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Abstract 

This paper focuses on oil hedging using near month crude oil futures. Hedging may allow a firm 
to reduce risks and focus on areas of comparative advantage. Hedging requires a firm to estimate 
ex-ante the correct hedge ratio. The portfolio optimization framework allows for OLS to be 
applied to the estimation of a hedge ratio. Reinforcement Learning is another method available to 
hedgers to estimate a hedge ratio.  Three strategies using econometric tools and one using 
Reinforcement Learning are estimated and tested against 2019 oil price data.  
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Introduction 

 This paper focuses on applying Deep Reinforcement Learning (RL) to dynamic oil 

hedging. Dynamic hedging is characterized by a change of strategy based upon the acquisition of 

additional information. An alternative to dynamic hedging is that of static hedging strategy. In 

static hedging, the strategy is fixed at the beginning of the hedge and does not change with new 

information.  

 Daily prices were obtained from the Energy Information Administration (EIA) and 

investing.com. The date range of the data is from January 1986 to December 2019. January 1986 

to December 2018 is designated as the training data, while January 2019 to December 2019 is 

designated as the test data.1 

 Recently, oil prices have experienced high volatility. On April 20, 2020, the price of oil 

fell to an all-time low of $-37.63(eia.gov). Oil markets are typically in backwardation, which is 

characterized by futures prices below cash prices. Currently, oil markets are in contango, which 

is characterized by futures prices above cash prices. So oil prices for 2020 has not been included 

in the test data. 

                                                           
1 Denise Bullard provided assistance in the filtering and data manipulation required of this project. 
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Figure 1 (https://www.eia.gov/dnav/pet/hist/RCLC1D.htm) 

Hedging 

 Hedging may help a firm to reduce the risks that it has exposure to. This risk reduction is 

accomplished by taking a position in the futures market. One such risk is that hedging allows a 

firm to reduce is price risk. By engaging in hedging a firm may more accurately predict future 

prices for a good. This removal of uncertainty through hedging helps allow a firm to plan and 

focus on areas where it possesses a competitive advantage. This removal of uncertainty can 

apply to firms that sell or purchase assets. 

 A firm that is involved in the sale of a physical commodity and wishes to hedge will 

select a short hedge. A short hedge involves selling a futures contract prior to selling the physical 

commodity. This transaction will effectively provide the firm with the current futures price as 

their cash price at the date of delivery. A firm that will purchase a commodity will engage in a 

long hedge. A long hedge involves the purchase of futures and then the subsequent purchase of 
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the commodity. This transaction provides a firm with the current futures price as the cost of the 

good purchased.  

 Regardless of the need for a short or long hedge, the question is the same. “Determination 

of the variance-minimizing hedge strategy for each t requires the solution of an extremely 

complex dynamic programming problem.”(Pirrong, 1997, p.547) The hedger must choose a 

method to solve this dynamic problem. The method of solving this complex problem will be 

addressed in two different ways in this paper. The first method is through an econometric 

framework focusing on previous observations and parameter estimation. The second method is 

through the creation of a RL environment. 

Econometrics 

 Portfolio optimization is a powerful tool to be applied to the hedging problem. Implicit in 

this framework is a general quadratic utility function show in Equation 1. 

𝑈 = 𝐸(𝑟) −
1

2
𝐴𝜎  

(1) 

Where  

𝑈 − is the utility 
𝐸(𝑟) − is the expected return 
𝐴 − is the coefficient of risk aversion 
𝜎 − is the variance of the returns 

 

(Bodie Kane Marcus, 2009, p.159) 

 The variance of the two assets in the portfolio can be expressed by the variance and 

covariance of the two assets. This relationship is demonstrated in Equation 2.  
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𝜎 = 𝜎 + ℎ 𝜎 − 2ℎ𝜌𝜎 𝜎  
(2) 

Where 
 

𝜎 − is the variance of the portfolio 
𝜎 − is the variance of the spot price 
𝜎 − is the variance of the futures price 
ℎ − is the hedge ratio 

𝜌 − is the coefficient of correlation 

 

 

 

 This expression of the variance can be differentiated. To find a hedge ratio that 

minimizes the variance of the portfolio the first derivative is solved for h. This process leads to a 

minimum portfolio variance of h* as expressed in Equation 3.  

