PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

 $_{Bv}$ Megan Elizabeth Carter

Entitled

Blood on FTA™ Paper: Does Punch Location Affect the Quality of a Forensic DNA Profile?

Master of Science For the degree of

Is approved by the final examining committee:

Christine Picard

Chair

Stephen Randall

Jay Siegel

To the best of my knowledge and as understood by the student in the Research Integrity and Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of Purdue University's "Policy on Integrity in Research" and the use of copyrighted material.

Approved by Major Professor(s): Christine Picard

Approved by: Christine Picard

05/09/2012

Head of the Graduate Program

Date

PURDUE UNIVERSITY GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

Blood on FTA[™] Paper: Does Punch Location Affect the Quality of a Forensic DNA Profile?

For the degree of Master of Science

I certify that in the preparation of this thesis, I have observed the provisions of *Purdue University Executive Memorandum No. C-22,* September 6, 1991, *Policy on Integrity in Research.**

Further, I certify that this work is free of plagiarism and all materials appearing in this thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the United States' copyright law and that I have received written permission from the copyright owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless Purdue University from any and all claims that may be asserted or that may arise from any copyright violation.

Megan Elizabeth Carter

Printed Name and Signature of Candidate

05/09/2012

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

BLOOD ON FTA™ PAPER: DOES PUNCH LOCATION AFFECT THE QUALITY OF A FORENSIC DNA PROFILE?

A Thesis Submitted to the Faculty of Purdue University by Megan Elizabeth Carter

In Partial Fulfillment of the Requirements for the Degree of Master of Science

> August 2012 Purdue University Indianapolis, Indiana

ACKNOWLEDGMENTS

I would like to thank Dr. Christine Picard for being a wonderful thesis advisor, mentor and friend throughout my entire thesis process. I would also like to thank Dr. Jay Siegel for accepting me into the forensic science graduate program which allowed me to pursue my dreams of becoming a DNA analyst, and also for his guidance and support throughout my career at IUPUI. Thank you to Dr. Stephen Randall, as well as Drs. Picard and Siegel, for taking the time to act as members of my committee. Thank you to the IUPUI School of Science for providing the funding to support my research.

Also, I appreciate the opportunity I had to work as an intern in the forensic biology unit at the Indiana State Police Laboratory Division under the supervision of Carl Sobieralski. Being able to experience the day-to-day workings of a real crime laboratory and observation of casework and courtroom testimony will be of great benefit to me as I continue on in my future career. I owe a huge debt of gratitude to my friend Joanna Will, a Ph.D. clinical psychology student at the University of Virginia, for her help in the statistical analysis of my data. And finally, thank you to my husband Justin for his computer wizardry skills, without which I could not have completed this paper, and also for his love and support in all aspects of my life.

TABLE OF CONTENTS

		Page
LIST OI	F TABLES	v
LIST OI	F FIGURES	viii
LIST OI	F ABBREVIATIONS	x
ABSTR	ACT	xii
CHAPT	ER 1. INTRODUCTION	1
1.1	Introduction to Forensic DNA Analysis	1
1.2	History of Forensic Biology	2
1.3	Introduction to FTA TM Paper	7
1.4	Evaluating Profile Quality	9
1.4.	1 Peak Characteristics	
1.4.	2 Concordance	
1.5	Purpose of the Study	
CHAPT	ER 2. MATERIALS AND METHODS	15
2.1	Sample Collection Protocol	15
2.2	FTA TM Card Protocol	
2.3	STR Amplification Protocol	
2.4	Fragment Analysis Protocol	
2.5	Data Analysis	
CHAPT	ER 3. RESULTS	21
3.1	Failed Reactions	21
3.2	Partial Profiles	
3.3	Concordance	23
3.4	Peak Characteristics	

3.4.1	Minus A	
3.4.2	Stutter	
3.4.3	Peak Heights	
3.4.4	Heterozygote Peak Height Ratios	
3.4.5	Allelic Dropout	
3.5 Edg	ge Punch Comparison	35
3.5.1	Minus A	
3.5.2	Peak Heights	
3.5.3	Heterozygote Peak Height Ratios	
CHAPTER 4	4. DISCUSSION	43
CHAPTER	5. CONCLUSIONS	45
REFERENC	CES	47
APPENDIX		51

Page

LIST OF TABLES

Table	Page
Table 1 Stutter filter percentages (GeneMarker® HID). Only peaks above	
the listed percentages (below) were called or flagged by the software.	18
Table 2 Results from the comparison of failed reactions at each punch	
location. The halfway punch location had the most failed reactions	22
Table 3 Results from the comparison of partial profiles at each punch	
location. The center punch location had the highest number of partial	
profiles	22
Table 4 Description of criteria used to distinguish true peaks from extra	
peaks caused by other technological or biological artifacts. Decisions	
were made based on the position of the peak, size of peak, and presence	
of peaks of the same size in multiple different colors. All examples were	
observed within samples collected in this experiment	24
Table 5 The ANOVA results for the -A examination shows that there is	
not a significant difference in the number of loci with -A between the three	
punch locations (significance >0.05).	27
Table 6 Results from analysis of stutter. The halfway and edge punch	
locations had one stutter peak each as compared to zero stutter peaks	
observed at the center punch location	28
Table 7 The ANOVA results for average peak height shows that there is	
not a significant difference in the average peak height between the three	
punch locations (significance >0.05).	30

Table Page Table 8 The ANOVA results for the average peak height ratios shows that there is a significant difference in the average peak height ratios between Table 9 The results of *post hoc* Dunnett's T3 pair-wise comparisons of average peak height ratios showed that there is a significant difference in the peak height ratios between the center and halfway and edge and halfway punch locations but not between the center and edge punch locations (significance <0.05). Significant relationships are highlighted in Table 10 The ANOVA results for the average peak height imbalance shows that there is not a significant difference in the average peak height Table 11 Results from the analysis of allelic dropout. The center punch Table 12 A comparison of the number of loci with -A present in each of the edge punches at five different locations in three randomly selected FTATM cards. The number of loci with -A within each individual is similar: the variance in sample 3701 is less than nine percent, variance in sample 6233 Table 13 Results from the peak height comparison for the fifteen edge Table 14 Results of nested ANOVA testing for peak height. There was not a significant difference between any of the punches within each individual Table 15 Results from the peak height ratio comparison for the fifteen edge punches. Average peak height ratio and standard error for each sample is

Table	Page
Table 16 Results of ANOVA testing for heterozygote peak height	
ratio. There was not a significant difference between any of the fifteen	
punches (significance > 0.05).	42

LIST OF FIGURES

Figure	Page
Figure 1 An electropherogram of the GeneScan TM 600 LIZ® Size Standard	
showing the different sizes of the fragments. Copyright © 2011 Life	
Technologies Corporation. Used under permission	4
Figure 2 The allelic ladder from the Identifiler® Plus PCR amplification kit	
[9]. It contains the most common alleles at each locus in the kit. The STR	
amplification product is compared to this ladder and allele calls are made.	
Copyright © 2011 Life Technologies Corporation. Used under permission	5
Figure 3 DNA entangled in Whatman FTA [™] Paper matrix [23].	
Copyright © 2011 GE Healthcare Corporation. Used under permission.	7
Figure 4 An example of the three disc locations taken from a bloodspot on	
FTA TM paper: center, halfway, and edge [photo, Megan Carter]. Average	
bloodspot size was found to be 9.74 mm in diameter, distance from center	
to edge was an average 4.87 mm, and distance from halfway to edge was	
an average 2.44 mm.	14
Figure 5 An example of allelic drop-in seen at the center punch location of	
sample 565 of the study. The extra peak was only observed in one of the	
three profiles at the D19S433 locus. This extra peak was determined to be	
the result of allelic drop-in and not the result of a mixture, contamination,	
or any other technological artifacts. The peak did not reoccur when an	
adjacent sample was amplified.	25

