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ABSTRACT
Decades of research have revealed notable similarities between the immune systems of the plant and
animal kingdoms. Liquiritin has long been used to stimulate the body immunity in animals against an
array of diseases. Considering the homology of some induced immune responses between animals
and plants, we examined the effects of exogenously applied liquiritin to stimulate defense
responses in Chinese flowering cabbage plants against cucumber mosaic virus (CMV) infection
under greenhouse and field conditions. Foliar application of liquiritin (200 ppm) effectively
suppressed the development of CMV symptoms by not less than 40% compared with the control
in cabbage plants in both greenhouse and field trials along with the significant increases in the
marketable yield and nutritional quality of cabbage. Liquiritin application enhanced the
production of phenolic compounds and different defense-related enzymes in treated plants.
Moreover, quantitative real-time PCR analysis revealed that liquiritin significantly up-regulated the
expression of different defense-related genes upon pathogen inoculation, indicating an induction
of the salicylic acid-mediated defense system. Collectively, the findings of this study indicate that
liquiritin can effectively control CMV in cabbage plants.
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Introduction

Brassica rapa is an important vegetable crop cultivated
worldwide to meet requirements for oil and fodder, whereas
the fresh leaves are used in salads and as garnishes (Li et al.
2020). In addition, it has contributed the Brassica A genome
to the amphidiploid crop species Brassica napus and Brassica
juncea (Lowe et al. 2004), and also been demonstrated to
contain a range of phenolics, vitamins, and glucosinolates
with anticarcinogenic and antioxidative effects in humans
(Cheng et al. 2012).

Diseases are important factors limiting the production of
brassica vegetables, which are known to be affected by 10–20
different viruses (Wilson et al. 2012). Cucumber mosaic virus
(CMV) is among the most economically damaging patho-
gens in Brassica crops (Moreno et al. 2004). CMV is the
type member of the genus Cucumovirus in the family Bromo-
viridae (Scholthof et al. 2011). Infected plants exhibit symp-
toms that include strong leaf mosaic patterns and leaf
distortion, stunted growth, reduced flower production, and
fruit lesions (Shi et al. 2018). The decreases in plant yield
being closely associated with the stage at which crop plants
are attacked by CMV. Plants infected at the seedling stage
are incapable of developing appropriate curd or seeds, devel-
opment of the disease in mature plants can result in reduced

crop yields. Currently, there is a limited availability of appro-
priate treatments for the management of viral diseases in
infected plants. Control of CMV in the field by controlling
its vector is not very effective. Some resistance genes have
been utilized to manage losses caused by CMV. At several
instances, immunity caused by resistance genes is overcome
by different strains of CMV (Palukaitis and García-Arenal
2003).

Numerous plants have developed mechanisms of systemic
resistance to restrict pathogens at the sites of infection. This
resistance enhances the defense status of the non-exposed
plant parts against pests (Daayf et al. 2012), whereas the
up-regulated expression of defense-related genes modulates
phytohormone biosynthesis (Durrant and Dong 2004). In
this regard, the application of biotic and abiotic primers
can be used to induce resistance through the enhancement
of signaling proteins within plant cells, and subsequent
increases in the synthesis of pathogenesis-related proteins
can contribute to amplifying plant immunity (Ahmad et al.
2020; Ahmad et al. 2021).

