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GLOSSARY 

Adobe Connect is a web conferencing program that provides the following features for 
synchronous online collaborations:  voice communications; video; chat; simultaneous 
screen sharing; subgrouping; polling; screen recording; and whiteboard collaboration. 
Adobe Connect has been used in the cPLTL courses at Indiana University-Purdue 
University Indianapolis (IUPUI), Purdue University, and Florida International University  
(Mauser et al., 2011; McDaniel et al., 2013; Smith, Wilson, Banks, Zhu, & Varma-
Nelson, 2014). 
 
Cyber Peer-Led Team Learning (cPLTL) is a synchronous online version of Peer-Led 
Team Learning in which 6-8 students work collaboratively to solve challenging problems 
that are aligned with the course content (Mauser et al., 2011; McDaniel et al., 2013; 
Smith et al., 2014). 
 
DFW Rate is a course-level student performance indicator that is calculated from the 
number students in a course who earned grades of D/F or withdrew from the course 
divided by the total number of students. 
 
Oncourse, an online course management system invented by Dr. Ali Jafari’s and his 
research team at IUPUI, has been utilized on all eight Indiana University campuses 
(Jafari, 1999).  
 
Peer Leaders are undergraduate role models & facilitators of group work in PLTL 
workshops who are recent successful completers of the course with demonstrated 
communication and leadership skills (Gosser et al., 1996). They “serve as a bridge 
between students and instructors” (Gafney & Varma-Nelson, 2007, p. 535). 
 
Peer-Led Team Learning (PLTL) is an active learning pedagogy in which 8-10 students 
collaboratively solve challenging problems aligned with course content under the 
guidance of a trained peer leader (Eberlein et al., 2008). 
 
Workshops are weekly mandatory PLTL sessions in which students work collaboratively 
to solve challenging multi-step problems to practice content they are learning in the 
affiliated course (Eberlein et al., 2008). 
 
Workshop Zero is a pre-semester workshop in which cPLTL students optimize their 
computer settings and get acquainted with the technology (Mauser et al., 2011). 
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ABSTRACT 

Wilson, Sarah Beth Ph.D., Purdue University, December 2015. A comparison of first-
semester organic chemistry students’ experiences and mastery of curved-arrow formalism 
in face-to-face and cyber Peer-Led Team Learning. Major Professor: Pratibha Varma-
Nelson. 
 
 
The cyber Peer-Led Team Learning (cPLTL) workshops are a synchronous online 

adaptation of the educational intervention PLTL, in which students, under the guidance of 

undergraduate peer facilitators, collaboratively solve problems in small groups.  The 

purpose of this parallel convergent mixed methods study was to assess the impact of 

implementing cPLTL in an organic chemistry course on students’ workshop experiences, 

performance, and development of curved-arrow formalism skills. Statistical analyses 

revealed comparable attendance rates, distribution of course grades, and achievement on 

American Chemical Society First-semester Organic Chemistry Exams.  However, 

plotting workshop grades by AB, C, and DFW grade groupings revealed that PLTL 

students earned more successful grades than their cPLTL counterparts (91% vs 77% ABC 

grades).  Utilization of a new curved-arrow formalism analytic framework for coding 

student interview artifacts revealed that cPLTL students were statistically less likely to 

successfully draw the product suggested by the curved-arrows than their PLTL 

classmates. Both PLTL and cPLTL students exhibited a comparable incidence of 

relational to instrumental learning approaches.  Similarly, both PLTL and cPLTL
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students were more likely to exhibit a common Scheme for Problem-Solving in Organic 

Chemistry (SPOC) than having dialogue that could be characterized by Toulmin’s 

Argumentation scheme.  Lastly, implications for faculty are suggested, including:  

developing more explicit connections conceptual, mode, and reasoning components of 

understanding curved-arrow formalism for organic chemistry students; optimizing 

graphical collaborative learning activities for online learners; and developing online 

students’ sense of community. 
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CHAPTER 1. INTRODUCTION 

1.1 Impetus of the Study 

I pursued this study of students’ use of curved-arrow formalism as a means of 

assessing content mastery due to her dual professional experience as an industrial 

synthetic organic chemist and organic chemistry instructor. The ability to utilize curved-

arrow formalism during the deduction of mechanisms of reactions and the structure of 

potential side-products is a necessary skill to do organic chemistry. Therefore, focusing 

students on learning curved-arrow formalism rather than merely memorizing should be 

one way to encourage novices to develop their problem-solving skills, so their thinking 

can be more facile in novel situations.  Likewise, organic chemistry instructors devoted to 

incorporating collaborative learning in their classrooms should consider the effectiveness 

of such pedagogical approaches to an online setting in this age where more hybrid and 

online courses are being implemented in higher education.   

 

1.2 Statement of the Problem 

This work was undertaken because:  (1) There has been no study to characterize 

organic chemistry students’ experiences or course performance in PLTL or cPLTL 

settings; (2) There has been no study to assess first-semester organic chemistry students’ 

curved-arrow formalism mastery achieved in Peer-Led Team Learning (PLTL) or cyber 

Peer-Led Team Learning (cPLTL) settings.
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1.3 Research Questions 

The guiding research questions for this study were: 

• How do organic chemistry students experience the PLTL and cPLTL settings? 

• Are organic chemistry students’ performance comparable in the PLTL and cPLTL 

settings? 

• Do high- and low-performing students experience the PLTL & cPLTL settings 

differently? 

• Do high- and low-performing students from the PLTL & cPLTL settings use or 

understand curved-arrow formalism differently? 

 

1.4 Theoretical Frameworks 

This study was grounded in two theoretical frameworks:  social constructivism 

and C-R-M model of factors, which influence a student’s ability to interpret an external 

representation. In the following sections, I describe each of these theoretical frameworks 

and how this study is grounded therein. 

 

1.4.1 Social Constructivism 

Social constructivism is a theoretical framework which asserts that people 

interpret concepts and models in order to make sense of their surroundings and 

experiences, rather than discover existing knowledge (Bodner & Klobuchar, 2001; 

Bodner, 1966; Driver, Newton, & Osborne, 2000; Scardamalia & Bereiter, 2006; Walker 

& Sampson, 2013; Watson, 2001), thus, “knowledge is constructed in the mind of the 

learner” (Bodner, 1966, p. 874). This knowledge construction process is aided through 
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social interactions (Eberlein et al., 2008) in which students interact with slightly more 

advanced peers who urge them to develop greater understanding of concepts within their 

Zone of Proximal Development (ZPD), the range of activities a student can successfully 

accomplish with appropriate scaffolding (Vygotsky, 1978). 

In the first-semester organic chemistry PLTL workshop series, undergraduate peer 

leaders facilitate students’ collaborative interactions to solve challenging organic 

chemistry problems. Rather than provide answer keys, peer leaders employ a 

combination of asking leading questions and orchestrating collaborative learning 

techniques (CoLTs) among the classmates that partner more advanced students with 

students whose content mastery with respect to a given concept is just beginning to 

emerge. Consequently, students develop within their unique ZPDs while simultaneously 

aiding classmates’ learning. Therefore, students’ development of first-semester organic 

chemistry content mastery, including curved-arrow formalism and problem-solving to 

distinguish substitution and elimination reaction conditions, is a social, rather than 

individual, pursuit.  

As I sought to characterize students’ organic chemistry content mastery via both 

qualitative (interview with probes) and quantitative (standardized national exam) 

approaches, I took into account the student-student and student-peer leader interactions in 

both learning environments since each student’s construction of knowledge occurred in a 

social context. 
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1.4.2 C-R-M Model 

The C-R-M model (Figure 1-1) is a device for faculty and researchers to account 

for factors and the interaction of factors that play a role in a student’s understanding of an 

external representation (ER) (Anderson et al, 2013; Schönborn & Anderson, 2008, 2009, 

2010), including:  “students’ reasoning factor (R factor), students’ understanding of 

concepts of relevance to the ER (C factor), and the nature of the mode in which the 

desired phenomenon was represented by the ER (M factor)”(Schönborn & Anderson, 

2009). As the Venn diagram indicates, a students’ total ability to reason includes their 

ability to reason with the particular ER (R-M) and his or her conceptual knowledge (R-

C). Likewise, the C-M interaction factor refers to the “conceptual knowledge that is 

communicated through, or represented by, the graphical markings and symbolism used to 

construct the ER” (Schönborn & Anderson, 2009, p. 208).  

The C-R-M model has been applied to biochemistry (Linenberger & Holme, 

2014, 2015; Milner, 2014; Saleh, 2015; Towns, Raker, Becker, Harle, & Sutcliffe, 2012; 

Trujillo, Anderson, & Pelaez, 2015); anatomy and physiology (Cheng & Gilbert, 2014); 

genetics (Edfors, Wikman, Cederblad, & Linder, 2015); and molecular biology 

(Rybarczyk, Walton, & Grillo, 2014). Additionally, the C-R-M model has been applied to 

stereochemistry (Edfors et al., 2015) and animation (Al-Balushi & Al-Hajri, 2014) of 

organic chemistry concepts, but the C-R-M model has not previously been applied to 

organic chemistry students’ understanding of curved-arrow formalism.  In this study, I 

examined PLTL and cPLTL students’ dialogue and artifacts to gauge their understanding 

of curved-arrow formalism.
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Figure 1-1 Venn diagram representing the three factors and four interaction factors which 
affect students’ understanding of external representations (Anderson et al., 2013; 
Schönborn & Anderson, 2009, 2010) 
 

1.5 Significance of the Study 

Several aspects of this study are significant. For example, this study augments the 

emerging literature regarding whether social constructivism is as effective in a 

synchronous online setting as it is in face-to-face learning environments (Smith et al., 

2014). Secondly, this study is one of the first in which Revised Bloom’s Taxonomy for 

the Cognitive Domain (Anderson & Krathwohl, 2001) has been used as an analytic 

framework to classify science student discourse (Christian & Talanquer, 2012a). Thirdly, 

this study’s utilization of both curved-arrow formalism error literature (Grossman, 2003; 

Grove, Cooper, & Rush, 2012; Scudder, 1992) and grounded theory led to the 

development of a novel analytic framework for evaluating students’ use of curved-arrow 

formalism. Lastly, the analysis of students’ experiences in face-to-face and online PLTL 

settings through analysis of workshop discourse and interview responses could be 

leveraged to develop cPLTL/PLTL best practices and training materials.
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CHAPTER 2.  REVIEW OF THE LITERATURE 

2.1 Peer-Led Team Learning (PLTL) 

2.1.1 Introduction 

In the recommended PLTL model, groups of approximately eight students are 

facilitated by a trained peer leader to collaboratively solve problems for 90-120 minutes 

each week (Gosser et al., 1996).  The peer leaders are usually recent completers of the 

course who have demonstrated interest in helping others learn, have exemplary 

communication skills, and adeptness in the subject matter. Compensation for peer leaders 

has ranged from modest salaries or college credit to promises of meaningful 

recommendation letters, depending on the culture of the implementing institution 

(Gosser, Jr., Kampmeier, & Varma-Nelson, 2010). Additionally, PLTL workshops being 

an integral part of the course have usually been interpreted as being a requirement of the 

course and a complement to the lecture, although two research studies have offered 

limited placement of interested students in PLTL sections in order to create control group 

sections (Alger & Bahi, 2004; Chan & Bauer, 2015). Special emphasis has been 

communicated during national dissemination workshops that PLTL is not intended to be 

implemented as a means to just help females or underrepresented minority students, nor 

is it a remedial program, although several studies have, in fact, cited PLTL’s unique 

effectiveness for those subsets of the population (Drane, Smith, Light, Pinto, & Swarat, 
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2005; Horwitz & Rodger, 2009; Lewis, 2011; Preszler, 2009; Quitadamo, Brahler, & 

Crouch, 2009). I agree with Dr. Varma-Nelson that if PLTL were implemented as an 

academic intervention for only at-risk students, the program enrollment could decline and 

the beneficial dynamic of bringing students of varying abilities, backgrounds, and 

problem-solving skills together would be reduced (P. Varma-Nelson, personal 

communication, April 28, 2014). 

 

2.1.2 History of PLTL 

Beginning in 1991, small, peer-led groups were formed for collaborative problem-

solving within a large-enrollment general chemistry course at the City College of New 

York (Gosser et al., 1996; Gosser, Jr. et al., 2010; Gosser, Jr., 2015; Woodward, Weiner, 

& Gosser, 1993). Given the initial promising results, the National Science Foundation 

(NSF) funded the development of these peer-led workshops in general chemistry (NSF-

DUE #9150842).  Then, a Workshop Chemistry Curriculum Planning Grant (NSF-DUE 

#9450627) was awarded to Gosser & Weiner.  One year later, Gosser, Radel, & Weiner 

were granted a $1.6M continuing grant by NSF-DUE (#9455920) as part of the Systemic 

Change Initiative to partner with ten senior and community colleges at the City 

University of New York as well as the Universities of Pittsburgh and Pennsylvania to 

continue the development of Workshop Chemistry curriculum for general chemistry 

courses. Development of the pedagogy was extended to include an organic chemistry 

course at the University of Rochester and in both an organic and a general, organic, and 

biochemistry (GOB) courses at St. Xavier University (Gosser, Jr. et al., 2010). Shortly 

thereafter, Workshop Chemistry was renamed as Peer-Led Team Learning (PLTL).  
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Early PLTL publications reported improvements in students’ course grades and 

enthusiasm for learning (Gosser et al., 1996; Woodward et al., 1993), which led to 

interest in disseminating the pedagogy more widely. In 1999, the National Science 

Foundation funded the PLTL project to disseminate the methodology across STEM 

disciplines nationally, which included a variety of national dissemination strategies and 

created the Workshop Project Associate small grants initiative (NSF-DUE #9972457). 

The PLTL project team was also awarded supplementary funding for dissemination to 

two-year colleges (NSF-DUE #0004159). Similarly, a grant was funded in 2003 (NSF-

DUE #0231349) in order to provide inspiration, instruction, support, and mini-grants to 

strengthen the PLTL national network across science, technology, engineering, and 

mathematics (STEM) courses (Gosser, Jr. et al., 2010) as well as economics (White, 

Rowland, & Pesis-Katz, 2012). Additionally, PLTL dissemination was funded through 

the Multi-Initiative Dissemination (MID) Project (NSF-DUE #0196527). 

While most of the implementations of PLTL were as a complement to the lecture, 

the PLTL pedagogy was also integrated into the Center for Authentic Science Practice in 

Education (CASPiE) project, an initiative to develop laboratory modules to provide 

undergraduates with authentic research experiences, including guidance from peers as 

they pursue research-based projects (NSF-DUE #0418902) (Weaver et al., 2006).  At last 

estimate, PLTL has been implemented at more than 150 institutions in the United States, 

from two-year community colleges to large research universities (Gosser, Jr. et al., 2010). 

Additionally, there has been international interest in implementing PLTL, including 

Australia (Stewart, Amar, & Bruce, 2007), China (Gosser, Jr. et al., 2010), India, and 

Turkey. Thus, the original seed funding from NSF catalyzed the formation of a 
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community of STEM faculty that have contributed to the large and continuously growing 

body of scholarly PLTL literature, including a suite of guidebooks which were written to 

provide examples of workshop problems for a variety of chemistry courses, 

recommendations for training peer leaders, and responses to frequently asked questions 

(Gosser et al., 2001; Gosser, Strozak, & Cracolice, 2006; Kampmeier, Varma-Nelson, 

Wamser, & Wedegaertner, 2006; Kampmeier, Varma-Nelson, & Wedegaertner, 2001; 

Roth, Goldstein, & Marcus, 2001; Varma-Nelson & Cracolice, 2001). 

The early developers of the PLTL model evaluated the program using a mixed 

methods design which included course grade comparisons, surveys, interviews, and focus 

groups of faculty and students. Six “critical components” emerged (Gosser et al., 2001, p 

4):  

Faculty involvement. The faculty members teaching the course are closely 

involved with the workshops and the training of workshop leaders. 

Integral to the course. The workshops are an essential feature of the course. 

Leader Selection and Training. The workshop leaders are carefully selected, well-

trained, and closely supervised, with attention to knowledge of the discipline and 

teaching/ learning techniques for small groups. 

Appropriate materials. The workshop materials are challenging, intended to 

encourage active learning and to work well in collaborative learning groups. 

Appropriate organizational arrangements. The particulars, including the size of 

the group, space, time, noise level, etc., are structured to promote group activity 

and learning. 
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Administrative support. Workshops are supported by the department and the 

institution as indicated by funding, recognition, and rewards. 

 

Additionally, as a PLTL workshop series coordinator, I also agree with the 120-

minute workshop duration and absence of answer keys (Gafney & Varma-Nelson, 2008) 

recommendations because students must be allotted sufficient time and incentive to 

debate and discuss concepts. 

2.1.3 Sampling 

Only peer-reviewed, scholarly work are included in this review of the PLTL 

literature. My search protocol included: accessing the Scopus, Science Direct, Institute of 

Electrical and Electronics Engineers (IEEE) Xplore, PsycArticles, PsycINFO 1887-

current (EBSCO), Journal Storage (JSTOR), Papers on Engineering Education 

Repository (PEER), Educational Resources Information Center (ERIC) Proquest, and 

ERIC (EBSCO) databases; searching individual discipline-based education research 

(DBER) journals; and performing citation searches in Google Scholar of articles obtained 

through the other search mechanisms. Qualitative, quantitative, and mixed methods 

studies were all included in this review (Table 2-1), as long as the articles reported 

methodology, analysis techniques, and findings. White papers and articles that were 

anecdotal in nature are excluded from this analysis. 
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Table 2-1 Types of research approaches identified from 62 peer-reviewed studies 
 

 

Overall, 62 studies from a variety of STEM education journals were identified for 

inclusion in this review the PLTL literature, including:  Journal of Chemical Education; 

Journal of Research in Science Teaching; Chemistry Education Research and Practice; 

Journal of College Science Teaching; The Chemical Educator; International Journal of 

Instructional Research; International Journal of Science Education; International 

Journal of Teaching & Learning; International Journal of Science and Mathematics 

Education; International Journal of Learning, Teaching, & Education Research; 

Australian Journal of Education in Chemistry; and others are reported.  Conference 

proceedings from American Society for Engineering Education (ASEE), IEEE, and 

Special Interest Group on Computer Science Education (SIGCSE) conferences were 

included in this review because those manuscripts were peer-reviewed.  

Key findings from the five themes which emerged from this synthesis of the 

literature are presented (Figure 2-1), including: (1) program evaluation; (2) PLTL’s effect 

on reasoning skills & critical thinking; (3) PLTL’s effect on students’ affective domain; 

(4) peer leader research; and (5) variants of the traditional PLTL model.  
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Figure 2-1 Five emergent themes from review of 62 PLTL studies 
 

2.1.4 Program Evaluation 

The PLTL literature reveals that PLTL student success measures were evaluated 

in a variety of undergraduate disciplines, including: general chemistry (Alger & Bahi, 

2004; Chan & Bauer, 2015; Drane et al., 2005; Flores et al., 2010; Hockings, DeAngelis, 

& Frey, 2008; Lewis, 2011, 2014; Lyon & Lagowski, 2008; Mauser et al., 2011; 

Mitchell, Ippolito, & Lewis, 2012; Shields et al., 2012; Smith et al., 2014); organic 

chemistry (Lyle & Robinson, 2001; Rein & Brookes, 2015; Tien, Roth, & Kampmeier, 

2002; Wamser, 2006); allied health or general/organic/biochemistry (Akinyele, 2010); 

introductory biology (Drane et al., 2005; Peteroy-Kelly, 2007; Preszler, 2009); anatomy 

& physiology (Finn & Campisi, 2015); bioinformatics (Shapiro, Ayon, Moberg-Parker, 

Levis-Fitzgerald, & Sanders, 2013); mathematics (Curran, Carlson, & Celotta, 2013; 

Flores et al., 2010; Merkel & Brania, 2015; J. Reisel, Jablonski, & Munson, 2013; J. R. 

Reisel, Jablonski, Munson, & Hosseini, 2012, 2014); computer science (Alo, Beheshti, 

Fernandez, Gates, & Ranjan, 2007; Biggers, Yilmaz, & Sweat, 2009; Horwitz & Rodger, 
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2009; Hug, Thiry, & Tedford, 2011; Roach & Villa, 2008; Utschig & Sweat, 2008); 

engineering (Foroudastan, 2009; Johnson, Robbins, & Loui, 2015; Mottley & Roth, 2013; 

Pazos, Drane, Light, & Munkeby, 2007); psychology (Murray, 2011); and  physics 

(Drane et al., 2005). Although implementation of PLTL has been reported in a high-

school setting (Cracolice & Deming, 2001), no peer-reviewed scholarly articles were 

available at the time of this review article. Lastly, there is one PLTL program assessment 

study evaluating a graduate-level nursing course (White et al., 2012). 

The most common factor reported as a measure of student success, course grades, 

were reported by 50% of the program evaluation research studies (Table 2). PLTL 

students’ course grades were statistically higher than non-PLTL students’ course grades 

in fourteen of these studies (Hockings et al., 2008; Horwitz & Rodger, 2009; Lewis, 

2011; Lyle & Robinson, 2003; Lyon & Lagowski, 2008; Mitchell et al., 2012; Peteroy-

Kelly, 2007; Preszler, 2009; Reisel et al., 2013; Reisel et al., 2012, 2014; Shields et al., 

2012; Smith et al., 2014; Tenney & Houck, 2003). Reisel et al. (2013, 2012, 2014) 

reported significant improvement in average Calculus I course grades and improvement 

in Algebra course grades, suggesting content-based differences in PLTL’s impact on 

student learning. Both Drane et al. (2005) and Chan & Bauer (Chan & Bauer, 2015) 

studies reported no significant difference in course grades for PLTL and non-PLTL 

students, but it should be noted that students’ participation in PLTL was optional in both 

studies. Drane et al. (2005) reported no significant difference in course grades for physics 

PLTL students, but the group size was larger than recommended 8-10 students per peer 

leader. Chan & Bauer (2015) likened the “integral to the course” critical component 

(Gosser et al., 2001) of PLTL implementation and “well-integrated,” which they defined 
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as smooth sign-up and communication processes with mandatory attendance for students 

who elect to participate in PLTL. Therefore, research indicates that when PLTL is 

implemented according to the model, there is a notable, if not significant, improvement in 

student performance, as measured by course grades.  

 

Table 2-2 Factors given as indicators of student success 
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In addition to or in lieu of reporting the comparison of mean course grades for 

PLTL and non-PLTL students, fifteen studies reported %ABC (also known as pass rate) 

and/or %DFW rate, which enumerates students who withdrew from the course or earned 

grades of D or F. Mitchell, Ippolito, and Lewis (2012), Wamser (2006), Tien, Roth, & 

Kampmeier (2002), Tenney & Houck (2003), Akinyele (2010), Biggers (2009), Horwitz 

(2009), and Preszler (2009) reported significantly higher pass rates for PLTL students. 

Although the Alo et al. (2007) study of implementation of PLTL in various Computing 

Alliance of Hispanic Serving Institutions (CA-HSI) partners did not include statistical 

analysis of differences in pass rates for PLTL and historical non-PLTL students, they 

reported a 60% increase in ABC grades for University of Houston Downtown college 

algebra PLTL students as compared to historical non-PLTL course grades as well as 

improvement in the pass rates of both computer science I (18%) and computer science III 

(29%) at the University of Texas at El Paso (UTEP) (Alo et al., 2007).  There was no 

improvement in UTEP’s PLTL computer science II pass rates during the same time 

period. Tenney & Houck (2003) and Mottley & Roth (2013) reported positive 

correlations between introductory PLTL workshop attendance and course grades. Finn & 

Campisi (2015) reported statistically significant improvement on a tissues/muscle 

physiology unit and a partial effect in the terminology/cells unit, and no effect in other 

anatomy & physiology topics, suggesting again that PLTL may be more effective for 

certain content or question styles. Hooker (2011) reported that there were a higher 

percentage of students with ABC grades, but the difference for the small populations did 

not reach statistical significance. Lastly, Merkel & Brania (2015) reported no significant 

difference in PLTL and non-PLTL grade distributions, although they suggested that the 
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variability of commitment of peer leaders and shortened duration of workshops may have 

been factors. Thus, these studies indicate that there is a positive correlation between 

workshop attendance and increased proportion of students earning A, B, or C grades 

when facilitated by reliable, peer leaders in full-length PLTL workshops, although further 

research is required to identify specific STEM content and problem types that are more 

effective for PLTL workshops. A positive correlation between workshop attendance and 

course grades was also reported separately by Wedegaertner and Garmon (Gafney & 

Varma-Nelson, 2008, p 19-20). 

Sixty-seven percent of the chemistry program assessment studies measured 

student success on a nationally normed American Chemical Society (ACS) First-

Semester Chemistry Exam. Lewis (2011) reported that PLTL students earned 

significantly higher ACS exam score percentages than non-PLTL students, despite 

comparable SAT scores. Alger & Bahi (2004) reported that there was no significant 

difference in PLTL and non-PLTL students’ performance on an ACS exam, but the study 

included a comparison of two different academic interventions instead of implementing a 

standard control study design. Chan & Bauer (2015) also reported no significant 

difference in PLTL and non-PLTL students’ ACS exam scores in their randomized, 

quasi-experimental study. Mitchell et al (2012) reported that PLTL and non-PLTL 

students in first- and second-semester general chemistry courses earned comparable ACS 

exam scores. Wamser (2006) reported that PLTL students’ ACS exam scores were in the 

77th percentile, while the historical non-PLTL students’ ACS exam scores were in the 

69th percentile.  
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Chan & Bauer (2015) converted the ACS exam scores to Z scores instead of 

comparing mean ACS exam scores, a key technique if comparing student performance on 

multiple versions of an exam, and they found no significant difference between PLTL 

and non-PLTL students’ ACS exam Z scores. This finding, that studies can 

simultaneously show significant improvement in students’ course grades, yet achieve 

comparable ACS exam scores suggests there may be a set of skills that are assessed in the 

calculation of course grades, but not assessed by ACS exams. For example, Smith et al. 

(Smith et al., 2014) reported that PLTL general chemistry students discussed the 

problem-solving process only when they had different answers, while cyber Peer-Led 

Team Learning (cPLTL) general chemistry students were more likely to have a problem-

solving focus during the workshops. Their finding suggests that standardized assessments 

may not measure important attributes of student development, such as having a problem-

solving mindset. In 2010, Holme et al.(2010) reported the development of assessments to 

measure students’ problem-solving, metacognition, and cognitive development, but 

utilization of these new instruments has not yet been reported in PLTL literature. 

The least commonly reported measurement of program success reported in the 

literature was retention, defined as completing the course being evaluated (Hockings et 

al., 2008; Horwitz & Rodger, 2009; Lewis, 2011). The creation of small learning 

communities in order to increase student retention is often cited as a reason for 

institutions to implement PLTL (Gosser, Jr. et al., 2010). Six studies reported a 

statistically significant improvement in the retention rate of PLTL students (Drane et al., 

2005; Hockings et al., 2008; Horwitz & Rodger, 2009; Lewis, 2011, 2014; Loui, 

Robbins, Johnson, & Venkatesan, 2013), while two studies reported no significant 
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difference in retention rate (Merkel & Brania, 2015). A key difference between the 

Merkel & Brania (2015) study and the studies which report significant differences in 

retention rate is the duration of the workshop sessions. The calculus I PLTL workshops 

investigated by Merkel & Brania (2015) ranged in duration from 50- to 75-minutes, while 

the recommended duration of a PLTL workshop session is 90-120 minutes in order to 

provide adequate time “for productive cooperative work and the development of 

problem-solving skills.” (Gafney & Varma-Nelson, 2008, p. 12) Although not 

statistically significant, Hooker (2011) reported a notably higher retention rate of PLTL 

students than non-PLTL students. Furthermore, the PLTL students provided feedback in 

the end-of-semester survey that PLTL created interdependent learning communities for 

the students (Hooker, 2011, p. 224):  

…having a group that the student could relate to did help them stay in 

class until the end. Several students commented that they felt responsible 

for helping the other members of their group show up and pass the class. 

Others commented how they felt as if they belonged and it was important 

for them to do their best so that they did not let the rest of the group down. 