Figure

Figure	Page
Figure 6 An example of –A peaks that surpassed the threshold amount and	
were flagged by the software at all three punch locations in sample 6080	
of the study. The amount of $-A$ is higher than the true peaks at the center	
and halfway punch locations	
Figure 7 Box and whisker plot of the –A data. The dark square represents	
the location of the average number of loci with -A for each punch location	
Figure 8 An example of a stutter peak (allele 11) at the edge punch location	
of sample 338 of the study. Minus A is also present one base pair shorter	
than the true allele (allele 12)	
Figure 9 Box and whisker plot of the peak height data. The dark square	
represents the location of the average peak height for each punch location	
Figure 10 Box and whisker plot of the peak height ratio data. The dark	
square represents the location of the average peak height ratio for each	
punch location	
Figure 11 An example of peak height imbalance at the center punch	
location from sample 777 of the study. The peak at allele 15 is much	
shorter than the peak at allele 13, resulting in an imbalanced ratio	
Figure 12 Box and whisker plot of the peak height imbalance data. The	
square represents the location of the average imbalance ratio for each	
punch location	
Figure 13 An example of allelic dropout of one allele (11) in a	
heterozygote (11, 12) resulting in false homozygosity at the center punch	
location of sample 651 of the study	35
Figure 14 Box and whisker plots of the peak height data. The square	
represents the location of the average peak height for each punch location	
Figure 15 Box and whisker plots of the heterozygote peak height ratio	
data. The square represents the location of the average heterozygote peak	
height ratio for each punch location. The samples with imbalanced peak	
height ratios are easily visible on the plot for 3701B, C and E.	41

LIST OF ABBREVIATIONS

0	degree
μL	microliter
-A	minus A
+A	plus A
ABI	Applied Biosystems
ANOVA	analysis of variance
bp	base pairs
BSA	bovine serum albumin
С	Celsius
CE	capillary electrophoresis
CODIS	combined DNA index system
DNA	deoxyribonucleic acid
EDTA	ethylenediaminetetraacetic acid
FTA TM	fast technology for analysis of nucleic acids
IUPUI	Indiana University-Purdue University Indianapolis
min.	minute(s)
mm	millimeter
ηg	nanograms
PCR	polymerase chain reaction
pg	picograms
RFLP	restriction fragment length polymorphism
RFU	relative fluorescence unit
RMP	random match probability
sec.	second(s)

STR	short tandem repeat
SWGDAM	Scientific Working Group on DNA Analysis Methods
UV	ultraviolet
VNTR	variable number of tandem repeats

ABSTRACT

Carter, Megan Elizabeth. M.S., Purdue University, August 2012. Blood on FTA[™] Paper: Does Punch Location Affect the Quality of a Forensic DNA Profile? Major Professor: Christine Picard.

Forensic DNA profiling is widely used as an identification tool for associating an individual with evidence of a crime. Analysis of a DNA sample involves observation of data in the form of an electropherogram, and subsequently annotating a DNA "profile" from an individual or from the evidence. The profile obtained from the evidence can be compared to reference profiles deposited in a national DNA database, which may include the potential contributor. Following a match, a random match probability is calculated to determine how common that genotype is in the population. This is the probability of obtaining that same DNA profile by sampling from a pool of unrelated individuals. Each state has adopted various laws requiring suspects and/or offenders to submit a DNA sample for the national database (such as California's law that all who are arrested must provide a DNA sample). These profiles can then be associated with past unsolved crimes, and remain in the database to be searched in the event of future crimes. In the case of database samples, a physical sample of the offender's DNA must be kept on file in the laboratory indefinitely so that in the event of a database hit, the sample is able to be retested.

Current methods are to collect a buccal swab or blood sample, and store the DNA extracts under strict preservation conditions, i.e. cold storage, typically -20° C. With continually increasing number of samples submitted, a burden is placed on crime labs to store these DNA extracts. A solution was required to help control the costs of properly storing the samples. FTATM paper was created to fulfill the need for inexpensive, low

maintenance, long term storage of biological samples, which makes it ideal for use with convicted offender DNA samples. FTATM paper is a commercially produced, chemically treated paper that allows DNA to be stored at room temperature for years with no costly storage facilities or conditions. Once a sample is required for DNA testing, a small disc is removed and is to be used directly in a PCR reaction. A high quality profile is important for comparing suspect profiles to unknown or database profiles. A single difference between a suspect and evidentiary sample can lead to exclusion. Unfortunately, the DNA profile results yielded from the direct addition have been unfavorable. Thus, most crime laboratories will extract the DNA from the disc, leading to additional time and cost to analyze a reference sample. Many of the profiles from the direct addition of an FTATM disc result in poor quality profiles, likely due to an increase in PCR inhibitors and high concentrations of DNA.

Currently, standardized protocols regarding the recommended locations for removal of a sample disc from a bloodspot on an FTATM card does not exist. This study aims to validate the optimal location by comparing DNA profiles obtained from discs removed from the center, halfway, and edge locations of a bloodspot from 50 anonymous donors. Optimal punch location was first scored on the number of failed, partial or discordant profiles. Then, profile quality was determined based on peak characteristics of the resulting DNA profiles. The results for all three disc locations were 5.3% failed amplifications, 4.2% partial amplifications, and one case of a discordant profile. Profile quality for the majority of the samples showed a high incidence of stutter and the absence of non-template adenylation. Of the three disc locations, the edge of the blood stain was ideal, due to a presumably lower concentration of DNA and likely more dilute amount of the PCR inhibitor heme. Therefore, based on the results of this study, there is a greater probability of success using a sample from the edge of a blood stain spotted in FTATM paper than any other location of the FTATM card.

CHAPTER 1. INTRODUCTION

1.1 Introduction to Forensic DNA Analysis

Forensic DNA identification technology is widely used as a tool for associating an individual with evidence of a crime. Analysis of a sample involves developing an individual's "profile" by analyzing a biological sample which contains DNA. The profile obtained from an evidentiary sample can be compared to the profile obtained from a suspect or a database. Following a match, statistical analysis is performed to determine the random match probability (RMP) of the profile, which is of finding an identical profile in a given ethnic population (if known). For example, in the case of a sexual assault, biological material such as semen left on the victim or at the crime scene is collected and a DNA profile of is obtained. If there is a suspect associated with the case, this evidentiary profile is then compared to a suspect's profile to determine whether there is a match. If no suspect is associated with a case, the unknown profile may be searched against a national DNA database called CODIS (Combined DNA Index System). Depending on the state, any person is convicted of a crime is required to have his or her profile entered into a searchable database and this profile can then be associated with evidence from past unsolved crimes, and possibly assist in the event of future crimes. Therefore, it is crucial to upload a reliable profile in order to make a comparison between a suspect and the evidence.

1.2 <u>History of Forensic Biology</u>

Prior to DNA profiling, blood type analysis was used, albeit primarily for exclusion purposes, and with only four blood types plus Rhesus factors, little discrimination was possible [1, 2]. For example, 42% of the population has type A blood and 42% has type O blood, and 85% of the population is positive for Rhesus factor [2]. The probability of discrimination for ABO blood typing is approximately 0.40, which means there is a 40 percent chance that two randomly selected people would have the same blood type [2]. Following blood typing, protein-specific antibody tests based on polymorphic proteins associated with the immune system were used. Although these methods were more discriminating than the blood typing system, with a power of 0.19, about one in every five people [2]. More modern techniques of the analysis of biological materials include the analysis of DNA (deoxyribonucleic acid). Every nucleated cell contains 23 pairs of chromosomes, one inherited maternally and one paternally. Interspersed among genes and regulatory elements are repetitive sequences of DNA which are used to develop a DNA profile.