Both plants and animals are endowed with a conserved
innate immune system able to neutralize pathogens and to
contain the infection (Roudaire et al. 2021). The essence of
both plant and animal immunity is the recognition and pro-
tection against the foreign. Similarities or analogous
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mechanisms seem surprising when immunity to pathogen
infections is considered in the case of plants and animals
(Maekawa et al. 2011). The defense-related activities of
plants are initiated by the detection of signaling molecules
also termed as elicitors that function as signaling molecules
in plants (Nürnberger and Brunner 2002). The elicitor mol-
ecules are called antigens in the course of immune reactions
in animal receptors. Interestingly, animals or plants nucleo-
tide-binding receptors likely detect effector molecules
injected into the host cell by the pathogen to hijack the
immune signaling cascade (Nürnberger and Brunner
2002). All these facts refer to the possibility that recognition
of animal antigens or elicitor molecules by plants can also
trigger immune responses to hinder the invasion of patho-
gens inside plant body. Liquiritin is a flavanone glycoside
that plays a significant role in boosting the immune system
of mammals (Cheel et al. 2010), and in our recent research,
we observed that this compound also has a beneficial effect
on the growth of Chinese flowering cabbage plants (Akram
et al. 2020). Furthermore, we found that a foliar spray of
750 ppm liquiritin enhanced the contents of phenolics and
glucosinolates in addition to acylated and glycosylated flavo-
noids in cabbage plants Akram et al. (2020).

On the basis of aforementioned similarities between ani-
mal and plant defense mechanisms and our previous findings
with respect to liquiritin (Akram et al. 2020), we postulated
that the application of this compound might have the
effect of eliciting defense responses against the cucumber
mosaic virus (CMV) in Chinese flowering cabbage plants.
In the present study, we accordingly sought to examine the
protective effects of exogenous application of liquiritin on
Chinese flowering cabbage plants infected by CMV. To the
best of our knowledge, this is the first study that has sought
to elucidate the effects of exogenously applied liquiritin on
the activation of plant defense responses to reduce the
damage caused by a viral disease. The findings of this
study will contribute to the identification of other synthetic,
non-toxic, fit-for-human consumption elicitor molecules
capable of up-regulating plant defense responses against
viral diseases.

Materials and methods

Plants, virus, and chemicals

For the purposes of the present study, we used the Caixin
variety of Brassica rapa L. ssp. parachinensis as host plants.
The virus used was the GSS-073 strain of CMV isolated
from B. rapa plants. Commercial-grade liquiritin of 99%
purity was obtained from Riotto Botanicals (China), and
Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester
(BTH), used as a positive control, was obtained from
Sigma-Aldrich (St. Louis, MO, United States).

Plant growth conditions

The greenhouse experiment conducted in the present study
entailed growing plants in pots containing sterilized Tref
Jiffy (USA) media, which were placed in an insect-proof
greenhouse at 20/25 ± 3°C (night/day) under a 16-h
photoperiod.

Elicitor pre-treatment and virus application

Different concentrations (0, 50, 100, 150, and 300 ppm) of
liquiritin were sprayed over the foliage of Chinese flowering
cabbage plants at the four-leaf stage (spraying until run-off;
approx. 18 mL suspension plant−1). Inoculation of CMV
was performed 2 days after the application of the elicitor
(Elsharkawy 2019). As a positive control for the activation
of systemic acquired resistance, we used 100 mM BTH
(Beris et al. 2018). Plants inoculated with sterilized distilled
water served as control or mock-inoculated treatment as
suggested by Tungadi et al. (2017). The entire experiment
was conducted using a randomized complete block design,
with 10 plant replicates in each treatment, and the study
was repeated twice.

Disease severity analysis

The level of resistance to CMV induced by liquiritin in Chi-
nese flowering cabbage plants was evaluated both morpho-
logically and serologically. Disease severity was rated on a
scale from 0 to 10, as described by (Ghandi and Anfoka
2000), and the disease severity index was analyzed using
the equation proposed by Raupach et al. (1996). Virus con-
centrations were estimated using enzyme-linked immuno-
sorbent assays (ELISAs) according to Elsharkawy et al.
(2013).

Assessment of induced resistance

An additional independent experiment was conducted to
evaluate the efficacy of liquiritin in triggering systemic resist-
ance in supplemented plants. All treatments were the same as
those described for the previous experiment, with the one
exception that only a single concentration of liquiritin
(200 ppm) was used, and we performed the analyses
described in the following sections.

