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ABSTRACT 

 
 
 

Woodward, Scott D., M.S. Purdue University, May 2011, Studies in Pressurized Planar 
Electrochromatography. Major Professor: Dr. Barry Muhoberac. 

 
 
 

This thesis describes separations performed by Pressurized Planar 

Electrochromatography (PPEC), which is a chromatographic method developed at 

IUPUI. In PPEC the mobile phase is driven by electroosmotic flow, while the system is 

pressurized to allow temperature control. This results in a highly efficient 

chromatographic system that has several attractive attributes including the ability to 

separate multiple samples simultaneously. 

The first three chapters of the thesis describe the relationship of PPEC to other 

forms of chromatography, the theoretical background of PPEC, the PPEC apparatus, 

including the plate holders used, and the different manipulations involved in preparing a 

plate for a PPEC run. 

The fourth chapter describes two short studies. The first demonstrates that a very 

fast separation of steroids on a high efficiency sorbent layer can be effected by PPEC. 

This is illustrated by the separation of six steroids in three minutes on a Superspher layer, 

with an efficiency of over 100,000 plates per meter. The second study attempted to 

improve the efficiency of separation by imposing a temperature gradient. The study was 
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not successful, possibly due to Joule heating within the layer overriding the temperature 

gradient. 

The final chapter of the thesis describes two different studies on separating 

peptides by PPEC. The first study was performed on a bonded C18 sorbent layer that was 

treated with Brij-35, which is a non-ionic surfactant that prevents irreversible adsorption 

of the peptides to the sorbent surface while allowing electroosmotic flow. The variables 

involved in preparing the plates by soaking in a Brij-35 solution were investigated as well 

as the variables for PPEC (temperature, pressure, electrical potential, and mobile phase 

composition and pH). It was possible to separate six peptides in eight minutes using this 

approach. 

The second study used monolithic sorbent layers prepared by Dr. Frantisek Svec 

of Lawrence Berkeley National Laboratory. Separations were by conventional PPEC on 

charged monoliths and by electrophoresis on neutral monoliths. The same variables for 

PPEC, listed in the above paragraph, were investigated for the monolith study. It was 

possible to separate six peptides in two minutes on neutral monoliths and in one minute 

on negatively charged monoliths. 
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CHAPTER ONE - INTRODUCTON 

 
 
 

Thin-Layer Chromatography 

Thin Layer Chromatography (TLC), also called planar chromatography, is an 

analytical technique that was introduced in 1938 [1] and is still widely used [2]. TLC has 

many attractive attributes, such as the simplicity of the technique, the ability to 

simultaneously run multiple samples on the same TLC plate, the fact that there is no need 

to transport the separated compounds to a detector, and that sample cleanup is often not 

necessary because TLC plates are not generally reused. In TLC the solvent is removed 

after the separation is completed, thus preventing any possible interference with 

detection, and high quality scanners are available for quantitation [3]. Other attractive 

attributes are that a large number of spot visualization techniques are available [4], and it 

is possible to separate complex mixtures in the two-dimensional (2-D) mode [1]. The 

latter mode involves two sequential separations in orthogonal directions, with each 

separation using a mobile phase/stationary phase combination of different selectivity.  

 TLC is used for quantitative analysis by relatively few laboratories as compared 

to High Performance Liquid Chromatography (HPLC) [5] because of some unattractive 

features. These are best discussed in conjunction with some key relationships. The main 

disadvantage of TLC is low chromatographic efficiency due to the poor flow profile 
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caused by the mobile phase migration velocity decreasing as the solvent front progresses 

through the sorbent layer. This relationship is given by equation 1: 

Uf=κ/2Zf         (1) 

Where Uf is the velocity of the solvent front in cm/s, κ is the solvent velocity constant in 

cm2/s, and Zf is the migration distance of the solvent front in cm. This diminution of the 

mobile phase velocity can result in long analysis times, especially when working in the 

reversed phase mode, which in this thesis refers to chromatography with a non-polar 

stationary phase and a water-based mobile phase. It is not possible to control the mobile 

phase velocity when using capillary mediated flow. Thus the efficiency of TLC is 

inherently limited due to the inability to obtain an optimum mobile phase velocity. 

TLC plates with very small particles are available and are referred to as High 

Performance Thin-Layer Chromatography (HPTLC) plates [6]. These plates can yield 

high efficiency, but only for short migration distances as discussed later in the thesis. For 

long migration distances there is substantial diminution of mobile phase velocity due to 

the relationship expressed in equations 1 and 15, and also a substantial loss of efficiency 

[7]. This limits the number of compounds that can be separated. 

There are several multi-development techniques, which sharpen peaks and 

increase the number of analytes that can be separated, but these are very time consuming 

and not often used. 

 

Forced Flow Techniques 

 Forced flow techniques were introduced to improve the speed and efficiency of 

planar chromatography. There are five forced flow techniques: Overpressured Layer 
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Chromatography (OPLC), Rotational Planar Chromatography (RPC), Shear-Driven 

Liquid Chromatography, Planar Electrochromatography (PEC) and Pressurized Planar 

Electrochromatography (PPEC). 

 In OPLC, an inflated bag pressurizes and seals the surface of the TLC plate. This 

allows the mobile phase to be pumped through the sorbent layer [8], leading to a higher 

linear mobile phase velocity that results in higher efficiency than obtainable by capillary 

mediated flow. Problems that occur in OPLC are due to gradients caused by solvent de-

mixing, which will be discussed later in the thesis and the presence of the “disturbing 

effect”. The latter refers to the presence of micro-bubbles in and near the solvent front 

due to desorption of air from the sorbent particles. This leads to an irregular solvent front. 

 In RPC the plate is rotated at a high angular velocity causing the mobile phase to 

be driven from the center to the edges by centrifugal force [9]. However, because the 

mobile phase moves radially, the linear velocity diminishes as it moves outward, and the 

optimum velocity cannot be obtained. In spite of these drawbacks, RPC technique results 

in higher speed of separation and better efficiency than is attainable in classical TLC. 

Both OPLC and RPC are well-established techniques for which apparatus is 

commercially available. 

 Shear-Driven Liquid Chromatography is a newer technique that is still at the 

proof-of-principle stage. In this technique the sorbent layer is coated onto the walls of a 

channel, as small as 100 nm, which is filled with mobile phase [10]. A top wall is 

moveable and as it is pulled across the channel, viscous drag causes the mobile phase to 

flow. There are only a few research reports that mention this technique [11], but 

preliminary results show that fast and efficient separations can be achieved. 
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 In Planar Electrochromatography the mobile phase is driven by electroosmotic 

flow (EOF) through the sorbent layer of a TLC plate. The advantages of using EOF are 

that, theoretically, a flat flow profile of the mobile phase should be achieved in contrast 

to the laminar flow observed in pressure-driven systems, and that EOF is independent of 

particle diameter and the length of the sorbent bed [see equation 16].  

PEC can be performed on either pre-wetted [12-17] or on initially dry [18-24] 

TLC plates. Separations using initially dry layers are performed in a horizontal chamber 

with each end of the plate contacting a solvent reservoir, which contains an electrode 

through which the electric potential is applied. This technique yields little enhancement 

to migration velocity and because the separations yield poor results this approach has 

been abandoned in favor of using pre-wetted plates. Separation on pre-wetted plates is 

discussed in the following section. 

 PPEC is a more efficient technique than PEC for the following reasons. 

Pressurization overcomes mobile phase evaporation due to Joule heating or accumulation 

of liquid on the layer surface, two effects that occur under different conditions as 

discussed in the following section. The application of pressure also allows temperature 

control of the separation through the pressurizing medium. PPEC is always performed on 

pre-wetted TLC plates because this technique gives increased speed and efficiency.  

 

History of Planar Electrochromatography 

 Thin layer electrophoresis was the first technique to use an electric field to 

perform a separation in a planar mode [25]. The first use of EOF in chromatography was 

reported by Pretorius and co-workers in 1974 [12]. This report describes the use of EOF 
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for both planar and column chromatography. The planar technique was called High 

Speed Thin-Layer Chromatography (HSTLC), and was performed with a TLC plate 

aligned vertically, with the base of the plate in a trough of solvent, located at the bottom 

of the plate. The cathode was a wire positioned at the top of the plate and the anode was a 

wire placed in the solvent trough. The report demonstrated the separation of four steroids 

in 4 minutes, which was fifteen times faster than the corresponding separation by TLC. 

The section on column chromatography had satisfactory detail, while the section on 

planar chromatography contained few experimental details, and did not even state the 

mobile phase used for the separation.  

 In an article discussing PEC in 1997, Poole and Wilson described Pretorius’ paper 

in the following way [26]: 

“It is unfortunately true that this is one of the most frustrating papers in modern 

chromatography insofar as the lack of detail and experimental methodology given makes 

repeating the work almost impossible” and “Had the technique been investigated further 

the whole development of modern planar chromatography might have been different.” 

 After a hiatus of more than 20 years, Pukl and co-workers [19] reported the 

separation of a mixture of six dyes on initially dry layers using an experimental setup 

similar to that described by Pretorius. This was the first report to refer to the technique as 

Planar Electrochromatography. There was an increase in the speed of separation of only 

15 %, and the separation quality was poor. As discussed earlier, separations under 

initially dry conditions yield poor results. The authors suggested that further investigation 

into the technique would be important, due to a significant amount of research that could 

be undertaken in the development and optimization of the method.  
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Reversed-Phase Planar Electrochromatography 

 While good separations in the reversed-phase mode can be achieved with PEC 

when the appropriate conditions are chosen, the results described below reveal an 

important drawback of electrochromatography at atmospheric pressure [27]. The major 

disadvantage of PEC is the fact that while the major component of electroosmotic flow is 

in the axial direction, there is also flow to the surface of the TLC layer, which results in 

the formation of a film of liquid, which can degrade the quality of separation. This 

problem is offset by evaporation of the mobile phase caused by Joule heating, which is 

controlled by buffer concentration, pH, and applied voltage. Under conditions, which 

produce large amounts of Joule heating, excessive drying can occur, which can also 

lower the separation quality. A careful balance between these two phenomena results in 

good separations. 

 The following study reported by Nurok and co-workers, illustrated the balance 

between liquid evaporating from the layer surface and liquid being driven to the layer 

surface [29]. A set of PEC experiments were performed in which the concentration of 

acetate buffer in the mobile phase was varied. The reported separations were performed 

on bonded C18 layers at a constant applied voltage of 1 kV using 55 % aqueous 

acetonitrile containing various concentrations of acetate buffer, ranging from 1mM to 100 

mM, at pH 4.5 for 10 minutes [30]. At the two lowest buffer concentrations (1 mM and 5 

mM) there is clear evidence of streaking due to accumulation of liquid on the layer 

surface, as a result of insufficient evaporation of liquid. At buffer concentrations between 

10 mM and 25 mM, better quality separations occurred with all analytes being 

completely separated due to a balance between liquid flowing to, and evaporation from, 
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the surface. Separations at buffer concentrations of 50 mM and 100 mM, dried at 4 

minutes and 2 minutes respectively [see Figure 1]. 

 Nurok and co-workers [27] offered the following explanation as to why liquid is 

driven to the surface. In a packed bed there is a distribution in the size of the channels 

through which the liquid flows. Under certain conditions, the flux of liquid from one 

channel to the next may be substantially different, and in a packed tube the channels of 

lower flux control the overall EOF. However, in an open system such as PEC when a 

channel of higher flux leads to a channel of lower flux the excess liquid can migrate 

towards the surface since there is no constraining pressure. If this effect is large enough, 

liquid may accumulate on the surface of the layer. An alternative explanation, reported by 

Dzido and co-workers, suggests that liquid on the surface may be due to an excessive 

flow of the mobile phase along the layer surface from the reservoir on the anode side of 

the plate [28]. Dzido and co-workers, however, have not referred to this latter 

interpretation in their more recent publications [31]. 

  In summary, separations by PEC can be faster and more efficient than those by 

classical TLC. The major limitations of the technique are that either the layer dries under 

conditions where a large amount of Joule heating is generated, or that spot streaking 

occurs, under conditions where liquid accumulates on the layer surface due to a low 

degree of Joule heating. 

 

Pressurized Planar Electrochromatography (PPEC) 

 PPEC is a new separation technique developed at Indiana University-Purdue 

University Indianapolis (IUPUI) that overcomes the problems associated with PEC at  
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Figure 1. A separation of a seven-component mixture on a RP-18 layer at 1000 V 

using, as mobile phase, 55 % aqueous acetonitrile containing acetate buffer at a pH of 

4.5. The buffer concentrations are as indicated. In order of increasing RF, the compounds 

are: 4-cholesten-3-one, 17-α-acetoxyprogesterone, 2′-acetonapthone, benzanilide, o-

nitroaniline, 3,4-dimethoxybenzoic acid, p-hydroxybenzoic acid. Reproduced with 

permission from reference 27. 
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atmospheric pressure. In PPEC the mobile phase is driven by electroosmotic flow while 

the sorbent layer is pressurized by contact with two temperature-controlled die blocks.  

This prevents both mobile phase evaporation and accumulation of liquid on the layer 

surface. PPEC can be considered a form of column electrochromatography in a planar 

format. 

 

Attractive Features of PPEC 

 PPEC is substantially faster and more efficient than conventional TLC. This was 

illustrated by Novotny [30] comparing a classical TLC and a PPEC separation of a five-

component mixture of small molecules on LiChrospher plates. The TLC separation was 

performed for 24 minutes after allowing the plate to be fully saturated with mobile phase 

prior to TLC. The PPEC separation was performed for 3 minutes at 9kV and 41 atm. 