DNA profiling, or simply genotyping, was first utilized in a forensic context by Sir Alec Jeffreys in 1985 [3]. It was based on counting the number of repeats of a specific DNA sequence at known locations (loci) in the human genome [3]. Jeffreys's original genotyping method, referred to as restriction fragment length polymorphism (RFLP) analysis, used restriction enzymes to digest DNA at enzyme specific sequences [3]. The fragments, known as alleles, would be electrophoretically separated based on their size, and one or two alleles would appear, depending on whether the person was homozygous (meaning the same number of repeats for both alleles) or heterozygous (meaning a different number of repeats, resulting in differently sized fragments). These sequence repeat regions are known as variable number tandem repeats (VNTRs), and are forensically useful because the number of repeats is variable, or polymorphic, within the human population [3, 4]. VNTRs have a core repeat length of approximately ten to 100 bases, resulting in fragments that could be thousands of base pairs long [3, 4]. Though VNTRs are discriminatory, they require a large amount of template DNA that is of high quality, and unfortunately this is not a likely scenario with most forensic samples. An alternative to VNTR genotyping is short tandem repeat (STR) genotyping. This method that takes advantage of PCR (polymerase chain reaction), which reduces the need for large concentrations of DNA [5-7]. STRs are similar to VNTRs, but with a shorter core repeat length of approximately two to six bases, resulting in overall shorter lengths of polymorphic fragments [8]. The shorter lengths of STRs as compared to VNTRs are useful because degraded samples are common in forensic samples, and shorter sequences are less likely to become degraded than longer sequences, thereby reducing the need for high quality DNA.

The steps, in order, of the current standard DNA analysis are as follows: collection, extraction, quantitation, STR amplification, separation and detection, and data analysis [9]. Collection involves the initial recovery of a DNA sample, either from a crime scene or from a reference sample. This step is crucial in preventing contamination, and followed by proper storage to minimize degradation. Following collection, extraction is then performed to isolate and purify the DNA from the remaining cellular material and halt any further enzymatic degradation. Next, and importantly to the specific downstream applications, the quantity of DNA must be determined. This step is important because commercial PCR amplification reactions call for narrow concentration ranges of DNA [9]. If too much DNA is added, profiles will have split or off-scale peaks. If too little DNA is added, profiles are susceptible to stochastic fluctuations in PCR amplifications, which can lead to partial profiles or false homozygosity [9-11].

The process of PCR was invented by Kary Mullis in 1985 [12]. PCR takes a DNA region of interest and makes many copies of that specific sequence, a process is known as amplification [12]. PCR is a series of heating and cooling cycles during which sequence-specific primers anneal to single stranded template DNA. These primers are then extended by a polymerase adding bases complementary to the template DNA sequence, creating new copies of the DNA of interest [12]. After each cycle, the number of template DNA molecules doubles [12]. This exponential growth in the number of specific regions of DNA, known as amplicons, leads to millions or billions of copies after 25 to 35 cycles [12]. This amplified DNA containing only the loci of interest is then separated and detected either using gel or capillary electrophoresis (CE). The fragments

are separated by size, with smaller fragments traveling through the matrix more quickly than larger fragments [6]. In modern forensic DNA practices, this is performed using CE. In a CE instrument, a laser is used to excite the fluorescently labeled primers that were added to the DNA fragments during PCR amplification. These laser-excited fragments are then detected as they travel through the instrument past a detection window [6]. The use of fluorescently labeled primers also allows for multiplexing of amplifications, allowing for the detection of up to 20 STR loci in a single PCR reaction [5, 6, 8, 9].

This information is then analyzed with genotyping software, such as GeneMapper® (Applied Biosystems, Foster City, CA) or GeneMarker® (Softgenetics, State College, PA). An internal size standard is run through the CE instrument in conjunction with all STR amplification products in order to properly size all fragments [6]. The size standard is a set of DNA fragments of known sizes that is used to create a standard curve (Figure 1).

Figure 1 An electropherogram of the GeneScan[™] 600 LIZ[®] Size Standard showing the different sizes of the fragments. Copyright © 2011 Life Technologies Corporation. Used under permission.

The sizes are recorded as peaks in an electropherogram. A standard curve is created to correlate the size of the fragments with the time of travel from injection to the detection window.

Figure 2 The allelic ladder from the Identifiler[®] Plus PCR amplification kit [9]. It contains the most common alleles at each locus in the kit. The STR amplification product is compared to this ladder and allele calls are made. Copyright © 2011 Life Technologies Corporation. Used under permission.

This is then used to calculate the sizes of the fragments in an allelic ladder. An allelic ladder (Figure 2) is a DNA sample that contains all of the common alleles at each locus included in the kit [6].

An allelic ladder must be included with each run of the genetic analyzer. The sized STR fragments are then genotyped based on the ladder allele calls. The numbers represent the number of repeats of the STR sequence present at each locus. For example, if a person inherited 17 repeats from their mother and 18 repeats from their father at one locus, their heterozygous genotype at that locus is 17, 18. A person can also inherit the same number of repeats from both parents, for example 18, 18, which is considered homozygous.

STR loci are chosen based on certain characteristics which make them beneficial for forensic analysis. For CODIS, there are 13 core STR loci [9]. These selected STR loci are polymorphic, which means there is large variation in the different possible numbers of repeats present within the human population, and therefore they are capable of individualizing identifications [5, 8]. Because STRs are so polymorphic, multiplexing them to analyze several loci at once results in a high power of discrimination between individuals [8]. The statistical calculations performed on DNA profiles are known as random match probability (RMP). The RMP is the chance that a person randomly selected from a population would have the same DNA profile. RMPs are calculated by multiplying the allele frequencies from all loci using the product rule because each locus is independent, and then dividing one by that number. Due to the polymorphic nature of each locus, statistical calculations give a RMP of more than one in a trillion when all 13 core CODIS loci are tested [13].

An important issue that can arise with forensic casework samples is the presence of PCR inhibitors. These samples are found in dirty locations where samples have been exposed to substances that can interfere with the genotyping process. An example is PCR inhibitors [5, 14]. Items such as soil, plants, leather, clothing dyes such as indigo, and even heme in blood are known inhibitors [15-17]. Inhibitors prevent cell lysis (extraction of DNA from a cell), degrade samples, and prevent the polymerase from binding and annealing to the template, all of which lead to failed amplifications [9, 14]. Possible solutions to reduce the effects of PCR inhibitors are sample dilutions, the addition of excess polymerase, the addition of BSA or further purification with silica columns all reduce the effects of inhibitors [17, 18].

Forensic DNA samples are also degraded by environmental factors such as UV light, heat, moisture, bacterial growth, therefore biological samples must be stored carefully to avoid further damaging or contaminating the samples. When collecting biological samples, they must be dried and carefully packaged to avoid coming into contact with other evidence. In addition, the samples are stored cold to prevent any further degradation. In the case of database samples, a physical sample of the offender's DNA must be kept in the laboratory indefinitely in case a database hit ever occurs and the sample must be retested. Due to the large number of these samples, a solution was required to help control the costs of properly storing the samples while also minimizing the risk of contaminating the evidence. FTATM paper was created to fulfill the need for

inexpensive, low maintenance, long term storage of biological samples, which makes it ideal for use with convicted offender samples.

1.3 Introduction to FTATM Paper

FTATM paper is a special cellulose-based paper developed in the late 1980s by Leigh Burgoyne [19] and commercialized by WhatmanTM (Florham Park, NJ, a division of GE Healthcare). FTATM paper is used to store any biological sample that can be applied to the filter paper, typically consisting of blood and buccal samples [10, 20-22]. In terms of forensic samples, FTATM paper is commonly used for the long-term storage of reference and convicted offender samples. FTATM paper is treated with a mixture of a base, a chelating agent, an anionic surfactant, and uric acid [10, 22, 23]. These chemicals help capture and protect the DNA from degradation by nuclease activity, UV, bacteria and other detrimental conditions [5, 20, 22, 24, 25]. Upon contact with denaturants, the cells are lysed, and the DNA becomes entangled within the paper's matrix (Figure 3) [5, 10, 20, 22, 25, 26].

Figure 3 DNA entangled in Whatman FTA[™] Paper matrix [23]. Copyright © 2011 GE Healthcare Corporation. Used under permission.

This type of treatment allows for DNA to be stored on FTA[™] paper for years at room temperature [5, 10, 20-26]. These properties of FTA[™] paper helps eliminate the requirement of refrigerated storage for biological samples, which is expensive and requires large, specialized areas for storage [21-24, 26]. Also, use of FTA[™] paper

prevents cross contamination between samples, even if they come in contact with each other [20]. This means that large amounts of samples can be stored together without the requirement for specialized storage equipment; one study even suggests using an ordinary filing cabinet [20]. In addition, FTATM cards are small in size at only three and a half inches by five inches in size [10].