Evaluation of defense-related biochemicals

Changes in the activities of phenylalanine ammonia lyase
(PAL), polyphenol oxidase (PPO), and peroxidase (PO)
and the contents of phenolic compounds in treated plants
were observed over a time course from the first day of
virus inoculation. Plant leaf samples used for analyses were
collected at different time points and stored in liquid nitro-
gen. Phenolic contents were estimated according to Zieslin
and Ben Zaken (1993). For extraction of defense-related
enzymes, 1 g of pre-washed leaf sample was vortexed in an
ice-chilled mortar in the presence of 5 mL ice-cold
100 mM sodium phosphate buffer at pH 7.0. The mixture
was subjected to centrifugation at 4000×g for 15 min at 4°
C. The activities of PO, PPO, and PAL in the resulting super-
natant were estimated spectrophotometrically. PO activity
was analyzed using 0.5 mL of 1% hydrogen peroxide, 0.05
M pyrogallol, and 1 mL of enzymatic extract (Fu and
Huang 2001). For estimates of PPO activity, 60 mM catechol
was mixed with 1 mL of enzyme extract and 50 mM sodium
phosphate buffer (pH 6.5) (Mayer et al. 1966), whereas PAL
activity was determined using a mixture of 0.4 mL of 25 mM
Tris-HCL (pH 7.5), 1 mL of enzyme extract, and 0.5 mL of L-
phenylalanine (Burrell and ap Rees 1974).
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Evaluation of changes in defense-related genes

Changes in the expression levels of some pathogenesis-
related (PR) genes in response to exogenous elicitor were
quantified 1 week after pathogen inoculation. Total RNA
was extracted using Trizol reagent (Thermo Fisher Scientific,
MA, US) according to the manufacturer’s instructions.
Approximately 1 μg of total RNA was reverse transcribed
to single-stranded cDNA, and RT-qPCR was thereafter per-
formed to examine gene expression, as described by Abe
et al. (2011), using a GoTaq® qPCRMaster Mix Kit (Promega,
USA) and a Bio-Rad CFX96 Real-Time PCR System. EF1-α
was used as a housekeeping gene for normalization of the
transcription levels of observed genes, based on the cycle
threshold method. The primers were designed using the Pri-
mer3Plus interface (http://frodo.wi.mit.edu/). The primers
specificity and efficiency were also determined in RT-
qPCR. Details of primers are provided in supplemental
table 2.

Field experiments

To evaluate the potential of foliar application of liquiritin
(200 ppm) and its effect on the yield and quality of Chinese
flowering cabbage, we performed field experiments during
2018 and 2019 in agricultural fields in the vicinity of Guangz-
hou City, China, which had a previous history of viral dis-
ease. Foliar elicitor was sprayed three times under field
conditions (Kong et al. 2018), starting from the six-leaf
stage and repeated at 10-day intervals. The study was
arranged in a randomized block design, and for all treat-
ments, we assessed five replicate plots, each containing 50
Chinese flowering cabbage plants cultivated on raised beds
in a single row. Similar amounts of BTH and water were
applied to the BTH and water-treated control plants, respect-
ively. At 60 days after elicitor application, disease suppres-
sion was examined both morphologically and molecularly,
as described previously. To assess disease occurrence, 15
leaf samples were randomly selected from all plants and
stored in liquid nitrogen until used for analysis.

Plant quality assessment

Field-grown plants at final harvest were also analyzed for
improvement in nutrient quality and marketable yield
under the influence of exogenous elicitor. The marketable
value of plants was calculated using the following formula:

Marketable value (%) =
100–(100× percentage of or diseased plants/percentage

healthy plants)