The appropriate definition of retention, students persisting in subsequent courses, 

was reported in three studies, enrolling in the next course of the curriculum sequence 

(Loui et al., 2013; Mitchell et al., 2012), or completing a sequence of courses (Lewis, 

2014; Pazos et al., 2007). Pazos et al reported that, after adjusting for SAT-math score, 

gender and ethnicity, engineering students who participated in two or more PLTL 

workshops during the semester were five times more likely to complete the four-course 

engineering analysis sequence than students who participated in fewer than two 
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workshops (Pazos et al., 2007). Loui et al (2013) reported a significant interaction 

between workshop attendance and retention for female PLTL students. Lewis reported a 

significant impact for general chemistry I PLTL experience and enrollment in general 

chemistry II and organic chemistry I (Lewis, 2014). Mitchell, Ippolito, & Lewis (2012) 

reported that there was no significant correlation between participation in first-semester 

general chemistry (GC1) PLTL and enrollment in second-semester general chemistry 

(GC2). However, the statistically significant increase in pass rate of GC1 PLTL students 

compared to GC1 non-PLTL students coupled with the pass rate of GC2 PLTL students 

being 16% higher than GC2 non-PLTL students led to an important difference in the 

retention of students in the chemistry course sequence at their large southeastern 

primarily undergraduate institution. 

White, Rowland, and Paesis-Katz (2012) performed PLTL program analysis of 

their graduate-level nursing course as a qualitative study in which student perceptions 

were gathered through focus group feedback.  The researchers reported that students 

perceived the PLTL workshops as crucial to their content understanding, problem-solving 

and critical thinking skills, and diminished course anxiety. 

The Lyle & Robinson study (2003) is particularly important, not only in the body 

of PLTL literature, but also in the current research climate because qualitative studies in 

the psychological sciences, which would include education literature, have been criticized 

for lack of reproducibility of results (Open Science Collaboration, 2015). These 

researchers re-evaluated the PLTL program evaluation data from earlier studies and 

reaffirmed the statistical significance of the PLTL implementations. Moreover, the  
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similarity of PLTL program evaluation findings across a variety of settings and 

disciplines suggests the reproducibility of PLTL’s effectiveness (Lyle & Robinson, 

2003). 

 

2.1.5 Reasoning Skills & Critical Thinking 

My review of the PLTL literature revealed that there are two studies in which 

critical thinking or reasoning skills of PLTL students were specifically investigated. 

Peteroy-Kelly (2007) suggested that the use of concept mapping was a proxy for 

conceptual reasoning because Cohen (1987) posited that concept mapping required 

greater metacognitive reflection than paragraph writing, so concept mapping is an 

indication of enhanced reasoning skills. She reported PLTL students’ statistically 

significant increase in: (1) semester exam scores; (2) final exam scores; (3) course 

grades; and (4) post-test use of concept maps to communicate relationships between non-

science words.  In contrast to the Peteroy-Kelly (2007) study, Quitadamo, Brahler, & 

Crouch (2009) utilized an instrument, the California Critical Thinking Skills Test 

(CCTST) (Facione & Association, 1990), rather than observing the occurrence of 

students’ concept mapping as the assessment for critical thinking gains. These researchers 

reported a significant interaction for critical thinking gains and PLTL involvement, with 

particularly positive performance and retention gains for females. 

 

2.1.6 Student Perceptions Research 

Since the inception of PLTL, the most common means to measure the students’ 

perceptions of the impact of PLTL involvement has been the Student-Assessment of 
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Learning Gains (SALG) survey, developed by Seymour (2000), or modified versions 

thereof. Finn & Campisi (2015) reported that over seventy percent of their PLTL students 

rated their learning gains in PLTL positively.  Similarly, Tien, Roth, & Kampmeier 

(2002) reported that PLTL students were significantly more likely to credit PLTL 

workshop involvement with increased learning than non-PLTL students’ perceived 

learning gains from recitation. Engineering PLTL students in Loui et al’s (2013) study 

reported gains in their content understanding, while 65% of the introductory biology 

students in Peteroy-Kelly’s (2007) study reported that PLTL participation helped them 

understand the main concepts (or relationships between concepts) of the course.  

Computer science PLTL students in the Emerging Scholars Program reported a 

significantly lower perception than their non-PLTL counterparts that their instructor 

covered course material too quickly (Horwitz & Rodger, 2009), suggesting that workshop 

experiences helped the PLTL students construct their mental models of the content more 

rapidly. 

Chan & Bauer’s (2015) study reported no significant difference between PLTL 

and non-PLTL students’ scores on the Attitude to Subject of Chemistry (ASCI) (Bauer, 

2008), which measures five aspects of student’s chemistry-related perceptions, including:  

interest & utility; anxiety; fear; emotional satisfaction; and intellectual accessibility. 

Likewise, these researcher reported no significant difference between PLTL and non-

PLTL students’ scores on the Chemistry Self-Concept Inventory (CSCI) (Bauer, 2005), 

an instrument which measures the degree to which each student views himself or herself 

as capable in the field of chemistry, science, or academic settings. The researchers 

interpreted their findings as evidence that students who “take full advantage” of 
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professor-led review sessions, self-assembled group, tutoring sessions, or PLTL are 

equally benefitted with respect to chemistry attitude or self-concept (Chan & Bauer, 

2015, p. 24). 

Black & Deci (2000) administered surveys at the beginning and end of a PLTL 

Organic Chemistry course to compare students’ perceptions of the supportiveness of the 

learning environment and students’ course performance. The surveys were generated as a 

conglomerate of questions from previously-validated instruments which measured the 

following constructs:  learning climate; perceived confidence; interest/enjoyment; anxiety 

index; grade orientation; and leader autonomy support. Black & Deci evaluated the 

survey via principal components factor analysis to affirm that the survey assessed the five 

intended constructs before administering the instrument to their study population. The 

researchers proposed that students with an internal locus of control (Murray, 2011), or 

autonomous sense of self, would perform well in the course due to interest (Black & 

Deci, 2000). Multiple regression revealed that the students’ perception of the 

supportiveness of his or her peer leader had a statistically significant impact on students’ 

course grade. 

 

2.1.7 Research on Peer Leaders 

Thus far, PLTL peer leader research has consisted of two varieties:  

characterization of peer leader behavior and assessing the impact of the PLTL experience 

on the peer leaders themselves.  For example, the Light group at Northwestern University 

developed an observation protocol to characterize peer leader behavior from their 

observations of their Gateway Science Program’s STEM workshops (Pazos, Micari, & 



23 

 

 

Light, 2010), which are analogous to PLTL workshops (Streitwieser & Light, 2010).  

Using exploratory factor analysis, the researchers determined two factors from their 

observation survey:  group interaction style and problem-solving focus. The two factors, 

mapped as a two-by-two matrix to generate four types of interaction/problem-solving 

styles, enabled the research team to hone their observation protocol instrument to ten 

scalar questions. Likewise, the Light group conducted a pre- and post-semester 

phenomenographic study (Streitwieser & Light, 2010) to characterize peer leader beliefs 

and actions as either teacher-centered or learner-centered. The researchers found that 

nearly half of the peer leaders in their sample who began as teacher-centered style 

transitioned to a more facilitative, or learner-centered, style as the semester progressed 

and the peer leaders grew to be more concerned with students’ learning growth than 

transmitting information. 

During approximately the same timeframe, a series of intertwined studies (Brown, 

Sawyer, & Frey, 2009a, 2009b; Brown, Sawyer, Frey, Luesse, & Gealy, 2010) were 

conducted to determine the impact of peer leader style on general chemistry PLTL 

student discourse.  Given identical PLTL materials, the researchers found that students 

lead by a facilitative peer leader “acknowledged, built upon, and elaborated on each 

other's ideas” with equal involvement (Brown et al., 2010). In contrast, students with an 

instructional peer leader tended to work individually when not listening to the peer 

leader, be answer-focused, and unequally participated. Lastly, the researchers suggested 

that student discourse was related to problem structure. Namely, the researchers  
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recommended that PLTL problems encourage students to discuss concepts and relevant 

experiments, not merely utilize equations or formulae (Keith Sawyer, Frey, & Brown, 

2013). 

Nine studies have endeavored to assess the effect of PLTL leadership experience 

on the peer leaders themselves. Johnson, Robbins, & Loui (2015) reported that 

engineering peer leaders’ journals revealed a progression from focusing on trying to be 

content experts to seeking effective facilitation techniques by the end of the semester. 

Murray (2011) reported a significant increase in knowledge of statistics and research 

methods knowledge of PLTL-trained psychology mentors compared to non-PLTL-trained 

mentors on a 100-item instrument, although Cronbach’s alpha was not reported for the 

instrument. Four of these studies about the impact of the PLTL experience on peer 

leaders utilized questionnaires to enable the peer leaders to self-report perceived learning 

gains (Gafney & Varma-Nelson, 2007; Hug et al., 2011; Snyder & Wiles, 2015; Tenney 

& Houck, 2004).  Tenney & Houck (2004) reported that peer leaders attributed greater 

content learning, exam preparedness, and improved interpersonal skills to their PLTL 

involvement. Similarly, Hug, Thiry, & Tedford reported a significant increase in peer 

leaders’ perception of their decision-making skills, facilitation skills, and content 

knowledge (Hug et al., 2011).  Furthermore, Gafney & Varma-Nelson (2007) described 

that at least 92% of former peer leader survey respondents positively-rated their peer 

leader experience for:  (1) appreciation of small-group learning and different learning 

styles; (2) gained confidence in presenting and working as a team; and (3) greater 

appreciation of what it takes to be a teacher. Both current and former peer leaders 

expressed that they thought their teaching skills were improved by being peer leaders 
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(Gafney & Varma-Nelson, 2007; Tenney & Houck, 2003, 2004).  In fact, Tenney & 

Houck (2003) credited the influence of PLTL on their academic culture as the reason the 

institution saw an increase in percentage of chemistry majors declaring intentions to teach 

as a career after PLTL implementation. Peer leaders reported gains in their content 

mastery and learning from multiple viewpoints in two studies (Gafney & Varma-Nelson, 

2007; Snyder & Wiles, 2015), although there was no significant changes in overall of 

subscale scores between peer leaders and qualified non-peer leaders who were 

administered the California Critical Thinking Skills Test (CCTST) (Snyder & Wiles, 

2015). However, the researchers reported that peer leaders’ pretest mean score was higher 

than the national average already. Snyder & Wiles’(2015) finding are in sharp contrast to 

an earlier content-specific pretest/posttest study which revealed that there was a 

statistically significant interaction between critical thinking and PLTL involvement 

(Quitadamo et al., 2009). Furthermore, Amaral & Vala (2009) reported that even mentors 

who had been deemed underprepared for a first-semester general chemistry course based 

on pre-test results later proceeded to earn higher grades and persist in more subsequent 

chemistry courses than non-mentors. Therefore, I propose that the small learning 

community formation, frequent content review, increased confidence, and exposure to 

different approaches to learning may impact peer leaders in ways that the CCTST does 

not measure. In fact, Gafney & Varma-Nelson (2007) stated that nearly 90% of the 

participants in their study who had earned their undergraduate degree were enrolled in 

medical or graduate school, employed in a science field, or engaged in teaching. 
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Likewise, Flores et al.(2010) reported that the six-year graduation rate for peer leaders of 

gateway math and science courses for engineers was 48% higher than the overall 

undergraduate graduation rate (97% vs. 49%). 

 

2.1.8 Variants of the PLTL Model  

Four types of PLTL variants of the standard PLTL model were identified from the 

literature review: utilization of in-class peer leaders instead of recent completers of the 

course; online PLTL; PLTL in the chemistry laboratory; and a hybrid of PLTL and 

Process Oriented Guided Inquiry Learning (POGIL), dubbed Peer-Led Guided Inquiry 

(PLGI). 

 

2.1.8.1 In-class Peer Leaders 

Schray et al (2009) modified the standard PLTL model by assembling their roster 

of organic chemistry peer leaders as a combination of typical peer leaders, who are recent 

completers of the course, and current enrollees of the course, which they called “in-class 

peer leaders”.  The rationale of the researchers was that hiring a sufficient quantity of 

qualified and reliable peer leaders can sometimes be problematic (Merkel & Brania, 

2015), while enlisting current, promising members of the course would preserve the vital 

Zone of Proximal Development dynamic in a way that utilization of a faculty member 

would not. Both types of peer leaders were trained identically, at a pre-semester retreat as 

well as weekly. The researchers reported that there was no significant difference in 

students’ grades, regardless of peer leader type. Moreover, student perception surveys 
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suggested that typical peer leaders were more likely than their in-class counterparts to 

convey information to students instead of facilitating discussions (Schray et al., 2009).  

However, the researchers did not address how they ensured that in-class peer leaders and 

non-peer leader classmates had equitable assessments, given the extra content training 

provided to in-class peer leaders. Furthermore, in this study, students were given answer 

keys at the end of workshop sessions, which is not a recommended practice among PLTL 

programs because “students without answer keys tend to focus on understanding the 

problem-solving process, engaging in critical thinking, questioning, and reflection to 

arrive at more-reasoned conclusions and deeper learning” (Gosser et al., 2001; Smith et 

al., 2014). 

 

2.1.8.2 Online PLTL 

The PLTL literature included two approaches to transition PLTL to an online 

setting. First, synchronous online collaborative groups were created in the PLTL variant 

called cyber Peer-Led Team Learning (cPLTL) (NSF-DUE #0418902) (Mauser et al., 

2011; Smith et al., 2014).  These researchers evaluated the impact of replicating the 

general chemistry PLTL in an online setting by utilizing a web conferencing program as 

the means for online students to interact with their peer leaders. In this setup, students 

were able to see and hear one another via webcam as well as see one another’s 

worksheets by the use of a document camera as they collaborated in real time. Discourse 

analysis revealed instances in which students built on one another’s ideas to construct 

meaning, which demonstrated that social constructivism was occurring in the online 
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setting (Smith et al., 2014). Both cPLTL and PLTL students were provided the same 

workshop materials and program evaluation was performed on a limited subset of the 

student population called comparison groups, in which peer leaders led one section each 

of PLTL and cPLTL in the same semester. The researchers reported that the students in 

the comparison groups earned comparable mean student course grades and scores on the 

First-Semester General Chemistry Exam. However, the researchers also uncovered some 

interesting differences in the dynamics of PLTL and cPLTL, including:  greater use of 

online resources by cPLTL students; lower incidence of off-task behavior by cPLTL 

students; and higher probability of cyber students discussing problem-solving process 

prior to answer-checking than their PLTL counterparts. Subsequent evaluation was 

performed to identify web conferencing platforms that could replicate the cPLTL 

experiences for a lower cost to students and institutions (McDaniel et al., 2013).  

Second, asynchronous online “discussion” groups were created in which students 

used a Moodle to share their ideas about controversial healthcare issues, then create 

weekly summaries (Pittenger & LimBybliw, 2013).  Students were tasked with taking 

turns as discussion leaders from week to week. Although the researchers claimed that the 

student collaborations were an example of PLTL, there were at least two crucial 

components of PLTL which were absent from the design:  solving problems 

collaboratively (which is distinctly different than collaborative summarizing) and weekly 

training of dedicated peer leaders. I propose that summarizing is a lower-order cognitive 

activity, while solving problems is a higher-order activity, so collaborative summarizing 

cannot be equated with solving problems collaboratively. Pittenger & LimBybliw (2013) 

did not include an assessment of the impact of their implementation on students’ grades, 
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as compared to previous versions of the course, but 96% of the students responded by 

survey that their leadership experience enhanced their learning.  

 

2.1.8.3 PLTL in Laboratories 

The third variant of the PLTL model consisted of implementing PLTL in a 

laboratory. The Center for Authentic Science Practice in Education (CASPiE) created a 

collaboration between research scientists and teaching faculty to generate research 

modules that could be accomplished in 6-8 week sessions, yet contribute to ongoing, 

publishable research efforts. Similarly, CASPiE team developed a network of Internet-

accessible, research-quality instruments that the students could utilize for sample 

analysis. The PLTL pedagogy informed the integration of peer leaders as laboratory 

group mentors who fostered the students’ development as scientists, including: 

explaining laboratory notebook techniques, discussing the evaluation and interpretation 

of data; brainstorming experimental design; reading scientific papers; considering 

scientific misconduct and ethics; preparing an abstract, presentation, or poster; 

familiarizing students with the peer review process; and asking students reflective 

questions each week to contextualize the laboratory techniques (Weaver et al., 2006, p. 

127).  Early findings from the CASPiE program indicate that this voluntary program 

appealed more to female students than male students (75% to 25%) and increased 

students’ awareness of the nature of scientific research, while revealing the challenge of 

understanding primary literature. 
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Three other initiatives to integrate PLTL in a laboratory setting were closer to the 

traditional PLTL model as workshops were an integral part of a course (Foroudastan, 

2009; McCreary, Golde, & Koeske, 2006; Shapiro et al., 2013).  For example, PLTL was 

implemented in a multi-semester experimental vehicles program (Foroudastan, 2009), 

which has increased an engineering program’s retention rate (95% for PLTL students). 

PLTL workshops were also implemented in several sections of general chemistry 

laboratory (McCreary et al., 2006), where undergraduate peer leaders facilitated groups 

of eight laboratory students, in lieu of faculty or a graduate teaching assistant. The peer 

leaders questioned pairs of students with prepared reflection prompts in addition to 

performing the normal supervisory/explanatory activities of a teaching assistant. 

Furthermore, special emphasis was placed on the development of four aspects of student 

development as scientists, including: understanding the organizational structure of an 

experiment; assessing the quality of measurements; explaining results; and applying lab 

skills to novel situations (McCreary et al., 2006, p. 805).  After the researchers coded and 

statistically compared PLTL and non-PLTL students’ laboratory reports, they reported 

that the non-PLTL students had comparable descriptions of data analysis and logical 

reasoning quality, but the PLTL students’ laboratory reports were significantly better in 

several categories, including: descriptions of experimental procedure; awareness of 

factors for high quality; goals for preparing for lab; application to specific experiment; 

accuracy of chemistry; clarity of writing; and length of responses (McCreary et al., 2006, 

p. 808).  Lastly, PLTL was implemented in a bioinformatics computer laboratory course, 

but the impact of the implementation was indeterminable since the data for instructor-led 

and peer-led sections were aggregated in the publication (Shapiro et al., 2013). 
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2.1.8.4 Peer-Led Guided Inquiry (PLGI) 

Process-Oriented Guided Inquiry (PLGI), is a melding of PLTL with another 

social constructivist pedagogy:  Process-Oriented Guided Inquiry Learning (POGIL).  In 

PLGI, students collaboratively develop content understanding through a three-phase 

learning cycle, including: data collection (or exploration); concept invention; and 

application (Abraham & Renner, 1986; Farrell, Moog, & Spencer, 1999; Spencer, 1999).  

During the exploration phase, students examine a model, consisting of “pictures, tables, 

equations, graphs, or prose,” and try to extract patterns of meaning from it (Eberlein et 

al., 2008, p. 263). New terminology is introduced during the concept invention phase to 

connect students’ newly-identified pattern or phenomena with course content (Spencer, 

1999). Students “extend and apply the concept to new situations, augmenting their 

understanding of the concept” during the application phase (Eberlein et al., 2008, p. 263). 

PLGI peer leaders facilitate groups of approximately ten students during the PLGI 

activities and check for understanding. Like PLTL, PLGI is an integral part of the course, 

is implemented by replacing one of the 50-minute lectures with the collaborative learning 

experience, and includes weekly training of dedicated peer leaders (Lewis & Lewis, 

2005). Although both PLTL and PLGI pedagogies are based on the social constructivist 

theoretical framework, PLGI students encounter concepts first in the workshops and then 

in lecture, while PLTL students are introduced to content in lecture first, then practice in 

workshops (Eberlein et al., 2008; Farrell et al., 1999). 

Lewis & Lewis (2005) reported a significant correlation between PLGI workshop 

attendance and higher course and final exam grades (Lewis & Lewis, 2005). 

Additionally, PLGI students performed significantly higher on course and final exams 
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than non-PLGI students, controlling for SAT scores, although the pedagogy has neutral 

differential effectiveness for students with different demographics (Lewis & Lewis, 

2008). This result is particularly important because female or under-represented minority 

students could be disadvantaged by a collaborative learning pedagogy if gender- or 

ethnicity-based stereotypes influence student discussion dynamics (Cohen, 1997; Lewis 

& Lewis, 2008). Perhaps the rotating assignment of student roles that is an integral part 

of both POGIL and PLGI (Farrell et al., 1999) deters students from interacting in gender- 

or ethnicity-based roles within the groups, thus lifting any stereotype-based 

disadvantages for students. 

 

Figure 2-2 Toulmin’s Argumentation Pattern 
 

Next, Kulatunga, Moog, & Lewis (2013) reported that students are more likely to 

elaborate on their reasoning when co-constructing arguments in a group than when 

making individual arguments.  Their subsequent discourse analysis study of peer leader 

behavior on students’ TAP (Figure 2-2) (Toulmin, 1958) revealed that convergent 

questions, which require students’ synthesis of given information to create a response 
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(Hanson, 2006), lead students to produce higher-level arguments, while directed peer 

leader questions, which require students to state previously-provided information 

(Hanson, 2006), tended to lead students to merely provide an answer  or claim 

(Kulatunga, Moog, & Lewis, 2014). Additionally, the researchers found that students 

could produce productive discourse without peer leader facilitation if the ChemActivity 

prompts were written to elicit data, warrants, and backing. 

 

2.2 Cyber Peer-Led Team Learning 

Cyber Peer-Led Team Learning (cPLTL) is a synchronous online version of 

PLTL that utilizes web conferencing software to enable a peer leader and up to eight 

students to work in a virtual conference room, while preserving the students’ ability to 

see one another as well as classmates’ work via the use of individual web cameras and 

document cameras (Mauser et al., 2011; McDaniel et al., 2013; Smith et al., 2014; 

Varma-Nelson & Banks, 2013). Additionally, web conferencing programs, such as 

Adobe Connect, provide a chat window for text-based communication and the ability to 

present applications on the students’ desktop, such as drawing applications, files, and 

videos with their entire cPLTL group. Lastly, Adobe Connect’s ability to record sessions 

enables both students and researchers constant access to workshop recordings. Brown and 

Kulikowich (2004) studied a statistics course that included students’ sharing audiovisual 

data with remote classmates by using document cameras, but the PictureTele 

methodology did not include peer-facilitated collaborative group work. Similarly, the 

Open University of Hong Kong’s Interwise synchronous e-learning system provided 
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audio of classmates and visuals of shared files, but did not provide a webcam view of 

classmates nor feature collaborative problem-solving activities (Ng, 2007). 

A recent study revealed that cPLTL general chemistry students were significantly 

more likely to discuss their problem-solving process, while their PLTL classmates were 

significantly more likely to check answers with one another before discussing problem-

solving process. Therefore, cPLTL students were constructing their knowledge of general 

chemistry through social interactions to a greater extent than the PLTL student who were 

enrolled in the same course. Nevertheless, the mean course grades and performance on 

the American Chemical Society 2005 First-semester General Chemistry exam were 

comparable for the two groups (Smith et al., 2014). Further research is needed to identify 

any differences in PLTL and cPLTL students’ problem-solving approaches and skills. 

 

2.3 Comparison of Face-to-Face and Synchronous Online Learning 

Multiple research studies have reported that student achievement is either 

comparable between blended and traditional courses (Aragon, Johnson, & Shaik, 2002; 

Block, Udermann, Felix, Reineke, & Murray, 2008; Du, 2011; Lightner & Lightner-

Laws, 2013; Utts, Sommer, Acredolo, Maher, & Matthews, 2003; Ward, 2004) or 

sometimes better in online education that in traditional classroom settings (United States 

Department of Education, Office of Planning, Evaluation, 2009; Williams, Duray, & 

Reddy, 2006; Wilson & Allen, 2011). Anderson  proposed in “Getting the Mix Right 

Again: An Updated and Theoretical Rationale for Interaction,” that (2003, p. 2): 

…no single medium is superior to the others for supporting the 

educational experience. Deep and meaningful learning will occur if at 
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least two of three forms of interaction are present: student–teacher; 

student–student; student–content.  

 

A recent meta-analysis of online versus face-to-face course comparison research 

identified nine studies which included synchronous online communication  (United States 

Department of Education, Office of Planning, Evaluation, 2009).  However, these 

researchers did not identify studies in which the synchronous online experience included 

all the features of cPLTL  (McDaniel et al., 2013; United States Department of 

Education, Office of Planning, Evaluation, 2009). The only published study that 

evaluated the impact of moving a collaborative learning pedagogical intervention for a 

science course from a face-to-face to an online setting was the recently-reported study of 

a hybrid general chemistry course in which students could elect to participate in either a 

face-to-face or online PLTL workshop component of their course. These researchers 

reported that discourse analysis revealed greater student emphasis on the process of 

solving problems in the online setting than in the face-to-face setting (Smith et al., 2014). 

 

2.4 Curved-Arrow Formalism in Organic Chemistry 

The roots of curved-arrow formalism (CAF), also known as electron-pushing 

formalism (EPF) and arrow-pushing formalism (Ferguson & Bodner, 2008), extend from 

a paper about the partial valences in butadiene by Kermack & Robinson (1922), who 

described the movement of electron density from areas of high electron density to areas 

of low electron density in the conjugated π system. Furthermore, these scientists defined 

the developing organic chemistry notation that a single bond dash meant a pair of 
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electrons were shared between the connected atoms, while a double bond meant that two 

pairs of electrons where shared by the pair of atoms.  Then, curved-arrows are “a 

symbolic device for keeping track of electron pairs in chemical reactions… as covalent 

bonds are formed and broken” (Bhattacharyya, 2013; Ferguson & Bodner, 2008, p. 102; 

Grossman, 2003; Scudder, 1992) and should be drawn such that “the tail of the curved-

arrow indicating where an electron pair moves from and the head of the arrow where it 

moves to (Sykes, 1986, p. 19). ” Since the publication of Morrison & Boyd’s first organic 

chemistry textbook in 1959, ”Reaction mechanisms have become a mainstay of organic 

chemistry courses” (Bhattacharyya, 2013, p. 1282; Goldish, 1988; Morrison & Boyd, 

1959; Wheeler & Wheeler, 1982).  As written by Sykes (1986, p. 1): 

The chief advantage of a mechanistic approach, to the vast array of 

disparate information that makes up organic chemistry, is the way in 

which a relatively small number of guiding principles can be used, not 

only to explain and interrelate existing facts, but to forecast that outcome 

of changing the conditions under which already known reactions are 

carried out, and to foretell the products that may be expected from new 

ones.  

 

Due to the centrality of CAF to organic chemistry, a wealth of CAF instructional 

strategy literature exists (Brisbois, 1992; Buncel & Wilson, 1987; Caserio, 1971; Friesen, 

2008; Grossman, 2003; Miller & Solomon, 2000; Ryles, 1990; Scudder, 1992; Simpson, 

1989b, 1988, 1989a; Sykes, 1986; Trost, 1991; Wentland, 1994).  Likewise, the organic 
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chemistry textbooks utilized at the institution in which this study occurred both provided 

explanations of the rules and assumptions of this formalism to the students (Carey, 2002; 

Klein, 2012). 

Curved-arrow formalism is not only fundamental for communication and 

problem-solving among practicing organic chemists to predict the products of reactions 

(Bhattacharyya & Bodner, 2005; Grove, Cooper, & Rush, 2012), explain the regio- or 

stereo-chemistry of products, or rationalize reactive areas of starting materials, but also 

an alternative to copious rote memorization for organic chemistry students because 

mechanisms give students “students a logical means to predict products” (Straumanis & 

Ruder, 2009, p. 1389). Unfortunately, a number of studies of novices’ understanding of 

curved-arrow formalism have revealed that the symbolism of CAF has limited meaning 

for students (Anzovino & Bretz, 2015; Bhattacharyya & Bodner, 2005; Bhattacharyya, 

2013; Cartrette & Dobberpuhl, 2009; Cooper et al, 2009; Grove, Cooper, & Rush, 2012).  

One study reported that students only consider nucleophiles and electrophiles or 

Brønsted-Lowry acids and bases when prompted to do so (Cartrette & Dobberpuhl, 

2009), although these identifications of compounds’ role in reactions are critical for 

ascertaining the areas of high and low electron density which lead to reactions occurring. 

