
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Plan B and other Reports Graduate Studies 

12-2019 

Deep Reinforcement Learning Pairs Trading Deep Reinforcement Learning Pairs Trading 

Andrew Brim 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports 

 Part of the Artificial Intelligence and Robotics Commons, and the Finance and Financial Management 

Commons 

Recommended Citation Recommended Citation 
Brim, Andrew, "Deep Reinforcement Learning Pairs Trading" (2019). All Graduate Plan B and other 
Reports. 1425. 
https://digitalcommons.usu.edu/gradreports/1425 

This Creative Project is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Plan B and other Reports by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/631?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/631?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/1425?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1425&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


Deep Reinforcement Learning Pairs Trading

Andrew Brim

May 2019

Abstract

This research applies a deep reinforcement learning technique, Deep
Q-network (DQN), to a stock market pairs trading strategy for profit.
Artificial intelligent methods have long since been applied to optimize
trading strategies. This work trains and tests a DQN to trade cointegrated
stock market prices, in a pairs trading strategy. The results demonstrate
the DQN is able to consistently produce positive returns when executing
pairs trading strategy.

1 Introduction

Pairs Trading is a statistical based trading strategy involving a pair of coin-
tegrated financial assets [4, 3, 1]. This work presents a reinforcement learning
system, utilizing a DQN and an RL environment in which to interact, to learn
a trading strategy for a cointegrated pair of stocks.

Figure 1: Pairs Trading Testing Results for the Adobe/Red Hat stock pair. The
RL System is able to train a DQN with training data 2014-2017, and then test
it’s predictive ability on 2018 data. The DQN outputs actions of long, short, or
no position on the spread, producing cumulative spread returns of 1.58.

1



A pairs trading strategy is a mean reversion strategy on the spread, or price
difference, of two financial assets. When the spread increases or decreases away
from the mean, this strategy predicts the spread of the cointegrated pair of
stocks will revert back to the mean. As shown in Figure 1, A reinforcement
learning system can learn the spread mean reversion and then correctly predict
it.

A naive pairs trading strategy is executed in the following way: When the
spread increases to a given threshold, the stock pair is traded by simultaneously
entering into a short position (sell) for the higher price stock and a long position
(buy) for the lower price stock [8]. If the spread decreases to a given threshold
the stock pair is traded by simultaneously entering into a short position for
the lower price stock and a long position for the higher price stock as shown
in Algorithm 1. When the spread of the cointegrated pair, reverts back to the
mean, one or both positions will be profitable [4, 1]. Each position is held until
the opposite position is entered into, or no position. Then the position is exited.
Figure 2 demonstrates the prices of two cointegrated stocks, PepsiCo, Inc.(PEP)
and Coca-Cola Co.(KO). Temporary spread divergences are eventually corrected
as cointegrated prices move back together.

Figure 2: Cointegrated stock pair PepsiCo, Inc. (PEP) and The Coca-Cola Co
(KO) demonstrating price spread mean reversion

Algorithm 1 Naive Pairs Trading Strategy with a spread threshold of +/- 0.05

UPPER THREASHOLD ← 1.05
LOWER THREASHOLD ← 0.95
if current spread > mean spread * UPPER THREASHOLD then

short higher price stock
long lower price stock

else if current spread < mean spread * LOWER THREASHOLD then
short lower price stock
long higher price stock

else
no position

end if

2



Various approaches have used deep reinforcement learning techniques, such
as a DQN [9, 7], to predict and trade the stock market. Liang, Chen, Zhu, Jiang,
Li 2018 train a DQN to hedge portfolio risk [6]. Ding, Zhang, Liu, Duan 2015,
train a Deep Learning system for event-driven stock prediction [2]. Li, Jiang,
Li, Chen 2015 and Wu 2015 use Neural Networks for stock market predication
as well[5, 10].

This RL system specifically utilizes a DQN to run a pairs trading strategy
on 38 cointegrated stock pairs. The DQN interacts with a RL environment by
taking the actions to long, short, or enter no position, on the spread of the stock
pair. The DQN produces a Q-function, which learns the trading parameters to
maximize the profit of the pairs trading strategy. This pairs trading strategy
will execute based on 10 trading parameters which represent the spread, with a
possibility of 30 values or more for each parameter, making the space of possible
combinations of pairs trading parameters at least 5.9e+14. As the DQN takes
actions in the environment and receives reward for each action, it optimizes a
Q-function which outputs the best action for any given state in the space.