Ultra-fast liquid chromatography-quadrupole time-of-
flight tandem mass spectrometry (UFLC-QTof-MS/MS)
analysis, based on the MRMmethod, was employed to deter-
mine the amounts of different glucosinolates and total phe-
nolics in treated plants. For this purpose, 30 leaf samples
were randomly collected from each treatment plot and
pooled to give composite samples. Prior to lyophilization,
the samples were cooled to −80°C by maintaining on dry
ice. The levels of glucosinolates and phenolic acids in leaf
powder preparations were determined as described by Fran-
cisco et al. (2009). Likewise, alkaline hydrolysis was

performed according to Francisco et al. (2009) prior to analy-
sis of glucosinolates and phenolics using an API 4000 QTrap
mass spectrometer equipped with a TurboIonSpray® probe
(AB Sciex, Foster City, CA, USA) linked to a UFLC system
(Shimadzu, Kyoto, Japan). Optimization of the experimental
conditions was based on the parameters recommended by
Cataldi et al. (2007). Details regarding the separation of chro-
matograms and investigation situations have been described
previously by Akram et al. (2020). Supplemental table 1
shows the experimental conditions used to quantify gluco-
sinolates and phenolics using sinigrin (Sigma) and sinapic
acid as standards for glucosinolates and phenolics, respect-
ively (Moreira-AraÚJo et al. 2018).

Statistical analysis

Experimental trials were repeated twice, and mean values are
presented. Data were inspected for normality by employing
the Shapiro–Wilks test. Data were analyzed by performing
ANOVA, and differences among treatments were analyzed
using Duncan’s new multiple range test. The average of
data representing yield factors for each field trial plot was
analyzed according to Moore and Dixon (2015).

Results

The protective effects of exogenously applied
liquiritin against CMV in Chinese flowering cabbage

Twenty days after virus inoculation, plants were examined
for symptom development and disease severity. Compared
with the pathogen control, we found that the disease
severity index was reduced in plants sprayed with liquir-
itin. As shown in Figure 1, application of liquiritin at
concentrations greater than 200 ppm significantly reduced
disease severity, with reductions of up to 63.9% being
recorded for Chinese flowering cabbage plants treated
with 200 ppm liquiritin. The results of ELISAs presented
in Figure 1 indicate trends consistent with the disease
severity index scores, with the application of liquiritin sig-
nificantly reducing viral antigens in a dose-dependent
manner. However, the data indicated that applying elicitor
at concentrations in excess of 200 ppm did not appear to
provide any further enhancement of the protective effect
against CMV. BTH, which was used as a positive control,
was similarly found to result in reductions in CMV sever-
ity and titer in treated cabbage plants (Figure 1).

Assessment of induced resistance

Analysis of changes in defense-related compounds
To elucidate the biochemical basis of liquiritin (200 ppm)
mediated induced resistance, quantification of total pheno-
lics and different enzymes of phenylpropanoid biosynthesis
was performed at different time points post liquiritin appli-
cation, and was compared to water treated (control) plants
and BTH treatment. Exogenous application of liquiritin sig-
nificantly elevated total phenolic contents in Chinese flower-
ing cabbage plants at different time points, we observed the
most pronounced responses in plants receiving the appli-
cation of both liquiritin and pathogen (Figure 2(A)). Total
phenolic contents were peaked at 24hpi interval where
these were 2.3- fold higher in plants receiving liquiritin +
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CMV as compared to the plants receiving pathogen alone
(Figure 2(A)). Total phenolic contents were likewise signifi-
cantly increased in BTH-supplemented plants (positive con-
trol treatments).

PO and PPO activities in Chinese flowering cabbage
plants treated with liquiritin+ CMV were significantly
increased up to 2.6 and 1.7 folds, respectively, as compared
to the control (water treated) plants for 48 dpi interval
(Figure 2(B,C)). Whereas, the same values ranged at 1.3-
and 0.7- folds respectively, in CMV alone inoculated plants
(Figure 2). PAL activity peaked at 24 dpi and highest activity
was seen in the plants treated with liquiritin+ CMV (Figure 2
(D)). PAL activity was 1.8-, 1.1- and 1.3- fold higher in CMV
+ liquiritin treated plants as compared to the control, liquir-
itin alone, and CMV alone treatments, respectively, on
24 dpi (Figure 2(D)).