When using FTA[™] paper for blood sample collection and storage, the liquid blood is spotted directly on the card's sample collection area and allowed to dry [20, 22]. When an analyst is ready to for analysis, a small disc (1.2 mm in diameter) is removed from the bloodstain using a micro-punching tool, such as the Harris Uni-Core[™] punch. Following the removal of the disc, three to five washes are performed using a specialized reagent remove inhibitors and contaminants [5, 21]. Potent PCR inhibitors are present in blood samples (including heme and the anticoagulant EDTA), and they must be removed prior to PCR amplification [15, 26]. Removal of heme can be visually observed with FTA[™] paper, as its red color also washes away [27]. If the washes are effective, they should leave a colorless paper disc containing the purified DNA and little or no remaining heme to inhibit amplification.

The purification reagent is then washed away with water, and the disc is then dried. The manufacturer's protocol then states that the disc is ready to be added directly to a PCR amplification reaction [9, 21, 22]. A benefit of the direct addition of FTATM paper discs to the amplification reaction is that it reduces the amount of handling by an analyst, thereby reducing the potential for contamination [27]. However, no quantification is performed, a deviation from the normal PCR amplification procedures outlined by the manufacturers of STR amplification kits. These kits have been optimized to use a narrow range of DNA amounts (i.e. 0.5-1 µg DNA), and anything more or less may result in a poor quality profile [9, 27]. The absence of this quantitation step is both a benefit and a drawback of using FTATM paper. Bypassing the quantification step saves time and reduces the amount of sample used; however, this also introduces uncertainty in the quality of profile to be generated [9, 27]. If the amplification procedure fails, then a second amplification has to be done, and that comes with added cost and time. According to the PCR amplification kit components manufacturer, no quantification is

necessary for successful amplification and analysis of FTATM samples [9]. Their literature states that a 1.2-mm disc contains between 5 and 20 ηg of DNA, and will give reliable results [9].

Previous studies suggested that the quantity of DNA present at the center and edge of a blood sample spotted on FTATM paper is uniform [26]. Therefore, it has been postulated that DNA is distributed evenly throughout a blood sample as it diffuses through the FTATM paper's matrix [26]. Also, the study demonstrated that the speed of delivery of the blood sample onto the FTATM paper had no effect on uniformity of DNA concentration [26]. Additionally, the study showed that there was no difference in uniformity of DNA whether there is one point of application or multiple points, and with no effect from different people making the applications [26]. However, Dr. Christine Picard has found on average, using blood spotted FTATM cards, that amplification reactions either failed or yielded poor quality profiles in greater than 25% amplifications in a study of 100 individuals [28].

1.4 Evaluating Profile Quality

The purpose of this study was to determine whether there was a difference in the quality of DNA profile obtained from different punch locations from a blood spot on FTA^{TM} paper. The purpose of this was to demonstrate to current DNA laboratories the optimal disc locations for the greatest probability of amplification success, therefore enabling them to use the technology as it was intended. The number of failed reactions, partial profiles, and concordance between individual genotypes was examined at each locus, for all three punch locations. Furthermore, peak characteristics such as presence and amount of minus A (-A) and stutter, average peak height in relative fluorescence units (RFUs), heterozygote ratios, and allelic dropout were examined.

1.4.1 Peak Characteristics

When observing an electropherogram, good quality peaks should be sharp, symmetric and well-defined, and easily distinguished from background noise [29]. They should not be split, rounded, or otherwise misshapen [6, 29]. Sometimes normal peaks may have associated biological artifacts such as –A and stutter peaks, as will be discussed below [6, 9, 29]. Problems with the size, shape, and associated products of peaks can lead to issues with obtaining a correct DNA genotype.

1.4.2 Concordance

Concordance failures are defined as unexpected differences in genotype at any locus for a single individual's FTATM card blood sample. This is likely due to extra peaks, missing peaks, or other abnormalities. Unusual peak characteristics, including high percentages of -A [9], and the presence of high stutter percentages can result in allelic drop-in, where these alleles are amplified over a predetermined threshold or are even preferentially amplified over the true allele. In addition, heterozygote imbalance and allelic dropout can also lead to different genotypes for the same individuals [6, 9, 29]. These issues will be discussed in detail in the following sections.

A failed amplification reaction occurs when the electropherogram does not show peaks that can be reliably distinguished from background noise [29]. A failed reaction may occur if insufficient DNA is present, which may have occurred if the DNA from the punch was not correctly extracted into the PCR mixture. High concentrations of inhibitors can also cause the amplification step to fail [14, 29]. Additionally, it is possible that the DNA sample may have become too degraded to produce a profile; however this is unlikely with the use of FTATM paper under proper storage conditions.

Larger loci, such as D18S51 and FGA, are more susceptible to small changes in the PCR conditions. For example, if the DNA sample has been degraded or has a high concentration of inhibitors, amplification of these loci may fail while the smaller loci are correctly amplified [9, 29]. Amplification failure of one or more loci results in a partial profile, which is still forensically useful, but its power of discrimination is reduced with each additional failed locus [29].

During the PCR amplification process, the polymerase adds an extra base, adenosine, to the 3'-end of the newly synthesized strand [30, 31]. Addition of this adenosine occurs during the final extension step of PCR amplification, in order to ensure all PCR products are adenylated [9, 10, 30]. This extra adenosine results in a new strand that is one base pair longer than the original DNA sequence [10, 30, 31]. This addition is referred to as adenylation, and the resulting adenylated strand is known as the '+A' form [9, 30, 31]. If the adenylation does not occur, the non-adenylated strand is known as the '-A' form [30, 31]. In forensic DNA typing, it is important that all PCR products generated from the same template strand are of the same size to be resolved, either all +A or all –A, therefore the thermalcycling conditions for each STR amplification kit add an extra 15 to 60 minute extension step to ensure all PCR products have been adenylated. On an electropherogram, -A peaks will appear one base pair less than the true alleles and the alleles represented by the allelic ladder, which are always in the +A form, and this will lead to the appearance of split peaks, or peak broadening [9, 10]. Higher concentrations of DNA than are recommended in kit protocols will result in incomplete adenylation [9, 10]. Therefore, it is important to determine the quantity of DNA present in a sample prior to PCR [9].

Stutter, a result of strand slippage during DNA replication [5, 32], is a common occurrence during PCR amplification of STR products [9, 32]. Strand slippage means that one of the two DNA strands being amplified forms a non-base-paired loop during primer extension, resulting in a product that is either one (or more) repeat unit longer, or more typically one (or more) repeat shorter in length than the original sequence [5, 10, 32]. If a stutter product is amplified in an early cycle during PCR, a resulting peak can be called as an allele [32]. This is especially problematic if mixtures are being amplified [9], and is not a likely scenario with reference samples; however, if a stutter peak is called as a true allele in a reference sample and then uploaded to a DNA database, then potential crime scene samples would result in a false negative. Analysts calculate the percentage of stutter present by dividing the height of the stutter peak by the height of the

corresponding allele peak [9, 10]. Stutter has been characterized for each allele by the kit manufacturers, and this data is used in the calling and interpretation of alleles within the confines of the software [9]. If a peak falls above this threshold, then the allele is called. Generally, longer alleles exhibit a greater stutter percentage than smaller alleles [5, 9, 10]. Expected stutter peak heights should be less than 15 percent of true peak heights for all 13 core CODIS loci under standard conditions [9].