ℎ∗ = 𝜌
𝜎

𝜎
 (3) 

Where  

𝜌 − is the correlation between the cash and futures 
𝜎 − is the standard deviation of the change in the spot price 
𝜎 − is the standard deviation of the change in the futures price 

 

(Hull, 2012, p.57) 

 This result is the same relationship that is found in a parameter estimate produced by 

ordinary least squares. Hedging is a forward looking strategy, so there is no method of applying a 

hedging strategy ex-post. The hedging strategy must be estimated and implemented prior to the 

relationship between the assets being revealed.  Without exact knowledge about the future, the 

hedger must estimate the future relationship. To perform this estimation, the only available 

information is from the past. Therefore, a linear regression on previous price changes is an 

appropriate estimation technique to apply to the development of a hedging strategy. 
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Reinforcement Learning 

  “Reinforcement learning is learning what to do … so as to maximize a numerical reward 

signal.” (Sutton and Barto, 2018, p.1) The correct action is not provided to the learner, so the 

learner must determine the correct action through a method of trial and error. This perspective is 

particularly powerful for the formulation of a hedging strategy. Ex-ante, there does not exist an 

objectively correct hedge ratio or hedging strategy. It is only through time that the correct action 

can become clear. 

 The two main parts of a reinforcement learning system are the environment and the 

learner. The environment must provide the learner with information and allow the learner to take 

an action. Following the action, a result will be computed and provided as feedback to the 

learner. The learner will take an action, observe the results, and then adjust the behavior for the 

next action. The interaction between the agent and the environment is demonstrated in Figure 2.  

 

Figure 2 (Sutton and Barto, 2018, p.48) 
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Methodology 

Static Hedge Strategy 

 The static minimum variance hedging strategy requires the calculation of a single hedge 

ratio. The method of estimation was accomplished by regressing price changes for the entire 

history of West Texas Intermediate (WTI). This provides an estimate of the minimum variance 

hedge with all available information as of the beginning of the test set. This single ratio is 

applied through the entire test set of 2019. The ratio that this method provides is 1.004161 

Expanding Window Strategy 

 The creation of this strategy was accomplished by creating an expanding window that 

eventually took in price changes for the entire history of WTI futures and performed a regression 

on this expanding window of price changes. This provides an updating estimate of the minimum 

variance hedge ratio as more information becomes available. The change in the hedge ratio 

estimate over the test set is show in Figure 3. 
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Figure 3 

Rolling Window Strategy  

 This strategy was developed by creating a rolling window of 63 days of daily price 

changes through 2019. The size of this rolling window was selected to take account of the most 

recent quarter. The rolling window was applied through the entire data set, and the estimates to 

be applied to the test set are plotted in Figure 4. 
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Figure 4 

Reinforcement Learning Strategy 

  The RL environment that was created for this project consists of daily price data for 

crude oil and the near month crude oil futures contracts.2  The action available to the learner is to 

change the hedge ratio. An economic utility function has been adapted for the reward 

calculation.3  

 The price of crude oil in this environment is defined as the price of WTI on the 

observation date. (eia.gov) The futures price within the environment is defined as the near month 

futures contracts for WTI. Near month futures are defined as the futures contract that has a 

                                                           
2 This environment relies heavily on a stock market example created by Adam King. Mr. King’s helpful article may 
be found here.  https://towardsdatascience.com/creating-a-custom-openai-gym-environment-for-stock-trading-
be532be3910e 
3 Joshua Bullard provided technical assistance with the programming of the environment. 
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delivery date closest to the current date. The near month futures contract changes three days prior 

to the 25th of each month.(eia.gov) 

 The hedge ratio is the variable that the learner will control to maximize the reward 

received. The hedge ratio controls the number of futures contracts purchased or sold. The hedge 

ratio for this environment has been limited from 0 to 1.5. A hedge ratio of 0 represents an 

unhedged position. A hedge ratio of 1.5 is a speculative position in the futures market. 