Both separations were performed using a mobile phase of 55 % aqueous acetonitrile 

containing 5mM acetate buffer at pH 4.7. A 24-fold enhancement in the speed of 

separation between PPEC and TLC was obtained. In addition to the enhanced speed of 

separation, efficiencies for PPEC separations have been reported as high as 100,000 

plates per meter [30]. 

 Both Regular and LiChrospher plates yield rather similar results when used to 

separate the five-component mixture by conventional TLC. When the plates were run by 

PPEC to a development distance of 9.0 cm using a mobile phase of 55 % aqueous 

acetonitrile containing 5 mM acetate buffer at pH 4.7 Novotny demonstrated that the 

LiChrospher plates yielded dramatically better results than the regular plates. The faster 

separation on the LiChrospher plates was interpreted as being due to the lower carbon 



10 

load of the silica surface. This should expose more of the silica surface and, therefore, a 

larger concentration of silanol groups to the mobile phase. The excellent peak shape is 

interpreted as being due to the fact that the layer consists of spherical particles of a 

narrow size distribution. The properties of these plates are discussed in the Types of 

Sorbent Layers for PPEC section. 

 PPEC is well suited to the simultaneous separation of multiple samples. In 

addition to spotting the samples along a line parallel to the mobile phase origin, the 

samples can also be spotted as a 2-dimensional array. This approach has been used by 

Novotny to separate nine samples of the five-component mixture in 1 minute [30]. This is 

possible because the plate is pre-wetted with mobile phase before PPEC, and the 

separation of all samples commences simultaneously. A complete dip is used to pre-wet 

the plate, but this is not good for quantitative analysis. An alternative procedure would be 

to wet strips of filter paper with mobile phase and press these strips onto the TLC plate 

between analyte spots. The remaining dry areas will be wetted by capillary action. 

 Novotny also demonstrated that the sample throughput can be doubled by using 

two plates that are inserted back-to-back (glass backing together) into the apparatus [30]. 

Such a separation was performed using a separate electrode for each TLC plate. With an 

appropriate electrode setup, multiple plates could be stacked, which would further 

increase the number of samples that can be separated simultaneously. Temperature 

control could be obtained by placing metal blocks with liquid circulation channels 

between the plates. This configuration, together with the ability of PPEC to separate a 

two-dimensional array of samples, should provide a substantial advantage for high-

throughput separations, as the method is refined in the future.
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CHAPTER TWO - THEORETICAL BACKGROUND 

 
 
 

Metrics for Chromatographic Analysis 

 The following discussions and equations are specific for TLC but some are more 

general and apply to all forms of chromatography. 

 

Analyte Retention 

 The basis for chromatography is that compounds are separated by distribution 

between the stationary phase and the mobile phase. This section discusses general 

concepts, focusing on planar chromatography. Other modes of chromatography are 

briefly discussed where relevant. 

 The retention factor (k), also referred to as the capacity factor or the partition 

ratio, measures the relative affinity of a compound for the stationary and mobile phases, 

and is defined as: 

 k=ms/mm         (2) 

where ms, and mm are the mass of the analyte in the stationary and mobile phase 

respectively. 

 In planar chromatography the parameter for retention is the retardation factor (Rf), 

which decreases with increasing affinity of the solute for the stationary phase, relative to 

the mobile phase. Rf is defined as: 
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 Rf=MD/Zf         (3) 

where MD is the migration distance of the analyte and Zf is the distance migrated by the 

solvent front. 

 Rf and k are related by the following equation under conditions of full vapor 

saturation: 

 Rf=1/(1+k)          (4) 

 The separation factor, α, is a measure of separation between two analytes and is 

defined as: 

 α=kb/ka          (5) 

where analyte b is the more retained compound. Thus α is always greater than or equal to 

unity. The separation factor is related to Rf by the following equation: 

 α= Rf,a(1-Rf,b)/ Rf,b(1-Rf,a)       (6) 

 

Efficiency 

 In chromatography it is important to obtain sharp symmetrical peaks, which 

increase the probability that analytes will be separated. The efficiency of a separation, a 

measure of the sharpness of the peaks, can be defined by several different parameters. 

One such parameter is the number of theoretical plates, N. This is defined as: 

 N=(MD/σ)2         (7) 

where MD is the migration distance of the analyte and the σ is the standard deviation of 

the peak about its mean position. The number of theoretical plates can be conveniently 

measured by the following equation where the width at half height is equal to 2.354σ 

assuming a Gaussian distribution: 
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 N=5.54(MD/W1/2)2        (8) 

where MD is the migration distance of the analyte and W1/2 is the width of the peak at half 

height. 

 An important chromatographic variable is the Height Equivalent of a Theoretical 

Plate (HETP or H), which for planar chromatography is defined by the following 

equation: 

 H=MD/N         (9) 

Based on this equation, the height of a theoretical plate decreases with decreasing peak 

width for a given migration distance. Efficiency can be reported as the number of 

theoretical plates per meter. 

 In PPEC the peak width of the initial spot makes a significant contribution to the 

final spot width. Because of this it is of interest to predict the efficiency of a separation in 

which a very small initial spot is used. In order to do this a theoretical width at half 

height, W1/2,a is calculated by the following equation [29]: 

 W1/2,a=Wd+(Wf-Wi)        (10) 

where Wd, is an ideal spot width that is small enough not to have a meaningful 

contribution to the final spot width, Wf is the width at half height for the final peak, and 

Wi is the width at half height of the initial spot. Wf and Wi are experimental values could 

be determined by scanning the TLC plate. W1/2,a can be used to calculate the ideal 

number of theoretical plates, Nd, and the ideal plate height, Hd. 

 The relationship between the height of a theoretical plate and the velocity of the 

mobile phase is given by the van Deemter equation: 

 H=A+(B/u)+CSu+CMu       (11) 
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where u is the mobile phase velocity, A is the eddy diffusion term, B is the longitudinal 

molecular diffusion term, and CS and CM are the resistance to mass transfer terms. This is 

a simplified version of the equation with the A, B, and C terms defined below. A plot of 

the height of a theoretical plate versus mobile phase velocity is termed a van Deemter 

plot. 

 The A term represents the contribution of eddy diffusion to the overall band 

broadening: 

  A=2λdp	         (12) 

The term A is a function of the multiple paths in the sorbent layer available for an analyte 

to travel. It is dependent on the size of the particles (dp) and a geometrical packing factor 

(λ). The A term is minimized by using stationary phases composed of small uniformly 

packed particles [32]. 

 The B term, which accounts for diffusion in all directions, arises from diffusion of 

analytes in the mobile phase: 

 B=2ψDm	         (13) 

This variable is proportional to the obstruction factor (ψ), which allows for the nature of a 

packed bed, and the diffusion coefficient (Dm) of the analyte in the mobile phase [32]. 

The latter is dependent on the temperature and pressure of the mobile phase, and the 

diffusion rate is low under conditions of low temperature and high pressure. As the 

migration distance increases in classical TLC, the velocity of the mobile phase decreases 

while the diffusion of the spots continues to increase. After a certain migration distance 

no improvement in resolution is obtained due to excessive diffusion. This limitation does 

not apply to PPEC. 
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 The C term represents the contribution of resistance to mass transfer to the overall 

band broadening. In Gas Chromatography (GC) and HPLC this is considered the most 

important contribution to band broadening, and arises from separations being performed 

under non-equilibrium conditions. Analytes do not fully equilibrate between the 

stationary and mobile phases, due to the flow of mobile phase. The result is that some 

analyte molecules spend more time in the mobile phase and travel faster than the overall 

population of molecules. Other analyte molecules spend more time in the stationary 

phase resulting in slower migration than the population of molecules. Resistance to mass 

transfer increases with the velocity of the mobile phase. Lower mobile phase velocities 

result in lower values for the C term, but this is undesirable because lower velocities 

increase the separation time and results in substantial spot broadening due to increased 

diffusion. 

 In a description of the C terms: 

 CS=f(k)(df
2/Ds)        (14a) 

 CM=f(k)(dp
2/Dm)        (14b) 

the magnitude of CS is dependent on the average film thickness (df) and the diffusion 

coefficient (Ds), while the magnitude of CM is dependent on the particle diameter (dp) and 

the diffusion coefficient (Dm) [32].  

 

Forces that Effect Mobile Phase Flow 

Capillary Flow 

 In classical TLC the mobile phase is driven by capillary action. The mobile phase 

velocity is inversely proportional to the distance traveled by the solvent front [see 
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equation 1]. Because of this, the solvent front travels progressively more slowly as it 

moves along the plate and this can result in lengthy and inefficient separations. This is the 

most unattractive feature of TLC. 

 The mobile phase velocity is proportional to, κ, the solvent velocity constant and 

is related to important variables by the following equation [33]: 

 κ=2k0dp(γ/η)cosθ        (15) 

where k0 is the permeability constant of the layer (dimensionless), dp is the diameter of 

the particles in the layer in cm, γ is the surface tension in N cm-1, η is the viscosity of the 

mobile phase in N s cm-2, and θ is the contact angle of the mobile phase. 

 Inspection of equations 1 and 15 shows that the mobile phase velocity depends on 

the diameter of the particles in the stationary phase, with smaller particles resulting in 

slower migration. Because of this relationship, high-performance TLC plates, which are 

composed of smaller particles, yield the most efficient separations only for very short 

mobile phase migration distances [34]. The diminution of migration velocity is 

substantial at greater distances, and this can result in time-consuming separations. This in 

turn results in the separation efficiency and resolution being limited by diffusion in 

classical TLC. 

 

Electroosmotic Flow (EOF) 

 This discussion of electroosmotic flow refers to separations in the reversed phase 

mode. EOF occurs due to the formation of an electrical double layer at the interface 

between the stationary and mobile phases. A double layer forms when an insulator is 

immersed in an electrolyte solution. Adsorption of ions from solution, or dissociation of 
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functional groups on the insulator surface are responsible for the formation of a charged 

surface. If the insulator is a silica-based stationary phase, then silanol groups on the 

surface begin to deprotonate when the pH of the mobile phase is greater than 3.0 (the pKa 

of unreacted silanol groups on the surface of C18 derivatized silica is approximately 4.0). 

The mobile phase consists of a bulk liquid with an appropriate buffer salt. At the interface 

between the silica surface and the mobile phase, positive charged ions from the mobile 

phase are attracted to the fixed negative charges of the silanol groups. The layer of 

positive charge closest to the stationary phase is held tightly in place by electrostatic 

attraction and is referred to as the fixed layer. This layer does not have sufficient 

positively charged ions to completely neutralize the negative surface charge and as a 

result, a second layer of net positive charge forms adjacent to the fixed layer. The second 

layer is not held as tightly as the fixed layer and is referred to as the mobile layer. The 

concentration of positive charge decays exponentially from the surface of the layer to 

some point in the bulk solvent. 

 The boundary between the fixed layer and the mobile layer is called the plane of 

sheer. A potential forms between the charged surface and the plane of shear is known 

as the zeta potential. The cations in the mobile phase migrate toward the cathode due to 

the applied electric field. The velocity of electroosmotic flow is given by: 

 veo=εoεζE/η         (16) 

where εo is the permittivity in a vacuum in C2J-1m-1, ε is the solution dielectric constant 

in C2J-1m-1, ζ is the zeta potential in V, E is the applied electric field in V m-1, and η is 

the viscosity of the mobile phase. The derivation of equation 16 assumes that the size of 
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the channel in which flow occurs is large compared to the size of the electrical double 

layer. 

 This relationship allows the mobile phase velocity to be optimized by 

controlling the electric field. In this thesis, the applied potential is reported rather than 

the electric field since all PPEC separations, regardless of plate type, were performed 

on plates where the distance between electrodes is 11 cm. 

 Equation 16 predicts that the velocity of EOF is independent of the particle size 

in the stationary phase, and also independent of the separation path length. Therefore, 

when using EOF to drive the mobile phase in planar chromatography, it is possible to 

take advantage of the higher efficiencies obtained by using high-performance TLC 

plates over longer migration distances. Small and uniformly shaped particles contribute 

to this high efficiency. 

 The velocity of EOF is directly proportional to the zeta potential which is 

defined by the following equation: 

 ζ=σδ/εoε          (17) 

where σ is the charge density at the surface of sheer in C m-2 and δ is the electrical 

double layer thickness. The thickness of the electrical double layer is described [35] by 

the following equation: 

 δ=( εoεRT/2cF2)1/2        (18) 

where R is the universal gas constant in J mol-1 K-1, T is the absolute temperature in K, 

c is the molar concentration of the buffer, and F is the Faraday constant in C mol-1. An 

increase in temperature causes an increase in the zeta potential and a decrease in 

viscosity. These changes result in an increase in mobile phase flow rate. 
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Overlap of the Electrical Double Layer 

 Equation 18 states that the size of the electrical double layer depends on both 

the temperature of the separation and on buffer concentration. Thus it should follow 

that an increase in electrolyte concentration would cause a decrease in the velocity of 

EOF. 