Peak heights on electropherograms are measured along the y-axis in relative fluorescence units, or RFUs. When examining peaks, peak heights are useful in distinguishing between true peaks, stutter, potential contamination or some other technological issues [6]. When analyzing data, the analyst will set a threshold minimum RFU value, below which no peaks are called [6]. This threshold minimum should be standardized laboratory-wide and determined through validation studies [10, 29]. The minimum RFU limit should be at a level that is high enough to consistently show differentiation between true allele peaks and background peaks [10, 29]. RFU levels generally correlate to the amount of DNA present in a sample; high RFUs correlate to a high concentration of DNA, while low RFUs correlate to a low concentration of DNA. In cases of high concentrations of DNA, sometimes a phenomenon known as 'pull up' can occur, where the capillary electrophoresis instrument's detector becomes overloaded with fluorescence and the signal "bleeds" over to another color, resulting in false peaks appearing where they would not otherwise be present [6]. Low concentrations of DNA can lead to peak heights that are not much higher than the baseline peaks, which can make it difficult or impossible to determine which peaks are the true allele peaks.

Heterozygote ratio refers to the difference in peak heights between the two heterozygous alleles at a single locus [29]. The ratio is calculated by dividing the peak height in RFUs of the shorter allele by the peak height of the taller allele [9, 27, 29]. The ratio between heterozygote allele peaks is expected to be 0.60-0.70 or more for a singlesource sample under standard conditions [10, 29, 33]. When the ratio is below this threshold, this is typically an indicator of a mixture [9, 10]. Normal heterozygote peak imbalance at a locus occurs because of unequal amplification of the two alleles during the PCR process [10, 11]. During the early rounds of amplification, one allele may be preferentially amplified, which leads to unequal proportions of the two alleles [10, 11]. This effect is referred to as stochastic fluctuation [11]. Stochastic effects are especially seen where there is a low concentration of DNA template [9-11]. Greater than normal heterozygote peak imbalance can lead to issues in interpretation of electropherograms by making it difficult to tell if an unusually small peak is a true peak, especially if the shorter peak happens to be in the stutter position [6, 9]. This is a serious issue when it comes to comparison of reference or convicted offender samples to evidentiary samples, because the difference of one allele between suspect and evidence can be enough to lead to a false negative where the suspect is wrongly excluded.

Allelic dropout is an extreme form of heterozygote imbalance, where one of the two alleles of a heterozygote is preferentially amplified to the near exclusion of the other [11]. This can lead to false homozygosity, where only one of the two allele peaks is called [11]. Allelic dropout can be caused by low concentrations of DNA or degraded DNA [9-11, 29]. If the amount of DNA is less than 100 picograms, which is found in approximately 17 diploid copies of genomic DNA, then allelic dropout has been demonstrated to occur more frequently [34]. Allelic dropout can also occur if there is a sequence polymorphism in the primer binding site [7, 9, 10]. If the polymorphism is located in the primer binding region of the DNA template strand, the primer may fail to anneal to the single-stranded template DNA, resulting in a null allele, or the failure of amplification of the allele [7, 10, 11]. This would mean that the sequence actually does exist, but due to primer binding problems, would appear not to exist [7, 10, 11].

1.5 <u>Purpose of the Study</u>

The validation of the profile quality associated with punch locations was evaluated herein. Blood samples were collected from fifty anonymous volunteers according to the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines for developing a validation study [35], and pipetted onto FTATM cards. Once dry, discs were removed from the bloodspots at three locations: center, halfway, and edge (Figure 4). These discs were then processed according to previously established protocols [9, 20, 27], and the DNA was analyzed.

Figure 4 An example of the three disc locations taken from a bloodspot on FTA[™] paper: center, halfway, and edge [photo, Megan Carter]. Average bloodspot size was found to be 9.74 mm in diameter, distance from center to edge was an average 4.87 mm, and distance from halfway to edge was an average 2.44 mm.

The implications of this study are important for crime laboratories in their use of FTA[™] paper as a means for storage of DNA samples in cases such as convicted offender samples. Studies have been previously performed to validate the use of FTA[™] paper for long-term storage [23], as well as the success of different extraction methods [27, 36]. A difference in concentration of DNA present in the disc can also have drastic implications in the amplification step of DNA analysis, as mentioned earlier [26]. By comparing the DNA profiles obtained from all three punch locations, we can see when there are problems that would otherwise not have been detected if only one sample was used. For example, by comparing all three punch locations at each allele, it can easily be seen if there is any false homozygosity that would otherwise go undetected and any other problems that may lead to incorrect allele calls or issues with obtaining the correct DNA profile information. This study's results may help develop or refine standard operating procedures and protocols used by crime laboratories that utilize FTA[™] paper.

CHAPTER 2. MATERIALS AND METHODS

2.1 <u>Sample Collection Protocol</u>

FTATM Mini and Micro cards (Fisher Scientific, Pittsburgh, PA) were spotted with finger prick blood from 50 anonymous subjects. Thirty-three previously collected finger prick blood samples spotted on FTATM cards from Dr. Christine Picard's previous study at West Virginia University (WVU approved human use protocol #16279) were used [27]. Seventeen additional finger prick blood samples were collected from healthy students at IUPUI (IUPUI IRB approved human use protocol #1108006603). The same collection process was followed as was previously done in Dr. Picard's study [27]. From each finger prick, blood was pooled onto a piece of Parafilm, and 50 μL of this liquid blood was immediately pipetted onto the FTATM card from a height of approximately one to two inches onto the middle of the sample collection circle area. Cards were allowed to dry at room temperature overnight.

2.2 FTATM Card Protocol

A 1.2 mm Harris Uni-Core punch (Fisher Scientific) was used to remove discs from each FTATM card at three different locations: center, halfway, and edge of the bloodstain (Figure 4). Each disc was then individually placed into an appropriately labeled 1.5 mL tube. The punch tool was cleaned in between each use with bleach and sterile water, dried with a KimWipe, and then three clean punches were made to eliminate any cross contamination [20, 27, 37]. To each tube, 500 μ L of FTATM reagent (Fisher Scientific) was added. The tubes were vortexed occasionally over five minutes at room temperature, after which all liquid was removed. The FTATM reagent wash and vortexing were repeated twice more, and all liquid was removed after each. Then 500 μ L of sterile PCR water was added. The tubes were again vortexed occasionally over five minutes at room temperature, after which all liquid was again removed. The tubes were then left open in a PCR Workstation (Fisher Scientific) in order to dry the discs at room temperature for at least two hours.

2.3 <u>STR Amplification Protocol</u>

Amplification was performed using a 25 μ L reaction of the AmpFISTR® Identifiler® Plus PCR Amplification kit (Applied Biosystems). This kit contains all thirteen core CODIS loci, the sex-determining locus amelogenin, as well as two additional loci, D2S1338 and D19S433 [9]. Amplification was performed using the following protocol per reaction: 10 μ L PCR mastermix, 5 μ L primers, 10 μ L PCR water, and the direct addition of the previously washed and dried disc as the DNA source. The kit components and discs were added to appropriately labeled PCR tubes and place on the Mastercycler® pro Thermal Cycler (Eppendorf North America, Hauppauge, NY). The thermal cycler conditions used were as follows: 95° C enzyme activation for 11 minutes; then twenty-seven cycles of 94° C denaturation for 20 seconds, 59° C annealing for three minutes, 72° C extension for one minute; then 60° C extension for 10 minutes; followed by an indefinite hold at 4° C. The amplified products were then stored at 4° C until they were run on the genetic analyzer.

2.4 <u>Fragment Analysis Protocol</u>

After completion of PCR amplification, 1 μ L of each PCR product was added to 9 μ L of a HiDi® Formamide/LIZ® size standard solution (0.3 μ L of GeneScan® 600 LIZ® size standard and 8.7 μ L deionized HiDi® Formamide; Applied Biosystems), heat denatured on the thermal cycler at 95° C for three minutes, and snap cooled at 4° C. The

PCR product was then separated and detected on an ABI 3500 Genetic Analyzer (Applied Biosystems), using default parameters.

2.5 Data Analysis

A total of 150 punches were initially analyzed: one punch from each of the three locations (center, halfway, edge) from 50 FTATM cards with blood samples from 50 different anonymous donors. Electrophoretic data was imported into the GeneMarker® HID software package (Softgenetics, State College, PA). Peak detection thresholds were set at 500 RFUs (minimum intensity) and 30,000 RFUs (maximum intensity). Allele evaluation of peak score was set as follows: reject at less than 0.0, check at less than 0.3, and pass at greater than 0.3. Ladder selection was set to auto select best ladder.