Similarly, Anzovino & Bretz (2015) reported that students were unable to recognize 

nucleophile/electrophile or acid/base pairs unless shown a mechanism or product, which 

suggests that the students in their study were not utilizing mechanistic, or process-

oriented, reasoning (Strickland, Kraft, & Bhattacharyya, 2010).   

Grove, Cooper, and Rush (2012) reported that students neglected to show reaction 

mechanisms to predict products, even when instructed to do so. Bhattacharyya & Bodner 
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(2005) postulated that curved-arrows have no physical meaning for struggling organic 

chemistry students when they could reproduce the sequence of curved-arrows in reaction 

mechanisms, but not explain them. Therefore, the curved-arrows cannot rightly be called 

symbols or representations since they don’t represent a “physical reality”(Bodner & 

Domin, 2000, p. 27; Domin & Bodner, 2012; Kozma, 2003). Likewise, Grove, Cooper, & 

Rush (2012) reported that only 60% of the students in their study showed mechanisms 

when instructed to do so and 15-20% added the arrows after predicting the product. 

Rather than curved-arrow formalism being a means for students to deduce products, 

therefore, supplying curved-arrows after predicting the product of a reaction was 

“decorating with arrows (Grove, Cooper, & Rush, 2012, p. 848)” or an “academic 

exercise” (Ferguson & Bodner, 2008, p. 109). Likewise, Rushton et al (2008) reported 

that students did not consider reaction mechanisms to be essential for the process of 

predicting products of reactions, although “students who do use mechanisms are more 

likely to succeed in more difficult tasks” (Grove, Cooper, & Cox, 2012, p. 853). There 

have been no studies to date to characterize either PLTL or online students’ utilization of 

curved-arrow formalism to predict the products of organic chemistry reactions. 

 The following frequent student errors in curved-arrow formalism were reported in 

the literature (Grove, Cooper, & Rush, 2012; Scudder, 1992): 

• An electron-deficient species attacks an electron-rich species  

• An electron-rich species attacks an electron-rich species  

• Drawing arrows which would result in the violation of the octet rule for carbon 
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• Arrows for multiple reaction steps are drawn at once  

• Ignoring the pH of the medium, for example proposing an acid-based mechanism 

in a basic solvent 

 

2.5 Bloom’s Taxonomy of Educational Objectives for the Cognitive Domain 

Bloom’s Taxonomy of Educational Objectives are a classification system 

developed over several years by college examiners who wished to develop a theoretical 

framework to facilitate communication among examiners (Bloom, 1956, p. 4). The 

classification system categorizes the types of learning which occur in classrooms within 

three domains:  cognitive, affective, and psychomotor (Bloom, 1956, p. 7). In 2001, 

Anderson & Krathwohl published an adaptation of Bloom’s Taxonomy of Educational 

Objectives:  Cognitive Domain, in which the six cognitive domains were renamed as 

action verbs (Table 2-3) (Anderson & Krathwohl, 2001).  

Table 2-3 Revised Bloom’s Taxonomy of Educational Objectives:  Cognitive Domain : 
(Krathwohl, 2002, p. 4) 

Category Definition 
Creating Reorganizing elements into a new pattern or structure 

through generating, planning, or producing. 
Evaluating Making judgement based on criteria and standards through 

checking and critiquing 
Analyzing Breaking material or concepts into parts; determining how 

the parts relate to one another or to an overall structure or 
purpose 

Applying Performing a calculation or procedure to generate products  
Understanding Constructing meaning with activities like classifying, 

summarizing, and comparing 
Remembering Recognizing or recalling definitions, facts, or lists from 

memory 
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The Revised Bloom’s Taxonomy for Educational Objectives: Cognitive Domain 

has been utilized as an analytic framework for coding dialogue in several studies (Figure 

2-3).  Hou (2011), who examined students’ asynchronous dialogue by coding forum 

messages, found that the interchanges included infrequent Apply, Evaluate, and Create 

cognitive domain examples. A similar examination of social media exchanges in an adult 

continuing education course also found that discourse revealing higher cognitive order 

thinking, such as Analyze, Evaluate, or Create, was also absent (Lin, Hou, Wang, & 

Chang, 2013). Likewise, Valcke et al (2009) reported that 95% of coded online 

transcripts fell into the first four levels of Revised Bloom’s Taxonomy for Educational 

Objectives: Cognitive Domain. Similarly, Meyer (2004) reported that 75% of the online 

interchanges in a graduate-level online education course were categorized in the first four 

levels of the taxonomy. Finally, Christian & Talanquer (2012b) reported that over 70% of 

the student dialogue they classified in their study of face-to-face self-initiated science 

study groups were lower cognitive order.  

 

Figure 2-3    Revised Bloom’s Taxonomy of Educational Objectives:  Cognitive Domain 
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CHAPTER 3. METHODOLOGY 

3.1 Research Design 

This study employed a mixed methods design, which is a process for “research in 

which the investigator collects and analyzes data, integrates the findings, and draws 

inferences using both qualitative and quantitative approaches or methods in a single 

study”(Tashakkori & Creswell, 2007, p. 4).  The rationale for combining qualitative and 

quantitative analyses into this study was that the integration of information from the two 

types of inquiry will provide more insights regarding both the content mastery of students 

and the experiences of students and peer leaders in the PLTL/cPLTL settings than either 

type of analysis could provide in isolation (Creswell, 2012; Jick, 1979).  Additionally, the 

comparing and contrasting of data obtained from various sources and data collection 

methods, called triangulation, increases the accuracy and reliability of findings (Creswell, 

2012, p. 259). 

Qualitative research is a means of understanding interpersonal interactions and 

“how people interpret their experiences” (Merriam, 2009) through the systematic analysis 

of observations, artifacts, and verbalizations. Although qualitative inquiry was originally 

developed by anthropologists and sociologists, this methodology is now widely utilized 

in psychology and education research (Creswell, 2012; Merriam, 2009; Mertens, 2010; 

Patton, 1990). As a qualitative researcher, I used an inductive approach to identify,
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analyze, and report themes which emerge from the data (Braun & Clarke, 2006). 

Quantitative research employs statistical analyses to identify the relationship between 

variables that have been defined to characterize participants’ characteristics (gender, 

ethnicity, test score) or attitudes (survey responses on a Likert scale) (Creswell, 2012). In 

contrast to the inductive approach of qualitative research, quantitative research is a 

deductive exercise that relies substantially on literature basis to justify “the need for the 

research problem” and suggest “potential purposes and research questions for the study” 

(Creswell, 2012, p. 13). 

This study employed a convergent parallel mixed methods design (Figure 3-1), a 

model in which I collected both qualitative and quantitative data at approximately the 

same time, performed the analyses of the two types of data independently, and, finally, 

integrated the information to develop an overall interpretation of the results of the study. 

Any contradictions in the information developed from the qualitative and quantitative 

analyses were presented with an explanation for which findings should be given greater 

weight in the interpretation phase (Creswell, 2014). 

 

Figure 3-1 Convergent parallel mixed methods study design
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3.2 Description of PLTL Implementation in First-Semester Organic Chemistry at the 

Institution 

At Indiana University-Purdue University Indianapolis (IUPUI), a research-

intensive Midwestern university, the organic chemistry lecture courses are a two-

semester series, enrolling approximately 400 students in the first-semester sections 

annually. The laboratory courses are independent of the lecture courses. Prior to 2010, the 

first-semester organic chemistry course was taught in a traditional lecture fashion, in 

which students attended three 50-minute of lecture presented by the course instructor 

without an accompanying recitation other supplementary instruction program. From 

Spring 2010 through Fall 2013, the first-semester lecture course was expanded to include 

one 75-minute PLTL workshop in addition to the two 75-minute lectures to per week. 

There was also optional help available for students from the course instructors and the 

Chemistry Resource Center. The multiple lecture sections each Fall were treated as a 

single course, having common workshop problem sets, lecture slides, and final exams. 

The problem sets for each PLTL workshop were collaboratively developed by the 

workshop coordinator and the lecturers. Two different textbooks were used by the 

institution in recent years:  Organic Chemistry by Carey (2002) from Fall 2008 through 

Fall 2011 and Organic Chemistry by Klein (2012) from Spring 2012 through Fall 2014. 

PLTL workshops were implemented in this institution’s first-semester organic 

chemistry course in 2010, although the recommended student-to-peer leader ratio was 

realized in 2011. The percentage of students attending in more than three-quarters of 

theavailable workshops per semester rose from 94% in Fall 2010 to 97% by Fall 2013 

(Figure 3-2), indicating robust student participation rate in the program. 
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Figure 3-2 Histogram of PLTL organic chemistry workshop series attendance 
 

Since implementing PLTL workshops in the course, the incidence of students 

earning a D, F, or withdrawing from the course (DFW rate) has dropped from nearly 30% 

to 10%  (Table 3-1). A Mann-Whitney U test indicated that there was statistically 

significant difference in the distribution of course grades (Figure 3-3) since implementing 

the PLTL workshops (p<0.05). Specifically, the frequencies of students earning C, D, or 

W grades have decreased, while the frequencies of A and B grades have increased.  The 

institution began utilizing American Chemical Society (ACS) First-Semester Organic 

Chemistry exams as final exams for the course in Fall 2009. ANCOVA analysis revealed 

that there was a statistically significant improvement in students’ ACS First-Semester 

Organic Chemistry Exam Z scores (versions 2006 and 2010) after PLTL workshops were 

implemented, regardless of gender or ethnicity (p<0.05, F = 8.31, df = 1), although the 

effect size was small (partial eta squared = 0.01). Since the course instructors have 
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utilized different styles of semester exams, dropped each students’ lowest semester exam 

from the course grade calculations, and employed different grade scales during the time 

period, the statistically significant improvement of students’ performance on the 

nationally-normed ACS First-Semester Organic Chemistry Exams is more compelling 

evidence of the academic impact of the PLTL program than evaluation of course grade 

differences, although both indicate a statistically positive impact due to the program.  

Table 3-1 Summary of DFW rates by semester 

 

 

 

Figure 3-3 Distribution of Organic Chemistry Course Grades with versus without PLTL 

(Fall semesters 2009-2014)

Semester DFW Rate N Comments
Fall 2008 29.7% 236
Fall 2009 19% 279
Fall 2010 15% 245
Fall 2011 16% 233
Fall 2012 15% 253
Fall 2013 11% 238

PLTL workshops with 8-10:1 student to peer leader ratio
PLTL workshops with 8-10:1 student to peer leader ratio; new textbook
PLTL workshops with 8-10:1 student to peer leader ratio

No ACS exam; no PLTL workshops
ACS exam; no PLTL workshops
PLTL workshops with 15:1 student to peer leader ratio
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3.3 Description of cPLTL Implementation in First-Semester Organic 

Chemistry 

By Fall 2013, the PLTL workshop program was considered a stable environment 

for both implementing cPLTL and performing a robust research study. Institutional 

support, including increased funding for peer leaders and longer classroom reservations, 

allowed the extension of PLTL workshop duration to 1 hour 50 minutes to align with the 

recommended PLTL model (Gafney & Varma-Nelson, 2008, p. 12) beginning in Spring 

2014.  Moreover, document cameras were purchased to enable the implementation and 

evaluation of organic chemistry cPLTL without incurring additional costs for students. 

The PLTL sections of the workshop series consisted of approximately 30 students, 

subdivided into three groups of 8-10 students, who were each guided by a trained 

undergraduate peer leader to work collaboratively on problem sets designed both to 

challenge the students’ conceptual understanding of the course content and to develop the 

problem-solving skills of the students. Meanwhile, the cPLTL sections of the workshop 

series consisted of approximately 8 students facilitated by a trained undergraduate peer 

leader to collaboratively solve problems, using the same workshop materials in an Adobe 

Connect virtual conference room. cPLTL students were trained to use the document 

cameras, optimize their computer settings, and navigate the components of the Adobe 

Connect software during Workshop Zero, a content-free workshop prior to the first 

organic chemistry workshop.  Since the emphasis was on problem-solving, no answer 

keys were provided to either PLTL nor cPLTL students (Gosser et al., 2001). On-time 
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preparedness of the students was encouraged through administration of multiple choice 

workshop preparedness quizzes during the first ten minutes of each PLTL/cPLTL 

workshop.  

 

3.4 Participants 

3.4.1 Students 

Approximately 400 undergraduate students were enrolled in the first-semester 

organic chemistry course during Spring 2014 and Fall 2014.  The students from both 

semesters were pooled as a single sample population because Chi Square analyses of 

Spring and Fall 2014 students’ gender, ethnicity, and previous chemistry GPA were not 

significantly different, although significantly more students over age 23 were enrolled in 

the spring semester (36% vs. 25%).  The subjects of the study included a subset of the 

population who enrolled in the comparison group workshop sections, four pairs of face-

to-face and online sections which were led by the same peer leader (1 pair of comparison 

groups for Spring 2014 and 3 pairs of comparison groups for Fall 2014). Subjects self-

selected into either a PLTL or a cPLTL section. Subjects’ demographic and previous 

chemistry course grades were provided by the university’s Information Management and 

Institutional Research (IMIR) Office via a secure online file transfer process, as approved 

by the Institutional Review Board, in order to ensure the confidentiality of the subjects. 

The PLTL comparison group subject population consisted of 40 students and featured the 

following demographic information: 35% were over 23 years old; 45% were female; 40% 

were from underrepresented minority groups; and mean previous chemistry GPA of 2.88. 

The cPLTL subject population consisted of 24 students and featured the following 
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demographic information: 38% were over 23 years old; 60% were female; 32% were 

from underrepresented minority groups; and mean previous chemistry GPA of 2.79. Chi 

Square analyses for each of the demographic characteristics indicated that the subject 

populations were comparable. The overall PLTL population’s demographics included: 

29% over 23 years old; 58% female; 32% underrepresented minorities; and mean 

previous chemistry GPA of 2.89. A maximum diversity sampling (Patton, 2002) 

approach was utilized for the selection of interviewees, considering gender and ethnicity.  

When I asked for volunteers to be interviewed, generally two students per peer leader per 

setting volunteered.  The total of 19 interviewees was consistent with Creswell’s 

suggested sample size for a grounded theory study (Creswell, 2002). I interviewed all 

participants during the week preceding the final exam in order for the students to have the 

maximum familiarity with the course material. 

 

3.4.2 Peer Leaders 

Peer leaders were students who had recently completed the first-semester organic 

chemistry lecture course successfully. The peer leaders were selected based on 

demonstration of good leadership, communication, and teamwork skills, 

recommendations from current peer leaders, and application essays which included a 

communicated desire  to help others learn organic chemistry. The peer leaders’ gender 

(52% male; 48% female) and ethnicity (63% Caucasian; 8% African American; 23% 

Asian; 5% Hispanic) consisted of a slightly higher proportion of female or 

underrepresented minority individuals than the overall IUPUI School of Science student 

demographics for 2010-2014 (56% male; 44% female; 76% Caucasian; 12% African 
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American; 4% Asian; 5% Hispanic) (Institutional Research Office). The peer leaders’ 

training, which is grounded in discipline-based education research, includes topics such 

as: the content emphasized by each week’s problem set; social constructivism; student-

centered learning techniques; methods to effectively facilitate collaborative problem-

solving; and strategies to increase student engagement. Each cPLTL peer leader was 

selected based on the additional criteria of a desire to lead in the online setting.  Pairs of 

sections, one face-to-face and one online, led by a single peer leader during a semester, 

henceforth dubbed “comparison groups”, were instituted in order to control for peer 

leader effect; there were four comparison groups: one comparison group in Spring 2014 

and three comparison groups in Fall 2014. All peer leaders earned a salary for their 

participation in the weekly training meeting and facilitating two workshop sessions per 

week. 
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3.5 Quantitative Data Collection and Analysis 

 

Figure 3-4 Quantitative data collection & analysis 
 

3.5.1 Quantitative Data Collection 

The quantitative data collection (Figure 3-4) consisted of student surveys 

administered to all students in the first-semester organic course during the semester, 

followed by the post-semester collection of student course grades, identifying data 

(gender, ethnicity, and previous chemistry GPA), an American Chemical Society (ACS) 

Organic Chemistry First-Semester Final Exam (version 2010) scores from the course 

instructors and the institution’s Information Management and Institutional Research 

Office upon approval of the Institutional Review Board. ACS First-Semester Organic 

Chemistry Exam (final exam) scores were converted to Z scores in order to compare 

results across exam versions (Chan & Bauer, 2015).  
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3.5.2 Variables in Quantitative Analysis 

Table 3-2 Variables included in quantitative analysis 

Independent Variables Dependent Variables 

Gender 
Ethnicity 
Previous chemistry GPA 
Setting  
Survey responses 

Organic Chemistry Course grade  
ACS organic chemistry final exam score 

  

The independent variables (Table 3-2) gender, ethnicity, and setting were 

assigned nominal values (Male = 0, Female = 1). Student’s survey responses and organic 

chemistry course grades were ordinal values, the first on a Likert scale and the second on 

a four-point grade scale. Previous chemistry grade point average (GPA) was a continuous 

variable that was calculated by averaging the numerical equivalent of students’ prior 

chemistry course letter grades on the standard four-point grade scale. Lastly, and 

American Chemical Society (ACS) first-semester organic chemistry final exam scores 

were continuous variables that were converted to Z scores since two versions of the ACS 

exam were utilized by the department during the years prior to PLTL implementation in 

the course through the study period (Chan & Bauer, 2015). 

 

3.5.3 Quantitative Data Analysis 

First, the DFW rate, and distribution of course grades were calculated for each 

study population as well as for the total population. Next, all quantitative data were 

collated in Excel spreadsheets, and then transferred to databases in Statistical Package for 

the Social Sciences (SPSS), version 22 for all statistical analyses.  Descriptive statistics 
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were calculated from the students’ survey responses, ethnicity, gender, previous 

chemistry course GPAs, and ACS final exam scores. Mann-Whitney U Tests were 

performed to compare both students’ survey responses, DFW rates, and course grade 

distributions from the two settings instead of t tests since the sample sizes were not large 

enough to be normally-distributed (Rosner & Grove, 1999). Then, the analysis of 

covariance (ANCOVA) assumptions (Table 3-3) (Lomax & Hahs-Vaughn, 2012) of 

independence, homogeneity of variance, normality, linearity, fixed independent variable, 

independence of the covariate and independent variable, covariate measured without 

error, and homogeneity of slopes were checked before performing the ANCOVA analysis 

to examine the relationship between ethnicity, gender, and setting with ACS final exam Z 

scores, controlling for previous chemistry GPA. 

 

Table 3-3 Assumptions and evidence to examine for a one-factor ANCOVA (Lomax & 
Hahs-Vaughn, 2012, pp. 22, 151) 

Assumption Evidence to Examine 

Independence Scatterplot of residuals by group; check students are not included in two 
workshop sections 

Homogeneity of 
variance  

Formal test of equal variances (Levene’s test) 

Normality Graphs of residuals by group; skewness and kurtosis of residuals 
Linearity Assess the best fit line of a scatterplot of dependent and independent 

variable (repeat for each independent variable) 
Fixed-effect Levels of the independent variable are set by the researcher  
Covariate and factor 
are independent 

One-way ANCOVA to confirm the two populations are not significantly 
different on the covariate (previous chemistry GPA) 

Covariate measured 
without error 

SPSS calculation of Cronbach’s alpha 

Homogeneity of 
slopes 

The slope of the regression line between the dependent variable and the 
covariate (previous chemistry GPA) is the same for each category of the 
independent variable (i.e. gender, ethnicity, setting). 
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3.5.4 Reliability & Validity of the Quantitative Data Collection & Analysis 

In order to affirm the reliability and validity of the student survey instrument, 

while minimizing test fatigue for the participants, I calculated Cronbach’s alpha as the 

reliability coefficient (Creswell, 2012; Mertens, 2010) as the means to “compare 

responses within a single administration of an instrument”  (Mertens, 2010, p. 382).  

Furthermore, the reliability and validity of the statistical analyses were fortified through 

the testing of relevant assumptions, determination of effect sizes, and use of appropriate 

follow-up tests (Lomax & Hahs-Vaughn, 2012). 

3.6 Qualitative Data Collection 

 

Figure 3-5 Stages of qualitative data collection & analysis 

 

During stage one of the qualitative data collection (Figure 3-4), I developed 

probes to assess students’ utilization of curved-arrow formalism. The four probes (Figure 

3-5) were designed to progress in difficulty as well as provide a diminishing level of 
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scaffolding from one question to the next.  For example, the first probe required students 

to draw curved-arrows to show the movement of electron density between atoms to 

describe resonance structures of a molecule.  The second probe required students to draw 

curved-arrows which would be consistent with the given intermediates of a peptide bond 

formation, a typical workshop problem that would seem particularly relevant for the large 

proportion of pre-professional students who enroll in first-semester organic chemistry. 

The third probe required students to identify a substitution reaction and draw the 

mechanism of the reaction. Lastly, the fourth probe required students to leverage their 

understanding of curved-arrow formalism to draw a plausible mechanism for an unknown 

reaction that was based on reactions that they had practiced in class and PLTL/cPLTL 

workshops. I discussed the probes with the course instructors and other subject matter 

experts. Based on their feedback, I modified the probes before administering them to 

first-semester organic chemistry students. Using a think-aloud protocol (Ericsson & 

Simon, 1984) as well as audio & video recording to capture what was being said as the 

student drew (Cooper, Corley, & Underwood, 2013; Harle & Towns, 2012; Linenberger 

& Bretz, 2012), I analyzed the pilot study subjects’ responses to assess the probes’ 

sensitivity to provide gradations of subject mastery of curved-arrow formalism 

components. Analysis of the pilot study subjects’ responses revealed a range of responses 

to each probe, so the probes were unchanged for the remaining student interviews of the 

study. 
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Figure 3-6  Curved-arrow formalism interview probes 

1. Using curved arrow formalism to express the movement of electrons, generate at least three resonance 
structures of pyrone. 
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During Spring and Fall 2014, subjects from the comparison groups were 

interviewed to share their PLTL/cPLTL experiences in addition to solving the four 

finalized probes (Figure 3-6), using a think-aloud protocol (Ericsson & Simon, 1984). 

The student interviews were audio & video-taped, then the dialogue was transcribed 

verbatim. I wrote detailed summaries of students’ responses to and interactions with the 

probes by analyzing the audiovisual data simultaneously with the subjects’ written 

responses to the probes. Keys for the four interview probes are provided in Figures 3-7 

through 3-10. 

O

O

O

O

O

O

O

O

O

O

O

O  

Figure 3-7 Key for interview probe number one 
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Figure 3-9 Key for interview probe number three 
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Figure 3-10 Key for interview probe number four 

  
During the second stage of the study, I collected weekly peer leader reflections 

with WIKI page in Oncourse, the online course management system, throughout each 

semester of the study.  Weekly reflection questions included: 

• Were there any quiz or workshop questions that seemed unclear to the students? 

• Which workshop question was easiest for the students to answer?  

• Which workshop question(s) were challenging for the students? Why? 

• What common misconceptions1 did you encounter? 

• How did you incorporate what you learned from the professional development 

article we discussed during the training meeting? What were the outcomes? 

During the last week of the semester, semi-structured interviews were conducted 

with both peer leaders to learn their perceptions about their experiences in the two 

settings at the end of each semester and students from the study comparison groups to 

                                                 
1 “Common misconceptions” refers to the content-specific misconceptions about which the peer leaders 
were informed during that week’s training meeting. 
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learn about their perceptions of their experiences in their setting. Audio recordings of 

student/peer leader interactions and directed field observations were obtained from 

comparison groups throughout the semester for triangulation purposes (3-4 observations 

per comparison group per semester). Lastly, audio recordings of workshop sessions and 

interviews were transcribed.  

 

3.6.1 Qualitative Data Analysis 

Debate exists in the literature regarding whether “grounded theory” and “thematic 

analysis” are distinct methodologies or merely different titles for the same process 

(Attride-Stirling, 2014; Braun & Clarke, 2006). Grounded theory, an inductive 

methodology developed by Glaser and Strauss (1967), is a process by which theoretical 

concepts and hypotheses “emerge” from the researcher’s review of the data, then the 

theories are grounded in the qualitative data, such as participant interview transcripts 

(Braun & Clarke, 2006; Richardson, 1999). Attride-Stirling (2014) suggests that the 

theoretical foundation for grounded theory can be traced to classical argumentation 

theory (Toulmin, 1958) in which the terms claim, warrant, and backing have been 

renamed as grounded theory’s concepts, categories, and propositions (Strauss & Corbin, 

1990). I would also draw the reader’s attention that the roots of Toulmin’s argumentation 

scheme are also reflected in the thematic network developed through thematic analysis: 

basic theme; organizing theme; and global theme (Attride-Stirling, 2014) (Figure 3-11). 
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Figure 3-11 Structure of a thematic network (Attride-Stirling, 2014, p. 388) 
 
 After the interviews were conducted, I utilized a six-phase approach to qualitative 

analysis (Table 3-2) described as thematic analysis by Braun & Clarke (2006), but 

aligned with the description of the grounded theory process utilized by Cooper, Corley, 

and Underwood (2013). After familiarizing with the complete qualitative data set, I 

generated initial codes for both workshop dynamics and curved-arrow formalism 

utilization by using open coding (Braun & Clarke, 2006; Strauss & Corbin, 1990). Codes 

were collated, reviewed, defined, and revised into basic themes and organizing themes in 

a constant comparison process (Attride-Stirling, 2014; Braun & Clarke, 2006; Strauss & 

Corbin, 1990). Furthermore, the student discourse in workshop transcripts were coded 

with Revised Bloom’s Taxonomy of Educational Objectives:  Cognitive Domain 

(Anderson & Krathwohl, 2001; Bloom, 1956) and Toulmin’s Argumentation Scheme 

(Toulmin, 1958). Likewise, the workshop transcripts and student interview transcripts 

were coded for emergent themes, Revised Bloom’s Taxonomy of Educational Objectives:  
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Cognitive Domain, and the curved-arrow formalism analytic framework by a second 

coder, an undergraduate research assistant. In the case of me coding a passage that the 

research assistant did not code initially, I provided the research assistant a spreadsheet of 

filename and line numbers of passages to consider. Then, the research assistant responded 

with identification of emergent theme, Revised Bloom’s Taxonomy of Educational 

Objectives:  Cognitive Domain, or curved-arrow formalism analytic framework 

categories that pertained to the given passages. Additionally, a third coder, a fifth year 

doctoral candidate with more than two decades of industry experience as a synthetic 

organic chemist, was asked to code both an interview transcript and artifacts for curved-

arrow formalism of a randomly-selected participant as well as a random workshop 

transcript for Revised Bloom’s Taxonomy of Educational Objectives:  Cognitive 

Domain. 

 

Table 3-4 Phases of thematic analysis (Braun & Clarke, 2006, p. 87) 

 Phase Description of the process 

1 Familiarizing yourself 
with your data 

Transcribing data (if necessary), reading and re-reading the data, 
noting initial ideas 

2 Generating initial codes Coding interesting features of the data in a systematic fashion 
across the entire data set, and then collating data relevant to each 
code 

3 Searching for themes Collating codes into potential themes 

4 Reviewing the themes Checking if all the themes work in relation to the coded extracts 
(Level 1) and the entire data set (Level 2), and then generating a 
thematic ‘map’ of the analysis 

5 Defining and naming 
themes 

Generating clear definitions and names for each theme 

6 Producing the report Selection of vivid, compelling extract examples, final analysis of 
selected extracts, relating back to the research questions and the 
literature, producing a scholarly report of the analysis 
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The frequencies of the workshop dynamics and curved-arrow formalism emergent 

theme analytic frameworks by setting were compared using Mann-Whitney U Tests, the 

nonparametric equivalent of t tests, to identify differences between the two settings. I 

selected compelling examples for analysis, relating them to the research questions and 

literature, in order to summarize the qualitative findings.  Finally, I compared and 

contrasted the Global and Organizing themes to the findings from the quantitative data 

analysis during the correlation and interpretation stages of this convergent parallel mixed 

methods research study. 