 This was proven to be true in Capillary Electrophoresis (CE) and a diminution 

in mobile phase flow rate has also been observed in Capillary Electrochromatography 

(CEC) for all or part of the electrolyte concentration ranges studied, and has been 

investigated for both open tubular columns and packed columns. Choudhary and co-

workers [35] and Crego and co-authors [36] both reported a decrease in the velocity of 

electroosmotic flow in CEC with increasing buffer concentration. Banholczer and co-

workers [37] and Knox and co-workers [38] reported an initial rise in the velocity of 

electroosmotic flow followed by a steady decrease, with increasing buffer 

concentration. 

 The opposite effect has been observed in PEC and PPEC, where an increase in 

electroosmotic flow is observed with increasing buffer concentration. This has been 

explained by Nurok and co-workers [39] in terms of an overlap of the electrical double 

layer as reported by Wan [40, 41]. At low buffer concentrations, the electrical double 

layer becomes larger, and an overlap of the electrical double layers on adjacent 

particles may occur causing a reduction in the velocity of EOF. The reduction becomes 

smaller with increasing buffer concentration leading to an increase in the velocity of 

EOF. 

 



20 

Electrophoresis 

 Electrophoresis is the motion of dispersed particles relative to a fluid under the 

influence of a uniform electric field. It is due to the presence of a charged interface 

between the particle surface and surrounding fluid. The dispersed particles have an 

electric surface charge, on which an external electric field exerts an electrostatic force 

which is known as, electrophoretic mobility and is defined as:  

 μEP=q/(6πηr)         (19) 

where μEP is the electrophoretic mobility, q is the charge of the ionized solute, η is the 

buffer viscosity and r is the solute radius. The electrophoretic mobility is similar to the 

electroosmotic mobility and has the same units. As can be seen in the above equation 

there is a direct relationship between the mobility and the charge-to-size ratio. The 

higher this ratio the faster the solute will move. 

 

Resolution 

 The resolution, Rs, is the most practical and widely used parameter to quantify the 

separation between a pair of peaks. It is defined by: 

 Rs=(MD,b-MD,a)/(0.5(Wb,a+Wb,b))      (20) 

where a and b refer to the peak identities, MD is the migration distance, and Wb is the 

width at the base of the peak for the respective analytes. The following equation is used 

to predict the resolution of two adjacent peaks in column chromatography. It combines 

equations that define efficiency, separation factor, and retention factor. 

 Rs=(N/4)1/2((α-1)/α)(kb/(1+kb))      (21) 
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where N is the number of theoretical plates generated, α is the separation factor, and kb is 

the retention factor of the more highly retained analyte. This equation assumes that, 

because the peaks are adjacent, N is similar for both analytes. 

 The above equation requires modification for planar chromatography because the 

migration distance depends on the identity of an analyte. This can be adapted by making 

the following two changes. First the term √ܰ is changed to ඥܰ ∗ ௙ܴ to allow for the fact 

that the number of theoretical plates for a given solute will be approximately proportional 

to its migration distance relative to the solvent front. N is considered the number of 

theoretical plates for a hypothetical compound that migrates with the solvent front. 

Secondly, the average of Rf is substituted for k [using equation 4]. Thus, the new 

resolution equation becomes: 

 Rs=((N*Rf)/4)1/2((α-1)/α)(1- Rf)      (22) 

The equation predicts that resolution approaches to zero as Rf approaches either zero or 

unity. 
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CHAPTER THREE - EXPERIMENTAL 

 
 
 

Apparatus 

 The apparatus [29] was designed in collaboration with, and built by, the Jonathon 

Amy Facility for Chemical Instrumentation (JAFCI) at Purdue University under the 

direction of Dr. Robert Santini. As you can see in Figure 2 the instrument consists of a 

hydraulic cylinder, which was connected with flexible tubing to a hand operated pump, 

and attached to a support block. The ram extends from the cylinder and contacts the 

movable metal die block via a ball and socket joint that is aligned using witness marks on 

both the ball and socket. The die block then presses the plate, which is housed in the 

holder, against the stationary die block. Four brackets and support rods are attached to the 

end blocks to prevent the instrument from bowing when the metal die blocks are 

pressurized. Pressure was applied to an area of 2.5 cm x 10 cm of the TLC layer. Any 

change in the alignment of these components could affect the direction in which the 

mobile phase flowed. Therefore, every time a part was removed or cleaned the apparatus 

needed to be realigned to apply even pressure to ensure that the separation ran straight up 

the center of the plate. 

The instrument is housed in a Plexiglas box within a hood containing two sets of 

safety switches. When the door to the box or the hood is opened, one set of switches 

disables the power supply and the second activates a circuit that allows any residual  
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PPEC Ram    Hydraulic Press  Cooling Circulator 

Figure 2. PPEC Instrument. 
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charge to drain to earth. The operator also stands on an insulating mat, and as an 

additional precaution removes all metal jewelry. 

The electrical potential is applied from an external power source (Glassman, 

Series EW). The plate rests in a Delrin solvent reservoir mounted under the stationary die 

block. The reservoir is easily removed for cleaning or when the Liquid-On-Top (LOT) 

holder is used. The anode is a platinum wire that rests at the bottom of this reservoir and 

is connected to the ground lead from the power source. The cathode, which contacts the 

sorbent layer, is a 0.25 mm thick rectangular piece of platinum welded to a platinum 

wire. An alligator clip is used to connect the cathode to the power source. The placement 

of the cathode in the LOT holder is different. 

The temperature of a separation is controlled by circulating liquid of the desired 

temperature through both metal die blocks. Liquid is circulated from an external 

temperature controlled circulator (Neslab, RTE-111) through both die blocks that are 

connected in series with flexible tubing. The path of the circulation channels in the die 

blocks are in an inverter “U”, [see Figure 3]. It is possible that the center section of the 

die block may be of a different temperature than that of the area surrounding the 

channels, because of the path of circulation. There is, however, no evidence of 

temperature non-uniformity, and if a temperature gradient does exist, it is not large 

enough to significantly affect the retention behavior of analytes. 

Separation temperature is monitored using a thermocouple positioned in a small 

hole in the top of the stationary die block. The thermocouple is connected to a digital  
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Figure 3. Passages for flow of water in die block. Figure is not shown to scale. 

Reproduced with permission from reference 29. 
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thermometer and positioned 1 cm from the face of the die block [see Figure 4]. For this 

reason the readings are considered only an approximate measure of the temperature of the 

separation, as the actual temperature of the sorbent layer is not monitored.  

 

Regular TLC Plate Holder 

 After a sample is applied and the plate is dipped [see dipping method], it is placed 

into a Delrin holder, which is then placed into the PPEC instrument [see Figure 5]. The 

plate is placed face down in the holder, such that the platinum electrode will contact the 

sorbent layer at the top end of the plate. A filter paper wick behind the electrode prevents 

liquid from accumulating at the top of the plate. A 0.25 mm thick sheet of Teflon 

attached to the Delrin holder covers the sorbent layer. There is a lip on the Teflon that 

extends past the bottom of the holder by 1 cm, and extends into the solvent reservoir to 

prevent arcing from the layer to the temperature-controlled die blocks that would cause 

the layer to scorch. At the top of the holder there is a rubber strip in the frame that presses 

the cathode against the sorbent layer. The cathode is not under high pressure but is very 

near the pressurized region of the plate. The two halves of the plate holder are fitted 

together and taped in place. Once assembled, the frame is placed between the two 

pressurized metal die blocks [see Figure 6]. 

 

Liquid-On-Top Holder 

 A second plate holder, referred to as the Liquid-On-Top holder [see Figure 7], 

was used in which solvent troughs are present at both top and bottom of the holder. This 

holder was designed to allow for electrophoretic separations, where there is no EOF, and 
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Figure 4. Location of thermocouple used to determine block temperature. 
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Figure 5. Illustration of PPEC plate holder. Reproduced with permission from 

reference 39. 
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Figure 6. TLC plate housed in plate holder within PPEC system. 
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Figure 7. Illustration of Liquid-on-top holder. 
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where the sorbent layer would dry due to Joule heating. The sorbent layer is protected by 

a 0.25 mm thick sheet of Teflon that prevents any contact between the sorbent layer and 

the metal die blocks. There is a lip on the Teflon that extends past the end of the holder 

by 1 cm, and extends into the solvent reservoir on the bottom of the plate. The frame is 

held together by locking cuffs made of Delrin. After the sample is applied and the plate is 

dipped into the mobile phase, it is placed into a Delrin frame, which is then placed into 

the PPEC instrument. The plate is placed face down, such that the sorbent layer at the top 

end of the plate presses against an O-ring around the opening to the top trough. Once 

assembled, the frame is placed between the two pressurized metal die blocks. Both 

reservoirs are filled with mobile phase solution. Both of the reservoirs contain a platinum 

wire that rests at the bottom of the reservoir and that is connected to the power source 

through the use of a co-axial connector [see Figure 8]. 

 

Types of Sorbent Layers for PPEC 

 Two different classes of sorbent layers were investigated in this thesis. The first 

are silica based where the silica particles are held in place with a binder and the resultant 

layer is supported on glass, aluminum, or plastic, but in this thesis only glass supports 

were used. The separations not performed on monolith plates were performed on bonded 

phase layers, in which the silica particles have been derivatized with hydrophobic groups 

most commonly C18 chains. The second are monolith plates and are discussed below. 

 The following three types of bonded phase plates were used: (a) Merck 

LiChrospher RP-18 WF254s (Catalog No. 1.05646.0001), (b) Merck RP-18 F254s 

(Catalog No. 15389.0001), and (c) Merck Superspher RP-18 WF254s. These plates are  
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Figure 8. Co-axial connector. 
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referred to as LiChrospher, Regular and Superspher respectively. LiChrospher and 

regular plates were purchased from VWR International. The Superspher plates are not 

commercially available and were received as a gift from Merck KgaA. The main 

difference between the regular and the LiChrospher/Superspher plates is that the sorbent 

layer of the latter consists of very small spherical particles and the carbon load is lower. 

 Monolithic materials are used in chromatography as separation media and 

supports, and were developed to overcome the disadvantages of particulate stationary 

phases [42]. Columns packed with particulate phases typically have large void volumes 

and often more than 30 % of the column volume is interstitial voids [42]. Liquid flows 

readily through the interstitial voids between particles, but remains stagnant inside pores 

in the particles. The relatively slow diffusion of analyte in and out of these pores causes 

band broadening due to the resistance to mass transfer. This behavior becomes 

problematic when the mass transfer properties of a stationary phase limit the overall 

separation rate. The obvious solution to this problem is to reduce the particle size. 

However, this result in reduced permeability and increased backpressure with techniques 

in which mobile phase is delivered with a pump. 

 Monoliths, which have been described as a continuous phase of porous material 

[42], allow the magnitude of the flow through channels and the size of the pores to be 

optimized independently. Therefore, monolithic phases can be made with high 

permeability, and for a given backpressure, separations on monolithic phases have been 

shown to have higher efficiency [43]. Another important feature of monoliths is their 

high porosity, which can be as high as 80 % (only about 20 % of the volume is occupied 

by stationary phase). The resistance to flow is much lower and the diffusion into and out 
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of the pores is much faster for these phases than for particulate phases. A simplified way 

to view this is that analyte is delivered to pores by flow and not by diffusion [42]. This 

leads to faster and more efficient separations when using monolithic stationary phases. 

 Monoliths have gained much attention in recent years due to their simplicity of 

preparation, and a large number of stationary phase chemistries have been developed. 

Some concern has been expressed about the column-to-column reproducibility, and it is a 

common perception that monolith columns are prepared one at a time. Standard 

chromatography columns are packed with particles that are prepared in large batches. The 

procedure for preparing monolith columns is not dissimilar since the polymerization 

mixture can be prepared in large batches and used to fill several columns. It has been 

demonstrated that column-to-column reproducibility is no worse for monoliths than for 

packed columns [44]. 

In this thesis monolith plates were used for peptide and protein separations. All 

monolith plates were prepared at Lawrence Berkeley National Laboratory by Dr. Svec’s 

group. 

 

Preparation of Monolith Plates for PPEC 

The following section is an overview of how these monolith plates were prepared 

in Dr. Svec’s Laboratory. The first step was to construct a mold by placing Teflon 

spacers of the desired layer thickness between two sheets of glass. The glass that is to 

serve as the support for the stationary phase is activated by immersion in a solution of 3-

(trimethoxysilyl) propyl methacrylate adjusted to pH 5 using acetic acid. This allows the 

monolith to be covalently attached to the glass backing. 
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 The uncharged monoliths were prepared from a polymerization mixture 

containing butyl methacrylate, ethylene dimethacrylate, 1-decanol, cyclohexanol, and 

2,2-dimethoxy-2-phenylacetophenone. In this mixture 1-decanol and cyclohexanol are 

the porogens, and 2, 2-dimethoxy-2-phenylacetophenone is the free radical photoinitiator. 

The mixture was de-aerated by purging with nitrogen for 5 minutes, inserted into the 

plate mold using a syringe, and then exposed to UV radiation for 15 minutes. This creates 

the neutral monolith poly (butyl methacrylate-co-ethylene dimethacrylate) referred to as 

BuMA-EDMA. 

 Charged monoliths were prepared by grafting either an anionic functionality 2-

acrylamido-2-methyl-1-propanesulfonic acid (AMPS) or a cationic functionality [2-

(Methacryloyloxy) ethyl] trimethylammonium chloride (META) onto the neutral layer 

after polymerization. This involves the preparation of a photo-grafting solution which 

contains the charged monomer along with a photo-initiator that promotes the grafting 

reaction. BuMA-EDMA plates were soaked in the photo-grafting solution to ensure that 

all the pores were filled. The plate was then placed under a UV lamp and covered with a 

quartz plate to prevent oxygen diffusion into the monolith film. Oxygen scavenges free 

radicals, which would inhibit the grafting reaction. Finally, the plates were soaked in de-

ionized water overnight to remove most of the unreacted monomer and solvent. 