Changes in the expression of defense-related genes
To determine whether liquiritin (200 ppm) affects the SA
mediated signaling pathway during pathogen infection,
defense-related genes were quantified by RT-qPCR 7 days
after inoculating plants with CMV. These PR genes are
widely used as molecular markers for resistance response
against pathogens (Seo et al. 2008). The induced expression
of these genes showed significant differences (P< 0.05)
among liquiritin alone, liquiritin + CMV, CMV alone and
control (water treated) plants (Figure 3).

Liquiritin treatment followed by CMV challenge resulted in
elevated levels of PR1 transcript levels up to 2.3- and 1.7- folds
respectively, compared to both non-treated control and CMV
alone inoculated plants (Figure 3). Similarly, expression levels
of PR-3 and PR-5 increased up to 5.1- and 3.9- folds in liquir-
itin + CMV inoculated plants respectively, compared to that of
control plants. Whereas, expression levels of PR-3 and PR-5
increased up to 3.4- and 3.1-folds respectively, in liquiritin +
CMV inoculated plants as compared to that of CMV alone
treatment (Figure 3). In case of PR4, expression levels in liquir-
itin + CMV inoculated plants increased up to 1.5 and 0.8 folds
respectively, as compared to the CMV alone and water-treated
control plants (Figure 3). This indicated the activation of SA
mediated signaling in Chinese flowering cabbage plants
under influence of liquiritin treatment.

Field experiment

To evaluate virus resistance under field conditions, Chinese
flowering cabbage plants were treated with liquiritin three
times at 10-day intervals, starting from the six-leaf stage. In
the field trials conducted in both 2018 and 2019, we found
that the disease index of plants sprayed with liquiritin was
significantly reduced by up to 43.8% compared with the con-
trol plots (Table 1). Consistently, ELISA absorbance values
were significantly lower in the liquiritin-supplemented plants
than in the controls across both field trials (Table 1).

Figure 1. Potential of liquiritin to suppress viral disease caused by CMV in Chinese flowering cabbage plants. A = Suppression of disease severity caused by liquir-
itin against CMV in Chinse flowering cabbage plants. B = Effect of exogenous application of liquiritin on disease severity caused by CMV. C = Effect of exogenous
application of liquiritin on accumulation of CMV in Chinese flowering cabbage. Vertical bars indicate standard errors. Different letters indicate significant difference
by Duncan’s new multiple range test at P = 0.05. Con = Control. BTH = Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester.
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Plant quality assessment

The data obtained from field experiments indicated that the
foliar application of liquiritin effectively increased the mar-
ketable yield of Chinese flowering cabbage by an average of

39.6% over both field trials (Table 1). Moreover, the exogen-
ous application of liquiritin significantly enhanced the syn-
thesis of different phenols and glucosinolates in plants
under field conditions, with contents of the glucosinolates
neoglucobrassin, glucoalyssin, gluconapin, glucobrassicin,
and 4-methoxyglucobrassicin increasing on average basis
up to 2.3-, 1.9-, 0.7-, 1.3-, and 2.1-folds, respectively, com-
pared with the control plants across both field trials (Figure
4). Likewise, higher inducible quantities of phenolic acids
were detected in Chinese flowering cabbage plants receiving
foliar elicitor (Figure 4), with sinnapic acids and caffeic acid
increasing by more than 3-fold under the same conditions
(Figure 4).