Genotypes for all 50 individuals from all three punch locations were then imported into Excel (Microsoft, Redmond, WA) and further analyzed. At each location, the following was examined: number of failed reactions, any discordance issues between individual genotypes at all three punch locations, partial profiles, and peak characteristics such as -A and stutter percentages, average peak height (RFUs), deviations from expected heterozygote ratios, and allelic dropout.

A sample was considered a failed amplification when the electropherogram did not show peaks that could be definitively distinguished from background noise [29]. All failed amplifications were re-injected a second time in the genetic analyzer to rule out the possibility of an issue with the electrophoresis. A discordance problem was defined as any unexpected or unexplainable differences between DNA profiles within an individual at the three punch locations. A partial profile was called when one or more loci failed to amplify any peaks that could reliably be distinguished from background noise in an otherwise normal sample. The number of partial profiles was recorded and the percentage of total profiles at each punch location that contained any locus failures was recorded.

Peak characteristics were recorded if they met any of the conditions described below. Peaks were called as –A when they were present at a position one base pair in

length shorter than the associated true allele, and greater than 20 percent of the height of the associated allele peak [29]. The number of loci with –A present in each sample was recorded, and the average number of loci with –A was compared across all punch locations. Peaks were called as stutter when an unexpected peak was present at a location four base pairs, or one repeat in length, shorter than the true allele [29]. Since all AmpFISTR® Identifiler® Plus amplicons except Amelogenin have tetranucleotide (four base pair) repeat units, this means stutter peaks should be at the n-4 bp position [9]. The amount of stutter present was calculated by dividing the height of the stutter peak by the height of the associated true allele peak. The stutter filter, or minimum height percentage to be called as stutter, was pre-set at each locus by the GeneMarker® HID software for the Identifiler® kit (Table 1).

	Stutter filter (% of associated
Loci	allele peak height)
TH01, TPOX	5
D5S818	7
D7S820, D13S317, D8S1179	8
D21S11, CSF1PO	9
D16S539, Amelogenin	10
D3S1358, D2S1338	11
D19S433, vWA	13
FGA	15
D18S51	17

Table 1 Stutter filter percentages (GeneMarker® HID). Only peaks above the listed

 percentages (below) were called or flagged by the software.

The number of samples with stutter was recorded, as well as the peak height ratios of the stutter peaks relative to their associated allele peaks. The average stutter ratios were also recorded for each punch location. The average peak height at each punch location was calculated by averaging the peak heights in RFUs of all called true alleles across all loci from all samples at each punch location. The minimum intensity baseline was set at 500 RFUs, and maximum intensity was set at 30,000 RFUs. The threshold of 500 RFUs was chosen based on previous studies showing high sensitivity of the instrument being used for separation and detection (3500 Genetic Analyzer, Applied Biosystems), because it is more sensitive and has a higher RFU scale [9, 38].

The average heterozygote peak height ratios were calculated by taking the average of all called true alleles across all loci from all samples at each peak location. Peaks were called as having peak height imbalance when the ratio was less than the expected ratio for a normal heterozygote allele pair. The most conservative ratio found in the literature, an expected ratio of greater than or equal to 0.70 in a normal sample, was used for this analysis [10, 33]. Heterozygote peak height ratios were calculated by dividing the height of the smaller peak of a heterozygous individual by the height of the larger peak [9, 29]. The number of samples with imbalanced peak height ratios was recorded, as well as the peak height ratios of the imbalanced smaller peaks relative to their larger associated peaks. Allelic dropout was called when there was discordance between the three punch locations when one of the expected alleles of a heterozygote was missing, also known as false homozygosity. The number of samples with allelic dropout and percentage of samples with allelic dropout was recorded for each punch location.

Samples which were found to contain allelic drop-in and allelic dropout were identified, and punches were taken from locations adjacent to the original punches to replicate the original sample as closely as possible. These new punches were amplified and analyzed in the same fashion as the previous samples, and examined for the presence of allelic drop-in or dropout as was previously seen, to determine whether these phenomena were reproducible. Additionally, 15 more edge punches were removed and analyzed following analysis of the original 150 punches: five punches each from the edge locations of three randomly chosen FTATM cards taken from the original pool of 50 cards. The purpose of this was to remove the punch location variable in the study in order to compare edge punch quality within an individual and determine whether differences in profile quality were truly due to punch location or to variations in profile quality between all punches.

Statistical analysis of the results of average peak height, peak height ratios, imbalanced peak height ratios, and –A was performed using one-way fixed-effect analysis of variance (ANOVA) tests performed on SPSS statistical software (IBM, New York, NY). *Post hoc* pair-wise comparisons among the three groups were evaluated with Dunnett's T3, which conducts multiple pairwise contrasts while controlling for family-wise error rate. A *p*-value of less than or equal to 0.05 was used to determine whether the results were significant.

CHAPTER 3. RESULTS

A total of 150 STR DNA profiles were initially analyzed: one punch from each of the three locations (center, halfway, edge) from 50 FTATM cards with blood samples from 50 anonymous donors. Additionally, 15 more profiles were subsequently analyzed: five punches each from the edge punch locations of three randomly chosen FTATM cards. The average diameter of the bloodspots on the 50 FTATM cards was calculated and found to be 9.74 mm, the average distance from center to edge was calculated and found to be 4.87 mm, and the average distance from halfway to edge was calculated and found to be 2.44 mm.

3.1 Failed Reactions

Eight reactions out of the 150 initial reactions failed (5.3%). Two failed reactions occurred at the center punch location (25%), four failed locations occurred at the halfway punch location (50%), and two failed reactions occurred at the edge punch location (25%, Table 2). Out of all the reactions at each punch location, 4% of the center punch and edge punch location reactions failed and 8% of the halfway punch location reactions failed. The halfway punch location showed the highest percentage of failed reactions. The success rates of each punch location were therefore 96% at the center and edge punch locations and 92% at the halfway punch location.
		Percentage failed at each	Success
Punch location	Number observed	location (Out of 50)	rate
Center	2	4%	96%
Halfway	4	8%	92%
Edge	2	4%	96%

Table 2 Results from the comparison of failed reactions at each punch location. The halfway punch location had the most failed reactions.

3.2 <u>Partial Profiles</u>

Six reactions out of the remaining 142 successful reactions were called as partial profiles, which is an overall rate of 4.2%. Three partial profiles occurred at the center punch location (50%), one partial profile occurred at the halfway punch location (17%), and two partial profiles occurred at the edge punch location (33%, Table 3). Out of all the successful reactions at each punch location, 6.3% of the total successful reactions at the center punch location were partial profiles, 2.2% of the total successful reactions at the halfway punch location were partial profiles, and 4.2% of the total successful reactions at the halfway punch location were partial profiles. The center punch location had the highest percentage of partial profiles.

	Number of partial profiles	Percentage of total
Punch location	observed	reactions
Center	3	6.3%
Halfway	1	2.2%
Edge	2	4.2%

Table 3 Results from the comparison of partial profiles at each punch location. The center punch location had the highest number of partial profiles.

3.3 <u>Concordance</u>

Upon initial analysis, several problems with concordance within individuals were observed. However, upon further investigation, all but one of the concordance problems were able to be explained by the following conditions: high amounts of -A causing widened or split peaks that were called incorrectly, pull-up because of high RFU peaks at other loci causing extra peaks, missing peaks due to allelic dropout, and high level stutter incorrectly called as peaks. Table 4 describes the criteria used to distinguish between true peaks and other extra peaks that were observed as a result of these biological or technological issues.

Table 4 Description of criteria used to distinguish true peaks from extra peaks caused by other technological or biological artifacts. Decisions were made based on the position of the peak, size of peak, and presence of peaks of the same size in multiple different colors. All examples were observed within samples collected in this experiment.

Only one extraneous peak was observed that would be considered an issue with concordance that could not be explained by any of the previously mentioned conditions, and this was determined to be due to allelic drop-in (Figure 5). Allelic drop-in is the presence of an extra allele with an unknown origin where contamination has been ruled [39]. Contamination could be ruled out in this case because there were no other loci with

abnormalities within the sample, specifically no unexplained extra peaks that would have suggested the presence of a mixture.