 

Preparation of Plates for PPEC 

 TLC plates were cut into 3.3 cm x 12 cm sections to fit into the TLC plate holder. 

A 5 mm section of silica was scraped from each of the long edges and these exposed 

glass surfaces were then coated with a sealant. The monolith plates used in the Liquid-
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On-Top holder are 3.3 cm x 13 cm and only need to be sealed, since they come ready to 

be run, and are prepared with 5 mm exposed glass on the long edges ready for sealing. 

 

Plate Conditioning and Storage 

 Bonded C18 plates must be baked in an oven prior to use in order to activate the 

binder that holds the particles together. Unless otherwise indicated all reverse phase 

plates were conditioned at 160 ºC for 20 minutes in a microprocessor-controlled oven 

(VWR, 1330 FM). The plates were then immediately removed from the oven, placed in a 

desiccator over silica gel, and used within 24 hours. 

 

Sealants 

 A silicone sealant is used to seal the edges of all plates run by PPEC. This sealant 

is formed by combining one part Flowable Silicon Sealant (Dow-Corning, 734 flowable 

silicon sealant) with 2 parts toluene. After the sealant is completely mixed, it is applied 

with a paintbrush to the edges of the plates overlapping the sorbent layer by 

approximately 1 mm. The sealant must be allowed to cure for at least 30 minutes, at 

which point it is dry to the touch, and can be conditioned in an oven, to activate both the 

binding agent and the sorbent layer. This activation is evident by increased run speed and 

layer stability. The plates are then stored in the desiccator over activated silica. 

 

Mobile Phase Preparation 

 Solvent mixtures are reported as volume ratios. Buffer solutions of known 

molarity and pH were prepared. The concentration of the solution was then adjusted such 
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that, when mixed with organic modifiers and additional water, the mobile phase was at 

the desired molarity and pH. The Water was filtered through a Milli-Q purification 

system. The reported pH of the mobile phase is a nominal value and refers to the value of 

the buffer solution before mixing with acetonitrile, and for this reason is referred to as 

being nominal.  

 

Sample Preparation 

 Four standard mixtures were used in this research, a five-component small 

molecule mixture, a seven-component steroid mixture, and two six-component oligo-

peptide mixtures. The small molecule mixture and the steroid mixture were prepared in 

methanol, while the peptide mixtures were prepared in water. The mixtures are listed in 

Table 1. The peptide mixtures were combined with equal parts fluorescamine solution 

(3mg/mL in acetone) for visualization, and left to react for 5 minutes before spotting. The 

fluorescamine solution was stored at 4 ºC before use. The plates were run immediately 

after the spotting solution had dried. 

 

Spotting Procedure 

 Sample spots were applied 4 cm from the bottom of the plate, except on 

monoliths where they were applied 6 cm from the bottom of the plate. The spotting 

device was a 0.5 μL Hamilton syringe (Reno, NV). The standard spotting volume for the 

five-component mixture was 10 nL. Samples containing analytes of lower solubility were 

less concentrated (such as the steroid and peptide mixtures); these samples require a 

larger spotting volume (0.3-.5 μL), and were applied in volume increments (0.1 μL) to  
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Table 1. Table of analyte mixtures. 

 

Small Molecule Mixture O-nitroaniline 
 Benzanilide 
 2’-acetonaphthone 
 17α-acetoxyprogesterone 
 4-cholesten-3-one 
Steroid Mixture 5-androsten-3β,17β-diol 3-acetate 
 4,6-androstadien-17β-ol-3-one 
 4,9(11)-androstadien-17α-methyl-17β-ol-3-one 
 4-estren-17α-ethinyl-17β-ol-3-one 
 Progesterone 
 4-androsten-17β-ol-3-one acetate 
 4-androsten-17β-ol-3-one propionate 
Peptide Mix 1 Bradykinin 
 Choleocystokinin (10-20) 
 Oxytocin 
 Dynorphin A (1-8) 
 Dynorphin A (1-7) 
 ACTH (1-4) 
Peptide Mix 2 Substance P 
 Levitide 
 Neurotensin 
 T-kinin 
 Osteocalcin (45-49) 
 ACTH (1-10) 
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reduce the size of the final sample spot. The sample spot was allowed to dry between 

increments. 

 When performing PPEC studies that evaluate the effect of a variable on 

efficiency, it is important that the spot volume be very reproducible. To ensure that the 

same amount of sample is applied to each of the plates used in the study, a procedure was 

adopted in which the spot is applied to the TLC plate and then scanned. If the initial spot 

has a width at half height outside the range of 0.40-0.58 mm, the plate was not used. This 

procedure was used for all studies in which the efficiency of a separation is measured.  

 

Dipping Method 

 The analyte is spotted on a dry plate, and once the spot has dried, the plate is 

dipped for five seconds to within 2 mm of the analyte spot, quickly removed and blotted, 

rotated 180º, and dipped in the other direction for five seconds to within 2 mm of the 

analyte spot, after which the back of the plate is dried by wiping it with a paper towel. It 

is assumed that mobile phase travels by capillary action up to the analyte spot before 

PPEC is begun. This is considered the standard procedure since good spot shape is 

obtained and no analyte is lost while dipping. 

 

Detection 

 After PPEC, the plates are allowed to dry and are then viewed in a light box at 

254 nm, and later scanned at the same wavelength with a Camag TLC Scanner II 

(Wilmington, NC). A Bio-Rad molecular imager (Hercules, CA) was used for visualizing 

the monolith plates at 365 nm. 
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Variables that Effect Separation Quality in PPEC 

 The quality of a PPEC separation is affected by many variables including the 

separation temperature, applied pressure, baking temperature of the TLC plates, and 

applied voltage. The investigation of how those variables and several others affect the 

migration distance and efficiency of analytes is the subject of this chapter. 

 

Previously Investigated Variables 

Novotny [30] examined many of the variables affecting PPEC separations. She 

demonstrated that a longer separation time and/or a higher applied voltage results in a 

longer migration distance, and this longer migration distance in turn results in a higher 

efficiency, as shown by an increase in the number of theoretical plates. Increasing the 

temperature and/or time of conditioning in the oven has also been shown to increase 

migration distance, though under conditions of very high temperature or prolonged 

conditioning the sorbent layer discolors. Two other ways to increase the migration 

distance are to increase the percent of organic modifier present and to increase the 

separation temperature. Novotny [30] demonstrated that increasing the separation 

temperature up to 26 ºC for a specific set of compounds increases the efficiency of the 

separation under the conditions used, but beyond that point the efficiency begins to 

diminish. Two other variables that have been examined are applied pressure and buffer 

concentration. Increasing the applied pressure decreases the migration distance but 

improves the efficiency of the separation up to 59 atm, after which efficiency begins to 

diminish. It was found that increasing the buffer concentration increased the migration 

distance and efficiency but also resulted in increased Joule heating. 
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Variables Investigated in this Thesis 

 The variables investigated are the effects of dipping time, how close the solvent is 

dipped to the initial spot, and the sealant thickness. The following is the investigation of 

how those variables affect the migration distance travelled by the analytes. 

 

Effects of Dipping Time 

A set of experiments were performed to determine the relationship between 

migration distance and dipping time. PPEC separations on both LiChrospher and Regular 

plates were run at 9kV and 41 atm, for 3 and 5 minutes, respectively, with dipping times 

varied from 1 to 12 seconds for each end of the plate. The dipping solution is the same as 

the mobile phase. The plates were run at a controlled temperature of 23 ºC with a 5 mM 

acetate buffer at nominal pH 4.7 in a 65 % aqueous acetonitrile mobile phase. For each 

plate the dipping time was kept the same for opposite ends, with the time measured from 

when the plate enters the dipping solution until it is removed. Migration distance varies 

with dipping time and a minimum migration distance occurs at the 5 second dipping time. 

The best reproducibility was found at this dipping time, even though this results in a 

lower migration distance. 

 

Effects of Dipping Depth 

The following experiments were performed in order to determine if the closest 

distance between the surface of the dipping solution and the analyte spot, could affect the 

migration distance. PPEC separations on LiChrospher plates were run at 9kV and 41 atm, 

for 2 minutes with dipping distances of 1 through 4 mm from the analyte spot. For each 
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plate the distance was kept the same for opposite ends, and dipped for five seconds for 

each end. It was found that there was an increase in migration distance and an 

improvement in efficiency when the distance was increased to 2 mm, but greater increase 

in distance showed no further improvement. Once the distance was enlarged to 4 mm or 

larger capillary action could not completely wet the dry surface, and the plates no longer 

ran. The plates were run at a controlled temperature of 23 ºC with a 5 mM acetate buffer 

at nominal pH 4.7 in a 55 % aqueous acetonitrile mobile phase. 

 

Effects of Sealant Thickness and Composition 

A marked difference in spot shape and migration distance was observed in 

nominally identical runs on several occasions, and it was posited that if the sealant on the 

edges of the plates were too thick, it might cause a low pressure channel between the two 

raised sealant strips. If a low pressure channel were to form, it would allow a film of 

liquid to be driven to the surface causing spot smearing, and irregular migration. A set of 

experiments was performed to determine the effects of different sealant thicknesses on 

migration distance and spot shape. PPEC separations of the standard five-component 

mixture were performed on LiChrospher plates at 9kV with sealant composition ranging 

from a ratio of 1:2, silicone sealant to toluene, to a ratio of 1:10. The plates were run at a 

controlled temperature of 20 ºC in a 55 % aqueous acetonitrile solution with 5mM acetate 

buffer at nominal pH 4.7. Two different pressures and times were tested, to determine if 

the pressure exerted on the sealant would affect the sealants stability. Under both 

conditions as the total amount of sealant in the mixture decreased there was a decrease in 

the migration distance and an improvement in the spot shape. This observed decrease in 
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migration distance may be due to mobile phase leakage through the sealant layer under 

the pressures and forces exerted during a PPEC run. The ratio 1:4 (sealant to toluene) was 

found to offer the best compromise between spot shape and reduction in migration 

distance, and was used for all future work. 
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CHAPTER FOUR - SHORT STUDIES 

 
 
 

PPEC Separation Across a Temperature Gradient 

In PPEC, migration of analytes through a sorbent layer is affected by the 

temperature of the layer. As the temperature increases the migration velocity increases, 

but the spot shape can degrade. The inverse can be true at lower temperatures. If a 

temperature gradient would be imposed across the sorbent surface, in which the higher 

temperature was at the bottom of a vertical plate, improved resolution and peak 

sharpening should occur. This would be due to a differential in migration velocity within 

the analyte spot. The negative gradient should cause the tail end of the analyte spot to 

migrate at a higher velocity than the leading edge, preventing tailing. The following 

section of this thesis describes an attempt to confirm this theory. 

Separations of the five component standard were attempted by PPEC across a 

temperature gradient, such that the areas of the plate outside the pressurized area are also 

outside the temperature gradient. For obvious reasons, any significant amount of Joule 

heating could alter the gradient within the sorbent layer in a manner that is difficult to 

observe. In order to minimize the amount of Joule heating, the plates were run in a 

mobile phase containing a very low molarity of buffer and at low voltages. To create the 

temperature gradient a special pair of die blocks were constructed at the JAFCI at Purdue 
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University under the direction of Dr. Robert Santini. The gradient blocks are not 

described in order to protect future patentability.  

Runs were performed under standard conditions at 9 kV, 20 ºC and 41 atm using a 

mobile phase of 55 % aqueous acetonitrile containing 5 mM acetate buffer at nominal pH 

4.7. All plates were run in the normal holder after being conditioned in an oven at 160 ºC 

for 20 minutes. These runs were then compared to runs performed under the same 

conditions but with the lower buffer concentration and voltage. This change in buffer 

concentration and voltage was used to determine the magnitude of the effects of Joule 

heating on the separations. These runs gave similar results except for the longer 

separation times required to compensate for mild conditions. In order to obtain baseline 

information, runs were performed in the normal holder at both the highest (50 ºC) and 

lowest (-2 ºC) temperatures that would be used in a gradient. As would be expected, the 

higher temperature yields a substantially greater migration distance and a larger spot 

diameter. Based on these results it was determined that a 15 minute separation on 

LiChrospher plates would yield the greatest migration of solute across the gradient 

without the possibility of the analyte spots washing off of the plate. 

 The plates were then run across a gradient of 50 ºC to -2 ºC using 55 % aqueous 

acetonitrile containing 1 mM phosphate buffer at nominal pH 4.7 at 41 atm and 2 kV. 

The spot shape was large but round with reduced migration distance when compared to 

that found with 50 ºC runs without any gradient. This result was surprising since this 

gradient should have caused spot sharpening (i.e. a diminution of distance between the 

leading and trailing edge of a spot). 
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 The gradient was checked by measuring the surface temperature of the die-blocks 

with a thermocouple every centimeter after allowing the temperature gradient to stabilize. 

A plot of the temperature vs. the position on the die block is shown in Figure 9. In order 

to check if the location of the initial spot affects the final spot shape, four plates were run 

with the mixture spotted at 4.0 cm, 5.0 cm, 6.0 cm and 7.0 cm respectively, from the 

bottom. The final spot shape was the same for all four plates.  