2 Experiment

This system trains and tests a DQN on 38 stock pairs. The pairs are selected
from the SP500 Stock Index in the following manner. From a possible 78000
pairs, each pair must have a Augmented Dickey-Fuller p-value between 0 and
0.05, indicating the pair is cointegrated. This test reduces the number of possible
pairs to 145. The pair must also have enough variance to generate trade signals.
This is achieved by selecting a pair where each stock in the pair must have
a standard deviation divided by the mean of 0.5 or greater. This second test
reduces the number of possible pairs to 38. These two statistical tests verify the
pair’s spread will be mean reverting, with enough variance to be trade-able.

The training data consists of daily prices for 4 years from 2014-2017, and
the testing data consists of daily prices for 2018. The daily prices data for the
training set is pre-processed, and used to generate the 10 input features for
each day. These 10 features represent the state of the environment for that
day. The 10 input features are received by the OPENAI Gym environment’s
step function, as a state. The features are inputted into the DQN, and the
DQN outputs an action of long, short, or no position on the spread of the
pair. The step function is called with this new action, and the environment
returns the next state as well as the reward for the action taken on the previous
state. The DQN updates its input weights to maximize reward, and the process
is repeated. The DQN utilizes RELU non-linear activation functions and an
Adam optimizer to update network weights. The DQN trains for 300 episodes.
Figure 4 illustrates, for the training data set for the Adobe/Red Hat stock pair.
The DQN is able to converge on an near optimal set of weights for the input
features, and produce a Q-function to maximize reward for any given state.

The rewards in the OPENAI Gym are calculated as follows:

3



training rewards = action× spread returns× negative returns multiplier

testing rewards = action× spread returns

As seen in Figure 6, the DQN outputs actions to maximize reward. An-
other parameter is introduced, during training, the Negative Returns Multiplier,
which multiplies any negative spread returns, to make the rewards much more
negative. This causes the DQN to take actions more conservatively, and to take
an action of no position more often as no position will always result in a reward
of 0. This may reduce total cumulative returns, but it also reduces the number
of actions which produce a negative return.

Figure 8 shows the total spread cumulative returns for all 38 stock pairs,
for various Negative Returns Multiplier values from 1 to 1000. The higher
the Negative Returns Multiplier, the more likely the DQN system will take a
no position action when the state is less predictable. This decreases the total
spread cumulative returns, but it results in a DQN which more consistently
takes actions that produce positive returns. Figure 9 displays total cumulative
returns decreasing as Negative Returns Multiplier increases to 1000. Figure 10
shows how the DQN takes an action of no position more often, until it receives
a state it can more likely predict to gain a positive reward.

Figure 3: Training Results, 300 episodes.

3 Results

This method is applied to all 38 stock pairs, and tested on 2018 stock prices,
consisting of 250 daily prices. As shown in the first column of Figure 8, the total
cumulative returns for all 38 stock pairs is 131.33. It is clear the RL system,
utilizing a DQN interacting with an RL environment, is able to learn and predict
spread movements. Figure 4 shows the results for the pair Adobe/Red Hat,
which produces an annual spread cumulative returns of 1.58. This figure a more
complete version of the results shown in the Introduction.

4



Figure 4: Testing Results for ADBE/RHT. (a) shows DQN trading returns of
1.58. (b) shows the prices of ADBE and RHT. (c) shows the spread of ADBE
and RHT. (d) Heatmap of DQN input features for test data ADBE/RHT. (e)
shows the actions output by the DQN. (f) shows the number of each action
taken.

As illustrated in Figure 4(c) ADBE/RHT Spread, the spread mean reverts
at least 3 times in the last 50 trading days. The DQN is able to generate a
Q-function during training, and successfully take actions to long, short, and
no position on the spread of the pair in the testing data. As shown in the
first column of Figure 8, the total cumulative returns for all 38 stock pairs is
131.33. The highest 4 pairs’ spread returns were CNX/HBI 7.52, FCX/HBI
25.67, HBI/MRO 27.41 and CTWS/AWR 71.28. as shown in Figure 6. The
lowest 2 performers were ESV/RRC -0.78 and ESV/GNW -9.64 as shown in
Figure 7.

4 Methods

This work utilizes Q-learning, to build an optimized policy function for each
state in the space of trading parameters. It utilizes a Deep Q-Network, to build

5



a Q-function which will take a state of 10 features as input, and output the best
action on the spread: long, short or no position. The RL Environment simulates
the stock market, and returns a reward tomorrow on the action taken today.