 

3.6.2 Reliability & Validity of the Qualitative Data Collection & Analysis 

Three processes were an integral part of this study to ensure its reliability and 

validity, including:  calculation of inter-rater reliability; triangulation, and member 

checking (Creswell, 2012; Jick, 1979; Mertens, 2010). Cohen’s Kappa was calculated for 

the coding of each of the analytic frameworks to measure inter-rater reliability between 

two coders (Finn & Campisi, 2015, p. 165), and then Light’s Kappa was calculated to 

assess the inter-rater reliability among three coders by calculating the average of the 

pairwise kappas since SPSS version 23 isn’t capable of calculating an inter-rater 

reliability statistic for three coders (Hallgren, 2012). The process of triangulation entailed 

corroborating evidence from different individuals (i.e. a student and a peer leader), types 

of data (i.e. observational field notes and interviews), and methods of data collection (i.e. 

peer leader reflections and interviews) to demonstrate the credibility of each proposed 
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theme. Similarly, member checking was performed during the interpretation of findings 

phase of the research study in order to provide students and peer leaders an opportunity to 

comment on both the accuracy of report and the fairness of interpretations.  

 

3.7 Advantages & Limitations of the Convergent Parallel Mixed Methods Design 

The strength of a convergent parallel mixed methods design is the combined 

advantages of the generalizability from the quantitative analysis and the information-rich 

description of setting and participant experiences from qualitative inquiry. The potential 

limitation of this research design were small sample sizes (Creswell, 2012). 

 

3.8 Research Permission & Ethical Considerations 

Ethical issues will be addressed at each phase of this research study. Before 

launching the full study, permission for conducting the research was obtained from the 

Institutional Review Board (IRB). The application for IRB approval included the 

following information:  principal investigator (Pratibha Varma-Nelson); Co-PI (me); 

affiliated research staff, such as a research assistant; project title and type; rationale for 

inclusion of students’ gender, ethnicity, and previous chemistry GPA; number of 

participants; criteria for participant inclusion; study information sheets for students and 

peer leaders; informed consent forms; semi-structured interview protocols; directed field 

observation protocol; student perception survey; descriptions of data collection protocols; 

and data management plan.  

During the qualitative data analysis phase of the research study, the six-phase 

thematic analysis process was employed to ensure thorough analysis of all data. Any 
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contrary findings were reported as well as discussed for implications to overall findings. 

Aliases were assigned to all participants to protect their identity for reporting purposes. 

Participants provided feedback to affirm the accuracy of their interview transcripts. 

Similarly, descriptive statistics, checking of assumptions, and appropriate statistical 

follow-up tests were performed and reported to ensure the reliability and validity of the 

quantitative analysis (Creswell, 2014; Ivankova, 2006). 

 

3.9 Role of the Researcher and Research Bias 

My role in this research project can be classified as a variation of “observer as 

participant”, as defined by Gold (1958) and Merriam (2009). According to Merriam 

(2009, p. 124): 

The researcher’s observer activities are known to the group; participation 

in the group is definitely secondary to the role of information gatherer.  

Using this method, the researcher may have access to many people and a 

wide range of information, but the level of information revealed is 

controlled by the group members being investigated. 

Gold proposed that the “observer as participant” role was appropriate for studies 

in which the observer would visit the setting only a single time, but I suggest that as an 

“observer as participant,” I was protected from “going native” (Gold, 1958, p. 221) 

despite several field observations of each section through both the performance of 

directed field observations and utilization of semi-structured interview protocols. Thus, I 

was an observer in the sense that I generated field notes during directed field observations 
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and interviews, while I performed as a participant in the sense that I was the interviewer 

during student and peer leader interviews. Furthermore, I was the coordinator of the 

PLTL workshop series in which the study occurred. My roles and responsibilities as a 

workshop coordinator included:  collaborative development of workshop problem sets; 

writing workshop preparedness quizzes; training peer leaders weekly in workshop 

content, collaborative learning techniques, and group facilitation skills; and statistical 

analyst of course grades, DFW rates, and ACS exam scores. My perspective was aligned 

with the ethnomethodological nature of the qualitative portion of this parallel convergent 

mixed methods research study (Bodner & Orgill, 2007, p. 180). 

 I minimized the possibility of bias through a two-fold approach suggested by 

Weiss (1994). Firstly, I interviewed participants from comparison groups until saturation, 

when no additional themes arose. Secondly, I highlighted and interpreted contradictory 

qualitative and quantitative findings, including the rationale if one type of data receives 

more weight. In addition, I prevented bias by analyzing grade information only after the 

student interviews are completed.  

 .
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CHAPTER 4. RESULTS 

4.1 Comparison of PLTL and cPLTL Students’ Performance Measures 

Four PLTL/cPLTL comparison groups, PLTL and cPLTL groups led by the same 

peer leader, were implemented in first-semester organic chemistry in 2014 in order for 

me to assess the effects of cPLTL in an organic chemistry course, since positive 

collaborative problem-solving behaviors and no statistically significant differences in 

student performances were reported in an evaluation of cPLTL implementation in a 

General Chemistry course at the same institution (Smith et al., 2014). Likewise, Mann-

Whitney U tests indicated that there were no statistically significant difference in the 

distribution of course grades (Figure 4-1).  

 

Figure 4-1 Distribution of course grades for PLTL and cPLTL comparison groups
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Mann-Whitney U tests indicated that there is no statistically significant difference 

in the performance of PLTL and cPLTL students on the ACS first-semester organic 

chemistry exam for PLTL and cPLTL students. Lastly, Chi Square analysis indicated 

there was no statistically significant difference in student attendance in workshops. 

Displaying course grades for the comparison groups in AB, C, and DFW categories 

revealed that the proportion of AB grades appears comparable for PLTL and cPLTL 

students, while there is notable shift in the proportion of C grades to DFW grades for 

cPLTL students as compared to their PLTL counterparts (Figure 4-2), which raises the 

concern that, assuming the characteristics of the students are the same, cPLTL students 

who earned a D, F, or W course grade could perhaps have earned a higher grade in the 

course if they had participated in PLTL.  

 

Figure 4-2 Distribution of course grades for PLTL and cPLTL comparison groups 
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4.2 Analysis of Students’ Experiences in PLTL and cPLTL Settings 

Fifty-two comparison group students (33 PLTL students; 19 cPLTL students; 

76% response rate overall) responded to a Likert-scale perception survey to communicate 

their perceptions of workshop dynamics. For questions 1-9, the students utilized a Likert-

scale range to report their perception of how much each type of activity benefitted their 

learning in the course (1 = contributed least through 5 = contributed most).  For questions 

10 & 11, the Likert-scale responses corresponded to how frequently throughout the 

semester the two activities occurred (1 = Never; 2 = Rarely; 3 = Sometimes; 4 = Almost 

Always; and 5 = Always).  For questions 12-18, the students utilized a Likert-scale range 

to report how important each parameter was on their workshop setting choice decision (1 

= contributed least through 5 = contributed most). Cronbach’s alpha, calculated in SPSS 

(version 22) as an assessment of the reliability of the student perception survey 

instrument, was computed to be 0.71, which is the appropriate level for a low stakes 

testing situation ( Cronbach, 1984; Cronbach, 1951). I employed the six-phase process 

described earlier to identify emergent themes from the interview transcripts (Figure 4-3).  
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Figure 4-3 Emergent themes from student and peer leader interviews 
 

Both PLTL and cPLTL students reported that the impact of peer leader and 

classmate discussions of concepts were important or very important to their learning of 

course content, although the mean Likert-scale responses were statistically higher 

(p<0.05) for PLTL students than their cPLTL counterparts (Table 4-1). As stated by one 

workshop student,  

He [my peer leader] put forth a lot of effort and you could tell he really 

cared about if we could understand the material. I really appreciated that. 

Similarly, another workshop student said,  

She [my peer leader] really know organic chemistry. Then, she makes it 

understandable… she’ll make metaphors. 
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Table 4-1 Student perception of workshop activities on their learning survey results  

 PLTL 
(N=33) 

cPLTL 
(N=19) 

 Mean (SD) Mean (SD) 
One-on-one discussion with the Peer Leader. 4.70* (0.64) 4.00* (1.29) 
Peer Leader speaking to my small group. 4.67 (0.65) 4.74 (0.65) 
One of my small group members explaining a concept 
to me. 

4.55* (0.71) 3.89* (0.88) 

Collaborating with my small group members. 4.61* (0.61) 4.05* (0.78) 
Explaining concepts to other members of my small 
group.  

4.61 (0.56) 4.32 (0.75) 

Discussing and answering the workshop problem set. 4.42 (0.87) 4.05 (1.18) 
The influence of your participation in the workshops on 
your organic chemistry problem-solving skills. 

4.27 (0.80) 4.11 (0.74) 

How frequently throughout the semester that you 
understood one or more of the workshop questions 
based on explanations from your small group members. 

4.00 (0.66) 3.63 (0.76) 

* p<0.05 

 

Interestingly, PLTL students were significantly more likely to perceive that their 

peer leader engaged in one-on-one discussion with them that impacted their learning of 

the course material (Table 4-1).  In an earlier general chemistry PLTL/cPLTL study 

(Smith et al., 2014), those peer leaders had interacted with PLTL students en masse 

instead of as individuals to check for understanding, while peer leaders checked 

individual cPLTL students for understanding.  In response to that study’s finding, these 

organic chemistry peer leaders were specifically trained throughout the semester to 

involve each PLTL and cPLTL student in conversations to confirm conceptual 

understanding.  Therefore, it is a surprising finding that the peer leaders were more likely 

to be involved in more one-on-one discussions with PLTL students without engaging in a 

comparable frequency of one-on-one discussions with cPLTL students since each peer 

leader led both PLTL and cPLTL sections. 
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PLTL students reported statistically higher perception of the workshop questions 

being more challenging than their cPLTL perceived (p<0.05). This inflated difficulty 

perception could be related to the lower rate of workshop preparedness (Table 4-3) 

observed in the face-to-face setting. Peer leaders reminded students in both settings to 

come to workshops prepared, i.e. having attempted all of the problems. Nevertheless, the 

screen-sharing feature of the cPLTL environment contributed to cPLTL students’ sense 

of enhanced accountability to be prepared for workshop. Isaac, who was a cPLTL student 

during the pilot study that became a peer leader for the full study, communicated a sense 

of shared responsibility for learning:  

You were just like, ‘I gotta do this because someone else might not know 

it or I might just have what we need to get through this problem and finish 

it up’. 

 

A different peer leader conveyed that a student had told her that she felt motivated 

to do her workshop problem set when she learned about the screen-sharing feature of 

cPLTL, “[because] it would be embarrassing if I blew up their screen and they didn’t 

have anything done”. Organic chemistry cPLTL student Kenneth, who was also a cPLTL 

peer leader in the general chemistry course, said: 

I felt like I was able to see other people’s work more than [in] regular 

PLTL. Like obviously when in normal PLTL you sit next to each other 

and … you look. But since I could look at four different people’s [work in 

cPLTL] and see how they went about it which was cool. 
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Table 4-2 Frequency of discourse revealing lack of workshop preparedness by setting 

PLTL 
N = 5 

cPLTL 
N = 2 

Mean 
(SD) 

Example Mean 
(SD) 

Example 

1.25 
(1.50) 

S4: I don’t know this whole 
backside attack thing. 
S1: Me either! 
S3: I’ve been studying for the 
test, so I haven’t done anything. 
S1: So this means it’s polar 
aprotic? 
S4: Okay. 
S1: So that means…ha-ha. 
S4: Let’s skip this. I don’t know 
how to do it. 
S1: Yeah, skip. 
S4: E2 reaction? What? I don’t 
even know what that is. 
S1: NaH? 
S4: What is that? 

0.50 
(0.56) 

S9: Did anyone do this? 
S1: I’ll be honest I didn’t. I’ve 
been working nights. I looked 
at it a little before class. 

 

Although the difference between the populations’ responses was not significantly 

different, PLTL students reported that they almost always understood one or more of the 

workshop questions based on explanations from their small group members, while 

cPLTL students reported an average Likert-scale response that corresponded with 

sometimes understanding workshop questions based on explanations from classmates.   

One of the peer leaders, Naji, conveyed in her end-of-semester interview that she 

felt like her online students were more dependent on her to progress through the problems 

than her face-to-face students, but other peer leaders did not suggest that trend. For 

example, Brody thought that his online students had more in-depth content discussions 

than his face-to-face students. Furthermore, Naji’s perception that cPLTL students were 
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more dependent on her may stem from her heightened sense of responsibility as a cyber 

peer leader than a face-to-face peer leader: 

I feel like I have to do more because I am just labeled that way [Host]. But 

that's so silly. But it's like a psychological thing. You feel like that when 

you see that [label in the web conference screen]. Then in face-to-face, I'm 

literally on their level. Same desk, same everything. Yeah. 

 

The impact of setting on peer leader Naji’s sense of responsibility in the online 

setting raises a unique research question for further investigation:  How does the online 

classroom environment influence teacher behavior?  K-12 teachers are taught during 

teacher preparation courses that the arrangement of furniture in the classroom 

environment influences student behavior, as revealed in the education literature (Ames, 

1992; Guardino & Fullerton, 2010; Haghighi & Jusan, 2012; Simmons, Hinton, 

Simmons, & Hinton, 2015).  Likewise, studies have demonstrated that teacher behavior is 

also influenced by the classroom environment (Duncanson, 2014; Manke, 1994). 

Namely, teachers’ encouragement of students to engage in creative, self-directed, 

collaborative learning, called P-time, occurs in more spacious classroom settings with 

mobile furniture (Duncanson, 2014).  cPLTL workshops often have extended time due to 

the lack of classroom scheduling constraints (Smith et al., 2014), so one would expect 

cPLTL peer leaders to naturally be more encouraging of students being self-directed and 

collaborative. Nevertheless, Naji was not affected by the online setting in that manner, 

but, instead, felt heightened responsibility to direct student learning in the cPLTL setting 

that she didn’t feel in the PLTL setting.   
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Table 4-3 Student perception of workshop preparedness survey results 

 PLTL 
(N=33) 

cPLTL 
(N=19) 

 Mean (SD) Mean (SD) 
Seeing from the preparedness quizzes what I didn’t 
understand yet. 

3.67 (1.32) 3.32 (1.29) 

How challenging the workshops problems are. 4.30* (0.95) 3.84* (0.77) 
How frequently throughout the semester that you 
attempted the workshop questions in advance of the 
workshop session 

3.88 (0.99) 3.84 (1.02) 

* p<0.05 

 

Both PLTL and cPLTL students perceived that the workshop preparedness 

quizzes were neutral in helpfulness as a means for them to identify content that they 

didn’t understand yet (Table 4-4), although the peer leaders were trained to ask if there 

were any unclear quiz questions and wrote the feedback in their weekly reflections.  This 

finding suggests that students had limited metacognitive skills and were unable to 

independently identify which concepts they didn’t understand.  

Another interesting finding from this section of the survey was that PLTL and 

cPLTL perceived that difficulty of the course significantly differently. An earlier PLTL 

statistics study (Curran et al., 2013) found that PLTL students perceived their statistics 

course to be significantly less difficult than the non-PLTL students had rated the course 

difficulty. Therefore, one may conclude that there is an additional cPLTL student 

perception that they can count on their classmates and peer leader to develop their 

understanding of course content even than PLTL students perceive. 

Students from both settings reported in the survey that they sometimes attempted 

the workshop problems in advance of their workshop sessions, although students were 
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reminded throughout the semester, both verbally as well as by course management 

system messages, by their peer leaders that is an expectation of the workshop series.  

I sent out an announcement the night before, telling my students they 

needed to attempt all the workshop problems. 

 

Additionally, face-to-face peer leaders occasionally reward students for attempting their 

workshop problem sets with donuts. 

Table 4-4 Student workshop setting choice survey results 

 PLTL 
(N=33) 

cPLTL 
(N=19) 

 Mean (SD) Mean (SD) 
Best fit my schedule 3.88 (1.47) 4.32 (1.25) 
My advisor recommended it 1.64 (1.45) 1.47 (1.12) 
Avoid the commute to campus  1.73*(1.55) 2.95* (1.84) 
Prefer learning online 1.39* (1.12) 2.42* (1.58) 
Prefer taking courses on campus 3.82* (1.69) 2.11* (1.37) 
Prefer face-to-face learning 4.45* (1.25) 3.16* (1.71) 
Do not have access to the internet at home 1.24 (1.09) 1.11 (0.74) 

* p<0.05 

 

PLTL and cPLTL students reported statistically different (p<0.05) rationale for 

workshop setting choice (Table 4-5):  cPLTL students preferred working online and 

avoiding the commute to campus, while PLTL students preferred to learn face-to-face 

even if they had to commute. For example, Kenneth said: 

I feel like I would be too hesitant to ask any questions if I have never met 

the person in person. 
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Debbie also emphasized the personal connection and ease of meeting in the same 

physical location: 

It’s kind of a different feel. I think that [this] setting is what works best for 

me. 

 

Finally, Veronica’s reason for her choice to enroll in the face-to-face setting suggested 

that some students have an aversion to working online: 

I like being with other students. Interacting through the computer is not 

my favorite. 

 

Matthew summed up the face-to-face students’ perspective in his interview: 

Matthew:  It’s a drive for me because I don’t have any other classes on Thursday. 

I’m coming down from [removed town name]. It’s a 45-minute drive. 

Interviewer: Just for PLTL? 

Matthew: I think it’s worth it. 

 

 Each of the face-to-face students interviewed for the study communicated that 

they would select face-to-face PLTL in future classes, too, due to a strong preference for 

interacting in person.  In contrast to their face-to-face counterparts, cPLTL students 

conveyed a variety of reasons for their selection of the online setting. Several cPLTL 

students conveyed that they chose to participate in cPLTL simply because the time best 

fit their schedule, rather than considering the workshop setting in their decision. 

Alternatively, Joyce was curious about the new PLTL approach: 
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I kind of just wanted to try it out. I wanted to see what it’s all about. 

Moreover, several students articulated that they relished the opportunity to stay home 

instead of commuting, a phenomenon previously described as “PLTL in pajamas” 

(Alberte, Cruz, Rodriguez, & Pitzer, 2013): 

I liked that I could be at home in the morning, which I don’t get to do that 

very often. Thursdays were the only mornings I was home home. 

 

I liked the flexibility of it. I could be at home in my pajamas and I could 

also be at school. That’s a flexibility only online classes can provide. 

 

I liked it and it’s hard sometimes to go to class that late in December on 

campus, but when you are at home it’s just easier to log in online and do 

it. 

 

Ashley stated that a classmate recruited her to cPLTL: 

She [my neighbor and friend] was like, “I'm in this online section you 

should get in it, too”. She was like, “you’ll really like it”...so that kind of 

urged me, too. 

 

Lastly, one student said that he selected cPLTL because the group size was slightly 

smaller.  
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4.3 Analysis of PLTL and cPLTL Students’ Workshop Discourse for Emergent 

Themes 

In addition to soliciting students’ perceptions of the workshop dynamics and 

benefits with a survey, workshop transcripts were coded for several variables, including:  

students’ emphasis on answer-checking versus collaborative problem-solving and student 

discourse which reveals a sense of community among themselves. Mann-Whitney U tests 

revealed no statistically significant difference by setting in the distribution of these 

coding categories across six weeks of one paired set of comparison group workshop 

transcripts from the Spring term and five weeks of three paired sets of comparison group 

workshop transcripts from the Fall term (41 total transcripts, since one week of PLTL 

was not recorded by one peer leader).   Likewise, the Kruskal-Wallis test, the 

nonparametric equivalent of analysis of variance (ANOVA), revealed that there is no 

significant difference in the distribution of answer-checking or problem-solving behavior 

discourse in the transcript sample set (Figure 4-4), nor sense of community based on peer 

leader (Table 4-5). 
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Figure 4-4 Distribution of discourse type in PLTL & cPLTL 
 

Table 4-5 Frequency of answer-checking discourse by setting 

PLTL 
N = 6 

cPLTL 
N = 16 

Mean 
(SD) 

Example Mean 
(SD) 

Example 

1.50 
(1.29) 

S2:  So, this is 4-chloro-2-ethyl, 
right? 
S3: Yeah, that’s what I did there. 
S2: Heptane? 
S3: Heptane. 

4.00 
(4.76) 

S8: What did you get? 
S3: I said C D A B. 
S8: Me too! Yay! 
S3: Yay! 

 

Although not statistically significant, the frequency of answer-checking behavior 

was higher in the online setting than the face-to-face setting (Table 4-5), which is a 

notable contrast to the general chemistry student behavior reported by Smith et al (Smith 

et al., 2014). Nevertheless, collaborative problem-solving was both comparable in the 

two settings as well as a far more frequent characterization of student interactions than 

answer-checking (Table 4-6).  Furthermore, the answer-checking rather than problem-
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solving behavior for students in both settings corresponded to the question type:  students 

compared answers before discussing their rationale for nomenclature and hybridization 

warm-up questions, but focused on the problem-solving process for problems in which 

they solved reactions or drew energy diagrams of substitution reactions. 

 

Table 4-6 Frequency of problem-solving discourse by setting 

PLTL 
N = 61 

cPLTL 
N = 62 

Mean 
(SD) 

Example Mean 
(SD) 

Example 

15.25 
(7.27) 

S2:  So, this is 4-chloro-2-ethyl, 
right? 
S3: Yeah, that’s what I did there. 
S2: Heptane? 
S3: Heptane. 

15.50 
(6.61) 

S1: This one is a lot like the last one we 
did. So let’s employ that logic. So the first 
thing we would do is play with the 
electrons, the lone pair electrons. Then the 
double bond, we would have to do a ring 
shift. Or no? 
S2: You can just move the dots and make 
a double bond and carbon is perfect. 
S1: AGREED. 
S2: So that’s one. Then there will be more 
resonance structures. 
S1: From here on out, we are just giving 
carbon, just moving that electron around 
the wheel, right? So now we are going to 
take that lone pair and make it into a 
double bond and then make this double 
bond onto that carbon. 
S2: Say that again and point. 
S1: None of that made sense because I’m 
talking that and this. Here I’ll zoom in a 
little. Would it make sense to take this 
charge and make a double bond? Move 
this. Put a negative charge on that? 
S2: Yeah, so they [the double bonds] 
would just be shifting counterclockwise 
[in the benzene ring]. 
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Table 4-7 Frequency of sense of community discourse by setting 

PLTL 
N = 4 

cPLTL 
N = 2 

Mean 
(SD) 

Example Mean 
(SD) 

Example 

1.00 
(0.82) 

PL: Hey, I don’t know if you guys 
already did this in the lecture. 
Maybe they did this on the first day. 
But maybe just sort of optional, put 
down contact information here for 
your group and like if you guys have 
questions you can text each other. I 
mean if you already have friends in 
the class and stuff…but I just think 
if you have contact with your 
recitation group it’s nice. 

0.50 
(1.00) 

S2: Anya, I’m going to bug you on 
Thursday and crank it out for the 
exam. 
PL: Are you going to come live or 
into the chat room? 
S2: Whatever is convenient for you.  
S3: It’s convenient for me to go to 
your live hours. 

 

Lastly, the face-to-face organic chemistry student dialogue revealed slightly 

higher incidence of students’ dialogue revealing a sense of community among themselves 

than the dialogue of the cPLTL students (Table 4-7), a finding which aligns with the 

phenomena reported by Smith et al (Smith et al., 2014). Likewise, student and peer leader 

interview comments at the end of each semester were aligned with the my analysis of 

workshop discourse.   Peer leader Kenneth said, “You can’t do social chatting online 

without someone noticing… because everyone hears every conversation.”    Similarly, 

peer leader Naji suggested that there is a greater sense of camaraderie among her face-to-

face students, while she said of her online students:  

I think it’s not that they are not polite and kind to each other. You know, 

like, they laugh at each other or whatever, but it’s like I would never 

image them being out of class [buddies]. 
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Peer leaders Isaac and Brody suggested that the greater emphasis on taking turns to talk 

in the online setting in order to avoid noise issues lead to a more formal interaction 

pattern.   

Table 4-8 Frequency of peer leader praise by setting 

PLTL 
N = 83 

cPLTL 
N = 126 

Mean 
(SD) 

Example Mean 
(SD) 

Example 

20.75 
(13.82) 

PL: Yeah, that’s a good way to 
think of it. Nice. 

31.50 
(15.78) 

PL: Sounds like a good 
thought process. That’s really 
good. 

  

Although not statistically significant, the peer leaders tended to praise students 

more frequently in the online setting than the face-to-face setting (Table 4-8). I suggest 

that the tendency to praise cyber students more than face-to-face students stems from 

peer leaders wishing to reward cyber student effort verbally since tangible gifts, such as 

donuts, are not possible in the virtual meeting room. 

Table 4-9 Frequency of mentoring discourse by setting 

PLTL 
N = 8 

cPLTL 
N = 7 

Mean 
(SD) 

Example Mean 
(SD) 

Example 

2.00 
(1.16) 

PL: Have you guys been doing 
the book problems? Do them. 
You need exposure and 
practice. It’s like everything 
you’ve done in the past two 
weeks, you need to review it 
and you need to look at it 
outside of class. Maybe on the 
weekend spend some time on it. 
You need to spend a lot of time 
on organic outside of recitation 
and lecture. 

1.75 
(1.50) 

PL: You need to do these for 
practice. You can’t go into the 
exam just from understanding. 
You have to practice. 
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Peer leaders displayed comparable mentoring behavior in both settings (Table 4-

9), although the PLTL students were more apt to discuss this aspect of peer leader 

behavior in their end-of-semester interviews than the cPLTL students. For example, the 

students reported that the peer leaders discussed study strategies with their students, 

shared helpful websites, and emphasized the importance of practicing problems, not just 

reading. For example, peer leader Naji said in her interview: 

We talked a lot about how they could study or how they should be 

studying or what they are doing or what they are not doing and what my 

suggestions were. Um, I just kept reiterating practice. 

 

Similarly, peer leader Brody delivered studying advice to students during one workshop 

session, based on Cook et al’s article (2013) that was discussed in the peer leader training 

meeting: 

The best study cycle is to preview before lecture so you know what he’s 

talking about. How do you even know what he’s talking about if you 

haven’t previewed? You want to review. Here’s where a lot of students get 

tripped up. They think that when they’re reading, that they’re studying. 

Nine times out of ten, students our age that think they are studying [but 

they] are just reviewing. Reading the book and going back to these slides 

is not studying, that’s reviewing. So you need to preview before lecture, 

attend lecture, review the same day. The next day go back through and 

spend some time…Go back and do the practice exams that they give to 

you. That’s studying. Going through the book and doing practice 
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problems, that’s studying. Reading the book is not studying. That’s just 

reviewing. Make sure that while you’re studying, that beforehand you 

review. When you’re actually studying, you’re practicing problems. 

 

Notably, his student, Keith, became a peer leader in the subsequent semester and 

reported in a peer leader training meeting that both his adoption of the study cycle 

described by Brody (Cook et al., 2013) and his inspiration to start fresh despite poor 

performance on the first exam because Brody believed he could succeed were crucial in 

his successful completion of the course. 

Table 4-10 Frequency of online resource use during workshops by setting 

PLTL 
N = 3 

cPLTL 
N = 6 

Mean 
(SD) 

Example Mean 
(SD) 

Example 

0.75 
(1.50) 

PL: Yeah, so what is a vocabulary 
word that means separation of a 
racemic mixture into its 
enantiomer components? 
S1: I don’t know what that 
means. 
S4: I kept reading it….I put 
“resolved”. 
S3: Resolution. I Googled it. 

1.50 
(1.00) 

S3: What is DBU? 
S8: That’s a great question. 
Let me Google that. 

 

Students from both settings conveyed that they utilized online resources during 

their weekly workshop preparation process. Although there wasn’t a statistically 

significant difference in the distribution of online resource use during the workshop 

sessions (Table 4-10), the cPLTL students were more likely to access online resources 

more frequently than their face-to-face counterparts, as also seen in the Smith et al study 

(Smith et al., 2014). Although students in the cPLTL setting could easily have shared 
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videos or other online materials with classmates in real time while participating in the 

Adobe Connect cPLTL environment, several students said in their end-of-semester 

interviews that they only shared links to resources because they didn’t realize that they 

could share the full resources. This gap in student understanding of the web conferencing 

environment’s capabilities should be rectified in future peer leader and student training. 