 During the previous experiment it was noticed that though the spots were not 

sharpening. They did appear to be closer together than in an isothermal run. To test this, 

pairs of spots at 1.0 cm intervals were spotted vertically and run. The resulting spot shape 

was very poor, but the spacing between the spots decreased by between 1.0 - 3.0 mm.  

The reason that there was no sharpening of spots is probably due to Joule heating 

preventing thermal equilibration between the sorbent layer and the gradient blocks. 

Further work should be performed on the possible uses of thermal gradients in PPEC to 

explain this lack of sharpening. Once determined, the cause could be rectified, opening a 

new area of study. 

 

Separation of Steroids 

Steroids have a controversial place in society. When used correctly and under medical 

supervision, steroids are beneficial medications. Steroids can be used to help manage 

symptoms of cancer and AIDS, and to treat other conditions including osteoporosis, 

delayed puberty and low libido [45]. But used incorrectly steroids offer an unfair and 

illegal boost to athletes. To combat and control these illegal usages, more methods of 

detection and identification must be developed. PPEC would be an attractive addition to  
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Figure 9. Plot of temperature versus thermocouple location on die-block. 
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the current detection methods, as it can separate multiple samples simultaneously. The 

following section of this thesis describes a short investigation of separating steroids by 

PPEC. 

The initial step was to determine the Rf values of the steroids available in our 

laboratory and to investigate the feasibility of detection by fluorescence shadowing [see 

table 2]. The steroids examined were derivatives of estrogen, androgen, or testosterone. 

The steroids were initially spotted individually 1 cm from the bottom of a 10 x 20 cm RP-

18 F254s plate. The mobile phase was composed of 55 % acetonitrile with a 5 mM 

acetate buffer at nominal pH 4.7. The twin trough chamber was pre-equilibrated for 30 

min. TLC was then performed for 30 minutes, during which the solvent front migrated 

9.5 cm. 

 Those compounds that were readily visible were then run by PPEC to determine 

their relative migration distances. It was found that some of the steroids migrated 

differently under PPEC conditions than under those used for TLC. The purpose of 

performing TLC first was as a preliminary screen to remove those compounds that were 

not readily visible and to perform this screen both quickly and simultaneously, which 

TLC permitted due to the larger available plate size. The runs were performed under the 

following conditions: 9 kV, 41 atm, 8 minutes, 55 % acetonitrile, and 5 mM acetate 

buffer at nominal pH 4.7. The analytes were spotted 4 cm from the bottom on regular 

plates that had been sealed and then conditioned for 20 minutes at 160 ºC. This data was 

used to determine which steroids would provide a separation mixture that would yield 

complete resolution. The final mixture consisted of the following steroids listed in order 

of decreasing Rf: 5-androsten-3β-ol-16,17-dione; 4,6-androstadien-17β-ol-3-one; 4,9(11)-  
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Table 2. Fluorescence Intensity of Steroids 

 

 Fluorescence at 254 nm 
Compound None Weak Strong Rf 
1,3,5(10)6-estratetran-3-ol-7-one   X   0.28 
1,3,5(10)-estratren-17α-methyl-3,17β-diol-3-methyl ether   X   0.07 
1,3,5(10)-estratrien-3-ol-17-one   X   0.36 
1,4,6-androstratrien-3,17-dione   X   0.27 
17α-ethynylestradiol   X   0.32 
19-nor-4-androsten-17β-ol-3-one     X 0.23 
4,6-androstadien-17β-ol-3-one     X 0.22 
4,9(11)-androstadien-17α-methyl-17β-ol-3-one     X 0.20 
4-androsten-17β-carboxylic acid-3-one     X 0.23 
4-androsten-17β-ol-3-one 17-phosphoric acid     X 0.60 
4-androsten-17β-ol-3-one acetate     X 0.08 
4-androsten-17β-ol-3-one hemisuccinate     X 0.23 
4-androsten-17β-ol-3-one hexahydrobenzoate     X 0.01 
4-androsten-17β-ol-3-one propionate     X 0.05 
4-androsten-3,11,17-trione   X   0.35 
4-estren-17α-ethinyl-17β-ol-3-one     X 0.25 
4-estren-17α-ethyl-17β-ol-3-one     X 0.14 
5-androsten-17β-carboxylic acid X     N/A 
5-androsten-3β,17β-diol     X 0.29 
5-androsten-3β,17β-diol 17-benzoate   X   0.01 
5-androsten-3β,17β-diol 3-acetate 17-benzoate X     N/A 
5-androsten-3β-ol-16,17-dione   X   0.40 
5α-androstan-17α-ethyl-17β-ol-3-one X     N/A 
5α-androstan-17α-methyl-17β-ol-3-one   X   0.01 
5α-androstan-17β-ol   X   0.02 
5α-androsten-17β-ol-3-one acetate X     N/A 
5α-androsten-17β-ol-3-one propionate X     N/A 
5α-androsten-3-one 17β-carboxylic acid   X   0.28 
5α-androstan-3α,17β-diol X     N/A 
5α-androstan-3β,16α-diol X     N/A 
5α-androsten-17β-ol-3-one hexahydrobenzoate X     N/A 
5α-androsten-2α,4α-dibromo-3,17-dione X     N/A 
5β-androstan-3.17-dione X     N/A 
Androstadiendione     X 0.26 
Androsten-3,17-diol   X   0.22 
Androstanolone   X   0.23 
Androsterone X     N/A 
Dehydroisoandrosterone X     N/A 
Estriol X     N/A 
Estrone X     N/A 
Progesterone     X 0.10 
Testosterone     X 0.20 
Δ1,4-androstadien-3,17-dione     X 0.24 
Δ4,8-androstadiene-3,17-dione   X   0.08 
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androstadien-17α-methyl-17β-ol-3-one; 4-estren-17α-ethyl-17β-ol-3-one; progesterone; 

4-androsten-17β-ol-3-one acetate; and 4-androsten-17β-ol-3-one propionate.  

The experimental conditions used for identifying the final mixture yielded 

moderately good separations, which were improved by optimizing the acetonitrile 

concentration and applied voltage. The analytes were spotted 4 cm from the bottom on 

LiChrospher RP-18 WF254s plates that had been sealed and then conditioned for 20 

minutes at 160 ºC. The optimal conditions for separation were at 6 kV and 41 atm for 8 

minutes with a mobile phase consisting of 55 % aqueous acetonitrile containing a 5mM 

acetate buffer at nominal pH 4.7.  

 Once the optimal conditions were found, the separation of steroids was performed 

on Superspher, LiChrospher and regular TLC plates (see Figure 10). The highest quality 

separations were on the Superspher plates. This study clearly shows the advantage of 

working with the Superspher plates that have a sorbent layer consisting of small 

(nominally 4 μm) particles, compared to the LiChrospher plates (spherical particles 4-7 

μm) and the regular plates (irregular particles, 5-20 μm). The Superspher plates yield a 

faster separation and a substantially higher number of theoretical plates. As an example, 

the number of theoretical plates for the spot with the third highest Rf is 236,000 plates 

per meter for the Superspher, 75,000 for the LiChrospher, and 45,000 for the regular. The 

separations on the Superspher plates were taken to Prosolia for scanning by DESI-MS 

(Desorption Electrospray Ionization - Mass Spectroscopy). The steroids were not 

detected in the scans, possibly due to being poorly ionized. This study demonstrates that 

PPEC is a useful technique for separating steroids, and that there are substantial 

advantages to working with highly efficient sorbent layers.  
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 A   B   C 

Figure 10. A six component Steroid mix separated at 6 kV at 20 ºC and 41 atm, the 

mobile phase was 55 % acetonitrile with 5 mM acetate buffer at nominal pH 4.7. Plate A: 

Superspher with a 3.00 minute run time, Plate B: LiChrospher with a 4.25 minute run 

time, Plate C: Regular TLC with a 12.0 minute run time. The run times were adjusted to 

give similar migration distances across the three plate types. 

 

Highest Spot 

Origin 
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CHAPTER FIVE - SEPARATION OF PEPTIDES 

 
 
 

Separation of Peptides and Proteins by PPEC 

 With the expansion of the field of proteomics, peptides have become a topic of 

great interest. These small bio-molecules are the building blocks of proteins, and as such 

can be used to identify and quantify the parent protein once it has been digested and the 

constituent peptides identified and quantified. The classic methods of separating peptides 

are by HPLC or gel electrophoresis [46-48]. These methods can be time consuming, and 

there is always a search for alternative approaches of separating these compounds.  

 Successful separations of peptides and proteins have also been performed using 

High Performance Thin Layer Chromatography (HPTLC) [49]. This method of 

chromatography, when used in conjunction with DESI-MS has been used to identify 

peptides in a tryptic protein digest [50]. These reports suggest that separations of peptides 

and proteins using PPEC would also be successful. 

Proteins and peptides provide a special challenge for electro-chromatographic 

separation due to their charged nature. These macromolecules exhibit electrophoretic 

mobility in the presence of an electric field and can migrate with or against EOF 

depending on their net charge, the pH of the mobile phase, and the velocity of EOF. The 

biggest problem, however, is the possible electrostatic interactions of the 

peptides/proteins with the charged functionalities of the stationary phase. These 
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electrostatic interactions are very likely to occur due to the low buffer concentrations 

typically used in PPEC. Stationary phase charges cannot be eliminated, as these are 

required to generate EOF. 

 To minimize these interactions the pH of the mobile phase should be adjusted so 

that analyte molecules have the same net charge as those on the stationary phase. 

Therefore, it is desirable to use a mobile phase of low pH when working with a positively 

charged stationary phase and vice versa. This approach seems logical, and separations of 

peptides or proteins have been reported in both the HPLC and CEC literature, using 

charged monoliths [51, 52]. 

This thesis investigates two methods for performing these separations. The first 

method focuses on chromatographic separations in the reversed phase mode on silica 

based plates. The second method focuses on the use of monolithic layers to perform the 

chromatographic separation. 

 

PPEC Separation of Peptides on Brij-35 Complexed Plates 

 When proteins or peptides are separated by conventional reversed phase 

chromatography, the analytes denature and adsorb onto the layer resulting in a decrease 

in the quality of the peak shape, an increase in tailing, and a diminution in separation 

quality. To prevent or reduce these interactions, different approaches to sorbent 

modification have been investigated, including the derivitization of the sorbent layer with 

ionic surfactants [53], inclusion of organic additives in the mobile phase [54], and 

nonionic surfactant intercalation of the sorbent layer [55]. The latter method, suggested 

by Regnier and Towns, is easily adapted to planar chromatography and for this reason 
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was investigated by our group. This approach allows for the separation of charged 

analytes over a large range of usable pH values, in contrast to other methods, which 

require the use of limited pH ranges to maintain an appropriate charge on the analytes. 

The surfactants bind to the C18 bonded stationary phase, and create a semi-permeable 

hydrophilic layer that allows electroosmotic flow while preventing the adsorption of 

analyte. This layer is formed by the hydrocarbon tails of the surfactants intercalating 

between the octadecyl groups of the bonded stationary phase.  

 The goal of the project was to perform peptide and protein separations using Brij-

35 complexed plates, prepared in our laboratory. Brij-35 (Polyoxyethyleneglycol dodecyl 

ether) is a non-ionic polyoxyethylene surfactant used in cell lysis buffers or in various 

HPLC applications. The following section of this thesis describes the attempts to perform 

PPEC separation of peptides and proteins on these plates. 

 Peptide and protein separations were performed by PPEC on LiChrospher plates 

impregnated with Brij-35. Regular plates were not used, as the layer on these 

disintegrated when soaked in the Brij-35 solution. The LiChrospher plates that were 

treated support EOF, and can be run in the standard plate holder.  

The initial runs used plates that were baked at 160 ºC for 20 minutes, soaked for 3 

hours in a 0.001 % aqueous Brij-35 solution and then left to dry before spotting, dipping 

and running at 3kV and 41 atm for 8 minutes. The peptides were derivatized with 

fluorescamine before spotting [see next paragraph]. The dipping times took 5.0 seconds 

for each end of the plate. The runs were performed at a controlled temperature of 20 ºC in 

a 70 % aqueous acetonitrile mobile phase containing 5.0 mM acetate buffer at a nominal 

pH 4.7 and 0.001 % Brij-35. These conditions are referred to as the initial standard 
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conditions for this study. These runs exhibited poor visibility of the spots and decent spot 

shape but moderate reproducibility, see Figure 11. The large spotting volumes (2 μL) 

needed for detection were considered to be the cause of the smeared spots. The following 

study was performed to investigate if this was indeed the reason.  