Allelic drop-in can occur as a result of a PCR aberration where a smaller product, similar to stutter, is produced early on in the amplification process and then preferentially amplified to the point that it is similar in size to a true peak [39]. Allelic drop-in is not reproducible [39]. The observed extraneous peak occurred at the D19S433 locus at the center punch location of sample 565 of the study. The peak height ratio of the extraneous peak was eventually determined to be too high to be called as stutter (72%), although it was located at the stutter position to the true allele peak, leading to the determination of allelic drop-in. Allelic drop-in generally occurs with low level template DNA, however, so it is not clear why allelic drop-in occurred in this situation [39]. Upon repeat amplification of an adjacent punch to the center punch in sample 565, allelic drop-in was not observed a second time.

3.4 <u>Peak Characteristics</u>

3.4.1 Minus A

Overall, high levels of -A were present in most samples regardless of punch location. In fact, in some samples, the peak height of the -A peak was higher than the true allele peaks (Figure 6). This is likely due to adding an excess of DNA to the amplification reaction because no quantitation was performed, resulting in split peaks and incomplete adenylation. Out of all 16 loci tested, the average number of loci with -Apresent was found to be 5.94 (±0.50 standard error) for the center punch location, 5.72 (±0.56 standard error) for the halfway punch location, and 5.65 (±0.50 standard error) at the edge punch location (Figure 7). ANOVA testing showed that there was no significant difference found in the number of loci with the presence of -A across the three punch locations (Table 5).

Figure 6 An example of -A peaks that surpassed the threshold amount and were flagged by the software at all three punch locations in sample 6080 of the study. The amount of -A is higher than the true peaks at the center and halfway punch locations.

Figure 7 Box and whisker plot of the –A data. The dark square represents the location of the average number of loci with –A for each punch location.

Table 5 The ANOVA results for the -A examination shows that there is not a significant difference in the number of loci with -A between the three punch locations (significance >0.05).

А	Ν	O	V	ŀ	١

		Degrees			
	Sum of	of	Mean		
Source of Variation	Squares	Freedom	Square	F	P-value
Between Punch Locations	2.213232	2	1.106616	0.085879	0.917754
Within Punch Locations	1791.118	139	12.88574		
Total	1793.331	141			

3.4.2 Stutter

Stutter was observed at two loci within all 142 successful reactions: once at the halfway punch location (50%) and once at the edge punch location (50%) (Figure 8, Table 6). The percentages of each stutter peak were found to be 15% at the halfway

punch location and 21% at the edge punch location. Out of all the successful reactions at each punch location, none of the center punch location contained stutter, 2.2% of the total successful reactions at the halfway punch location contained stutter, and 2.1% of the total successful reactions at the edge punch location contained stutter.

Figure 8 An example of a stutter peak (allele 11) at the edge punch location of sample 338 of the study. Minus A is also present one base pair shorter than the true allele (allele 12).

Table 6 Results from analysis of stutter. The halfway and edge punch locations had one

 stutter peak each as compared to zero stutter peaks observed at the center punch location.

	Number of		
	stutter peaks	Percentage of	Stutter peak height
Punch location	observed	total reactions	percentage
Center	0	n/a	n/a
Halfway	1	2.2%	15%
Edge	1	2.1%	21%

3.4.3 Peak Heights

Average peak height in RFUs was calculated at each punch location for all true alleles across all loci. The average peak height at the center punch location was found to be 8776 RFUs (± 108 standard error), at the halfway punch location was found to be 8827 RFUs (± 109 standard error), and at the edge punch location was found to be 8763 RFUs

 $(\pm 107 \text{ standard error})$ (Figure 9). ANOVA testing showed that there was no significant difference found in the peak heights across the three punch locations (Table 7).

Figure 9 Box and whisker plot of the peak height data. The dark square represents the location of the average peak height for each punch location.

Table 7 The ANOVA results for average peak height shows that there is not a significant difference in the average peak height between the three punch locations (significance >0.05).

		Degrees			
	Sum of	of	Mean		
Source of Variation	Squares	Freedom	Square	F	P-value
Between Punch Locations	2981547	2	1490773	0.096259	0.908231
Within Punch Locations	6.17E+10	3984	15487164		
Total	6.17E+10	3986			

3.4.4 Heterozygote Peak Height Ratios

Average heterozygote ratios were calculated at all three punch locations and found to be 0.90 (<0.01 standard error) at the center location, 0.89 (<0.01 standard error) at the halfway punch location, and 0.91 (<0.01 standard error) at the edge punch location (Figure 10). A one-way ANOVA analysis indicated a statistically significant difference in peak height ratios between the three groups (Table 8). *Post hoc* pair-wise comparisons among the three groups were evaluated. Pair-wise comparisons among the three punch locations indicated that halfway had a significantly lower peak height ratio than the center and the edge, as indicated by Dunnett's T3 analysis (Table 9).

Figure 10 Box and whisker plot of the peak height ratio data. The dark square represents the location of the average peak height ratio for each punch location.

Table 8 The ANOVA results for the average peak height ratios shows that there is a significant difference in the average peak height ratios between the three punch locations (significance <0.05).

	Sum of	of	Mean		<i>P</i> -
Source of Variation	Squares	Freedom	Square	F	value
Between Punch Locations	0.125	2	0.063	5.042	0.007
Within Punch Locations	22.141	1782	0.012		
Total	22267	1784			

ANOVA

Table 9 The results of *post hoc* Dunnett's T3 pair-wise comparisons of average peak height ratios showed that there is a significant difference in the peak height ratios between the center and halfway and edge and halfway punch locations but not between the center and edge punch locations (significance <0.05). Significant relationships are highlighted in bold.

(i) group	(j) group	Mean	Std.	Sig.	Lower	Upper
		Difference	Error		Bound	Bound
		(i-j)				
Center	Halfway	0.01745	0.0067	0.030	0.0013	0.0337
	Edge	-0.00067	8	0.999	-	0.0132
			0.0058		0.0145	
			0			
Halfway	Center	-0.01745	0.0067	0.030	-	-
	Edge	-0.01813	8	0.023	0.0337	0.0013
			0.0067		-	-
			9		0.0344	0.0019
Edge	Center	0.00067	0.0058	0.999	-	0.0145
	Halfway	0.01813	0	0.023	0.0132	0.0344
			0.0067		0.0019	
			9			

Imbalanced heterozygote peak ratio (ratio of less than or equal to 0.7, example Figure 11) was observed 68 times within all 142 successful amplifications; it was observed 16 times at the center punch location, 34 times the halfway punch location, and 18 times at the edge punch location. The average heterozygote imbalance ratio, calculated using only ratios less than 0.70 for each punch location was 0.45 (\pm 0.04 standard error) for the center punch location, 0.43 (\pm 0.03 standard error) for the halfway punch location (Figure 12). ANOVA testing showed there was no significant difference found in the average imbalanced peak height ratios across the three punch locations (Table 10).

Figure 11 An example of peak height imbalance at the center punch location from sample 777 of the study. The peak at allele 15 is much shorter than the peak at allele 13, resulting in an imbalanced ratio.

Figure 12 Box and whisker plot of the peak height imbalance data. The square represents the location of the average imbalance ratio for each punch location.

Table 10 The ANOVA results for the average peak height imbalance shows that there is not a significant difference in the average peak height imbalance between the three punch locations (significance >0.05).

ANOVA

		Degrees			
	Sum of	of	Mean		
Source of Variation	Squares	Freedom	Square	F	P-value
Between Punch Locations	0.016815	2	0.008408	0.30516	0.738056
Within Punch Locations	1.790832	65	0.027551		
Total	1.807647	67			

3.4.5 Allelic Dropout

Allelic dropout (Figure 13) was observed at seven loci within all 142 successful reactions, 3 times (43%) at the center punch location (including twice in one profile at two different loci), 2 times (29%) at the halfway punch location and 2 times (29%) at the edge punch location (Table 11). Out of all the successful reactions at each punch location, 6.3% of the total successful reactions at the center punch location contained allelic dropout, 4.3% of the total successful reactions at the halfway punch location contained allelic dropout, and 4.2% of the total successful reactions at the edge punch location contained allelic dropout. The center punch location showed the highest percentage of allelic dropout. Adjacent punches were taken for all samples that showed allelic dropout and a new amplification was performed. In the amplification of these new samples, allelic drop out did not reoccur in any of the samples which had previously displayed false homozygosity.

