ′(n − 1)

(
2γ̃ ′′ − 3 γ̃ ′ g̃′

g̃

)
g̃SF̃ββ

+ O(n−1). (A.33)

Substituting F̃ββ = 2g̃nS in Equation (A.33) and ignoring −1 in the numerator of Equation
(A.33) establish Equation (A.26).

Next we compute βyiyiy jy j . If Equation (A.21) is differentiated with respect to y j, we get
an equation that is similar in the structure to (A.29), and as such, it is easy to verify that∑

i βyiyiyiyi ∼ O(n−1) and
∑
i 
= j

βyiyiy jy j = − 1
F̃ββ

∑
i 
= j

ξ̃ (1)
y jy jβyiyi + F̃βyiyiββy jy j ,

where

ξ (1)
yiy j = Fββyiy j + Fβββyi β̂y j + Fββββ̂yiy j + (Fβββββ̂y j + Fβββy j )β̂yi (A.34)
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is the total derivative of ξ (1)
yi with respect to y j. Since, up to the leading term, βyiyi = −g̃′

g̃nS and
F̃ββyiyi = 2g̃′′ and F̃βββ = 6g̃′nS, then we have

ξ̃ (1)
y jy j = 2g̃′′ − 6(g̃′)2

g̃
+ O(n−1), (A.35)

and as such

∑
i 
= j

βyiyiy jy j =
2(n − 1)g̃′

(
2g̃′′ − 3 (g̃′)2

g̃

)
g̃SF̃ββ

. (A.36)

Substituting F̃ββ = 2g̃nS in Equation (A.36) and ignoring −1 in the numerator establish
Equation (A.27).

Next we verify the last identity in Equation (A.28), which takesmore efforts. To get βxixiy jy j ,
we differentiate Equation (A.22) with respect to y j. This gives us

Fβββ̂xixiy jy j + 2ξ (1)
y j β̂xixiy j + ξ (1)

y jy j β̂xixi + 2ρ(1)
xiy j β̂xiy j + 2ρ(1)

xi β̂xiy jy j + ξ (2)
y jy j β̂

2
xi

+ 2ξ (2)
y j β̂xi β̂xiy j + 2(Fββxiy j + Fβββxi β̂y j )β̂xiy j + 2(Fβββxiy j β̂y j + (Fββββxi β̂y j

+Fβββxiy j )β̂y j + Fβββxi β̂y jy j )β̂xi + Fβxixiβββ̂
2
y j + Fβxixiββ̂y jy j = 0. (A.37)

Equation (A.37) involves βxiy jy j , which is given in Equation (A.23). Again it should be obvious
that

∑
i βxixiyiyi ∼ O(n−1), while

∑
i 
= j

βxixiy jy j = −1
F̃ββ

n∑
i 
= j

(
ξ̃ (1)
y jy jβxixi + F̃βxixiββy jy j

)
+ O(n−1). (A.38)

Using Equation (A.35) and βxixi = − γ̃ ′
g̃nS + O(n−2) and F̃βββ = 6g̃′nS reduces Equation

(A.38) to

∑
i 
= j

βxixiy jy j = 2(n − 1)
g̃SF̃ββ

(
γ̃ ′′g̃′ + γ̃ ′g̃′′ − 3(g̃′)2γ̃ ′

g̃

)
+ O(n−1). (A.39)

If we substitute F̃ββ = 2g̃nS in Equation (A.39) and ignore −1 in the numerator, we will get
Equation (A.28). This completes the proof of the Lemma. �

Lemma A.3 shows that the most important terms in Equation (A.25) are represented by∑
i 
= j ωi j which is of orderO(1), while the terms in

∑n
i=1 ωi,i are of orderO( 1

n ), and as such,
they are less important and will be discarded in our analysis. Therefore, if one substitutes
Equations (A.26)–(A.28) into Equation (A.25), then up to orderO( 1

n )

n∑
i 
= j

ωi j = 1
g̃2S2

[
2γ̃ ′′γ̃ ′ + 2λ2g̃′′g′ + 2λg̃′γ ′′ + 2λg̃′′γ ′ − 3g̃′

g̃
(
(γ̃ ′)2 + 2λg̃′γ̃ ′ + λ2(g̃′)2

)]

= 1
g̃2S2

[
2κ̃ ′κ̃ ′′ − 3g̃′(κ ′)2

g̃

]
,



7062 A. AL-SHARADQAH

where κ(β) = (β2 + λ)g(β) (and as such κ ′(β) = (β2 + λ)g′ + 2βg = γ ′ + λg′). For this
reason

n∑
i 
= j

ωi j = 1
g̃2S2

[
2κ̃ ′κ̃ ′′ − 3g̃′(κ ′)2

g̃

]
+ O(n−1). (A.40)

This completes the derivation of Equation (57).
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