 Fluorescamine was used to visualize the peptides under UV radiation, and the 

following three different methods of reacting the peptides with fluorescamine were 

tested. The first method was to spray the plate with fluorescamine before spotting. This 

yielded either very little fluorescence or no fluorescence. The second method was to mix 

the fluorescamine with the protein or peptide prior to spotting, which gave very strong 

fluorescence but can yield multiple products if there is more than one primary amino 

group present in a peptide. The third method was to spray the plate with fluorescamine 

after the run to allow the analytes to separate in their native state before reacting with the 

fluorescamine. This method caused the entire plate to fluoresce causing the background 

to overwhelm the fluorescence of the analytes. Based on these results all further 

visualization was performed by mixing the fluorescamine with the analytes prior to 

spotting on the plate. To optimize this method of applying fluorescence, different 

volumes of analyte and different ratios of fluorescamine to analyte were used. The best 

spotting solution was found to be 0.15 μL of the analyte mixture made up of 1mg/mL 

peptide solutions. Immediately before spotting the analyte mixture was reacted at a 1:1 

ratio with a fluorescamine solution in acetone that has a concentration of 3 mg/mL. There 

is a possibility that fluorescamine labeling of a compound with more than one primary 

amino group would result in multiple spots on separation. Another cause of multiple 

spots would be decomposition of the analyte during PPEC. This would be evidenced by a  
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Figure 11.  Six replicate separations of peptides in order of increasing migration 

distance (ACTH (1-4), Choleocystokinin (10-20), T-kinin, Bradykinin, Osteocalcin (45-

49), Dynorphin A (1-7)) on Brij-35 plates. Baked at 150 ºC for 1 hour and run with a 

5mM phosphate buffer at a nominal pH of 7.0. Run in a mobile phase of 70 % 

acetonitrile at 3.0 kV and 41 atm for 8 minutes with the analytes spotted 4 cm from 

bottom. 
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trailing spot. Under specific conditions some of the spots are too faint for the camera to 

detect. Often this is the case for spots that migrate above the origin. It is possible that 

decomposition of the analytes is responsible for this.  

After improving the visualization of the peptides, the plates were prepared and 

run under the initial conditions defined in a previous paragraph. The spot shape was 

decent, but the separation was poor due to some of the sample remaining adsorbed at the 

origin. These conditions were modified after each variable was individually optimized 

and then referred to as the updated standard conditions. The following is the investigation 

of how these variables affect the migration distance and separation quality of analytes on 

Brij-35 impregnated plates. The variables investigated can be seen in table 3. 

 

Soak Concentration 

A set of experiments was performed to determine the relationship between the time the 

plates were left to soak in a Brij-35 solution and the quality of the resolution and 

investigated: 0.1 %, 0.01 %, 0.001 %, and 0.0005 % of Brij-35 [see Figure 12]. The best 

spot shape (quality of separation) and reproducibility. Four different soak solutions were 

separation quality and reproducibility resulted from the soak in the 0.001 % solution. The 

spot shape improved as the concentration decreased from 0.01 to 0.001 %, but the 0.0005 

% solution gave a very poor spot shape and slight tailing (not visible in the image) and 

separation possibly due to incomplete coverage of the sorbent surface by Brij-35. 
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Table 3. Table of variable examined with Brij-35 impregnated plates 

 

 

1. This refers to mixing analyte and fluorescamine solutions before spotting. 
2. This refers to the amount of time the plates were stored in a desiccator between 

steps of the preparation process. 
3. This refers to the humidity that the plates were stored at before each run. 

 

 

 

 

Variable Conditions Examined 
Optimum 

Conditions 
Fluorescence 
application Pre-run spray, Mixed1, Post-run spray Mixed 

Soak concentration 0.1 %, 0.01 %, 0.001 %, 0.0005 % 0.001 % 
Soak duration 0, 1, 3, 6, 12, 24 hours 3 hours 
Buffer solution Acetate, Phosphate, Citrate Phosphate 
Nominal pH of 
mobile phase 2.4, 4.7, 5.0, 7.0, 8.0, 9.0 7 

Concentration of 
mobile phase 0-100 % acetonitrile 70 % acetonitrile 

Bake temperature 100 ºC, 120 ºC, 150 ºC, 160 ºC, 180 ºC 150 ºC 
Baking duration 20 min., 1, 2, 24, 48, 600 hours 1 hr 

Run temperature 
5 ºC, 10 ºC, 15 ºC, 20 ºC, 25 ºC, 30 ºC, 

40 ºC 20 ºC 
Idle time2 0, 24, 48 hours No effect 

Spotting volume 0.1-1.0 μL 0.15 μL 
Pressure 12.3, 20.5, 41.0, 61.5, 82.0 atm 41.0 atm 

Visualization 0-6 hours <20 min. 
Humidity3 20 %, 50 %, 75 % No effect 
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  0.01 %    0.001 %   0.0005 % 

Figure 12.  Images of Enkephalin (left) and Angiotensin II (right) separated on plates 

soaked in Brij-35 solution as indicated. Run in a mobile phase of 70 % acetonitrile and 

0.001 % Brij-35 at 3.0 kV and 41 atm for 8 minutes with the analytes spotted 4 cm from 

bottom. The migration order of the spots is different for the 0.001 % concentration. This 

is possibly due to non-uniformities in the mobile phase migration. 
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Soak Duration 

The next set of experiments was performed to determine the relationship between 

the soak duration and the resultant quality of separation. PPEC separations were 

performed under the updated standard conditions. The plates were soaked in the 0.001 % 

Brij-35 soak solution for 0, 1, 3, 6, 12 or 24 hours. There was an improvement in the 

quality of the separation as the soak time increased from 0 to 3 hours. A 3 hour soak can 

be seen in Figure 13. Longer soak times gave poorer spot shape and separation possibly 

due to either damage to the sorbent layer or degradation of the binding agent. 

 

Buffer Solution 

The next set of experiments was performed to determine the relationship between the 

identity of run buffer used in the mobile phase and the quality of the separation under 

updated standard conditions. Three different buffers were tested: acetate, citrate and 

phosphate. It was found that both acetate and phosphate yielded almost identical results 

for comparable pH (4.7), while the citrate buffer yielded no migration or separation, but 

destroyed the sorbent layers of the plates. The phosphate buffer was selected for 

subsequent separations due to its larger effective pH range (2.4 - 9.0) but the acetate 

buffer was used for separations at a nominal pH of 4.7. 

 

Nominal pH of Mobile Phase 

The next set of experiments was performed to determine the specific pH that 

yields the highest separation quality. To determine the optimum pH, PPEC separations 

were performed under updated standard conditions. Both phosphate and acetate buffers  
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 Figure 13.  Image of peptides separated on a plate that was impregnated with Brij-35 

using a 3 hour soak. The plate was baked at 150 ºC for 1 hour and then soaked in a 0.001 

% Brij-35 solution for 3 hours. It was then run in a nominal pH 7.0 mobile phase of 70 % 

acetonitrile and 0.001 % Brij-35 at 3.0 kV and 41 atm for 8 minutes with the analytes 

spotted 4 cm from bottom. The analytes were enkephalin (left), angiotensin II (center), 

and insulin (right). 
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were tested. The phosphate buffers had nominal pH values of 2.4, 5.0, 7.0, 8.0, 9.0 and 

the acetate buffer had a nominal pH of 4.7. Since the specific analytes being tested have 

different charges, and therefore migrate differently under different pH values, this step 

was optimized for the two mixtures (vide infra) containing the peptides listed in Table 4. 

For these mixtures it was found that as the pH value approached 7.0 the migration 

distances increased, as did the resolution of the analyte spots. As the pH is increased 

above a pH of 7 the quality of separation and spot shape begins to diminish. 

 

Concentration of Mobile Phase 

After determining that a phosphate buffer of nominal pH 7.0 was the optimal 

buffer solution, the next step was to determine the optimum concentration of acetonitrile 

in the mobile phase. PPEC separations were performed under the updated standard 

conditions. Acetonitrile concentrations from 0 % to 100 % were tested in an aqueous 

mobile phase containing 0.001 % Brij-35. The mobile phases were tested in 10 % 

increments from 40 % to 90 %. No separation was obtained when using either pure 

acetonitrile as the mobile phase or acetonitrile at concentrations below 40 %, presumably 

due to solubility issues at these concentrations. The best separations were found at 

acetonitrile concentrations between 50 % and 70 %. The range 60 % to 80 % was then 

tested in 5 % increments and the results for three pH values are shown in Figure 14. It 

was found that the separation quality improved slightly as the acetonitrile concentration 

was increased to 70 %, but degraded dramatically at higher concentration. An image of a 

peptide separation at the optimum mobile phase concentration (70 % aqueous  
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Table 4. Table of information on peptides used. 

 

Name pI Value Mass Coding 
Bradykinin  12.4  1061.2 RPPGFSPFR  
Choleocystokinin (10-20)  7.8  1252.4 IKNLQSLDPSH 
Oxytocin  7.7 1007.2 CYIQNCPLG 
Dynorphin A (1-8)  11.1  982.2 YGGFLRRI 
Dynorphin A (1-7)  11.1  869.0 YGGFLRR 
ACTH (1-4)  5.9  487.6 SYSM 
Substance P  14.0  1348.7 RPKPQQFFGLM-NH2  
Levitide  11.6  1543.8 Pyr-GMIGTLTSKRIKQ-NH2 
Neurotensin  10.5  1673.0 Pyr-LYQNKPRRPYIL 
T-kinin  12.4  1261.5 ISRPPGFSPFR 
Osteocalcin (45-49)  5.9  582.7 FYGPV 
ACTH (1-10)  7.8  1300.4 SYSMEHFRWG 

 

 

 

 

 

 

 

 



64 

 
a. 

 
b. 

 
c. 

Figure 14. Plots of peptide migration on Brij-35 impregnated plates versus aqueous 

acetonitrile concentration at three nominal pH values. Plot (a) shows the separations at a 

pH of 7.0, (b) at a pH of 2.4, and (c) at a pH of 9.0. 
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acetonitrile) and nominal pH (7.0) can be seen in Figure 15. By chance, this is the same 

set of experimental variables as used in the initial runs. 

 

Bake Temperature 

A set of experiments was performed to determine the relationship between the 

baking temperature (the temperature at which the plates are baked) to activate the binder,  

and the quality of the separation under the updated standard conditions. Five different 

temperatures were investigated for a 1 hour bake: 100 ºC, 120 ºC, 150 ºC, 160 ºC and 180 

ºC [see Figure 16]. In these trials insulin is visible in only two of the images due to the 

low concentration of this analyte in the spotting mixture. The reason for the low 

concentration was that, in the native form, a solution of insulin does not spot onto the 

plate well. Moreover, the ability of the sorbent layer to accept a spot diminishes with 

increasing concentration of this form of insulin in the spotting solution. The 160 ºC trial 

was included because this is the temperature that the plates are baked for separations of 

small molecules on LiChrospher plates that had not been treated with Brij-35. Figure 16 

shows the increase in migration distance as the temperature increased. However, the 

plates begin to discolor and the fluorescence behavior changes when baked at a 

temperature greater than 150 ºC. The plates are labeled to fluoresce under short 

wavelength UV radiation (254 nm), but do not fluoresce under long wavelength radiation 

(366 nm); in contrast the peptides and proteins fluoresce under long wavelength UV 

radiation. When a plate begins to discolor, the observed fluorescence under short 

wavelength UV radiation diminishes and the plates begin to fluoresce under long 

wavelength radiation. This yellowing is seen as a blue background on images obtained  
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Figure 15. Image of peptide separation under optimal mobile phase and pH 

conditions. These conditions are the same as those for Figure 11. The separation were 

performed on a Brij-35 plate baked at 150 ºC for 1 hour, and run with a 5mM phosphate 

buffer at a nominal pH of 7.0, in a mobile phase of 70 % acetonitrile at 3.0 kV and 41 

atm for 8 minutes with the analytes spotted 4 cm from bottom. 
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 100 ºC      120 ºC      150 ºC     160 ºC     180 ºC 

Figure 16.  Images showing the effect of baking temperature on separations 

performed on plates baked and then soaked in a 0.001 % Brij-35 solution for 3 hours. 

Separations were with a mobile phase consisting of 65 % aqueous acetonitrile containing 

0.001 % Brij-35 and a 5mM phosphate buffer at a nominal pH of 7.0, at 3.0 kV and 41 

atm for 8 minutes with the analytes spotted 4 cm from bottom. The analytes were 

enkephalin (left), angiotensin II (center) and insulin (right). The temperatures at which 

the plates were baked are indicated under the images.  
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under UV radiation, which causes higher background noise eventually masking the 

fluorescence of the peptides. The highest temperature that did not cause yellowing was 

found to be 150 ºC. 

 

Duration of Baking 

After the preceding experiment it was considered that, aside from the baking 

temperature, it was likely the duration of the bake could affect the separation quality. A 

set of experiments was performed to determine the relationship between the bake 

duration and the quality of separation. PPEC separations were performed under the 

updated standard conditions. The plates were heated at 150 ºC for 20 minutes, 1 hour, or 

2 hours [see Figure 17] and at 100 ºC for 2 hours, 24 hours, 48 hours or 600 hours. It was 

found that the quality of the separation improved as the duration of baking was increased. 

The 20 minute bake had slight tailing (not visible in the image). However, similar to 

baking at higher temperatures, extended baking times caused the plates to begin to 

discolor, as seen in Figure 18 (comparison of a non-yellowed and a yellowed plate). At 

150 ºC the plates started to yellow after 1 hour, and for the 100 ºC bake times yellowing 

was after 48 hours. The 1 hour bake at 150 ºC offered the best compromise between the 

quality of separation and the quality of visualization. 

 

Run Temperature 

PPEC separations were performed under the updated standard conditions at run 

temperatures of 5 ºC, 15 ºC, 25 ºC and 35 ºC. All of the runs were performed for 5  
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 20 min.      1 hr.        2 hrs. 