4.1 Q-Learning

Q-Learning is a reinforcement learning technique which optimizes the best action
for a given state. Here, an OPENAI Gym environment is built to simulate the
stock market pairs trading strategy, and allow the DQN to take long, short, or
no position actions on the spread, to learn the state space. The DQN outputs
an action, that is sent to the Gym environment, which then returns the next
state and the reward for the action taken.

4.2 Deep Q-Network

DQNs utilize a neural network to generate a Q-function. The input features
for this DQN are designed for the system to learn the spread mean reversion
including: current spread of the pair, daily returns of the spread, spread mean
for various time intervals, and spread / spread mean for the same time intervals
as shown in Figure 3. Spread / spread mean for a spread at equilibrium will be
1.0. A spread / spread mean of 1.05 would be high suggesting the spread value
will decline, and 0.95 would be low suggesting the spread value will rise. The
DQN outputs the action to take at that point in time: long, short, or take no
position on the spread of the stock pair. The DQN is able to build a Q-function,
to maximize reward based on the input features it receives.

DQN replay memory is utilized to store the state transitions that are received
from the environment, allowing this data to be reused. By sampling from it
randomly, the transitions that build up a batch are decorrelated, stabilizing the
DQN.

4.3 Neural Network Structure

This experiment utilizes a Pytorch NN consisting of an input layer of 10 features,
a fully connected layer of 50 nodes, another fully connected layer of 50 nodes,
utilizing a RELU non-linear activation function, and an output layer of 3 nodes,
as seen in Figure 3 .

5 Summary and Future Work

The DQN was able to output actions which earned a total cumulative returns
for all 38 stock pairs of 131.33. The DQN was able to learn to take actions more
conservatively, based on adding a Negative Reward Multiplier. The features
provided to the system, allowed it to learn a mean reversion strategy for intervals
of 15 days or less.

DQNs are able to learn and execute trading strategies for positive returns, as
shown by this application. Future applications could include a system learning

6



different types of trading strategies or opportunities. Reinforcement learning
systems could also be applied to different time frames including high frequency
trading, or other financial markets.

7



Figure 5: Top 4 DQN Pairs Trading performers: CNX/HBI 7.52 (a), FCX/HBI
25.67 (b), HBI/MRO 27.41 (c), CTWS/AWR 71.28 (d)

8



Figure 6: Bottom 2 DQN Pairs Trading performers: ESV/RRC -0.78 (a), ES-
V/GNW -9.64 (b)

9



Figure 7: DQN Pairs Trading Results for all 38 pairs. Each column shows the
returns for all pairs where any negative returns, during training, are multiplied
the factor in row 1. The higher the negative rewards multiplier, the more often
the DQN will take a conservative action of no position. A value of 0 returns
indicates the DQN took no trading actions.

Figure 8: Returns approach zero as the multiplier increases, causing the DQN
to take more no position actions.

10



Figure 9: CNX/HBI returns decline as negative returns multipliers increase, as
the DQN actions become more conservative. NR Multiplier of 50.0 (c), causes
DQN to only make successful predictions and yields returns of 1.42.

11



Figure 10: DQN NN structure

12



References

[1] Dickey David A and Wayne A. Fuller. Distribution of the estimators for
autoregressive time series with a unit root, 1979.

[2] Xiao Ding, Yue Zhang, Ting Liu, and Junwen Duan. Deep learning for
event-driven stock prediction, 2015.

[3] Robert F. Engle and Clive W. J. Granger. Cointegration and error correc-
tion: Representation, estimation and testing, 1987.

[4] G. Gatev, N. Goetzmann, and K. Rouwenhorst. Pairs trading: Performance
of a relative value arbitrage rule, 2006.

[5] Qing Li, LiLing Jiang, Ping Li, and Hsinchun Chen. Tensor-based learning
for predicting stock movements, 2015.

[6] Zhipeng Liang, Hao Chen, Junhao Zhu, Kangkang Jiang, and Yanran
Li. Adversarial deep reinforcement learning in portfolio management.
https://arxiv.org/abs/1808.09940v3.

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with
deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[8] Michael P. Murray. A drunk and herdog: An illustration of cointegration
and error correction, 1993.

[9] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy.
Deep exploration via bootstrapped dqn, 2016.

[10] Jiayu Wu. A pairs trading strategy for goog/googl using machine learning.
http://cs229.stanford.edu/proj2015/028report.pdf, 2015.

13


	Deep Reinforcement Learning Pairs Trading
	Recommended Citation

	tmp.1570231552.pdf.pfGZl