For example, peer leaders should guide students in information-gathering and website 

sharing activities during their pre-semester Workshop Zero event, where the students 

learn how to set up and optimize their equipment before the content discussions and 

collaborative problem-solving begin. 

 

4.4 Analysis of PLTL and cPLTL Students’ Workshop Discourse for Revised Bloom’s 

Taxonomy of Educational Objectives:  Cognitive Domain Categories 

Once the workshop discourse transcripts were analyzed using grounded theory by 

both the research assistant and me, the transcripts were coded, using Revised Bloom’s 

Taxonomy of Educational Objectives for the Cognitive Domain as the analytical 

framework (Anderson & Krathwohl, 2001; Bloom, 1956). Both I and my undergraduate 

research assistant used the Revised Bloom’s Taxonomy of Educational Objectives for the 

Cognitive Domain Action Verbs list (Anderson & Krathwohl, 2001) (Table 4-11) as a 

reference for consistent interpretation of the six cognitive domain categories after the I 

confirmed alignment of the action verbs with the original descriptions proposed for 

Bloom’s Taxonomy of Educational Objectives for the Cognitive Domain (Bloom, 1956).   
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Table 4-11 Excerpt from Revised Bloom’s Taxonomy of Educational Objectives:  

Cognitive Domain Action Verbs (Anderson & Krathwohl, 2001) 

 Remembering Understanding Applying Analyzing Evaluating Creating 
Verbs Define 

Label 
Recall 

Classify 
Explain 
Summarize 

Organize 
Solve 
Utilize 

Compare 
Contrast 
Conclude 

Criticize 
Deduce 
Defend 

Combine 
Develop 
Estimate 

 

I and my research assistant achieved nearly perfect agreement (Cohen’s Kappa = 

0.87) (Landis & Koch, 1977, p. 165). For further validation of the use of this analytic 

framework, an additional coder, a fifth year doctoral candidate with more than two 

decades of industry experience as a synthetic organic chemist, was asked to code a 

randomly-selected workshop transcript. His coding was in the range of “Substantial” 

agreement with the two original coders (Light’s Kappa =0.65) (Landis & Koch, 1977, p. 

165). Thereupon, I independently interpreted the frequencies of each category, 

triangulating with peer leader interview transcripts, student interview transcripts, and 

workshop observations for this dissertation. Although there was no statistically 

significant difference in the distribution of discourse categorized by the Revised Bloom’s 

Taxonomy for Cognitive Domains by setting (Figure 4-5), the I note that the students’ 

discourse most often was classified among the lower cognitive dimensions, which is 

aligned with the findings of previous studies (Christian & Talanquer, 2012b; Hou, 2011; 

Lin et al., 2013; Meyer, 2004; Valcke, De Wever, Zhu, & Deed, 2009). 
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Figure 4-5 Frequency of revised Bloom’s Taxonomy-classified discourse by setting 
 

Table 4-12 Frequency of discourse revealing Remembering by setting 

PLTL 
N = 101 

cPLTL 
N = 143 

Mean 
(SD) 

Example Mean 
(SD) 

Example 

25.25 
(6.99) 

S1: What is a strong and weak 
base? 
S3: Strong base is the 
conjugate of a weak acid. 

35.75 
(12.74) 

PL: What is an enantiomer? 
S6: Stereoisomer. 
S3: Non-superimposable. 
PL: Yes. Good Job. 

 

 I expected to observe a high frequency of discourse that revealed the students’ 

remembering facts since problem-solving in organic chemistry requires that the 

participant remember some basic concepts, such as valence of atoms and definitions of 
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concepts. While the distribution of Remembering discourse was not statistically 

significant for the transcripts in the sample (Table 4-13), the total frequency of such 

discourse was higher in the online setting. I suggest that this phenomenon may be 

attributed to the smaller view of classmate’s worksheets afforded in the online setting, so 

students verbally confirm baseline facts before solving problems. 

Table 4-13 Frequency of discourse revealing Understanding by setting 

PLTL 
N = 92 

cPLTL 
N = 120 

Mean 
(SD) 

Example Mean 
(SD) 

Example 

23.00 
(7.26) 

PL: Okay so what’s the second 
reason that these radicals are 
so stable? They are tertiary and 
stabilized by triple bonds. 
What else? 
S1: Because of resonance. 
PL: Perfect. Why do you say 
that? 
S1: I guess one of the pi bonds 
from the triple bond could 
cleave and form a double bond 
with one of the radicals, and 
then a radical would go on the 
nitrogen. 

30.00 
(7.96) 

I’m pretty sure DMSO is 
aprotic but everything else 
says SN1. So it’s a tertiary 
carbon and tosylate is a good 
leaving group but it’s in 
aprotic solvent. 

 

Similarly, the difference between the PLTL and cPLTL distributions of 

Understanding discourse (Table 4-14) was not statistically significant for the transcripts 

in the sample, but the total frequency of such discourse was higher in the online setting. I 

believe that this phenomenon of higher frequency of discourse related to explaining and 

summarizing in the cPLTL setting may be an indicator of the greater emphasis on turn-

taking in that setting, which one peer leader characterized as a more formal interaction 

style. In particular, I propose that students may be more deliberate to articulate their 
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problem-solving process step-by-step online, which is aligned with the observation 

reported in Smith et al (2014) study of student behavior in PLTL & cPLTL general 

chemistry workshops. The elevated frequency of Applying discourse in the cPLTL 

setting reinforces this proposition (Table 4-16). 

Table 4-14 Frequency of discourse revealing Applying by setting 

PLTL 
N = 124 

cPLTL 
N = 145 

Mean 
(SD) 

Example Mean 
(SD) 

Example 

31.00 
(2.94) 

S2: -SH is coming from the 
back. It’ll push this methyl 
forward. 
S1: Oh okay. 
S2: So that’ll change the dash 
to a wedge. 
S4: So this will attack this and 
it’ll flip. 
S2: Yeah. 

36.25 
(15.76) 

PL: How do we determine 
which hydrogen gets taken? 
S8: Well, so there’s only one 
right? Because alpha carbon is 
attached to tosylate. So the 
beta carbon is attached to 
hexane. That’s a tertiary 
carbon. So there’s only one 
hydrogen available. I think 
I’m still getting used to where 
to draw the arrows. Because 
after it takes the proton… 
S3: Does it just make a double 
bond as the OTs leaves? 
S8: Yeah. 
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Table 4-15 Frequency of discourse revealing Analyzing by setting 

PLTL 
N = 28 

cPLTL 
N = 28 

Mean 
(SD) 

Example Mean 
(SD) 

Example 

7.00 
(1.41) 

S3: Yeah. So when you donate 
a proton it’ll donate to a bad 
leaving group. You had 
hydrogen to it and it becomes 
H2O then it can break off by 
itself.  
S3: Hydrogen is attached to an 
electronegative…so for 
example this is a bad leaving 
group because of the OH. It 
can steal a proton from there to 
become a good leaving group. 
Polar protic [solvents] will be 
most likely in SN1 and polar 
aprotic will be SN2. If it’s 
primary or tertiary [substrate], 
then you already know which 
one it is. It’s just if you get 
past that point and don’t know 
if it’s SN1 or SN2. 

7.00 
(2.83) 

S2: Yeah, I think there’s a 
radical on each side. What do 
you think, David? 
S1: That makes sense to me. I 
was wondering if Brooke was 
trying to tell us that when the 
cleavage happens, they form 
the third bond …the two 
radicals form the third bond. 
But I could see them both 
having a radical on there, too. 
S2: Well, if there’s a radical 
on the chair, we didn’t start 
with a radical, so wouldn’t 
there be an extra electron? 
One electron is going onto the 
chair and one is going to the 
nitrogen, right? I don’t know. 
I could be wrong. 
S5: That’s why I thought the 
radical was on the chair. 

 

 The critical thinking which is the hallmark of Analyzing discourse was equally 

prevalent in both settings (Table 4-16), although the overall frequency of this higher 

order thinking pattern was markedly lower than the frequencies of lower order thinking 

discourse (Remembering, Understanding, and Applying). I suggest that this phenomena 

is a product of the lack of workshop preparedness noted in workshop discourse, peer 

leader reflections, and end-of-semester interviews. Recall, one peer leader had noted that 

students felt embarrassed in the cPLTL environment, for example, to have their document 
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camera view expanded when the worksheet was blank. This emphasis on completion 

could correspond with less attention on the quality of the work.  

 The trend of decreasing frequency of discourse relating to higher order thinking as 

one progresses up the Revised Bloom’s Taxonomy of Educational Objectives:  Cognitive 

Domain triangle from Remembering to Creating continued; only seven instances of 

discourse that revealed students performing conceptual activities that were aligned with 

Evaluating in the sample (Table 4-16), six of which occurred in the online setting, 

although the distribution of this discourse type was not statistically significant according 

to the Mann-Whitney U Test. No instances of discourse which revealed students’ 

performing cognitive tasks related to Creating were identified in either setting in the 

sample. 

Table 4-16 Frequency of discourse revealing Evaluating by setting 

PLTL 
N = 1 

cPLTL 
N = 6 

Mean 
(SD) 

Example Mean 
(SD) 

Example 

0.25 
(0.50) 

S4: I have a question. When you 
have these two things on your 
reaction arrow, right? One is the 
reagent and one’s the solvent. But 
how do you know when to use 
each one? 
PL: You can just use them 
anytime. They are all in the 
mixture together in lab.  
S1: I think she said sometimes the 
solvent gets used or part of the 
solvent gets used and then other 
times the solvent doesn’t actually 
get used. 
PL: I guess you just have to look 
at what will be a feasible reaction, 
what would occur. 
S4: See when I look at that, how 
do I know what really occurs? 

1.50 
(1.29) 

S1: I haven’t figured out the 
product yet, but I disagree 
with it being SN2. 
S6: Oh, I just kind of wrote 
that on the side. 
S1: Because it’s tertiary 
[substrate] and CN- is a strong 
nucleophile. 
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4.5 Analysis of Students’ Use of Curved-arrow Formalism 

4.5.1 PLTL Students 

4.5.1.1 Holly 

Holly was quick to volunteer to be interviewed about her PLTL experience and 

thoughts about reaction mechanisms. She belonged to a close-knit workshop group that 

was dedicated to making the most of each minute of the weekly workshop sessions. They 

smiled often and were noticeably energetic in their problem discussions during each of 

the workshop observations. In her own words, “We had this thing of nobody left behind. 

We wanted to make sure we all understood what was going on in the problem set.” 

Consequently, her group was focused on every member of the group understanding each 

problem’s concepts and solving each problem, whether their peer leader was interacting 

with them at that time or not. 

A forty-year-old African American student, she exuded pride and confidence 

when speaking, both in the workshop setting as well as during her interview. She 

performed slightly above average on the first exam of the semester, but below average on 

the subsequent two course exams and final exam that required use of curved-arrow 

formalism. Nevertheless, she had perfect attendance in the weekly PLTL workshops and 

moderately high workshop preparedness quiz grades. Her eraser-less pencil used in the 

end-of-semester interview reinforced my perception that she worked hard at a class that 

did not come easily to her. 
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Holly accomplished the generation of resonance structures for interview problem 

number one, reflecting that: 

Brody [my peer leader] told us when trying to come up with resonance 

structures that ‘you always make a bond, then break a bond,’ so I’ll start 

with these lone pairs… 

 

Moreover, she was meticulous about drawing in all lone pairs before indicating the 

relevant formal charge for each resonance structure. 

 Holly was more hesitant in her approach to interview problem two. She said, “I’m 

looking to see what’s different, so I know where to place arrows.”  For this problem, she 

draws arrows consistent with homolytic cleavage, rather than heterolytic cleavage, and 

doesn’t seem to realize that the arrows she drew wouldn’t lead to the indicated product. 

When asked how she knows which direction to draw arrows, Holly states: 

Does it matter which direction? I mean as long as they are all flowing in 

the same direction? 

 

Moments later, however, she corrects herself, saying: 

The tail [of the arrow] comes from the lone pairs and the head goes to 

form a bond. 

 

 Holly struggled to identify the reaction type or propose a mechanism for interview 

problem three. She said: 
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Hmmm… I’m going to say, elimination. It’s just a pure guess. I don’t 

know what the name of the reaction would be, but I believe the bromine 

would end up by itself and this [acetic acid] would end up attached to that 

[structure I]… This is where my creativity is going to come into play. 

 

 Holly confessed that she wasn’t certain of the role of sodium azide in the reaction, 

but indicated (R)-2-cyclopentylpropanoic acid since “there would be backside attack,” a 

characteristic of SN2 reaction mechanism. Holly’s depiction of fishhook arrows instead of 

double-headed arrows and illustration of products without drawing the mechanism to 

accomplish them continued during her effort on interview problem number four. Overall, 

Holly’s discourse revealed both a lack of ability to reason with the external representation 

of curved-arrow formalism as well as gaps in her conceptual knowledge. 

 

4.5.1.2 Katherine 

Katherine was a twenty-one-year-old Caucasian student, who was quiet and 

intense during workshop observations, was recommended as an interview candidate by 

her classmates. I had already noted that her workshop group members sought her 

explanations of problems whenever their peer leader was involved in conversation with 

other students. Katherine, mindful of this dynamic, had perfect workshop attendance and 

mentioned in the interview that she was diligent to prepare for workshops because she 

knew her classmates depended on her.  
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Katherine communicated that she chose the face-to-face workshop setting since 

she was repeating the course because she thought that the ability to turn the same paper or 

use a model kit would enhance explanations: 

I think you get a lot more interaction. I took an online class last semester 

and I’m taking one next semester that are all computer based. Which with 

those it makes more sense. With these, when you’re drawing things out, 

it’s easier for them to stop you or say look at it this way and actually 

physically turn the paper or do things that way is a little bit easier than 

trying to do it cyber. 

 

Indeed, Katherine noted in her interview that she appreciated that her peer leader brought 

a model kit, so the students could manipulate it individually while learning to draw 

Newman projections. 

Katherine earned a below average grade on the first exam of the semester, above 

the average on the second semester exam, and 54th percentile on the ACS final exam. She 

struggled to complete the first interview problem, largely because she did not always 

adhere to the octet rule. Eventually, she drew the correct sequence of curved-arrows, but 

neglected to indicate the formal charges. She communicated that she was finished 

working on the problem by saying, “Alright. Maybe. I don’t know.” For problem two, 

Katherine said, “I usually look at what changes between the two” and drew correct 

curved-arrows to proceed from step to step in the sequence, but not in the order that 

would indicate recognition of the sequence of events for the underlying physical 

phenomena. Similarly, her curved-arrow in the mechanism for interview problem three 
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indicated that the acidic proton of acetic acid abstracted bromine to produce hydrobromic 

acid, rather than bromine being the leaving group which eventually abstracts a proton 

from solvent. Thus, Katherine’s areas of difficulty from a C-R-M perspective were 

largely gaps in conceptual knowledge. 

 

4.5.1.3 Matthew 

Matthew was an African American student who exuded confidence and 

friendliness during the interview. He was noted as a particularly out-going student during 

the workshop observations, as well. Matthew described his weekly routine as reading the 

textbook and supplementary material on the same topic in advance of lecture, then 

answering the workshop problem sets in advance of his workshop sessions. He earned 

well above average on each of the semester exams, although only 54th percentile on the 

final exam. 

Before attempting the first interview problem, Matthew shared that he vividly 

recalled an incident at the beginning of the semester in which his peer leader helped 

students understand the meaning of a double-headed curved-arrow: 

So I remember he [my peer leader] had this white board…it was one of the 

girls early on in the semester and he had her, he was like, ‘just write out 

the problem.’ It was one of the acid ones. She really didn’t know how the 

electrons moved and what happens when a bond breaks, so…he replaced 

the bonds with two electrons. Then he was like, “If this goes away what 
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happens to this one? That’s where the lone pair comes from.” And it just 

clicked. She was like, “Oh I see it!” 

 Matthew articulated his process for determining resonance structures before 

drawing curved-arrows: 

Okay, resonance. Alright…the first thing I’m looking for is lone pairs, 

charge, and double bonds. And those are my starting points for drawing 

resonance structures. 

 

Then, he proceeded to draw a series of five resonance structures for interview problem 

one, stopping only when he had returned to the original structure, which he called the 

“home drawing.” He seemed to write with a flourish, so I commented on his apparent 

enjoyment:  

Interviewer: It looks like you enjoyed that. 

Matthew: I did. I may have spent too much time enjoying it, but yeah. 

Interviewer: No, not at all. Here’s the next one. [Pause] Do you practice 

mechanisms a lot? 

Matthew: I do. I have lots of fun with them. 

Interviewer: How do you practice them? 

Matthew: I just like drawing them and once I draw it out I like to go back 

and pick a random point and I’ll draw that structure and see where I can 

go from there. I can do maybe four or five in a row and I’ll pick a random 

one and then choose a random one in the mechanism and I’ll be like okay 
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what now? Sometimes the negative charge may or may not have been 

there. The lone pair may or may not be shown. 

Interviewer: Sure. 

Matthew: Sometimes you have to start from the double bond. It’s 

something that keeps me on my toes. 

 
 Matthew progressed through the next two interview problems with confidence 

and speed, then halted when he encountered the fourth interview problem, a problem 

constructed to draw from mechanistic reasoning instead of recollection of problems 

presented in the course. At that point, he drew several curved-arrows that moved toward, 

rather than from, high electron density areas. Although he recognized that reaction of an 

alkyne could cause the formation of a bromonium ion intermediate, he did not persist to 

solve the problem. I had the impression that perhaps he was very practiced at drawing the 

mechanisms, like a martial arts master meditates while moving through the motions of a 

Kata, but Matthew didn’t exhibit using curved-arrow formalism as a problem-solving 

process in which the relevance of concepts were connected to the graphical 

representations. Perhaps that is why his semester exam grades seemed mismatched to his 

final exam performance. 

 

4.5.1.4 Keith 

Keith, a nineteen-year-old Indian male, was a member of the same close-knit 

workshop group as Holly. I had noted his enthusiasm for discussion of problems during 

observations and he reinforced this perception during his interview: 
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Keith: I try to usually debate a problem. Even if I know I’m wrong, I’ll try 

to argue it, just to see. 

Interviewer: Just to see if they can defend the right answer? 

Keith: Yeah. 

Interviewer: That’s tricky. 

Keith: Then that way if a similar problem comes up on the exam, I’ll 

remember, ‘Oh I was arguing about that.’ 

 

Keith’s emphasis on having students and peers explain their rationale continued 

throughout the semester that he was a student in the course. He had perfect workshop 

attendance and earned scores well above the class average on all three semester exams. 

Furthermore, he utilized the study cycle recommended by his peer leader in addition to 

habitually arriving early for lectures and workshops to discuss problems with classmates. 

Keith continued his emphasis on the rationale for problem-solving as he 

completed the interview problem set. He carefully drew in all lone pairs, then drew 

curved-arrows to proceed from one resonance structure to the next until he had drawn 

four resonance structures, saying to himself, “Make a bond, break a bond.”  While 

working through interview problem two, he added notations for partial positive and 

partial negative charges for the relevant carbonyl group before drawing the correct 

curved-arrows for the amide bond formation mechanism. Simultaneously, Keith 

identifies the nucleophile and electrophile of the first step in the reaction without being 

prompted to do so, which revealed that he was indeed rationalizing the reaction, not  
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“decorating with arrows.” Likewise, he reasoned mechanistically to solve interview 

problems three and four, demonstrating a cohesive understanding of concept, mode, and 

representation. 

4.5.1.5 Debbie 

Debbie, a 28-year-old African American student with two children, was so soft-

spoken during her interview that I was concerned about recording quality.  Although 

Debbie had perfect workshop attendance, she exhibited an unusual combination of 

determination and indecisiveness during the workshops and interview:  she was 

determined to “do whatever necessary” to pass the course, often staying up at night to 

read the textbook and do the practice problems in the chapter after her children were 

asleep, but she was unsure how to solve more complex problems, like those featured in 

the workshop and interview. During the interview, Debbie pointed back and forth at 

compounds and seemed reluctant to write on the paper. During the interview, she 

described her dependence on her PLTL classmates when asked about her workshop 

preparation: 

I do normally go through and I do the ones that I know how to do and then 

I’ll just save the ones that I have a little confusion on or I don’t know how 

to start it or I don’t know how to work it for Friday [her workshop day] 

and then I’ll go through it with the whole group. 

 
I had noticed Debbie’s reluctance to offer her opinions about how to solve 

problems during the workshop observations, also, although her peer leader encouraged 

participation from all the students. Instead, Debbie leaned in to hear conversation, but 
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deferred to a pair of outspoken classmates whenever asked a question herself. For 

example:  

When I didn’t understand, they would always take the initiative to explain 

it if they understood it, but I really didn’t have to say much. I just look at it 

and I’m like, ‘”Okay I don’t know how to start this,” and someone would 

just jump in and say this is how you do this. 

 
 Debbie worked through the resonance interview problem slowly, being careful 

not to violate the octet rule and always drawing curved-arrows from areas of higher 

electron density to areas of lower electron density. However, she left a negative charge on 

the external oxygen and migrated a cation around the ring in her sequence of resonance 

structures. During interview problem two, Debbie confessed that she looks at what 

changes between reactants and products to know where to draw arrows rather than 

considering the nucleophilicity or electrophilicity of reaction components. Thus, she 

draws correct curved-arrows, but out of sequence with the physical phenomena. Her 

approach to interview problem three indicated that she memorized the criteria for 

determining which substitution reaction rather than reasoning through the mechanism by 

identifying nucleophile/electrophile or acid/base partners. Consequently, she decided that 

the reaction was an SN2 reaction without considering the solvent effect and drew 

azodicyclopentane with a wedge to indicate inversion of stereochemistry that is 

consistent with an SN2 reaction, but did not realize that she lost two carbons. Debbie did 

not attempt the fourth interview question because it exceeds her recalled reactions, 

saying: 
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There’s like a chart at the back of the book and this [alkyne] is in the 

center and it gives the different solvents that can be used and it shows the 

reaction that happens when you use it. But then my mind just draws a 

blank. 

 

Overall, Debbie’s discourse revealed that there were significant gaps in her 

conceptual knowledge and interpretation of the symbolism of organic chemistry that 

created a situation in which curved-arrow formalism provided little applicability in her 

problem-solving. 

 

4.5.1.6 Susan 

Susan, a nineteen-year-old Asian student, had nearly perfect workshop attendance 

and was engaged in conversation with her workshop group constantly during each 

observation, but I noted that she and her nearby classmates progressed through the 

workshop problems slowly, often asking their peer leader to tell them what to do to solve 

problems. Their peer leader was persistent, however, in asking leading questions, 

confirming understanding, then leaving them to make the final mental connections for 

problem-solving.  Susan, who seemed to depend on authority figures to distribute 

information rather than developing her own reasoning skills to rationalize whether she 

understood concepts, expressed that she did not appreciate the absence of answer keys for 

the workshop problem sets because:  
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…we could be teaching each other wrong throughout the entire semester 

and not know it. Then we’d keep missing those points on the exam[s]. 

 

Susan described her weekly study routine as “just going through the book and 

reading stuff,” rather than practicing problems or drawing reaction mechanisms. 

Consequently, Susan, who performed below average on two thirds of the semester exams 

and final exam, then struggled to write any curved-arrows for the problems discussed 

during her interview.  

Susan was unable to draw any reasonable resonance structures for interview 

problem one, saying, 

I know electrons form bonds and bonds have electrons that they release. I 

don’t know how to do it, though. 

 

She illustrated this lack of understanding of the physical phenomena being 

communicated by curved-arrows by drawing repetitive arrows to move electrons from the 

carbonyl oxygen of 2H-pyran-2-one onto the carbonyl carbon, without regard to the octet 

rule or indicating the resulting unreasonable formal charges. She drew non-specific 

curved-arrows for the first step of interview problem two, looking for new bond 

connections from the reactant to the first reaction intermediate to decide where to draw 

arrows. Next, she identified the abstraction of an amine proton by an internal hydroxyl 

group as a hydride shift. She said, 
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I’m so glad the final is multiple choice, ‘cause I can look at it and be like 

‘that one is right’, but I can’t draw arrows myself… You know, it [a 

curved-arrow] moves from an atom to a bond or a bond to an atom. It’s 

just hard choosing which is which. 

 

Susan recognized that interview problem three was a substitution reaction 

immediately and drew a table for SN1 and SN2 criteria (with the wrong solvent type in 

each category), but was unable to determine which reaction type was suggested by the 

problem because she couldn’t recall the headers of her memorized table. She said she 

studied by flashcards, rather than drawing mechanisms.  Susan drew a few hydrogen 

atoms on the reactant and product of interview problem four, but did not attempt to solve 

the problem. Instead, she said that she learned functional groups in high school and had 

the highest grade in her high school chemistry class, so she became a Chemistry major. 

Just as in high school, she studied for this course almost exclusively with flash cards.  

Her interview discourse suggested that she was an instrumental learner (Skemp, 1979) 

who was unable to relate concepts and modes of representations in a way that would 

allow her to reason mechanisms with curved-arrow formalism. 

 

4.5.1.7 Eli 

Eli, a 26-year-old Caucasian pre-professional student who returned to college 

after working for a few years, described that he read each chapter before the topics were 

covered in lecture, solved each of the textbooks problems, and attempted the workshop 
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problems in advance of the workshop each week. He thought the best way to learn was to 

explain concepts to others, so he was enthusiastic about his weekly workshop preparation 

as well as a bit sheepish in his interview that his peer leader, “…actually called me out 

one time to say, ‘Let's make sure that other people participate.’.” 

Eli performed well in the course, earning quite high grades on all three course 

exams as well as 97th percentile in the ACS first-semester organic chemistry exam. He 

exuded casual confidence during the interview, wearing a tie-dyed t-shirt and shorts as he 

worked through the interview problem set quickly and accurately. 

Eli drew resonance structures to solve interview problem one via three separate 

pathways. Although the curved-arrows were drawn accurately and in the correct 

sequence, he mentioned, “I’m trying to remember the other arrow pattern.”  That 

statement revealed that he had learned patterns, rather than rationalizing 

nucleophilicity/electrophilicity or acid/base partners to solve problems. Furthermore, Eli 

drew the correct arrows for interview problem two, but drew them in reversed order, 

which indicated a dependence on examining bond connection differences to determine 

where curved-arrows should be. Eli drew the correct products for interview problem three 

before writing the mechanism for the reaction, which made the interviewer wonder if he 

had reasoned the mechanism mentally before writing the products since a hydride shift 

would have occurred to obtain those products. He used a combination of reasoning and 

pattern recognition to solve problem four correctly, saying, “Oh! This looks like the 

alkene pattern for a halohydrin reaction.” Notably, he also sketched the key keto-enol  
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tautomerization, a behavior known to be the hallmark of good organic chemistry 

problem-solvers (Domin & Bodner, 2012). Thus, Eli’s interview discourse revealed a 

robust grasp of all three aspects of the C-R-M model. 

 

4.5.1.8 Veronica 

Veronica, a 20-year-old Caucasian student, wore clothing as neat and precise as 

her tiny handwriting during each of the workshop observations and her interview.  She 

worked all textbook problems in advance of attending the course lectures on related 

material, completed the workshop problem sets in advance of each PLTL workshop, and 

attended thirteen of fourteen PLTL workshops. Veronica, who wrote concept summaries 

for herself and prized the conversations with classmates and peer leaders during 

workshops, performed above average on all three course exams and 87th percentile on the 

ACS first-semester organic chemistry exam.  

Veronica meticulously drew in all lone pairs before proceeding to solve the 

resonance interview problem correctly.  Similarly, she drew in relevant lone pairs before 

drawing the curved-arrows to explain the mechanism of interview problem two. Although 

she looked at bond connection differences between intermediates prior to drawing the 

curved-arrows, she drew the arrows in the order that suggested that she understood the 

underlying physical phenomena.  Veronica identified the leaving group, nucleophile, 

substrate type, and solvent for interview problem three, then drew the correct mechanism 

prior to writing the racemic products. She reasoned through the majority of interview 

problem four correctly, but was unable to complete the problem because she neglected to 
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draw the double bond necessary for the keto-enol tautomerization step. Veronica 

appeared to struggle with the interaction between the concepts and mode of 

representation, curved-arrow formalism. 