Figure 17.  Images demonstrating the effects of baking time on separations performed 

on Brij-35 plates. The plates were baked at 100 ºC and then soaked in a 0.001 % Brij-35 

solution for 3 hours. Separations were with a mobile phase consisting of 50 % aqueous 

acetonitrile containing 0.001 % Brij-35 and a 5mM phosphate buffer at a nominal pH of 

7.0, at 3.0 kV and 41 atm for 8 minutes with the analytes spotted 4 cm from bottom. The 

analytes were enkephalin (left), angiotensin II (center) and insulin (right). The length of 

time at which the plates were baked is indicated under the images. Insulin is visible in 

only two of the images due to the low concentration of this analyte in the spotting 

mixture.  
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 14.5 hrs.     600 hrs. 

Figure 18.  Images of the effects of extreme baking time on separations performed on 

Brij-35 plates. The plates were baked at 100 ºC and then soaked in a 0.001 % Brij-35 

solution for 3 hours. Separations were with a mobile phase consisting of 50 % aqueous 

acetonitrile containing 0.001 % Brij-35 and a 5mM phosphate buffer at a nominal pH of 

7.0, at 3.0 kV and 41 atm for 8 minutes with the analytes spotted 4 cm from bottom. The 

analytes were enkephalin (left), angiotensin II (center) and insulin (right). The length of 

time at which the plates were baked is indicated under the images. 
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minutes. Temperatures above 20 ºC resulted in a faster run, but caused the spots to 

elongate and broaden as seen in Figure 19. The best compromise between the spot shape 

and speed of migration was found to be between the 15 and 25 ºC runs. A run at 20 ºC 

can be seen in Figure 15. 

 

Idle Time 

The idle time before and after the soaking of the prepared plates was also tested. 

This is defined as the sum of the time from when the plate is prepared until it is soaked in 

the 0.001 % Brij-35 solution, and the time after the plate is soaked until it is run by 

PPEC. The plates were stored in a desiccator over silica gel during the idle time. This was 

tested by placing the prepared plates in the soak solution at 0, 24, and 48 hours after their 

removal from the oven, as well as running them 0, 24 and 48 hours after they are 

removed from the soak solution. Within the expected reproducibility no effect of idle 

time was observed. The plates can be used any time within 48 hours of preparation 

without any ill effects to the separation. 

 

Spotting Volume 

In the preliminary testing it was found that a spotting volume of 0.15 μL yielded a 

visible spot. To determine the optimal amount of analyte spotted onto the plate required 

that PPEC separations were performed under the updated standard conditions. Different 

volumes were investigated ranging from 0.01 μL to 1.0 μL. There was an increase in the  

fluorescence as the volume increased, but also a decrease on the quality of the spot shape. 

At a spotting volume greater than 1.0 μL the analytes began to overload the plate and  
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 5 ºC    15 ºC  25 ºC 35 ºC 

Figure 19.  Images demonstrating the effects of temperature on insulin separated on a 

Brij-35 plate. The plates were baked at 150 ºC for 1 hour and then soaked in a 0.001 % 

Brij-35 solution for 3 hours. Separations were with a mobile phase consisting of 70 % 

aqueous acetonitrile containing 0.001 % Brij-35 and a 5mM phosphate buffer at a 

nominal pH of 7.0, at 3.0 kV and 41 atm for 5 minutes with the analytes spotted 4 cm 

from bottom. The insulin in these images is readily visible due to an increase in volume 

of analyte spotted. The run temperature is indicated under the images.  
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smear, resulting in a decreased resolution. The best spot shape while still being able to 

observe the analytes was found using a spotting volume of 0.15 μL. 

 

Pressure 

Throughout the preliminary experiments, different run pressures were examined 

to determine the influence of pressure on the quality of separation. Five different 

pressures were investigated: 12.3 atm, 20.5 atm, 41.0 atm, 61.5, and 82.0 atm. The best 

quality of separation was at 41.0 atm with substantially poorer separations at both higher 

and lower pressures. The loss of quality at the lower pressures is probably caused by 

liquid driven to the surface where it could flow both across the layer and through it. 

Pressures higher than 41.0 atm inhibited the flow of mobile phase through the sorbent 

and decreased both migration distance and the quality of the spot shape. 

 

Visualization 

Plates were observed periodically for 6 hours after their removal from the holder 

to gauge the effect of time on the level of fluorescence. The analytes were easily visible 

for about an hour after being run. There was a noticeable drop in the intensity after 20 

minutes, with the intensity continuing to decline until observations were stopped at 6 

hours. The plates were inspected again after 24 hours and the spots were no longer 

visible. 
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Humidity 

In order to investigate if humidity was a variable, plates were stored at controlled 

humidity. Three different humidities were investigated: 45 %, 60 %, and 75 %. Plates 

were placed in a desiccator over aqueous sulfuric acid solutions set to these humidities 

for 14 hours before being used immediately. There was no difference in the spot shape 

caused by any differences in humidity.  

 

Separation of Peptides and Proteins on Monolith Plates 

 The initial report of a successful separation by CEC, using a monolith, was of four 

peptides in less than 5 minutes at 900 V/cm [56]. The authors noted that the elution 

pattern and efficiency of the separations depended strongly on both the percentage of 

acetonitrile and the pH of the mobile phase. Several other successful peptide [57-59] and 

protein [57, 60-64] separations on monoliths have since been performed by CEC.  

 After using Brij-35 derivatized plates our group became interested in using 

monolithic thin-layer chromatography plates for PPEC separations of peptides. We 

established a collaboration with Dr. Svec’s group at Lawrence Berkeley National 

Laboratory. The goal of the project was to perform peptide and protein separations at 

IUPUI using monolith TLC plates prepared in Dr. Svec’s laboratory. This project was 

begun by Allyson Novotny, who received several batches of plates. These plates were 

tested and gave variable and unrepeatable results. The work described below on the 

separation of peptides and proteins on negatively charged, positively charged, and neutral 

superhydrophobic monoliths was performed as part of my thesis research. 
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Description of the Monolith Plates Recieved 

The monolith plates supplied by Dr. Svec’s group at Lawrence Berkeley National 

Laboratory were supplied in seven batches of neutral superhydrophobic plates and four 

batches of charged plates. On the charged layers, separation occurs primarily because of 

electroosmotic flow of the mobile phase. Separation occurs entirely by electrophoresis on 

the neutral plates, due to the absence of electroosmotic flow on an uncharged layer. 

Changes were made in the preparation of each of these batches, based on results obtained 

with the previous batch. Table 5 lists the properties of each batch. 

Batch One was composed of neutral superhydrophobic monolith plates that were 

physically weak and crumbled after a single run in the PPEC apparatus. These plates had 

layers that were 50 μm thick with an unknown pore size. These plates were tested both by 

Novotny [30] and the writer of this thesis, and found to give variable and unrepeatable 

results.  

Batch Two was composed of two types of charged plates that were based on the 

neutral superhydrophobic plates from Batch One, and were 50 μm thick with an unknown 

pore size. These were plates grafted with 15 wt % 2-acrylamido-2-methyl-1-

propanesulfonic acid (AMPS) or with 15 wt % [2-(Methacryloyloxy) ethyl] 

trimethylammonium chloride (META) (in the future these will be referred to as % 

AMPS, and % META). The remainder of the grafting solution is made of 0.25 wt % 

benzophenone in a 3:1 (v/v) tert-butanol-water mixture. Adequate protein or peptide 

separations were not achieved with either of these chemistries.  

 Batch Three was also composed of charged plates that were 7.5 % AMPS and 7.5 

% 2-hydroxyethyl methacrylate (HEMA) with an unknown pore size. These plates  
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Table 5. Table of monolith generations 

 

Batch 
Thickness 

(μm) 
Pore 
Size1 Reuse2 Graft Species3 

Graft 
Time 

1 50 Unknown No None N/A 

2 
50 Unknown No 15 % AMPS 10 min. 
50 Unknown No 15 % META 10 min. 

3 
50 Unknown No 7.5 % AMPS, 7.5 % HEMA 10 min. 
50 Unknown No 7.5 % META, 7.5 % HEMA 10 min. 

4 250 Unknown 15 None N/A 

5 

250 Large 15 None N/A 
250 Medium 5 None N/A 
250 Small No None N/A 

6 125 Medium 5 None N/A 

7 
125 Medium 5 2 % AMPS, 13 % HEMA 5 min. 
125 Medium 5 2 % AMPS, 13 % HEMA 10 min. 

8 

125 Medium 5 2 % AMPS, 13 % HEMA 0 min. 
125 Medium 5 2 % AMPS, 13 % HEMA 5 min. 
125 Medium 5 2 % AMPS, 13 % HEMA 10 min. 
125 Medium 5 2 % AMPS, 13 % HEMA 20 min. 
125 Medium 5 5 % AMPS, 10 % HEMA 10 min. 

9 125 Medium 5 0 % AMPS, 15 % HEMA 10 min. 

10 

12.5 Medium No None N/A 
25 Medium No None N/A 
50 Medium No None N/A 
125 Medium 5 None N/A 

11 125 Medium 5 PEGMA 4 min. 
1. Pore Size is relative. The absolute pore size is not known. 
2. Refers to the number of times a plate could be washed and re-run successfully. 
3. Refers to the identity of the species photografted onto the base neutral 
superhydrophobic layer. 
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produced peptide separations but with very poor spot shape. The plates in this batch with 

7.5 % META and 7.5 % HEMA, also had an unknown pore size, and yielded no protein 

or peptide separations. 

 Batch Four was composed of neutral superhydrophobic plates prepared with a 250 

μm thick layer and an unknown pore size. These plates were physically stronger than 

Batch One, and were able to be run, washed and rerun between 5 and 15 times. It was on 

these plates that the optimization of the mobile phase was carried out. 

 Batch Five consisted of three types of neutral superhydrophobic plates prepared 

with a 250 μm thick layer. The pore sizes were specified by the Svec group as large, 

medium or small. The absolute pore size could not be determined, due to the 

impracticality of gathering this data from conventional techniques such as mercury 

porosimetry. The plates with the large pore size had the highest migration velocity and 

the plates with the small pore size had the slowest. Plates having the medium and large 

pore sizes had similar migration velocities. The layers with the small pore size cracked 

after being either run or washed for the first time, and were unusable, see Figure 20. The 

plates with the medium pore size showed similar cracking after repeated usage. The 

plates with the large pore size had a patchy glossy surface that occasionally prevented 

spotting. The medium pore size plates offered the speed and stability of the large pore 

size plates with better reproducibility, and for this reason were used for all further batches 

of plates.  

 Batch Six consisted of neutral superhydrophobic plates with sorbent layers that 

were 125 μm thick. These plates could be reused up to five times, and yielded good 

quality separations for peptides with good spot shape and migration velocity.  
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Figure 20. Plates of the smaller pore size after a single run. 
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 Batch Seven consisted of charged plates with a layer thickness of 125 μm. These 

plates were prepared by grafting neutral superhydrophobic plates with a mixture 

containing 2 % AMPS and 13 % HEMA. These plates were prepared with grafting times  

of either 5 or 10 minutes. These plates could be reused, up to five times, and gave good 

quality separations as well as good spot shape and migration velocity but marginal 

reproducibility. The plates with the 10 minute graft time yielded the best separation 

quality. 

Batch Eight also consisted of charged plates and came in two grafting 

concentrations of 2 % or 5 % AMPS. Those with 2 % AMPS and 13 % HEMA were 

grafted at times of 0, 5, 10, and 20 minutes. The 5 % AMPS and 10 % HEMA had a 

grafting time of 10 minutes. The 2 % AMPS plates with a 10 minute graft time yielded 

the best separation quality, but the difference in quality across the different graft times 

was marginal. The 5 % AMPS gave very poor separation and spot shape.  

Batch Nine consisted of neutral plates, but unlike previous neutral plates these 

had been photografted with 15 % HEMA over a 10 minute graft time. These plates 

yielded similar results to the neutral superhydrophobic plates from Batch Six that did not 

contain HEMA, giving good spot shape and separation quality.  

Batch Ten consisted of neutral superhydrophobic plates with different thickness 

of the sorbent layer: 12.5 μm, 25 μm, 50 μm and 125 μm. Layers of 12.5 μm and 50 μm 

yielded no separations, while the 125 μm yielded good quality separations. The layers 

that were less than 125 μm thick could not be reused, and the 12.5 μm sorbent layer 

fractured in the holder and was too weak to be successfully run. 
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Batch Eleven consisted of neutral superhydrophobic plates with a monolith 

thickness of 125 μm. These plates were photografted with a solution of 0.1 mol/L 

polyethyleneglycol methacrylate (PEGMA). This value is reported in mol/L due to the 

unknown molecular weight of the polyethyleneglycol grafted. These plates could be 

reused up to five times, and yielded good quality separations for peptides with good spot 

shape and migration velocity similar to Batch Six.  

 

PPEC Separations on Neutral Monoliths 

Peptide and protein separations were attempted by PPEC on the BuMA-EDMA 

monoliths also referred to as neutral superhydrophobic plates. Since the monoliths are not 

charged, no EOF occurs and analyte movement is due only to electrophoretic migration. 

When performing PPEC using the conventional plate holder, the areas of the plate outside 

the pressurized area will dry due to evaporation caused by Joule heating. To overcome 

this, the Liquid-On-Top holder was used. This holder, which is used in a vertical position, 

has a solvent reservoir at both the anode and the cathode. The unpressurized portions of 

the plate extend into these reservoirs, preventing drying of the plate.  