 The reward function is based on a quadratic utility function. The specific reward function 

is given in Equation 4. 

𝑅𝑒𝑤𝑎𝑟𝑑 = 𝛥𝑆 − ℎ ∗ 𝛥𝐹 −
1

2
𝐴(𝛥𝑆 − ℎ ∗ 𝛥𝐹)  

 

Where (4) 

𝛥𝑆 − is the change in the spot price over the contract 
𝛥𝐹 − is the change in the futures price over the contract 
ℎ − is the hege ratio 
𝐴 − is the coefficient of risk aversion 

 

 

 

 A coefficient of risk aversion of 1 was chosen. The model was trained on historical price 

data for 70 epochs. The cumulative reward for this training is show in Figure 5. The trained 

model is then provided with the prices from 2019, and a daily hedge ratio is predicted. This 

series of hedge ratios are then applied to calculate a return if the RL strategy had been followed. 
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Figure 5 

Results 

 To compare the different strategies, a common method was required. The strategies use a 

common utility function and therefore are comparable. The method chosen for evaluating which 

strategy produced the best results is the change in portfolio value. This calculation is given in 

Equation 5.  

𝛥𝑃 = ∑((𝑆 − 𝑆 ) − ℎ ∗ (𝐹 − 𝐹 )) (5) 

Where 
 

𝑆 − is the spot price on the delivery date 
𝑆 − is the current spot price 
𝐹 − is the futures price on the delivery date 
𝐹 − is the current futures price  

ℎ − is the hedge ratio selected for day t 
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The results of this evaluation are summarized in Table 1 below. 

Abnormal Returns 
Strategy Results 
Static Minimum Variance Hedging  1.99 
Dynamic Minimum Variance Hedge ( Expanding Window) 12.55 
Dynamic Minimum Variance Hedging (Rolling Window) -9.79 
RL Dynamic Hedging -154.98 

Table 1 

Conclusion 

 Through this project, it has been demonstrated that it is possible to apply reinforcement 

learning to develop a dynamic hedging strategy given prices as the input. The development of a 

reinforcement learning environment allows more flexibility to the performance of forecasting 

regardless of whether it applies to hedging or other economic decisions. 

 In 2019, oil prices were relatively range bound. Spot prices increased from a low at the 

start of the year. Prices then reached a peak above $65/bbl in the second quarter and then 

remained below this peak through the rest of the year. The price history for 2019 is shown in 

Figure 6. The strategy that provided the highest abnormal return within the test set was the 

expanding window. The RL strategy performed the worst of all of the strategies that were 

employed in this test.  
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Figure 6 

 It may be possible to improve performance of the RL strategy by employing different 

reward functions and additional variables. This environment development is crucial to the final 

results of any artificial intelligence model.  

 With modern computational methods, it is possible to utilize powerful tools to answer 

new questions. With this expansion of ability, there remains a need for a firm understanding of 

economic theory and statistical practices. It is not enough to simply apply the latest methods and 

blindly accept the output. It is crucial to remember the questions that are being asked and the 

answers that are provided. 
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Further Research 

 With the advances in machine learning and artificial intelligence, it is now possible to 

investigate nonlinear relationships between assets. A logical extension of this paper is to examine 

cross hedging within energy markets. The same methods may be applied to long hedging and 

inventory management. Further refinements of the basic environment created here include the 

introduction of cross hedging, risk free borrowing rates, and differing contract terms.  
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