 

4.5.1.9 Erin 

Erin, a 33-year-old Caucasian working single mother and student, described a 

weekly balancing act between attending classes, preparing for the weekly workshops, and 

caring for her external responsibilities. She described during the interview that she read 

the textbook and attempted the workshop problems in advance, but appreciated that she 

could count on her classmates to explain concepts to her during workshop, too. 

…it was just nice that you knew that, going in, that if I didn't know how to 

do this problem somebody else probably did and could explain it. 

 

Erin earned an average grade on the first course exam, slightly below average 

grades on the other two course exams, and 75th percentile on the ACS first-semester 

organic chemistry final exam.  Based on her course performance and description of her 

PLTL experience, Erin’s learning was benefitted from the social constructivist 

environment. 

Erin drew correct curved-arrows for the resonance structure interview problem, 

but neglected to assign correct formal charge to three structures. She drew several non-

specific or out of sequence curved-arrows for interview problem two. Erin rationalized: 

“Sometimes I have to go backwards to go forward,” to explain why she noted bond 
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attachment differences before drawing curved-arrows. For problem three, Erin rapidly 

drew the mechanism for an SN2 reaction and the resulting product without discussing the 

criteria that lead her to select that reaction. She drew a non-specific arrow and an arrow 

depicting electron-rich attack of an electron-rich center, the oxygen of water attacking the 

terminal end of the alkyne, for interview problem four.  Essentially, Erin’s interview 

discourse revealed a lack of meaning being portrayed with curved-arrow formalism. 

 

4.5.2 Cyber PLTL Students 

4.5.2.1 Blake 

Blake, a 19-year-old Caucasian student, pushed his grey knitted hat up halfway 

before starting to solve the interview problem set, suggesting that he was about to 

concentrate and didn’t want anything to obstruct his view. He displayed the same air of 

determination that I had noticed during workshop observations. Blake had been one of 

the more vocal, go-to problem solvers in his workshop section, who described that he 

read the textbook chapters if the content seemed challenging in lectures, but consistently 

completed the workshop problem sets in advance of workshops. Furthermore, he said that 

he didn’t meet his classmates to study for exams because he felt that activity would have 

taken away from both his own study time and attention to the study strategies he thought 

worked best for him. Thus, although Blake didn’t participate in study groups, his 

consistent thorough preparation and willingness to help others during the cPLTL 

workshops benefitted all of his cPLTL classmates. Like several of the interviewees, 

Blake said that he accessed online resources during his study time, but rarely during the 
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workshop. Blake earned well above average semester exam scores in addition to 97th 

percentile for the final exam.  

Blake was reluctant to start the first interview problem, stating that he didn’t see 

anything that would prompt the electrons to move, such as separation of charge in a 

starting structure. After that initial pause, he pushed π electrons from the ring in a manner 

that resulted in a negative charge on the external oxygen. From there, he adeptly drew a 

series of curved-arrows and resonance structures with the formal charges migrated 

around the ring. Although Blake looked at changes in bond connectivity before drawing 

curved-arrows in interview problem two, he drew appropriate curved-arrows in a rational 

sequence for each step of the amide bond formation. Furthermore, he identified the 

starting amine as a nucleophile and the hydronium ion as an acid while speaking during 

his problem-solving.  Blake approached interview problem three systematically; first, he 

identified the secondary substrate, azide as a good nucleophile, bromide as a good 

leaving group, and acetic acid as a polar protic solvent; second, he explained how the 

solvent would stabilize the leaving group; third, he drew the SN1 mechanism to generate 

(1-azidoethyl)cyclopentane. Although he neglected to include the likely hydride shift, the 

other components of the mechanism were drawn clearly and correctly. Finally, he 

provided a reasonable reaction mechanism to generate the desired product, although there 

were two common shortcuts included:  losing a proton without showing the base 

abstraction of that proton specifically and protonating the enol with H2SO4 by utilizing a 

non-specific arrow. Overall, he demonstrated skill both utilizing and interpreting 

electron-pushing formalism, revealing a robust development of curved-arrow formalism 

understanding from the C-R-M perspective. 
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4.5.2.2 Kayla 

Kayla, a 25-year-old Caucasian student, had razor-sharp posture during each 

workshop observation as well as her interview. This disciplined pre-professional student 

had her work, study, and fitness routine scheduled with almost military precision. She 

valued the way her peer leader provided guidance rather than answers when her group 

struggled with a problem: 

She’s great at jumping in and helping us work through it. She doesn’t 

directly give the answer. She helps us as a group kind of get through the 

problems that we collectively are kind of like, “We don’t know what to 

do.”   

 
Kayla described moderate, but consistent preparation for the workshops, and 

earned slightly above average grades on all assessments for the course. During the 

interview, she gestured the movement of electrons before drawing any curved-arrows. 

Several times, Kayla scribbling out nearly-complete answers to the first interview 

problem, when denoting the formal charge would have yielded a correct answer. Her 

behavior was interpreted as tentativeness with regard to her ability to correctly draw 

curved-arrows. For the second interview problem, Kayla looked for bond attachment 

differences before drawing curved-arrows to indicate the movements of electrons 

responsible for each step of the amide bond formation sequence. This trend of predicting 

products of reactions without drawing the curved-arrows to indicate her rationale 

continued for the third and fourth interview problems. Furthermore, she suggested a 

vinylic cation intermediate and the production of hydroxide ion in the acidic milieu of 
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reaction four. These actions suggest that curved-arrow formalism is disconnected from a 

clear conception of the underlying physical phenomena, which corresponds to disconnect 

between mode and reasoning wherein Kayla wanted to draw curved-arrows precisely, but 

didn’t understand the related concepts sufficiently.  

 

4.5.2.3 Ashley 

Ashley, a 20-year-old Caucasian student, was effusively friendly and wore blue 

nail polish and a floral dress to the interview. Her description that she worked on the 

workshop problems “here and there” from the time they were available each week until 

her workshop time and often went with questions about how to solve the problems was 

consistent with the my observations of her interactions with her classmates. She said that 

she utilized Google searches and YouTube videos to try to understand the course content, 

but found organic chemistry to be the hardest course in her undergraduate experience. For 

example, she described that both the stretch from reading the textbook to answering 

workshop problems and extending workshop concepts to answer exam questions were 

challenging. Furthermore, she was frustrated that she found the material so challenging 

since she did well in her general chemistry course. Although the interview occurred three 

days prior to the final exam, Ashley had already decided to retake the course, likely due 

to her below average performance on all three semester exams. 

Ashley drew repetitive arrows during the generation of two of the resonance 

structures for interview problem one in addition to neglecting to denote formal charges 

for three separate structures. She looked at bond attachment differences between starting 
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materials and intermediates before drawing curved-arrows to depict the movement of 

electrons for the second interview problem, although one of her arrows was non-specific 

and another showed the amine abstracting a proton from the carboxylic acid instead of 

attacking the carbonyl carbon from the starting material, not noticing that these arrows 

wouldn’t result in the next intermediate. When faced with interview problem three, 

Ashley said, “This is what I struggled most with,” referring to figuring out products from 

reactants and conditions. Her comment revealed that she was attempting to memorize 

reaction conditions to resulting products instead of using mechanistic reasoning to solve 

organic chemistry problems. Ashley spent seven minutes looking at interview problem 

four without writing anything, suggesting a critical gap in conceptual understanding 

needed for solving organic chemistry problems. 

 

4.5.2.4 Thomas 

Thomas, a 28-year-old Caucasian student, was quick to mention that he worked 

30 hours per week during the semester and commuted to school, almost as if he was 

apologizing in advance for his limited preparedness. Further, he said that he studied for 

his classes on weekends, when he didn’t work, and only looked over the weekly 

workshop problem sets immediately prior to workshops. Although he first described his 

group of classmates as working collaboratively to solve workshop problems, he revealed 

later in the interview: 
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We’d have a question that she [our peer leader] hadn’t addressed yet. So 

then we’d have to put that one on hold and move to the next one. 

Sometimes you get to the last one and we don’t know what to do so we 

just have to wait. 

 
This waiting for peer leader when faced with a challenge, rather than accessing 

alternative resources or brainstorming, was observed during workshops, also. 

Nevertheless, his peer leader encouraged students to brainstorm aloud when she was 

present. Although Thomas mentioned that he habitually accessed online resources, such 

as ChemWiki, YouTube, or Google, outside of the workshop, he did not access or share 

those resources during workshops. Thomas earned below average semester exam scores 

and 4th percentile on the ACS first-semester organic chemistry final exam. 

 Thomas exhibited incorrect electron-pushing formalism from the first interview 

problem, including neglecting to draw formal charges, drawing intermediates that were 

not suggested by the curved-arrows drawn, and an instance of double arrows to move the 

same pair of electrons.  After drawing three resonance structures, he confessed, “I always 

have trouble drawing all of them. It feels like I’m drawing five but I’m actually drawing 

two,” then ceased trying to solve that problem. For interview problem two, Thomas drew 

a curved-arrow to denote nucleophilic attack of the amine on the relevant carbonyl 

carbon, then erased that correct answer to draw a curved line (without arrowhead to 

designate direction) between the amine’s lone pair electrons to the carbonyl oxygen of 

the starting material. He continued to suggest implausible electron pushing for the 

remainder of interview problems two and three, in addition to exhibiting difficulty 
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drawing a plausible Lewis structure for sodium azide. Thomas proposed the key enol 

intermediate that would transform to the product of interview problem four, but was 

unable to sketch even part of the mechanism. Thus, Thomas seemed to struggle with the 

C-M portion of the C-R-M model for reasoning with curved-arrow formalism. 

 

4.5.2.5 Joyce 

Joyce, a 31-year-old working student, expressed that she was busy with both work 

and volunteer efforts outside the classroom.  She exhibited a dependence on her peer 

leader during observations that suggested minimal pre-workshop preparation. Likewise, 

Joyce said that her small group would wait for their peer leader to come back to them to 

provide guidance whenever they were involved in learning activities that divided the 

cPLTL group of seven students. She earned average semester exam scores and 54th 

percentile on the final exam. 

Joyce was detail-oriented in her depiction of curved-arrows, stating in the 

interview, “The tail has to be on the electrons that are moving.” She was also meticulous 

when drawing double-headed arrows between her resonance structures for interview 

problem one, yet didn’t realize that the curved-arrows drawn to produce her final 

resonance structure didn’t lead to the final resonance structure that she drew.  Joyce 

struggled to draw appropriate curved-arrows that would lead to the provided 

intermediates for interview problem two, although her verbal rationale for the curved-

arrows sounded reasonable, suggesting poor integration of the mode and concept aspects 

of curved-arrow formalism understanding. She stated, “Oh, gosh.  Mechanisms are hard.” 
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Joyce further illustrated how challenging mechanistic thinking was for her with her 

handling of interview question three; she was able to identify the bromide leaving group, 

classify the substrate as secondary, identify the solvent as protic, and classify the reaction 

as an SN1 reaction. However, she used two curved-arrows to communicate the hydride 

shift and mysteriously generated 1-ethylcyclopentan-1-ol as the final product, while 

saying aloud, “Should it be Markovnikov or anti-Markovnikov addition?” although these 

are terms that are not applicable to substitution reactions. Similarly, Joyce’s proposed 

mechanism for interview problem four also included molecular transformations not 

suggested by the curved-arrows drawn, suggesting a gap in the interrelationship between 

concept and external representation. 

 

4.5.2.6 Christopher 

Christopher, a 21-year-old Caucasian student, removed his sweatshirt in order to 

wear only the cooler long-sleeved t-shirt while solving problems during the interview. He 

appeared to be nervous and unsure during both the interview as well as the workshop 

observations during the semester. Citing part-time work as the reason, he stated that he 

habitually gave the workshop problem sets only a quick glance to identify topics covered 

before participating in the weekly workshop sessions. Christopher, who earned below 

average semester and final exam scores, did not mention reading the textbook or 

practicing problems as being part of his weekly routine. Instead, he stated that he looked 

up information on Google sometimes. I noted that Christopher seemed to depend heavily 

on his peer leader and classmates to explain concepts to him during workshops. 
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Throughout the first interview problem, Christopher drew unrealistic electron-

pushing arrows, resonance structures that were not the product of the arrows shown in the 

previous step, and structures missing formal charges. The salient feature of curved-

arrows, according to him, was that “the electrons move in one direction.” He continued to 

draw a mixture of curved-arrows going from high electron density to low electron density 

and curved-arrows going from low electron density to high electron density throughout 

his proposed mechanism for interview problem two. Additionally, he repeatedly 

identified protons as hydrides and drew arrows that didn’t explain the generation of the 

given intermediates. Christopher identified interview problem three as an SN1 reaction, 

but showed the mechanism and product of an SN2 reaction. Finally, he drew a pair of 

curved-arrows as the proposed mechanism for interview question four, not recognizing 

that the arrows drawn wouldn’t lead to the given product. Therefore, Christopher’s 

responses in the interview suggest that he had a gap in his understanding of the interplay 

between concepts and the external representations of the concepts (mode). 

 

4.5.2.7 Kenneth 

Kenneth, a 20-year-old Caucasian student, had an exuberant personality both 

during the workshop observations and his interview at the send of the semester. His 

perspective was particularly interesting because he had participated in general chemistry 

PLTL as a student, then selected the cPLTL setting to both be a peer leader for general 

chemistry and be a student for organic chemistry. Therefore, he was excited to offer his  
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perceptions about the differences between PLTL and cPLTL experiences. First, Kenneth 

appreciated the opportunity to benefit more from classmates’ questions in the online 

setting: 

What was really cool was when someone asked a question that I hadn’t 

thought of myself. I would hear [peer leader] Brody’s explanation for it. 

Whereas if someone asked a question I wouldn’t have thought to ask 

myself in a face-to-face workshop, I don’t get that explanation as well. I 

could just pause and go look at their paper and be like, “Oh that’s 

interesting I hadn’t thought of that.” 

 
Furthermore, he thought that the cPLTL setup made it easier to gain four or five 

classmates’ perspectives on how to do each problem, whereas he would only have seen 

one or two nearest neighbors’ worksheets in the face-to-face setting. 

 Kenneth did not have a structured chemistry routine, so he had not attempted the 

workshop problem set in advance of the workshop for the majority of the semester. 

Instead, he depended on the lecture presentation, tips from his workshop peer leader, 

Khan Academy videos, and interactive discussions with his workshop group to 

understand the workshop problems. For example, he thought his peer leader’s reference 

to a popular song, “All About the Bass” (Kadish & Trainor, 2015), reminded him to 

always look for the Brønsted-Lowry base or nucleophile in each reaction to determine 

what to do. Likewise, he remembered the directions for absolute configuration by 

thinking of how to turn a steering wheel, not refer to the direction of hand movement on 

analog clocks. Kenneth earned average semester and final exam grades. 
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 Kenneth commenced solving interview problem one by quoting his peer leader, 

“Brody has always said, ‘Make a bond, you break a bond.’” He drew curved-arrows 

precisely and confidently, moving lone pair on electrons to for a double bond, followed b 

directing former carbonyl electrons to be an additional lone pair on the second oxygen of 

the molecule. He continued to draw resonance structures until he had returned to the 

original structure, saying, “Brody says to go around until we get back to the start.”  

Kenneth’s emphasis on the suggestions of his peer leader, rather than his instructor or 

textbook, implied that much of his learning occurred during the workshop. Kenneth 

repeated the “make a bond, break a bond” heuristic several more times, such as while he 

was solving the second interview problem. He admitted, “Make a bond, break a bond. I 

say that 100 times.” When faced with interview problem three, Kenneth classified the 

substrate and identified the solvent, then predicted the product before drawing the 

mechanism, although his proposition of the correct product revealed that he had 

envisioned the appropriate SN1 mechanism. While drawing, he discussed the fitness of 

the leaving group, classified the resulting carbocation, said that a hydride shift occurred 

to produce a more stable carbocation, drew the nucleophilic attack, and offered to draw 

both dash and wedge representations of the product “since the carbocation is planar.” 

Although Kenneth was adept at illustrating the movement of electrons to transition from 

one resonance structure to the next and to solve a substitution problem, he was unable to 

solve the fourth interview problem. He attempted the problem with a retrosynthetic 

approach, but neglected to draw any curved-arrows for the retrosynthetic attempt. Next, 

he re-grouped to try the problem from the forward direction, but stopped working on the 
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problem once he had generated the bromonium ion intermediate. Thus, Kenneth’s 

interview discourse suggested that the area of continued development for him from the 

perspective of the C-R-M model was reasoning with curved-arrows. 

 

4.5.2.8 Jenae 

Jenae, a 26-year-old African American student, wore creative, color-coordinated 

accessories during the interview. The missing buttons on each coat cuff, however, 

suggested a lack of attention to functional details. Similarly, I noticed immediately that 

Jenae drew the second line of double bonds like punctuation in the middle rather than 

extending from one atom to the next.  

Jenae revealed early in the interview that she was frustrated by the difficulty of 

the course. 

Jenae: I liked 105 and 106 [the two semester sequence for general 

chemistry], but organic chemistry I can’t get. 

Interviewer: Why not? 

Jenae: I guess some people like chemistry and some like bio, I guess. 

Interviewer: I was just curious if there was something about it you realized 

you didn’t like. 

Jenae: I don’t know maybe I like just learning and memorizing and 

spitting it out. But this one you had to do sort of like go beyond and 

analyze it. I don’t have a love for chemistry. 
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Jenae described her weekly workshop routine as attempting the problems, then 

meeting with her classmates during the workshop to compare answers. If there were 

lingering questions, she and her group of classmates would wait to ask their peer leader to 

explain how to do the problem rather than try to employ mechanistic reasoning or access 

online resources. Although she performed well above average on two of the semester 

exams, she earned 41st percentile on the ACS first-semester organic chemistry final exam. 

Jenae attempted the first interview problem three times, scribbling out early 

attempts and requesting a fresh copy of the problem set to try again. Each time, she drew 

a reasonable first arrow, but neglected to draw a second curved-arrow to prevent the octet 

violations of carbon or oxygen.  She confessed, “I’m getting confused because I keep 

violating this oxygen.” Nevertheless, she circled three unreasonable structures as her 

responses to the problem. When faced with interview problem two, she stated: 

So for this one I’m going to look at this first product together. Look at the 

products and the reactant and see how they are connecting to each other. 

 

After this pronouncement, Jenae tapped the reactant’s carbonyl group several 

times while pausing to think. Then, she drew a curved-arrow from the carbonyl’s oxygen 

to the double bond of the same carbonyl, followed by an arrow to denote the hydroxyl 

group of the carboxylic acid would leave with its electrons. Next, she stated that the 

hydronium would come in and attack, so she drew a double-protonated carboxylic acid 

with inadequate Lewis charge. Her proposal of unrealistic mechanisms continued 

throughout interview problem two. Jenae correctly identified the first step of interview 

problem three’s substitution reaction, but drew 2-cyclopentyl-2λ5-propane-2,2-diol as the 
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final product without providing mechanistic reasoning or noticing the five bonds to 

carbon in the side chain. She violated the octet rule, incorrectly referred to an action as a 

hydride shift, suggested generation of hydroxide in an acidic medium, and twice drew 

structures not resulting from the curved-arrows drawn during her proposed “mechanism” 

for interview problem four, suggesting a lack of understanding between the concepts and 

the external representations of the concepts. 

 

4.5.2.9 Isaac 

Isaac, a 24-year-old Caucasian student, was excited to talk about his cPLTL 

experiences during the interview. He smiled a lot as he described switching from a PLTL 

workshop section to a cPLTL workshop section early in the semester to take advantage of 

what he perceived to be the more focused atmosphere: 

…it seemed like in the in class version, if someone wanted to explain what 

they’re doing, they would have a white board or would be writing on a 

piece of paper… there was some sort of, like, level of obscurity for me just 

because of, like, the classroom setting and other things going on and on.  

The cPLTL, it was just, like, there’s this one camera and everyone’s 

getting the same feed and it just seemed very, very focused for watching 

people walk through things -- more so than in person. So that was really 

helpful. 
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This pre-professional student had nearly perfect workshop attendance and was 

noted as a prepared and vocal student in his workshop group during all observations. He 

described his weekly routine as reading the chapters in advance of lecture and working 

through all the problems in the book in addition to working on the workshop problems in 

advance of the weekly workshops. Additionally, he found tests on the internet to practice 

concepts and read supplementary resources, such as “Organic Chemistry as a Second 

Language.” Isaac revealed during the interview that he both wrote summaries of his 

understanding of concepts for personal review prior to   exams and verbally recapitulated 

the learning from workshop problems before the group moved on to the next problem. He 

earned the second highest grades in class on the semester exams and 100th percentile on 

the ACS first-semester organic chemistry final exam. 

Isaac demonstrated adeptness with each of the components of the curved-arrow 

formalism, content, mode, and reasoning, to work through the first two interview 

problems in less than ten minutes, even identifying the nucleophile in the first step of the 

second problem without prompting. Although he noted bond attachment differences 

before drawing curved-arrows, he drew the arrows in the sequence that would reflect the 

logical physical progression in all but one occasion.  He classified the substrate, 

nucleophile, and solvent before identifying interview problem three as an SN1 reaction 

and drawing the correct mechanism. Likewise, he worked through the fourth interview 

problem mechanistically after drawing a sketch of a key intermediate, which has been 

noted in the literature to be a characteristic of successful organic chemistry problem-  
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solving (Domin & Bodner, 2012). He described during the interview that he habitually 

attempted workshop problems using mechanistic reasoning before looking in his textbook 

for the reaction type: 

I kind of just start to doodle it out and then go back and usually see if 

those are plausible things that could happen. 

 

4.5.2.10 Andrew 

Andrew, a 27-year-old Caucasian student, left his leather jacket zipped up all the 

way during the interview, suggesting trepidation to share his thoughts. Indeed, his 

demeanor was also shy during the interview, although I would only have characterized 

his deportment as soft-spoken, not necessarily shy, during workshop observations. 

Andrew described his weekly organic chemistry studying routine as spreading textbook 

reading, textbook problem-solving, viewing Khan Academy videos or the Mastering 

Organic Chemistry blog, and working through the workshop problems sets in advance of 

each cPLTL workshop. Although accessing online resources was a regular part of his 

study habits, he said he only shared a link to a resource once during the workshops. 

Though Andrew described consistent preparation for workshops and earned above 

average semester and final exam scores, he stated in the interview that he wished the 

answers to workshop problems had been provided.  

Andrew drew all of the appropriate curved-arrows to generate five reasonable 

resonance structures for interview problem one, but drew all of the arrows at once.  

Therefore, watching the sequence of curved-arrow depiction was key in my assessment 
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of his curved-arrow formalism utilization. For interview question two, Andrew drew 

appropriate curved-arrows in the correct sequence for each step of the mechanism, 

although he noted bond attachment differences before drawing arrows at each stage. 

Nevertheless, he correctly identified molecules acting as base or nucleophile when asked. 

During Andrew’s explanation of interview problem three, he predicted 1-

cyclopentylethyl acetate as the product without drawing a mechanism. When prompted to 

show the mechanism for the reaction, he drew an SN1 mechanism, leading to 1-

ethylcyclopentyl acetate, despite identification of azide as the nucleophile.  Likewise, he 

drew intermediates in the sequence to generate the desired product without including all 

the mechanistic steps. 

 

4.6 Codification of Curved-arrow Formalism Analytic Framework 

Once the individual student’s interviews were coded using grounded theory, I 

noted and defined a list of curved-arrow formalism errors, which lead to the development 

of a curved-arrow formalism analytic framework (Table 4-17). Error categories in the 

framework which emerged from the analysis of the subjects’ interview transcripts and 

written artifacts include:  (1) drawing repetitive arrows to depict the movement of a 

single pair of electrons; (2) drawing a product which would not result from the arrows 

drawn; (3) drawing a single-headed hemolytic cleavage arrow instead of a double-headed 

heterolytic cleavage arrow; and (4) drawing curved-arrows out of sequence. I and my 

undergraduate research assistant utilized this framework to code the students’ responses 

to the interview problem set. Their inter-rater reliability, Cohen’s Kappa, was calculated 

to be 0.81, which corresponds to “Almost perfect” agreement (Landis & Koch, 1977, p. 



125 

 

 

165). For further validation of the analytic framework, an additional coder, a fifth year 

doctoral candidate with more than two decades of industry experience as a synthetic 

organic chemist, was asked to code the interview transcript of a randomly-selected 

participant. The inter-rater reliability calculation for all three raters was in the “Almost 

perfect” agreement range (Light’s Kappa = 0.91) (Landis & Koch, 1977, p. 165). 
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Table 4-17 Curved-arrow formalism analytic framework 
Correct Curved-arrow Formalism (CAF) 
Electron-rich attacks electron-
deficient 

Discourse or artifact which indicates that a curved-arrow was drawn 
(1) from an electron-rich species (nucleophile or base) to an electron-
deficient (electrophile or acid) species in a chemical reaction or (2) 
from a negative charge, lone pair, or pi bond to an appropriate 
electron-deficient site in a resonance structure 

Incorrect/neglected Curved-arrow Formalism (CAF) 
Non-specific curved-arrow Discourse or artifact which indicates that a student depicted 

unorthodox curved-arrow head or tail placement, such as a curved-
arrow head to the middle of a bond 

Electron-deficient attacks 
electron-rich 

Discourse or artifact which indicates that an electron-deficient 
species attacks electron-rich species 

Electron-rich attacks electron-
rich 

Discourse or artifact which indicates that an electron-rich species 
attacks electron-rich species 

Repetitive arrows More than one curved-arrow to depict the movement of a single pair 
of electrons 

Octet rule violation for carbon Discourse or artifact which indicates that a student writes a resonance 
structure, intermediate, or product with five or more bonds to carbon 

Lack of acid/base or 
nucleophile/electrophile 
operational knowledge 

Discourse or artifact which indicates a student is unable to identify 
Brønsted-Lowry acid/base or nucleophilic/electrophilic participants 
in a reaction sequence 

Ignoring pH of medium Discourse or artifact which indicates that a student proposes a 
mechanism that generates hydroxide in acidic reaction conditions or 
hydronium ions in basic reaction conditions 

Missing arrows Artifact which indicates that a bond has been broken during a 
mechanism, but the related curved-arrows were not draw in the 
previous step 

Skipped mechanism Discourse or artifact which indicates that a student proposed the 
product of a reaction without providing the mechanism by which that 
product would be produced 

Lewis structure challenges Artifact which does not portray the correct formal charge on an atom, 
based on the curved-arrows shown in the previous step 

Out of sequence arrows Discourse or artifact which indicates that the curved-arrows were not 
drawn in an appropriate sequence 

Wrong arrow Artifact which indicates that a student drew an inappropriate arrow 
type for the application implied, such as a reaction arrow between 
resonance structures or single-headed arrow to communicate 
heterolytic cleavage 

Memorization Discourse or artifact which indicates that a student memorized 
reaction conditions and product structure, rather than employing a 
mechanism to determine a products' structure or stereochemistry 

Noting bond attachment 
differences instead of applying 
mechanistic reasoning 

Student notes bond attachment differences between reactants and 
products to determine how to draw curved-arrows instead of relying 
on acid/base or nucleophile/electrophile identifications 

Next structure wasn't the 
product from the arrows drawn 

Artifact which indicates a structure which would not result from the 
curved-arrows drawn on the reactant, intermediate, or resonance 
structure of the previous step 
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A Mann-Whitney U-test indicated a significantly higher frequency of incorrect 

curved-arrows drawn by cPLTL students for question four of the interviews (Table 4-18). 

Furthermore, a Mann-Whitney U Test of the frequencies of the specific error categories 

of incorrect curved-arrows by setting for the interview responses indicated that cyber 

students were significantly more likely to draw a product that was inconsistent with the 

curved-arrows drawn (Table 4-19). Moreover, there was a statistically significant 

correlation between the subjects’ overall course grade and percent correct curved-arrows 

on both interview question one (Pearson correlation = 0.54, p<0.05) and interview 

question four (Pearson correlation = 0.76, p<0.05), which suggests that the ability to 

interpret the meaning communicated by curved-arrows is a key component of the course 

being assessed to determine the course grades. Thus, cyber students demonstrated 

significantly lower ability to use or interpret curved-arrow formalism in their problem-

solving process than their PLTL counterparts. 