Discussion

Liquiritin is a major flavonoid found in the roots of licorice
plants (Glycyrrhiza spp.), the medicinal properties of which,
as well as its activation of immune responses in humans,
have been well studied (Uto et al. 2019). In the current
study, we, therefore, sought to assess the potential of liquir-
itin, applied as a foliar spray, in suppressing disease caused
by CMV in Chinese flowering cabbage plants. We accord-
ingly found that foliar application of liquiritin significantly
reduced the severity of CMV in cabbage plants grown
under both greenhouse and field conditions. It is worth men-
tioning here that Benzo-(1,2,3)-thiadiazole-7-carbothioic

Figure 2. Time course study of the levels of (A) total phenolics, (B) PO, (C) PPO and PAL activity in potato plants. The levels were measured in the leaves of Chinese
flowering cabbage plants after the following treatments: Water-treated control (C), CMV alone (T1); liquiritin (200 ppm) alone (T2); BTH alone (T3); liquiritin
(200 ppm) pretreatment followed by pathogen infection (T4); BTH pretreatment followed by pathogen infection (T5). Vertical bars show standard error between
different replicates of the same treatment. Leaves of the plants were used for quantifications of phenolic compounds and PO, PPO and PAL enzymes. Quantifi-
cations were performed at different time points. The experiment was repeated twice and mean values are presented here.

Figure 3. Effect of liquiritin application on the expression levels of different
defense-related genes of Chinese flowering cabbage plants. The levels were
measured after one week of pathogen application under the following treat-
ments: Water-treated control (C), CMV alone (T1); Liquiritin (200 ppm) alone
(T2); BTH alone (T3); Liquiritin (200 ppm) pretreatment followed by pathogen
infection (T4); BTH pretreatment followed by pathogen infection (T5). Vertical
bars show standard error between different replicates of the same treatment
whereas, small letters show level of significance among different treatments
as governed by ANOVA and DNMRT at p = 0.05. Leaves of the plants were
used for RT-qPCR analysis. Analysis was performed at 7 dpi of CMV application.
The experiment was repeated twice and mean values are presented here.
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acid S-methyl ester (BTH) was used as a positive control in
this study. This chemical has been reported to induce sys-
tematic resistance in tomato against cucumber mosaic
virus (Ghandi and Anfoka 2000). During the initial phase
of the study, we set out to standardized the dose of liquiritin
for field application and established that foliar spraying with
liquiritin at a concentration of 200 ppm or more effectively
suppressed CMV disease symptoms in cabbage plants
under greenhouse conditions. Hence, 200 ppm was selected
for subsequent field application, and was found to be simi-
larly effective in suppressing disease symptoms in field trials
conducted in both 2018 and 2019. Consistently, the CMV
titer was observed to be significantly reduced and the
ELISA results indicated reduced virus load in treated cabbage
plants compared with control plants. These results are con-
sistent with those obtained in some previous studies, in
which exogenous elicitors were found to provide protection
against viral diseases in plants (Mushtaq et al. 2020; Shah
et al. 2020). Additionally, we demonstrated that liquiritin eli-
citation induced systemic resistance by upregulating certain
defense responses in Chinese flowering cabbage. Thus, we
speculate that liquiritin-mediated disease (CMV) suppres-
sion in Chinese cabbage is likely a consequence of an induc-
tion of resistance/defense responses. Overall, we determined
the efficacy of the exogenously applied elicitor by evaluating
the reduction in disease severity and virus titer and
expression patterns of defense-related genes, and by doing

so, characterized the role of different factors contributing
to the induction of resistance.

Elicitor molecules trigger disease resistance in plants, and
it is well established that elicitors are perceived by corre-
sponding arrays of receptors molecules. This detection in
turn activates associated signaling cascades, which promote
changes in the physiological state of affected plants. To vali-
date the hypothesis of induced resistance, in the present
study, we assessed elicitor-triggered immunity against plant
pathogens, and accordingly detected elevated levels of differ-
ent defense-related compounds in treated plants, which
peaked on the 2nd day after elicitor treatment. Notably, it
was found that the defense-related biochemicals triggered
by liquiritin are comparable to those induced by treatment
with the positive control BTH. In this regard, the upregulated
production of phenolic compounds and enzymes that par-
ticipate in phenylpropanoid pathways, such as PAL, PO,
and PPO, has been recognized as a hallmark event of induced
resistance mediated by exogenous elicitors (Conrath et al.
2001; Vallad and Goodman 2004). Subsequent to CMV
infection, we found that plants pre-treated with exogenously
applied liquiritin accumulated higher levels of total phenolics
and defense-related enzymes compared with control plants,
thereby signifying that liquiritin triggers an enhancement
of resistance by stimulating different defense mechanisms
in plants of Chinese flowering cabbage.