Initial experiments were performed with the peptides spotted 4 cm from the 

bottom of the plate, and yielded poor results. It was found that the problem was not due 

to the run conditions, but that the spotting position resulted in the spots smearing and 

appearing to wash off of the plate. The appropriate spotting position was found to be in 

the range of 6 to 8 cm from the bottom of the plate, see Figure 21. The three spots visible 

for angiotensin II were an unexplained phenomena. Using the same sample and 

conditions there would sometimes be only one spot, even when using the purest samples. 
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       A              B             C 

Figure 21.  The separation of three separate compounds; enkephalin (left), angiotensin 

II (center), and Gly-Gly-Gly (right). Run for 1 minute at 3 kV and 20 ºC under 41 atm 

with 5 mM phosphate buffer at pH 7.0. Plate A: spotted 4 cm from the bottom (No spots 

are visible on this plate as they have washed completely off the plate), Plate B: spotted 6 

cm from the bottom, Plate C: spotted 8 cm from the bottom.  
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 Spotting the plates in this range allowed the BuMA-EDMA plates to be 

successfully run using 70 % aqueous acetonitrile containing 5.0 mM phosphate buffer at 

pH 4.7. The spot shape was decent, but as with Novotny’s results [37] some of the  

sample remained adsorbed at the origin. This result was surprising since these plates were 

nominally the same as those used by Svec and co-authors on the TLC separation of 

peptides and proteins on a monolithic layer [65]. It was not possible to use the same 

experimental conditions for PPEC as used by this group, since these included 0.1 volume 

percent Trifluoroacetic acid, which would result in too high an electric current for our 

apparatus.  

 With evidence that successful separations were possible, separations were 

performed on the plates in Batch Four with aqueous acetonitrile concentrations in the 

range from 0 % to 100 % in increments of 20 % to determine an optimum mobile phase  

composition. No separation was obtained when using either pure acetonitrile as the 

mobile phase or acetonitrile at concentrations below 40 %, possibly due to solubility 

issues at these concentrations. Separations occurred between 40 % and 90 %. To further 

optimize the mobile phase, concentrations from 40 % to 90 % acetonitrile were tested in 

10 % [see Figure 22] and 5 % increments [see Figure 23]. Each concentration was used at 

a pH of 2.4, 5.0, 7.0, 8.0, and 9.0. The images in Figure 24 show the separation at the 

nominal pH of 7.0, which was found to offer the best results. The plates in this batch 

were of good physical integrity, so after each run the plates were washed in a 55 % 

aqueous acetonitrile solution free of buffer and were then reused. The plates were 

sufficiently robust for up to fifteen separations and washings, as well as extended runs of 

at least 30 minutes. Good quality separations with complete resolution and round spot  
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     0 %          20 %         40 %         50 %        60 %       70 %        80 %        90 % 

Figure 22. A separation of three separate compounds; ACTH (1-4) (left), T-kinin 

(center), and Dynorphin A (1-8) (right). Run at 3 kV and 20 ºC under 41 atm with 5 mM 

phosphate buffer at nominal pH 2.4. The percent acetonitrile in the mobile phase is 

indicated under each separation. 
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Figure 23. a) Plot of peptide migration on neutral superhydrophobic monolith plates 

versus aqueous acetonitrile concentration at nominal pH 7.0 using plates from Batch 

Two. b) Plot of peptide migration on neutral superhydrophobic monolith plates versus pH 

in 70 % aqueous acetonitrile mobile phase using plates from Batch Two.  
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Figure 24. The separations of Bradykinin, Dynorphin A (1-8), Dynorphin A (1-7), 

Chloecystokinin (10-20), Oxytocin, and ACTH (1-4) run at 3 kV and 20 ºC under 41 atm 

with 5 mM phosphate buffer at nominal pH of 7.0.  
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shape were observed in contrast to the separations with Batch One, but there was only 

moderate reproducibility between runs, possibly due to the reuse of plates. 

 

Visualization  

 The same visualization techniques used with the Brij-35 plates were also 

investigated for the monolith plates. Additionally an attempt was made to stain the layer 

with Bromocresol Blue in an attempt to dye the spots. This method failed due to the 

staining being permanent, preventing the reuse of the plates, and the analytes not staining 

well, see Figure 25. Spraying with the fluorescamine solution after running the plates 

labeled the layer with fluorescamine, which did not fade for several days preventing 

reuse, imaging and scanning of the analytes. 

 

Protein Separation 

The separation of proteins (Cytochrome C, Lysozyme, Myoglobin, Insulin, 

Ovalbumin, and BSA) was then attempted. Under the above conditions the proteins did 

not separate, but smeared across the surface of the plate with the highest concentration at 

the origin. It was considered that the poor chromatographic behavior was related to the 

complex shape and charge of proteins and that there would be a better chance of success 

with denatured proteins. Two methods of denaturing were examined: reaction with urea, 

and heating in the presence of sodium dodecyl sulphate (SDS). For insulin, denaturing 

with urea showed no improvement in separation, but denaturing with SDS resulted in an 

interesting separation, shown in see Figure 26. The only protein that yielded a decent 

separation after denaturing was insulin, which yielded a pair of spots. This was  
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Figure 25. Plate spotted with Angiotensin II and Insulin then dyed with Coomassie 

Blue Dye. 
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Figure 26. Images of insulin in native form (left) and denatured with SDS (right). 

Run in a mobile phase of 70 % acetonitrile with a 5 mM phosphate buffer at nominal pH 

7.0 run at 3.0 kV and 41 atm for 2 minutes with the analytes spotted 8 cm from bottom. 
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interpreted as an effect of the denaturing process on insulin’s structure. Insulin is a zinc 

stabilized hexamer. Under the conditions of PPEC a portion of the insulin molecules lose 

their stabilizing zinc ions. These two forms of insulin migrate at different speeds, with the 

zinc stabilized insulin moving faster than the insulin without the zinc ions [66]. 

 

Optimum Conditions for Neutral Plates 

The best separations were obtained on plates with layers that were 125 μm thick 

and that were of medium pore size. The analytes were best visualized by combining the 

mixture of peptides with fluorescamine (3 mg/mL in Acetone) at a ratio of 1:1 before 

PPEC. This mixture must be used within 3 hours of preparation, after which there is a 

substantial diminution of fluorescence. The peptide mixture found to separate best on the 

superhydrophobic monoliths consisted of ACTH 1-4, Dynorphin A 1-7, Dynorphin A 1-

8, Oxytocin, Choleocystokinin 10-20, and Bradykinin. The best separation was obtained 

with a mobile phase of 5.0 mM phosphate buffer in 70 % acetonitrile with a nominal pH 

of 7.0 run at 3.0 kV and 41 atm for 2 minutes, with the analytes spotted 7 cm from 

bottom. These conditions apply to separations of insulin SDS as well. An example of this 

can be seen in Figure 27. The only protein that could be separated on these plates was 

insulin that had been denatured with SDS. For the plates photografted with PEGMA, the 

same conditions as the superhydrophobic plates were used since only three plates with 

this chemistry were examined. These plates offered similar separation quality to the 

superhydrophobic plates. For the plates photografted with HEMA only, the optimum 

conditions were determined to be a mobile phase of 70 % acetonitrile with a 5 mM 

phosphate buffer at a nominal pH of 7.0 run at 3.0 kV and 41 atm for 2 minutes with the  
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    A                                                   B 

Figure 27.  Images of peptides in order from bottom to top A. (ACTH (1-4), 

Oxytocin, Choleocystokinin (10-20), Dynorphin A (1-7)), Dynorphin A (1-8), and 

Bradykinin) B. (Osteocalcin (45-49), ACTH (1-10), Levitide, T-kinin, Neurotensin, and 

Substance P) on superhydrophobic neutral layers. Conditions: Run buffer 80 % (A) or 70 

% acetonitrile (B) in 5 mmol/L phosphate buffer at a nominal pH of 7.0; applied pressure 

4.1 MPa; voltage 3 kV. Reproduced with permission from reference 67. 
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analytes spotted 8 cm from bottom. These separation conditions produced complete 

separation, with good spot shape, of a mixture of six peptides. 

 

PPEC Separations on Charged Monoliths 

 Two different types of charged monoliths were used for the PPEC separation of 

peptides and proteins. These were an anionic charged monolith with the functionality 2-

acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and a cationic charged monolith 

with the functionality [2-(Methacryloyloxy) ethyl] trimethylammonium chloride 

(META). These two functionalities are photografted onto superhydrophobic monoliths. 

These charged layers support EOF, and for this reason the regular holder could be used, 

as the layers do not become dry during a separation. 

Initial experiments with plates, where only a charged species was grafted, yielded 

no separation and terrible smearing. The Svec group [68] found that the concentration of 

the sulfonate groups needed to be decreased in the monolith layer by the addition of 2-

hydroxyethyl methacrylate (HEMA) groups. This was achieved by changing the 

composition of the grafting solution to contain 2 % charged species 13 % HEMA. 

Migration of peptides was achieved on the AMPS grafted plates but not on the META 

grafted plates when using a mobile phase consisting of 70 % aqueous acetonitrile 

containing 5 mM phosphate buffer at nominal pH 4.7. Other acetonitrile concentrations 

from 0 % to 90 % and nominal pH values from 2 to 9 were tried for the META plates 

with no success. 

 In order to optimize the separation AMPS plates was initially run with a series of 

aqueous acetonitrile mobile phases with concentrations from 40 % to 80 %. The 70 % 
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acetonitrile concentration yielded the best separation and this concentration was then 

used at a nominal pH of 2.4, 5.0, 7.0, 8.0, and 9.0. The best separations were found using 

a mobile phase of 70 % aqueous acetonitrile with a nominal pH of 4.7 run at 6.0 kV and 

41 atm for one minute. After each run the plates were washed in a 55 % aqueous 

acetonitrile solution free of buffer and could then be reused. The plates were sufficiently 

stable for between four to seven repeated run and washing cycles. Good separations were 

observed, but there was poor reproducibility from plate to plate or even on the same plate 

that had been washed and reused, see Figure 28. For this reason, the conclusions in the 

following paragraph should be treated as tentative. 

 

Optimum Conditions for Charged Plates 

Based on these experiments and the experiments conducted on the neutral plates, 

it was determined that the best plates had layers that were 125 um thick with medium 

pore size and treated with fluorescamine as described in the visualization section. For the 

2 % AMPS plates the optimum conditions were determined to be a mobile phase of 70 % 

acetonitrile with a nominal pH of 4.7 run at 6.0 kV and 41 atm for 1 minute with the 

analytes spotted 6 cm from bottom. An example of this can be seen in Figure 29. 

In this thesis we have demonstrated the first use of monoliths in PPEC. These 

plates can be used for separating peptides but have not been able to separate proteins, 

apart from SDS insulin. The separations are fast, but reproducibility needs to be 

improved.  
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Figure 28. Images of peptides separated on separate AMPS plates. Run in a mobile 

phase of 70 % acetonitrile with a nominal pH of 4.7 run at 6.0 kV and 41 atm for 1 

minute with the analytes spotted 6 cm from bottom. 
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Figure 29.  Image of peptides in order of increasing migration distance (Osteocalcin 

(45-49), T-kinin, ACTH (1-10), Neurotensin, Substance P, and Levitide) on a monolith 

layer grafted with a mixture of AMPS and HEMA. Conditions: Run buffer 70 % 

acetonitrile in 5 mmol/L acetate buffer pH of 4.7; applied pressure 4.1 MPa; voltage 6 

kV. Reproduced with permission from reference 67. 
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CONCLUSIONS 

 
 
 

The thesis demonstrated the feasibility of using PPEC for separating steroids on 

conventional bonded C18 sorbent layers, and of separating peptides on either bonded C18 

sorbent layers impregnated with Brij -35, a non-ionic surfactant, or on monolithic sorbent 

layers.  

 The steroid study demonstrated that for the three C18 sorbent layers used, speed 

and separation quality were inversely related to the particle size of the sorbent layer. On 

the Superspher layer six steroids could be completely separated in three minutes with a 

chromatographic efficiency of over 100,000 plates per meter, whereas the other two 

layers yielded substantially poorer separations. The fact that separation speed does not 

diminish with particle size is a very attractive feature of PPEC, because chromatographic 

efficiency is inversely related to particle size. 

 The Brij-35 impregnated plates demonstrated a method of separating peptides that 

should be accessible to any laboratory. This is important, as there are very few reports of 

successful peptide separations by conventional planar chromatography. The quality of 

separation is very dependent on the following variables: soak concentration, soak 

duration, pH of mobile phase, mobile phase concentration, bake temperature, bake 

duration, run temperature, and pressure. It is possible to separate six peptides in eight 
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minutes on a Brij-35 impregnated sorbent. The method is extremely sensitive to the 

variables noted above, and further work is needed in order to standardize the method. 

 The monolithic plates yielded rapid and efficient separations of peptides, with a 

complete separation of six peptides in one minute on a negatively charged layer by 

conventional PPEC, and in two minutes on a neutral layer by electrophoresis under 

pressure. The thickness of the monolithic layer is an important variable, and the best 

separations were on layers that were 125 μm thick with a medium pore size. An attractive 

feature of the 125 μm layers is that these could be washed after a separation and then 

reused. There was unfortunately considerable batch-to-batch variation in the plates, and 

the preparation of the plates needs to be further standardized.  

  An attempt to use a negative temperature gradient to improve separation quality 

was also investigated but was not successful. It was demonstrated that a suitable gradient 

could be imposed on the surface of the specially constructed die blocks. Using these die 

blocks, however, did not result in the desired improvement in separation, possibly due to 

Joule heating overriding the gradient. 
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