Table 4-18 Frequencies of correct and incorrect curved-arrow formalism by setting 

 Correct Curved-arrow Formalism Incorrect Curved-arrow Formalism 

 Q1 
Mean 
(SD) 

Q2 
Mean 
(SD) 

Q3 
Mean 
(SD) 

Q4 
Mean 
(SD) 

Q1 
Mean 
(SD) 

Q2 
Mean 
(SD) 

Q3 
Mean 
(SD) 

Q4 
Mean 
(SD) 

PLTL 
N = 9 

7.00 
(4.27) 

7.78 
(2.17) 

2.22 
(1.20) 

4.89 
(5.62) 

0.89 
(1.36) 

3.00 
(0.87) 

0.56 
(0.73) 

1.22* 
(0.67) 

cPLTL 
N = 10 

7.50 
(3.57) 

6.60 
(2.72) 

2.00 
(0.67) 

3.60 
(3.75) 

1.70 
(2.06) 

2.69 
(1.29) 

0.70 
(0.82) 

3.70* 
(2.36) 

*p <0.05 
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Table 4-19 Frequencies of interview students’ curved-arrow formalism error categories 
by setting 

 PLTL 
N = 9 

cPLTL 
N = 10 

Example 

Skipped 
mechanism 

0.22 
(0.44) 

0.20 
(0.42) 

Br

acetic acid
OH

O
NaN3

COOH

 
Electron-
deficient 
species 
attacks 
electron-rich 
species 

0.22 
(0.44) 

0.40 
(0.97) 

+H2N

H

MeS

O

OH
O+

H

H

H

 
Non-specific 
curved-
arrow 

0.33 
(0.50) 

0.80 
(0.92) 

+H2N

H

MeS

O

OH
O

H

H

H
 

Missing 
arrow 

0.67 
(0.71) 

1.70 
(1.34) 

R + Br Br
R Br + Br

 
Repetitive 
arrows 

0.11 
(0.33) 

0.50 
(0.71) O

O

O

O  
Wrong 
arrow type 

0.11 
(0.33) 

0.20 
(0.42) 

H2N CO2H

HR

H2N

H

MeS

O

OH
H3O

H2N

H

MeS

HO
OH

N CO2H

HR

H

H

+

O
H

H

H

 
Ignored pH 
of medium 

0.00 
(0.00) 

0.30 
(0.48) 

R

O

H2SO4, H2O
HSO4Br

H

R

O

Br

 
Given 
product 
inconsistent 
with arrows 
drawn 

0.00* 
(0.00) 

1.20* 
(1.14) 

Br

acetic acid
OH

O
NaN3

OH

 
*p <0.05 
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4.7 Analysis of Student’s Problem-solving Process 

Toulmin’s Argumentation Scheme is considered the foundation of scientists’ 

“process of thinking and social interaction in which individuals construct and critique 

arguments” (Nussbaum, 2011, p. 84). Namely, Toulmin asserted that a basic argument 

(Figure 4-6) consisted of an assertion (Claim), facts that are the foundation of the claim 

(Data), and an explanation of how the Data leads to the Claim (Warrant).  Furthermore, a 

more sophisticated argument may also include qualifiers or “conditions of exception” 

(Rebuttals) or further explanations that strengthen the warrant (Backing) (Toulmin, 1958, 

p. 101). 

 

Figure 4-6 Toulmin’s Argumentation Scheme (Toulmin, 1958) 
 

Few instances of student interchanges were identified during the coding of 

workshop transcripts which included all components of Toulmin’s Argumentation 

Scheme. Instead, students from both settings repeatedly followed an alternative problem-

solving scheme (Figure 4-7) that was more closely-aligned with the decision-making 

process utilized by me, who is a synthetic organic chemist. For example, students 
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determining which substitution reaction would occur with given substrate, nucleophile, 

and solvent combinations would rightly place higher priority on the substitution pattern 

of the alkyl halide or alkyl tosylate than the other reaction conditions. Although, Cruz-

Ramírez de Arellano and Towns (2014) classified several reaction criteria, such as 

solvent and substrate classification, as equally-weighted data for the classical Toulmin 

Argumentation Scheme, Toulmin suggested, certain data should have higher priority than 

others in certain fields because the criteria “to justify such a conclusion vary from field to 

field (Toulmin, 1958, p. 36).”  Furthermore, “the features of an argument in different 

fields…are field-dependent (Toulmin, 1958, p. 22).”, so an alternative argumentation 

scheme or problem-solving process should be utilized. Thus, if students’ were discerning 

physical phenomena from experimental data or characterizing an unknown compound 

from spectral data, such discourse would align with Toulmin’s Argumentation Scheme, 

but PLTL students’ evaluation of given reaction conditions to distinguish SN1 or SN2 

reactions would be outside the scope of the classical Toulmin Argumentation Scheme 

because the substitution pattern of the alkyl halide or alkyl tosylate is a more important 

component than solvent, leaving group, or nucleophile.   

Students in this study frequently demonstrated all or part of a particular process 

for determining which substitution or elimination reaction occurred, which is presented as 

a general (Figure 4-7) or detailed (Figure 4-8) scheme for problem-solving in organic 

chemistry (SPOC).   
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Figure 4-7 General scheme for problem-solving in organic chemistry (SPOC) 
 

This decision-making process is similar to the decision tree proposed by Graham 

(2014), but students tended to look for β hydrogens only after determining that a base 

was present, rather than before. In cases where students were solving substitution or 

elimination problems without either mentioning all or part of SPOC or drawing the 

reaction mechanism from identifying nucleophile/electrophile partners, students decided 

which reaction type occurred by one of two methods: (1) listing reaction components as 

favoring one reaction type over another and selecting the reaction type with the most 

attributes in common to a tabular summary or (2) identifying a single reaction 

component, as in the example, “I said SN2 because it’s a polar protic solvent.” These two 

approaches are typical of a student with an instrumental learning (Skemp, 1979) 

approach, rather than a relational learning (Skemp, 1979) approach. 
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Figure 4-8 Detailed scheme for problem-solving in organic chemistry (SPOC)
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CHAPTER 5. DISCUSSION 

5.1 Response to Guiding Research Question 1:  How do organic chemistry students 

experience the PLTL and cPLTL settings? 

First-semester organic chemistry students in the PLTL and cPLTL workshop 

settings at this institution exhibited comparable workshop attendance frequencies, but 

reported significantly different dynamics in the student perception surveys. PLTL 

students reported that they valued both one-on-one discussion with their peer leader and 

collaborating with their small group members significantly higher for their learning gains 

than did the cPLTL students. While not statistically significant, the face-to-face students’ 

survey responses also indicated more interdependent problem-solving. The 

interdependent problem-solving in PLTL workshops often occurred as students took turns 

writing and explaining concepts on small, portable white boards. At the time of the study, 

comparable white board applications were still in the development phase and, therefore, 

were not utilized by cPLTL students. Although students in both settings were frequently 

reminded of the expectation to attempt workshop problems in advance, the cPLTL 

students reported in both surveys and interviews that they felt more accountable than the 

PLTL students for “having something written” on their worksheets.
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Students exhibited comparable frequencies of answer-checking versus problem-

solving behavior in the two settings for this study, although a similar study of general 

chemistry PLTL and cPLTL students had reported a higher incidence of answer-checking 

behavior in face-to-face settings (Smith et al., 2014).  Likewise, the cognitive level 

classification of student dialogue was comparable in the two settings, despite one peer 

leader’s perception that his online students had more in-depth content conversations. 

Ninety-two percent of the student dialogue from either setting corresponded to lower 

order cognitive levels (Remembering, Understanding, or Applying). This preponderance 

of lower order dialogue is consistent with Christian & Talanquer’s (2012b) findings from 

discourse analysis of self-initiated study groups, as well as several studies of synchronous 

online interactions (Hou, 2011; Lin et al., 2013; Meyer, 2004; Valcke et al., 2009). 

My finding that students in the face-to-face setting feel a stronger sense of 

community than their online counterparts is consistent with Smith et al’s (2014) findings. 

Although the style and frequency of peer leaders’ mentoring behaviors were comparable 

in the two settings, the peer leaders rewarded students differently in the two settings:  

PLTL students sometimes enjoyed tangible rewards, such as donuts, while cPLTL 

students were praised more frequently, even when controlling for peer leader. Lastly, 

organic chemistry cPLTL students utilized online resources more frequently than the 

PLTL students, just as general chemistry cPLTL students were observed using more 

online resources in an earlier study (Smith et al., 2014).  
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5.2 Response to Guiding Research Question 2:  Are organic chemistry students’ 

performance comparable in the PLTL and cPLTL settings? 

Mann-Whitney U-tests revealed that there is no significant difference in the 

distribution of course grades of PLTL and cPLTL students by either singular grades or 

grade groupings.  Secondly, ANCOVA analysis of PLTL and cPLTL students’ ACS first-

semester organic chemistry exam scores were comparable, with no interaction effect 

based on gender or ethnicity. 

Although the course grade distributions and final exam scores were comparable 

for students from the two settings, cPLTL students’ interview responses were 

significantly more likely to exhibit incorrect curved-arrows. In particular, cPLTL students 

were significantly more likely to have a proposed product that isn’t implied by the 

curved-arrows drawn. Furthermore, there is a significant correlation between the 

students’ course grade and percent correct arrows on the fourth interview probe, which 

assesses students’ ability to solve problems using curved-arrow formalism. Therefore, I 

suggest that students in the online setting, who did not have access to a collaborative 

white board for large representations of reaction mechanisms during problem-solving 

discussions, developed lower mastery of curved-arrow formalism skills than their face-to-

face counterparts during the same time period, using the same learning resources. 

 

5.3 Response to Guiding Research Question 3:  Do high- and low-performing students 

experience the PLTL & cPLTL settings differently? 

Low-performing students from both settings shared frustration during their 

interview that peer leaders didn’t teach them concepts, although peer leaders are trained 
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to facilitate group problem-solving instead of teach students directly or provide answer 

keys (Gosser et al., 2001).  Although these students performed consistently poorly on 

workshop preparedness quizzes, which are designed to assess student’s mastery of low 

cognitive order tasks, the low-performing students didn’t adjust their workshop 

preparation behavior over the course of the semester.  Instead, each were seen depending 

on either classmates or their peer leader to provide guidance for workshop problems 

rather than willingly participating in collaborative problem-solving. 

In contrast, high-performing students from both PLTL and cPLTL settings voiced 

enthusiasm about the mentoring of their peer leader and the usefulness of group debate 

for the merits of different problem-solving approaches.  Furthermore, many of the high-

performing students shared during the interview that they frequently practice drawing 

reaction mechanisms over and over.  Two students, in particular, stood out to me due to 

their obvious enjoyment writing clear, meticulous mechanisms. 

 

5.4 Response to Guiding Research Question 4:  Do high- and low-performing students 

from the PLTL & cPLTL settings use or understand curved-arrow formalism 

differently? 

Skemp (1979) suggested that there are two kinds of learning:  instrumental 

learning and relational learning. Instrumental learning “consists of recognizing a task as 

one of a particular class for which one already knows a rule” (Skemp, 1979, p. 259), 

while relational learning consists of relating a task to a network of connected concepts 

(Skemp, 1979, p. 260).  Low-performing students from both settings revealed evidence of 

instrumental learning in both workshop discourse and interviews. For example, Susan 
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said that she studied reactions with flash cards in lieu of drawing reaction mechanisms. 

Similarly, every student interviewed provided an almost identical definition for the 

meaning of curved-arrows, but the low-performing students were progressively unable to 

demonstrate correct curved-arrow drawings and interpretation of curved-arrows from the 

first to the last interview probe. Furthermore, several of these students referred to a 

memorized table of SN1 and SN2 reaction criteria instead of evaluating the reaction 

conditions holistically. Clearly, these students may have memorized the definition that a 

“curved-arrow represents the movement of electrons,” but the symbols did not actually 

hold meaning for the students that would enable them to solve problems using curved-

arrow formalism.  

There were both instrumental and relational (Skemp, 1979) high-performing 

learners from both settings. Several high-performing students who drew correct 

mechanisms for the first three interview probes, yet drew the arrows only after predicting 

the product. This “decorating with arrows” phenomena had been reported by Grove, 

Cooper, and Rush (2012). Likewise, approximately half of the high-performing students 

exhibited mapping, pointing from reactant to product repeatedly in order to decide where 

to draw arrows. This puzzle-solving, rather than problem-solving behavior, had been 

reported previously by Bhattacharyya & Bodner (2005). These mapping and post-

product-prediction curved-arrow drawing behaviors were more frequent among the high-

performing cPLTL students, many of whom struggled with the fourth interview probe, 

which required problem-solving with curved-arrow formalism rather than reproducing a 

known reaction or deducing curved-arrows from identifying the differences between 

reactants and products.  Furthermore, analysis of PLTL and cPLTL students’ interview 
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discourse and artifacts revealed that there was no overall trend in which students from a 

particular setting were more likely to successfully integrate the three aspects of curved-

arrow formalism understanding (content, mode, and reasoning) (Anderson et al., 2013; 

Schönborn & Anderson, 2008, 2009, 2010) than students of the other setting. 

 

5.5 Implications for Faculty 

First-semester organic chemistry PLTL students in this study were statistically 

more likely to develop curved-arrow formalism understanding than their cPLTL 

classmates, although both the PLTL and cPLTL students in this study earned higher mean 

ACS First-Semester Organic Chemistry Exam scores than the historical non-PLTL 

students.  As previously reported in the literature, some of the PLTL and cPLTL made 

the following curved-arrow formalism errors:  (1) an electron-rich species attacks an 

electron-poor species; (2) an electron-rich species attacks an electron-rich species; (3) 

curved-arrows were drawn which would result in the violation of the octet rule for 

carbon; (4) arrows for multiple reaction steps were drawn at once; (5) curved-arrows 

were drawn to proposed mechanisms which would not exist in the pH of the given 

reaction medium; (6) skipped mechanism (Grove, Cooper, & Rush, 2012; Scudder, 

1992).  Likewise, several students in this study exhibited mapping, looking from reactant 

to product to determine where to draw curved-arrows instead of employing mechanistic 

reasoning, as Fergusen and Bodner (2008) had previously reported.  In addition to the 

curved-arrow formalism error categories provided in the literature, I identified the 

following additional error categories exhibited by the PLTL or cPLTL students:  (1) non-

specific curved-arrows; (2) repetitive arrows; (3) missing arrows; (4) out-of-sequence 
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arrow drawing.  The organic chemistry PLTL and cPLTL students’ displayed comparable 

frequencies of having problem-solving discussions rather than answer-checking 

conversations, unlike the general chemistry PLTL and cPLTL students in an earlier study 

(Smith et al., 2014). Nevertheless, the cPLTL students were statistically more likely to 

either incorrectly draw or misinterpret curved-arrows than their PLTL counterparts.   

Conceivably, the difference in PLTL and cPLTL students’ view of one another’s 

work and the specific collaborative techniques being utilized in PLTL workshops were 

the root of this curved-arrow formalism performance difference. Namely, PLTL students 

collaboratively generated mechanisms on a small, portable white board, while the cPLTL 

students in this study had small screen shots of one another’s worksheets during 

mechanism conversations. Therefore, I emphatically recommend piloting collaborative 

white board applications, which have been developed since the study, to assess the 

impact of virtual and physical white board collaborative mechanism activities during 

PLTL and cPLTL workshops on students’ curved-arrow formalism understanding 

development. 

 My new curved-arrow formalism analytic framework would be useful for the 

development of diagnostic curved-arrow formalism probes for formative and summative 

assessments.  The distractors of multiple choice versions of these questions should be 

based on the modes of incorrect curved-arrow drawings which I reported in this study.  

Furthermore, my curved-arrow formalism analytic framework should inform the way that 

organic chemistry instructors diagnose students’ drawings and interpretations of curved-

arrow formalism for solving mechanistic problems because instructors will be better 

equipped to coach students’ development of curved-arrow formalism from the C-R-M 
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perspective when this finer-grained rubric is utilized in lieu of a “right or wrong” 

dichotomous grading practice.  

Next, I suggest that students feel a different sense of accountability to stay on task 

and be better prepared for cPLTL workshops as compared to the PLTL workshops 

because their peers see and “hear every conversation” between participants.  I suggest 

that this phenomenon may be one of the reasons that an earlier study reported that general 

chemistry cPLTL students felt less of a sense of community than their general chemistry 

PLTL counterparts (Smith et al., 2014).  Namely, the “off-task talking” may be 

influential in relationship development between classmates.  Therefore, I reinforce the 

recommendation that either pre-semester face-to-face community-building events or 

ongoing ice breaker activities should be incorporated in cPLTL groups in order to 

encourage relationship development and community formation (Smith et al., 2014). 

 My analysis of PLTL and cPLTL student workshop and interview dialogue 

revealed both instrumental and relational thinking (Skemp, 1979) . Therefore, further 

research is needed to create and assess workshop materials which advance students with 

an instrumental thinking approach to a relational thinking approach since we know that 

the workshop materials can influence student’s approach to discussing and solving 

problems (Brown et al., 2010; Kulatunga et al., 2014).  Specifically, I believe that PLTL 

workshop questions which elicit student’s explanation of the role of all substances in 

reactions could propel students from being tempted to memorize substrates or solvents 

leading to specific reactions (instrumental thinking) to a more robust evaluation of 

reaction conditions (relational thinking). Equally, my suggestion for additional organic 

chemistry PLTL material development is also aligned with my finding that student 
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dialogue was most commonly affiliated with the lower cognitive order characteristics of 

Revised Bloom’s Taxonomy for the Cognitive Domain (Anderson & Krathwohl, 2001). 

Moreover, I strongly suggest that students of both PLTL and cPLTL should be explicitly 

told in the beginning of the semester about the significant impact to their own learning  

that is caused by their explaining concepts to one another (Coleman & Coleman, 1998; 

Palinscar & Brown, 1984), which is the hallmark of this social constructivist pedagogy. 

Furthermore, my analysis of PLTL and cPLTL students’ interview discourse and 

artifacts revealed that there was no overall trend in which students from a particular 

setting were more likely to successfully integrate the content, reasoning, and mode 

(Schönborn & Anderson, 2009) aspects of curved-arrow formalism understanding than 

students of the other setting. Therefore, I suggest that faculty explicitly train peer leaders 

to encourage students to articulate how their understanding of organic chemistry concepts 

and exhibition of curved-arrow formalism enable successfully solving organic chemistry 

problems.  

 Lastly, our research group expected that both students and peer leaders would 

perceive the virtual learning environment as less constrained than the physical setting, 

since they could extend the duration of workshops if desired as well as utilize several 

virtual side rooms during workshops (Mauser et al., 2011).  Instead, both students and 

peer leaders reported that they felt the interaction style was more formal in the online 

setting.  Kenneth, an organic chemistry cPLTL student who had formerly been a general 

chemistry PLTL participant, described his perception that the cPLTL environment was 

more intrusive than that of PLTL.  Furthermore, one peer leader reported that she felt a 

heightened sense of responsibility to direct student activities and be authoritative in the 
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online setting.  However, Duncanson (2014) reported that less constrained classrooms 

influenced teachers to encourage students to be more self-directed and collaborative.  

Therefore, the cPLTL students and one peer leader did not perceive the online setting as 

less constrained.  

 

5.6 Conclusions 

The purpose of this study was to assess PLTL and cPLTL students’ experiences 

and mastery of curved-arrow formalism as a means to solve organic chemistry problems.  

I found that, although there was no statistically significant difference in the distribution of 

course grades, there were several noteworthy differences in PLTL and cPLTL students’ 

attitudes and ability to reason with curved-arrow formalism.  Firstly, fostering students’ 

integration into learning communities has been one of the goals of PLTL (or Workshop 

Chemistry) implementation since the mid-1990s (Gosser et al., 1996) because 

participation in an intellectual learning community is a high-impact educational practice 

(Astin, 1993), but cPLTL students apparently develop less of a sense of community than 

their PLTL classmates.  I believe that, unless the social dynamics are altered by 

modifications to the way cPLTL is implemented, this phenomenon could lead to lower 

success rates of cPLTL students in first-semester organic chemistry courses.   

Secondly, I observed that both PLTL and cPLTL students exhibited a 

preponderance of lower-cognitive order dialogue, comparable evidence of instrumental 

thinking, and under-development of concept-reasoning-mode understanding of curved-

arrow formalism.  Since students can be prompted to have more sophisticated content and 

argumentation discourse through question design (Brown et al., 2010; Kulatunga et al., 
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2014), the PLTL/cPLTL workshop materials should be redesigned to elicit students’ 

articulation of both curved-arrow formalism and mechanistic reasoning in order to 

develop effective organic chemistry problem-solvers. 

Thirdly, I have seen as the workshop coordinator of the organic chemistry PLTL 

workshop series that students are most engaged when supplied with a small, portable 

white board to supplement their discussion of particularly mechanistic problems.  

Students engaged in taking turns drawing and explaining curved-arrows is not only a key 

component of practicing organic chemists’ communication among their team, but also a 

vital social constructivist activity among students.  I believe that the lack of the dynamic, 

interactive drawing experience in the cPLTL setting during this study led to both cPLTL 

students having less practice with the mode and reasoning aspects of curved-arrow 

formalism and a greater likelihood of simply writing down what a classmate showed as a 

reaction mechanism. Consequently, the cPLTL students were statistically less likely to 

demonstrate an ability to draw, interpret, and reason with curved-arrow formalism when 

encountering a novel problem like interview probe 4 (51% vs. 20% incorrect curved-

arrows drawn for probe 4).  Therefore, I recommend that a collaborative white board 

application be incorporated into future organic chemistry cPLTL implementations in 

order to equalize the learning environments between PLTL and cPLTL. 

Through discourse analysis, I determined that IUPUI’s PLTL and cPLTL students 

approached the deduction of substitution and elimination reaction mechanisms by using 

an approach that had not previously been reported in the literature, which I have dubbed 

the Scheme for Problem-solving in Organic Chemistry (SPOC).  Unlike the application 

of Toulmin’s Argumentation Scheme (Toulmin, 1958) for these reaction types that had 
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been suggested previously (Cruz-Ramírez de Arellano & Towns, 2014), I propose that 

some students’ approach rightfully placed greater emphasis on certain reaction criteria, 

such as whether the substrate was a primary, secondary, or tertiary alkyl halide or 

tosylate, rather than other criteria, like solvent type.  SPOC could be utilized by organic 

chemistry faculty to develop relational thinking (Skemp, 1979) among their students and 

discourage instrumental learning (Skemp, 1979) approaches, such as the use of tables for 

deducing substitution and elimination reaction mechanisms. Additionally, further 

research is required to determine if organic chemistry students at other institutions also 

exhibit the SPOC approach to solving problems. 

I used grounded theory and a thorough review of the curved-arrow formalism 

literature to develop a curved-arrow formalism analytic framework that could be used by 

both organic chemistry education researchers and instructors.  Researchers should 

conduct more extensive interviewing of students from a variety of institution sizes and 

types (Carnegie Classification of Institutions of Higher Education, 2010) in order to 

develop a database of diagnostic curved-arrow formalism probes.  The distractors of 

multiple choice versions of these questions could be based on the modes of incorrect 

curved-arrow drawings which I reported in this study.  Then, the multiple choice probes 

could be used for either formative assessments, such as Peer Instruction (Mazur, 1997), 

or summative assessments, such as a concept inventory.  Although there are several 

chemistry-specific summative assessments, such as the (General) Chemistry Concept 

Inventory (Krause, Birk, Bauer, Jenkins, & Pavelich, 2004), Thermochemistry Concept 

Inventory (Wren & Barbera, 2013), and Oxidation-Reduction Concept Inventory 

(Brandriet & Bretz, 2014), there is not yet a comparable concept inventory for curved-
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arrow formalism understanding. My new curved-arrow formalism analytic framework 

will enable the development of a concept inventory for the curved-arrow formalism 

aspect of organic chemistry. Similarly, additional research should be undertaken to 

compare the curved-arrow formalism error categories that I reported for students whose 

course was organized according to functional groups (Carey, 2002; Klein, 2012) and the 

error categories developed by students from “mechanism first” organic chemistry 

courses, such as the approach described by Flynn (2015).  Furthermore, my curved-arrow 

formalism analytic framework could inform the way that organic chemistry instructors 

diagnose students’ drawings and interpretations of curved-arrow formalism for solving 

mechanistic problems because instructors will be better equipped to coach students’ 

development of curved-arrow formalism from the C-R-M perspective when this finer-

grained rubric is utilized in lieu of a “right or wrong” dichotomous grading practice.   
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Appendix A Tabular Summary of Peer-Led Team Learning (PLTL) & Peer-Led Guided Inquiry (PLGI) Literature 

Authors (Year) Setting Institution 
 

Level 
 Discipline Study Type Study Purpose Findings 

Akinyele 
(2010) 

F2F Howard 
University 

Undergraduate General/ 
Organic/ 
Biological 
Chemistry 
(GOB) 

Quantitative Program 
evaluation 

PLTL DFW grades lowered 
from traditional 32.3% to 
17.2% for the PLTL students, 
while the non-PLTL DFW 
grades was 40.6% (significant; 
large effect size) 
 

Alger & Bahi 
(2004) 

F2F Southern Utah 
University 

Undergraduate General 
Chemistry 

Quantitative Program 
evaluation 

No sig. difference in ACS 
General Chemistry Exam 
scores for PLTL and non-PLTL 
populations 
Caveat:  The non-PLTL 
“Control Group” was treated 
with a different academic 
intervention 
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Table Appendix A continued 

Alo et al 
(2007) 

F2F Various 
(CAHSI) 

Undergraduate Computer 
Science 

Mixed 
methods 

Program 
evaluation 

86% of students reported that 
PLTL participation helped 
them better understand course 
material 
 
60% increase in college algebra 
ABC grades over 5 years at 
UHD 
 
18% increase in computer 
science I ABC grades and 29% 
increase in computer science III 
ABC grades at UTEP 

Amaral & 
Vala (2009) 

F2F University of 
Florida 

Undergraduate General 
Chemistry 

Quantitative Effect on peer 
leaders 

Mentors earned higher grades 
in first-semester general 
chemistry than their 
counterparts, even if deemed 
underprepared for the course in 
the pre-test 
Mentors took more subsequent 
chemistry courses and 
continued to perform higher 
than non-mentors  

Biggers, 
Yilmaz, & 
Sweat (2009) 

F2F Various Undergraduate Computer 
Science 

Quantitative Program 
evaluation 

Significantly higher ABC 
grades for PLTL participants 
 
Significant increase in A grades 
and significant decrease in B 
grades with PLTL 
implementation 
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Table Appendix A continued 

Black & Deci 
(2000) 

F2F University of 
Rochester 

Undergraduate Organic 
Chemistry 

Quantitative Autonomy 
support 

Provision of autonomy support 
through active learning is 
linked to greater gains in 
conceptual learning 

Chan & Bauer 
(2015) 

F2F University of 
New Hampshire 

Undergraduate General 
Chemistry 

Quantitative Program 
evaluation; 
attitude; self-
concept 

No sig. difference in 
performance  or chemistry self-
concept between PLTL and 
non-PLTL populations 
 
Significant, but modest 
decrease in chemistry attitudes, 
but no difference between 
PLTL and non-PLTL 
populations 

Curran, 
Carlson, & 
Celotta (2013) 

F2F University of 
St. Thomas 

Undergraduate Statistics Quantitative Program 
evaluation; 
student 
attitudes 

Significantly higher exam III & 
IV grades for PLTL students 
than non-PLTL students 
 
Significantly lower perceived 
difficulty of statistics course for 
PLTL students  

Drane et al 
(2005) 

F2F Northwestern 
University 

Undergraduate Biology, 
Chemistry, & 
Physics 

Quantitative Program 
evaluation 

Sig. positive difference for 
biology and chemistry 
workshop students, but no sig. 
difference for physics 
workshop students 
 
Larger positive impact on 
performance and retention for 
minority students than majority 
students 
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Table Appendix A continued 

Finn & 
Campisi 
(2015) 