It has been reported that the defense responses of plants are
closely associated with the salicylic acid and/or jasmonic acid
signaling pathways (Pieterse et al. 2001; Kmiecik et al. 2016).
Furthermore, it has been demonstrated that liquiritin priming
results in the up-regulation of defense-related genes, thereby
enhancing pathogen resistance (Niu et al. 2011). In the present
study, we also observed that the expression of PR-related genes
was enhanced in Chinese flowering cabbage plants treated with
exogenous elicitors, which is consistent with the findings of pre-
vious studies and thus provides compelling evidence that PR-
related genes also play roles in mediating certain defense
responses against plant pathogens. The likelihood that liquiritin
activates the salicylic acid-dependent signaling pathway was
also reinforced by the similar expression pattern profiles of
PR-related genes in CMV-infected plants pre-treated with
liquiritin and BTH (positive control).

In addition to the beneficial effects of liquiritin with regards
to CMV disease resistance, we also observed increases in the
marketable yield and nutritional quality of Chinese flowering
cabbage plants grown under field conditions, with the former
being significantly higher than that of the control plants. Fur-
thermore, UFLC-QTof-MS/MS analysis in the MRM mode
revealed significant increases in the levels of certain glucosino-
lates in response to treatment with the foliar elicitor. Moreover,
in leaf samples of cabbage plants treated with elicitors, we also
detected higher levels of phenolic acids, which can contribute to
reducing plant susceptibility to pathogenic agents (Mandal et al.

Table 1. Effect of liquiritin on suppression of viral disease caused by CMV and marketable yield of Chinese flowering cabbage.

Treatment

Trial 1 Trial 2

Disease Index ELISA Value Marketable yield Disease Index ELISA Value Marketable yield

Control 7.36 ± 0.41a 1.17 ± 0.09a 29.28 ± 1.26c 8.02 ± 0.51a 1.23 ± 0.08a 23.57 ± 1.04c

Treated 4.26 ± 0.21b 0.57 ± 0.04b 52.98 ± 3.07ab 3.96 ± 0.28b 0.62 ± 0.05b 48.61 ± 2.84ab

BTH 3.18 ± 0.27bc 0.43 ± 0.02c 58.06 ± 4.33a 3.22 ± 0.19b 0.51 ± 0.03c 53.47 ± 4.46a

p-value <0.0001 <0.0001 <0.001 <0.0001 <0.0001 <0.0001

Notes: The mean value ± standard error is presented. Different letters indicate significant differences by Duncan’s new multiple range test at P = 0.05. BTH =
Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester.

Figure 4. Variance of glucosinolates and bound phenolic acids in Chinese
flowering cabbage plants. UFLC-Qtof MS/MS analysis was performed after
one week of elicitor treatment. T1 = Liquiritin; T2 = BTH. (*) = p≤ 0.05; (**)
= p≤ 0.01 as governed by ANOVA.
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2010), as well as similar significant increases in bound phenolic
acids (Figure 4).

Conclusion

In this study, we have shown for the first time that exogenous
application of liquiritin can induce CMV resistance in Chi-
nese flowering cabbage plants. Pre-treatment with liquiritin
promoted significant increases in the concentrations of
different defense-related biochemicals and PR genes, which
were well correlated with induced resistance in response to
this foliar elicitor. Our findings also indicate that levels of
valuable nutritional and medicinal compounds in the leaves
of Chinese flowering cabbage plants can be enhanced by the
foliar application of liquiritin.
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