F2F Merrimack 
College 

Undergraduate Anatomy/ 
Physiology 

Quantitative Program 
evaluation; 
SALG 

Statistically significant 
improvement in tissues/muscle 
physiology unit, partial effect 
in terminology/cells unit; and 
no effect in other course topics 
 
>70% of students positively 
evaluated the learning gains of 
PLTL 

Flores et al 
(2010) 

F2F University of 
Texas at El 
Paso 

Undergraduate Physics, 
Chemistry, 
Math 

Mixed 
methods 

Program 
evaluation 

General chemistry students’ 
pass rate increased from 50% to 
75% in the first three years for 
PLTL implementation 
 
Peer leader graduation rate was 
97%, compared to 49% 6-year 
graduation rate for overall 
undergraduate population 

Foroudastan 
(2009) 

F2F Middle 
Tennessee State 
University 

Undergraduate Engineering Quantitative Program 
evaluation 

Increased retention rate since 
implementing PLTL (95% for 
PLTL students) 
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Table Appendix A continued 

Gafney & 
Varma-Nelson 
(2007) 

F2F > 10 institutions Undergraduate Various Mixed 
methods 

Effects of 
former peer 
leaders 

At least 92% of respondents 
positively rated their peer 
leading experience for: 

• Appreciation of small-
group learning and 
different learning 
styles 

• Gained confidence in 
presenting and 
working as a team 

• Greater appreciation 
of what it takes to be a 
teacher 

 
18% still undergraduates; 43% 
employed in a science field; 
23% in medical or graduate 
school; 7% teaching; 4% 
employed in a non-science 
field; 3% no 
response/unemployed 

Gosser et al 
(1996) 

F2F The City 
College of the 
City University 
of New York; 
University of 
Rochester;  
New York City 
Technical 
School; St. 
Xavier 
University 
 

Undergraduate General 
Chemistry, 
Organic 
Chemistry, & 
GOB 

Qualitative Program 
evaluation 

Faculty interviews, focus 
groups, student questionnaires, 
and peer leader logs indicate 
that the workshops positively 
impact students 

                    Continued next page 
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Table Appendix A continued 

Hockings, 
DeAngelis, & 
Frey (2008) 

F2F Washington 
University 

Undergraduate General 
Chemistry 

Quantitative Program 
evaluation 

Female, first-year, and pre-
health students were 
statistically more likely to opt 
for PLTL, while student 
athletes were statistically less 
likely 
 
PLTL students had statistically 
lower college entrance exam 
scores, yet statistically 
outperformed the non-PLTL 
counterparts in the course 

Hooker (2011) F2F Little Big Horn 
College 

Undergraduate Algebra Mixed 
methods 

Program 
evaluation 

PLTL students had better 
attendance (49% vs 40%), 
completion rates (43% vs 
35%), and course grades (43% 
ABC vs 35% ABC) than non-
PLTL students  
 
PLTL students continued to 
gain proficiency in learning 
objectives, while non-PLTL 
students stagnated on specific 
content mastery 
 
Peer leaders reported gains in 
self-confidence, 
communication skills, time 
management, and increased 
problem-solving skills 
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Table Appendix A continued 

Horwitz & 
Rodger (2009) 

F2F Various Undergraduate Computer 
Science 

Mixed 
methods 

Program 
evaluation; 
attitudes 

Grades of B or higher and 
retention rates for PLTL 
students were significantly 
higher than non-PLTL students 
 
Positive difference in 
percentage of females and 
minorities completing the 
course and earning grades of B 
or higher 
 
Significantly lower perception 
of instructor covering material 
too quickly for PLTL students 
compared to non-PLTL 
students 

Hug, Thiry, & 
Tedford 
(2011) 

F2F Various Undergraduate Computer 
Science 

Quantitative Peer leader 
research 

89 peer leaders over 5 
semesters from 6 Computing 
Alliance for Hispanic Serving 
Institutions institutions self-
reported significant increases in 
decision-making skills, 
facilitation skills, and content 
knowledge  

Johnson, 
Robbins, & 
Loui (2015) 

F2F University of 
Illinois at 
Urbana-
Champaign 

Undergraduate Engineering Qualitative Peer leader 
research 

Peer leader journal entries 
reflected a transition from 
content expert focus to seeking 
effective facilitation techniques 
as the semester progressed 
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Table Appendix A continued 

Kulatunga,  
Moog, & 
Lewis (2013) 

F2F University of 
South Florida 

Undergraduate General 
Chemistry 

Qualitative Discourse 
analysis for 
Toulmin’s 
Argumentation 
Pattern (TAP) 

Students are more likely to 
elaborate on their reasoning 
when co-constructing 
arguments in a group rather 
than making individual 
arguments 
 
Frequency of constructing 
individual arguments doesn’t 
necessarily correlate to a 
students’ course grade 

Kulatunga,  
Moog, & 
Lewis (2014) 

F2F University of 
South Florida 

Undergraduate General 
Chemistry 

Qualitative Discourse 
analysis for 
peer leader 
influence on 
students’ 
argumentation 
behavior 

Convergent questions lead 
students to produce higher-
level arguments, while students 
tend to only provide an answer 
(claim) to direct questions 
 
Students can produce 
productive discourse with peer 
leader facilitation when 
provided prompts to elicit data, 
warrants, and backing 

Lewis & 
Lewis (2005) 

F2F University of 
South Florida 

Undergraduate General 
Chemistry 

Quantitative Program 
assessment 

PLGI attendance is 
significantly correlated to 
higher course exam and final 
grades 
 
PLGI students performed 
significantly higher on course 
and final exams than non-PLGI 
students, controlling for SAT 
scores 
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Table Appendix A continued 

Lewis & 
Lewis (2008) 

F2F University of 
South Florida 

Undergraduate General 
Chemistry 

Quantitative Program 
assessment 

Improved performance on the 
ACS, regardless of student 
SAT sub-scores or class SAT 
average 
 
Neutral impact on students with 
differing demographics 

Lewis (2011) F2F Kennesaw State 
University 

Undergraduate General 
Chemistry 

Quantitative Program 
evaluation 

Significantly higher ACS 
exams percentages and course 
passing rates for PLTL 
students, despite comparable 
SAT scores 
 
15% improvement in student 
retention for PLTL sections 

Lewis (2014) F2F University of 
South Florida 

Undergraduate General 
Chemistry 

Quantitative Program 
evaluation 

Medium-strength  correlation 
between participation in 
general chemistry I PLTL and 
subsequent chemistry courses 
(general chemistry II, organic 
chemistry I, organic chemistry 
II, biochemistry and qualitative 
analysis) 
 
Significant correlation (small to 
medium effect size) between 
participation in general 
chemistry I PLTL and 
enrollment in later chemistry 
courses 
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Table Appendix A continued 

Loui, Robbins, 
Johnson, & 
Venkatesan 
(2013) 

F2F University of 
Illinois at 
Urbana-
Champaign 

Undergraduate Engineering Quantitative Program 
evaluation 

Significant interaction between 
PLTL workshop attendance and 
final exam score 
 
Female PLTL engineering 
students were significantly 
more likely to enroll in the next 
engineering course than non-
PLTL female students 
 
PLTL students reported better 
understanding of course 
material 

Lyle & 
Robinson 
(2003) 

F2F University of 
Rochester 

Undergraduate Organic 
Chemistry 

Quantitative Program 
evaluation 

Regardless of gender or 
ethnicity, Workshop students 
performed significantly better 
than non-Workshop students 

Lyon & 
Lagowski 
(2008) 

F2F University of 
Texas at Austin 

Undergraduate General 
Chemistry 

Quantitative Program 
evaluation 

Learning group participants had 
significantly higher exam and 
course grades than non-
participants 
 
The DFW rate was significantly 
lower for learning group 
participants (24% vs 43%) 
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Table Appendix A continued 

Mauser et al 
(2011) 

F2F & 
Online 

Indiana 
University-
Purdue 
University 
Indianapolis 

Undergraduate General 
Chemistry 

Mixed 
methods 

Program 
evaluation 

Comparable student 
performance across settings 
 
Preliminary discourse analysis 
revealed: 

• Peer questioning & 
collaboration 

• Articulation of 
problem-solving 
process 

• Critical 
thinking/reflection 

 
Greater use of online resources 
and less off-task behavior in 
cPLTL 

McCreary et al 
(2006) 

F2F University of 
Pittsburgh 

Undergraduate General 
Chemistry 
Laboratory 

Quantitative Program 
evaluation 

Workshop students had 
significantly descriptions of 
experimental goals and 
length/clarity of responses, but 
comparable quality of data 
analysis/logical reasoning 

McDaniel 
(2014) 

Online Indiana 
University-
Purdue 
University 
Indianapolis 

Undergraduate General 
Chemistry 

Qualitative Web 
conferencing 
platform 
evaluation  

Adobe Connect was the best 
fee-based web conferencing 
platform 
 
Google Hangouts was the most 
functional free web 
conferencing platform, 
although additional applications 
would be needed to use a 
polling feature or record 
sessions 

                     Continued next page  
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Table Appendix A continued 

Merkel & 
Brania (2015) 

F2F Morehouse 
College 

Undergraduate Calculus I Quantitative Program 
evaluation 

No significant difference in 
learning gains or retention of 
PLTL students 
 
Variable peer leader 
dependability and abbreviated 
workshop duration cited as 
potential reasons for lack of 
workshop impact 
 

Mitchell, 
Ippolito, & 
Lewis (2012) 

F2F Kennesaw State 
University 

Undergraduate General 
Chemistry 

Quantitative Program 
evaluation 

Higher pass rate in GC2 for 
students who had GC1 PLTL 
(35% vs 30%) 
 
PLTL GC2 classes had 
statistically higher pass rates 
than traditional GC2 students 
(70.2% vs 57.1%) 

Mottley & 
Roth (2013) 

F2F University of 
Rochester 

Undergraduate Engineering Mixed 
methods 

Program 
evaluation 

Positive correlation between 
workshop attendance and 
course grade 

Murray (2011) F2F Indiana State 
University 

Undergraduate Psychology Quantitative Peer leader 
research 

PLTL students’ perform 
significantly higher on a 
statistics and research methods 
instrument than non-PLTL 
students 
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Table Appendix A continued 

Pazos, Drane, 
Light, & 
Munkeby 
(2007) 

F2F Northwestern 
University 

Undergraduate Engineering Quantitative Program 
evaluation 

After adjusting for SAT-math 
score, gender, and ethnicity, 
students who participated in 2 
or more PLTL workshops were 
5X more likely to complete the 
4-course engineering analysis 
sequence than those who 
participated in fewer than 2 
PLTL workshops 

Pazos, Micari, 
& Light (2010) 

F2F Northwestern 
University 

Undergraduate Various STEM Mixed 
methods 

Observation 
instrument 
development 

They developed 10-question 
scaled protocol to evaluate 
peer-led group dynamics on 
two dimensions: Group 
interaction style & problem-
solving approach 

Peteroy-Kelly 
(2007) 

F2F Pace University Undergraduate Biology Quantitative Program 
evaluation; 
SALG; 
Reasoning 
skills 

PLTL students were 
significantly more likely to: 

• Use concept maps to 
answer a conceptual 
question 

• Perform better on 
semester and final 
exams 

• Earn better course 
grades 

                     Continued next page 

 

 

 



 

 

175 

Table Appendix A 

Pittenger & 
LimBybliw 
(2013) 

Online University of 
Minnesota 

Graduate US Healthcare 
System 

Mixed 
methods 

Program 
evaluation 

Students communicated that the 
discussion groups, particularly 
when they acted as the 
discussion leaders, were a very 
positive experience 
 
Implementing a peer review 
process for end-of-semester 
proposals was the most 
impactful activity to decrease 
instructor workload, not the 
discussion groups 

Preszler 
(2009) 

F2F New Mexico 
State University 

Undergraduate Biology Quantitative Program 
evaluation 

Significant improvement in 
grade distributions pre- and 
post-implementation, 
particularly for females and 
URMs 

Quitadamo, 
Brahler, & 
Crouch (2009) 

F2F Washington 
State University 

Undergraduate Various Quantitative Critical 
thinking 

A significant interaction was 
observed for critical thinking 
gains and PLTL involvement 

• Particularly positive 
performance and 
retention gains for 
females 

 
Rein & 
Brookes 
(2015) 

F2F Florida 
International 
University 

Undergraduate Organic 
Chemistry  

Quantitative Program 
evaluation 

No significant difference in 
students’ exam grades with and 
without PLTL implementation.  
Note:  The study occurred 
during a period of multiple 
course format changes. 
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Table Appendix A continued  

Reisel, 
Jablonski, & 
Munson 
(2013) 

F2F University of 
Wisconsin at 
Milwaukee 

Undergraduate Algebra & 
Calculus 

Quantitative Program 
evaluation 

Significantly higher average 
course grades for calculus I & 
II PLTL students and notably 
better average course grades for 
PLTL college algebra students. 

Reisel et al 
(2012) 

F2F University of 
Wisconsin at 
Milwaukee 

Undergraduate Algebra & 
Calculus 

Quantitative Program 
evaluation 

Significantly higher course 
grades for calculus I & II PLTL 
students and increased grades 
for PLTL college algebra and 
trigonometry students. 

Reisel et al 
(2014) 

F2F University of 
Wisconsin at 
Milwaukee 

Undergraduate Algebra & 
Calculus 

Quantitative Program 
evaluation 

Regular or frequent (9 or more) 
PLTL participation led to A & 
B grades more frequently than 
non-PLTL participation. 
 
Significantly higher average 
course grades for calculus I 
PLTL students and notably 
better course grades for PLTL 
college algebra students. 

Roach & Villa 
(2008) 

F2F University of 
Texas at El 
Paso 

Undergraduate Computer 
Science 

Mixed 
methods 

Program 
evaluation 

Increases in %ABC grades for 
computer science I (18%) & 
computer science III (29%) 
since  implementing PLTL 
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Table Appendix A continued 

Sawyer, Frey, 
& Brown 
(2009a, 2009b, 
2010) 

F2F Washington 
University 

Undergraduate General 
Chemistry 

Qualitative Student 
discourse & 
peer leader 
impact 
thereupon 

Students led by a facilitative 
leader “acknowledged, built 
upon, and elaborated on each 
other's ideas” with equal 
involvement 
 
In contrast, students with an 
instructional leader tended to 
work individually when not 
listening to the peer leader, be 
answer-focused, and unequally 
participate 
 
Student discourse was related 
to problem structure 

Schray et al 
(2009) 

F2F Lehigh 
University 

Undergraduate Organic 
Chemistry 

Quantitative Peer leader 
type 

No significant difference in 
students’ course grades, 
regardless of peer leader type 
 
Surveys suggest that standard 
peer leaders are more likely to 
“teach” than in-class peer 
leaders, but better manage 
disruptive behavior 
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Table Appendix A continued 

Shapiro et al 
(2013) 

F2F University of 
California at 
Los Angeles 

Undergraduate Bioinformatics Mixed 
methods 

Program 
evaluation 

Instructor-led and peer leader-
led performance data was 
aggregated as PLTL data 
 
No significant difference in 
gene annotation skills for PLTL 
and non-PLTL students 
 
Students were more likely to 
seek technical and conceptual 
assistance from peer leaders 
than classmates 

Shields et al 
(2012) 

F2F Washington 
University 

Undergraduate General 
Chemistry 

Quantitative Program 
evaluation 

Significant improvement in 
students’ course grades after 
PLTL implementation, with 
accentuated effect if the 
workshop is extended an 
additional 30 minutes and 
coupled with a peer mentoring 
program 
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Table Appendix A continued 

Smith et al 
(2014) 

F2F & 
Online 

Indiana 
University-
Purdue 
University 
Indianapolis 

Undergraduate General 
Chemistry 

Mixed 
methods 

Program 
evaluation 

Comparable mean student 
course grades and ACS exam 
scores 
 
Differences in social dynamics: 

• Reward/recognition 
• Personal 

accountability  
• Focus on problem-

solving process vs. 
answer-checking 

• Frequency of off-task 
behavior 

• Use of online 
resources 

Snyder & 
Wiles  
(2015) 

F2F Syracuse 
University 

Undergraduate Biology Mixed 
methods 

Critical 
thinking 

No statistically significant 
changes in overall or subscale 
CCTST scores between groups 

• Note: The peer leader 
pretest mean score was 
higher than the 
national average 

 
Peer leaders reported perceived 
gains in: 

• Learning from 
multiple viewpoints 

• Experiencing new and 
different approaches to 
learning 
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Table Appendix A continued 

Streitwieser& 
Light (2010) 

F2F Northwestern 
University 

Undergraduate Various STEM Qualitative Peer leader 
style 
characterizatio
n 

Characterized conceptions and 
approaches of teacher-centered 
and learner-centered peer 
leaders 
 
19 peer leaders transitioned 
from 12 teacher-centered/5 
learner-centered to 7 teacher-
centered/10 learner-centered by 
end of semester 

Tenney & 
Houck 
(2003) 

F2F University of 
Portland 

Undergraduate Biology & 
Chemistry 

Quantitative Program 
evaluation 

Significant increase in 
chemistry students’ % AB 
grades 
 
Significant correlation between 
workshop attendance and 
biology course grades 
 
Notable increase in proportion 
of chemistry majors’ declaring 
intentions to teach 
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Table Appendix A continued 

Tenney & 
Houck 
(2004) 

F2F University of 
Portland 

Undergraduate Biology & 
Chemistry 

Mixed 
methods 

Effect on peer 
leaders 

Students attributed greater 
learning and exam preparedness 
to PLTL involvement 
 
Peer leaders reflected they 
benefitted by: 

• Better learning content 
• Collegial relationship 

with college instructor 
• Enhanced teaching 

skills and love of 
teaching 

• Improved people skills 
Tien, Roth, & 
Kampmeier 
(2002) 

F2F University of 
Rochester 

Undergraduate Organic 
Chemistry 

Mixed 
methods 

Program 
evaluation 

Significant increase in course 
grades of all students post-
implementation of PLTL 

• Although males 
outperformed females 
and majority students 
outperformed minority 
students (medium-
large effect sizes) 

Significant increase in ABC 
grades for PLTL students 
PLTL students were 
significantly more likely to 
credit workshop involvement 
with increased learning than 
non-PLTL students perception 
of recitation 
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Table Appendix A continued 

Utschig & 
Sweat (2008) 

F2F Georgia 
Institute of 
Technology 

Undergraduate Computer 
Science 

Mixed 
methods 

Attitudes Students highly rated the 
format of the course with PLTL 
implemented 
 
Peer leaders self-reported gains 
in skills and abilities 

Wamser 
(2006) 

F2F Portland State 
University 

Undergraduate Organic 
Chemistry 

Quantitative Program 
evaluation 

Workshop students achieved 
higher: 

• Success rates in the 
course (85% vs 69%) 

• Three-term persistence 
(57% vs 28%) 

• ACS exam scores  
(77th percentile vs 69th 
percentile) 

 
Weaver et al. 
(2006) 

F2F Purdue & Ball 
State 
Universities 

Undergraduate Chemistry 
laboratories 

Qualitative Program 
evaluation 

75% of students who opt-in to 
the CASPiE program are 
female 
 
Students appreciated 
participating in meaningful 
research, not confirmatory 
experiments, but needed more 
support to understand primary 
literature 
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Table Appednix A continued 

White, 
Rowland, & 
Pesis-Katz 
(2012) 

F2F University of 
Rochester 
Medical Center 

Graduate Nursing Qualitative Program 
evaluation 

Students thought PLTL 
workshops were “pivotal” to: 

• Increased content 
understanding 

• Increased problem-
solving and critical 
thinking skills 

• Decreased course 
anxiety  
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Appendix B Student Perception Survey 

On a scale of 1 to 5 (one being least, five being greatest), rate each of the following activities 
according to how much each activity benefitted your learning.  
1. One-on-one discussion with the Discussion Leaders.   1    2    3    4    5 
2. Discussion Leader speaking to my small group.    1    2    3    4    5 
3. One of my small group members explaining a concept to me. 1    2    3    4    5 
4. Collaborating with my small group members.    1    2    3    4    5 
5. Explaining concepts to other members of my small group.  1    2    3    4    5 
6. Discussing and answering the workshop problem set.  1    2    3    4    5 
7. Seeing from the preparedness quizzes what I didn’t understand yet. 1    2    3    4    5 
 
8. On a scale of 1 to 5 (one being least, five being greatest), rate the influence of your 
participation in the workshops on your organic chemistry problem-solving skills.   
         1    2    3    4    5 
9. On a scale of 1 to 5 (one being least, five being greatest), rate how challenging the 
workshops problems are.       1    2    3    4    5 
 
10. Select the answer that best represents how frequently throughout the semester that you 
attempted the workshop questions in advance of the workshop session.    
Never  Rarely  Sometimes  Almost Always  Always 
 
11. Select the answer that best represents how frequently throughout the semester that you 
understood one or more of the workshop questions based on explanations from your small 
group members.  
Never  Rarely  Sometimes  Almost Always  Always 
 
On a scale of 1 to 5 (one being least, five being greatest), rate each of the following activities 
according to how important each item was in making your decision to enroll in a face-to-face 
or an online workshop. 
 
12. Best fit my schedule    1 2 3 4 5 
13. My advisor recommended it   1 2 3 4 5 
14. Avoid the commute to campus   1 2 3 4 5 
15. Prefer learning online    1 2 3 4 5 
16. Prefer taking courses on campus   1 2 3 4 5 
17. Prefer face-to-face learning    1 2 3 4 5 
18. Do not have access to the internet at home  1 2 3 4 5 
 
19. What improvements could be made in the workshops to assist your learning?  
[free response section]  
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Appendix C Semi-Structured Student Interview Protocol 

Session Identifier:  Provide the interview date, time, recording’s file name, and student 
identifier. 
Setting: Describe the physical setting in which the interview occurred. May also include 
a sketch here. 

Time Interviewer Notes 

For each interviewer note, 
record the time of the 
statement 

Researcher to note gestures, tone of voice, or other notable features of the 
student during the interview 
 

  

 

 

  

 

 

  

 

 

  

 

 

 

To be spoken by interviewer when the interview starts: Thank you for volunteering to be 
interviewed about your experience in the C341 PLTL Organic Chemistry Workshop 
Series. I want to know if there are differences in student experiences and the way they 
think about mechanisms depending on their PLTL setting. So, we’ll spend approximately 
30 minutes discussing your experience this semester, then discuss the resonance 
structures for one compound and mechanisms for two to three reactions.  
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Student Interview Questions 

Why did you select cPLTL or PLTL? 

Tell me about your weekly organic chemistry routine. 

What do you do to prepare for the workshops? 

What do you do after the workshops? 

What online resources do you use to learn organic chemistry or answer workshop 

problems? 

How frequently do you use model kits or other hands on tools during the workshop? 

Do you communicate with your group members outside of workshop?  How? 

How does your peer leader interact with your group? 

Did your peer leader discuss study strategies with you? What did he/she suggest? Did you 

try some of those techniques? How did they work for you? Are some of those 

techniques part of your normal routine now? 

Are there particular students who tend to answer problems during the workshop at the 

beginning of the semester? 

How about now, at the end of the semester? 

How does your peer leader try to engage more people? 

What do you like best about the workshops? 

What would you change about the workshops? 

Would you take another cPLTL workshop if it were offered in another course? 

What do the arrows communicate in a mechanism? 

Is there anything else that you’d like to share about your experience that you haven’t had 

a chance to say yet? 
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To be spoken by interviewer: For each of the following questions, talk aloud about your 
thinking while you write. [Note:  The student is provided a paper copy of the following 
pages upon which to write while speaking.] 
 
1. Using curved-arrow formalism to express the movement of electrons, generate at least 

three resonance structures of pyrone. 
 

O

O  
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2. The amino acid methionine, the starter unit of all proteins, is joined to the next amino 
acid by an amide bond2.  

+

H2N CO2H

HR

H2N CO2H

H

MeS

H2N

H

MeS

O

N
H

CO2H

HR

protein
synthesis

+ H2O

amide 
bond

methionine generic
amino acid

Draw curved-arrows for each step of the following mechanism: 
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H
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H
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H
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N CO2H

HR

H

+ H3O

H2O

 

                                                 
2 Clayden, J.; Greeves, N.; Warren, S.; and Wothers, P. (2001) Organic Chemistry. 2001. New York:  
Oxford University Press,  
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3. Identify the reaction type, draw the mechanism, and identify the final product(s) of 
the given reaction, noting the stereochemistry of the product.  

Br
NaN3

OH

O

(acetic acid)  
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4. Propose a plausible mechanism for the following transformation. 

R

R

O

Br
Br2
H2SO4, H2O
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Appendix D Semi-Structured Peer Leader Interview Protocol 

Session Identifier:  Provide the interview date, time, recording’s file name, and student 
identifier. 
Setting: Describe the physical setting in which the interview occurred. May also include 
a sketch here. 

Time Interviewer Notes 

For each interviewer note, 
record the time of the 
statement 

Researcher to note gestures, tone of voice, or other notable features of the 
student during the interview 
 

  

 

 

  

 

 

  

 

 

  

 

 

 
 
To be spoken by interviewer when the interview starts:  Thank you for volunteering to be 
interviewed about your experience in the C341 PLTL Organic Chemistry Workshop 
Series. I am interested in understanding if there are differences in your experiences in the 
two settings:  online and face-to-face.  
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Peer Leader Interview Questions 
What inspired you to be an organic chemistry peer leader? 

Tell me about the learning activities you use in face-to-face PLTL. 

How do you make students feel comfortable making mistakes in front of peers? 

What do you like best about face-to-face PLTL? 

What are the biggest challenges about face-to-face PLTL? 

What would you change about face-to-face PLTL? 

How would you change the beginning of the semester cPLTL training for students? For 

peer leaders? 

Tell me about the learning activities you use in cPLTL. 

What do like best about cPLTL? 

What are the biggest challenges about cPLTL? 

What would you change about cPLTL? 

Do you sense a feeling of camaraderie between the students in either setting? How do 

you know? 

Do you think the face-to-face PLTL students depend more on you or each other? How 

has that progressed over the semester? 

Do you think the cPLTL students depend more on you or each other? How has that 

progressed over the semester? 

In which setting do you find your students have more in-depth discussions of the 

chemistry concepts? 

In which setting do you prefer to be a peer leader? Why? 

What advice would you give a new face-to-face peer leader? 

Would you give the same, different, or additional advice to a new cyber peer leader? 

How has your experience as a peer leader affected you? 

Would you like to be a cyber peer leader again? 

Is there anything else that you’d like to share about your experience that you haven’t had 

a chance to say yet? 
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Appendix E Course Grade and Percentage Correct CAF during Interview 

Setting Pseudonym Course 
Grade 

Course 
Score 

Question 
1 

Percent 
Correct 

CAF 
Arrows 

Question 
2 

Percent 
Correct 

CAF 
Arrows 

Question 
3 

Percent 
Correct 

CAF 
Arrows 

Question 
4 

Percent 
Correct 

CAF 
Arrows 

PLTL 
 

Holly B- 2.7 100.0 77.8 33.3 33.3 
Eli A 4 91.7 90.9 75.0 93.8 
Susan C+ 2.3 25.0 70.0 0.0 0.0 
Veronica A 4 100.0 62.5 100.0 100.0 
Erin B 3 72.7 60.0 66.7 0.0 
Katherine B 3 60.0 75.0 100.0 75.0 
Keith A- 3.7 100.0 84.6 100.0 84.6 
Debbie C+ 2.3 100.0 69.2 100.0 0.0 
Matthew B 3 100.0 72.7 80.0 66.7 

cPLTL 

Kayla B- 2.7 93.3 72.7 50 66.7 
Thomas D 1 66.7 66.7 33.3 0.0 
Blake A+ 4 100.0 100.0 100.0 50.0 
Christopher C+ 2.3 20.0 50.0 100.0 20.0 
Kenneth B 3 100.0 88.9 100.0 50.0 
Isaac A+ 4 100.0 81.8 100.0 91.7 
Jenae B 3 70.0 20.0 66.7 0.0 
Ashley C 2 58.3 80.0 100.0 0.0 
Andrew B+ 3.3 100.0 75.8 100.0 44.4 
Joyce B 3 100.0 60.0 50.0 38.5 
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