Figure 13 An example of allelic dropout of one allele (11) in a heterozygote (11, 12) resulting in false homozygosity at the center punch location of sample 651 of the study.

Table 11 Results from the analysis of allelic dropout. The center punch location had the highest number of profiles with allelic dropout present.

	Number of profiles with	Percentage of total
Punch location	allelic dropout	reactions
Center	3	6.3%
Halfway	2	4.3%
Edge	2	4.2%

3.5 Edge Punch Comparison

Five samples each from the edge of three randomly selected FTA[™] cards were removed and analyzed to compare profile quality between different punches from the same punch location within one individual's sample. In these 15 edge punch profiles, there were no failed reactions, giving a success rate of 100%. There were no partial profiles and no concordance issues observed, including no stutter and no allelic dropout.

3.5.1 Minus A

For each of the 15 edge punches, the number of loci with –A present was recorded (Table 12). The number of loci with –A present within each individual is similar: the variance in sample 3701 is less than nine percent, variance in sample 6233 is less than seven percent, and sample 7572 is less than 18%.

Table 12 A comparison of the number of loci with -A present in each of the edge punches at five different locations in three randomly selected FTA^{TM} cards. The number of loci with -A within each individual is similar: the variance in sample 3701 is less than nine percent, variance in sample 6233 is less than seven percent, and sample 7572 is less than 18%.

Sample	Loci w/-A	Sample	Loci w/-A	Sample	Loci w/-A
3701 A	8	6233 A	9	7572 A	7
В	9	В	10	В	8
С	9	С	9	С	7
D	9	D	10	D	6
Е	9	Е	9	E	6

3.5.2 Peak Heights

Average peak height in RFUs and standard error was calculated for all true alleles across all loci for each of the 15 edge profiles (Table 13). Figure 14 shows box and whisker plots for peak height for each of the five punches from each of the three samples. Nested ANOVA testing showed that there was no significant difference found in the peak heights within each individual's five punches, or across all fifteen punches (Table 14).

	Avg.	Std		Avg.	Std		Avg.	Std	
3701	Peak	Stu. Ennon	6233	Peak	Siu. Ennon	7572	Peak	Stu.	
	Height	LITU	Height		EITOF		Height	EITOF	
А	5675	±465	А	8152	±589	А	8483	±587	
В	5941	±507	В	5298	±494	В	7843	±492	
С	7893	±567	С	8009	± 605	С	7372	±536	
D	5127	±453	D	8888	±565	D	8210	±548	
Е	6626	±498	E	7881	±564	Е	6485	±527	

Table 13 Results from the peak height comparison for the fifteen edge punches. Averagepeak height and standard error for each sample is given.

Figure 14 Box and whisker plots of the peak height data. The square represents the location of the average peak height for each punch location.

Table 14 Results of nested ANOVA testing for peak height. There was not a significant difference between any of the punches within each individual (*p*-value = 0.421), or between all fifteen punches (*p*-value = 0.874).

ANOVA

			Degrees			
		Sum of	of	Mean		
Source of Variation		Squares	Freedom	Square	F	P-value
Model	Hypothesis	159.862	1	159.862		
	Error	0.059	10.136	0.006	27319.745	0.000
	Hypothesis	0.007	4	0.002		
Person (Replicate)	Error	0.059	10.136	0.006	0.296	0.874
	Hypothesis	0.059	10	0.006		
Error	Error	1.024	180	0.006	1.029	0.421

3.5.3 Heterozygote Peak Height Ratios

Average heterozygote ratios and standard error were calculated for all 15 punches (Table 15). Figure 15 shows box and whisker plots for heterozygote peak height ratio for each of the five punches from each of the three samples. ANOVA showed that there was no significant difference found in the peak heights across all fifteen punches (Table 16).

	Avg.			Avg.			Avg.	
3701	Peak	Std.	6722	Peak	Std.	7570	Peak	Std.
	Height	Error	0233	Height	Error	1512	Height	Error
	Ratio			Ratio			Ratio	
А	0.91	±0.10	А	0.92	±0.01	А	0.92	±0.01
В	0.87	±0.03	В	0.93	±0.01	В	0.92	±0.01
С	0.87	±0.04	С	0.93	±0.01	С	0.93	±0.01
D	0.92	±0.01	D	0.92	±0.01	D	0.93	±0.01
Е	0.89	±0.04	E	0.92	±0.01	E	0.90	±0.01

Table 15 Results from the peak height ratio comparison for the fifteen edge punches.Average peak height ratio and standard error for each sample is given.

Figure 15 Box and whisker plots of the heterozygote peak height ratio data. The square represents the location of the average heterozygote peak height ratio for each punch location. The samples with imbalanced peak height ratios are easily visible on the plot for 3701B, C and E.

	Sum of	of	Mean		
Source of Variation	Squares	Freedom	Square	F	P-value
Replicate	3459117.816	4	867279.454	.491	0.743
Error	17664089.382	10	1766408.938		
Total	21133207.198	14			

Table 16 Results of ANOVA testing for heterozygote peak height ratio. There was not asignificant difference between any of the fifteen punches (significance > 0.05).

ANOVA

An imbalanced heterozygote peak ratio (ratio of less than or equal to 0.7) was observed three times within these 15 edge punch sample amplifications, and all three instances were from the same FTATM card: one locus with a ratio of 0.45 in sample 3701B, one locus with a ratio of 0.39 in 3701C, and one locus with a ratio of 0.42 in sample 3701E. These imbalanced ratios are clearly visible in Figure 15. The other 12 samples did not contain any loci with a peak height ratio of less than 0.7. This shows that while one of the samples contained a few loci with imbalanced ratios, a comparison of the average peak height ratios between all the samples still showed that there was not a significant difference in profile quality in terms of overall peak height ratio.

CHAPTER 4. DISCUSSION

The center punch location had the highest percentage of partial profiles and allelic dropout, and was the only punch location to have an issue with concordance. However, there was no significant difference between the punch locations in terms of average peak heights, heterozygote peak height imbalance ratios, and presence of -A. The halfway punch location had the lowest average heterozygote peak height ratios, and the highest percentage of overall failed reactions. Overall, the edge punch location produced the highest quality and most reliable profile, although the differences between the three locations are very slight.

Though the quantity of DNA for each punch was not determined, as the punch would then be unavailable for STR amplification, given the observed profiles, the likely culprit to the reductions in profile qualities is an increase in DNA concentration. The quantity of DNA amplified was often so high that it led to numerous electrophoretic anomalies and problems in genotype interpretation. A seemingly simple solution to this would be to perform extraction and quantitation prior to amplification, despite the manufacturer's recommendation that a disc can be added directly to the amplification reaction tube. This seems to be the approach taken by most crime laboratories to avoid the problem of unknown DNA quantity [27, 40].

Some analytical issues were encountered in this study when trying to compare heterozygote ratios across punch locations, due to the high amounts of –A present at some loci. Because the peak heights of the –A peaks were higher than the true allele peaks in some locations, the heterozygote ratios were calculated by the analysis software program based on the –A peak heights instead of the true allele peak heights. Whenever a high –A peak with a smaller associated true allele peak was present, the true allele peaks were therefore called as having a heterozygote ratio of less than 1.0. This may have skewed the heterozygote ratio data towards a smaller number on some samples relative to what would have been observed if the –A peaks had not been present. However, this could not be avoided without altering the parameters of the study to account for those occasions when extremely high –A peaks were present, and therefore the peak height ratios relative to their –A peaks were left in the calculations. Any future studies involving peak height imbalance with FTATM cards may want to take this issue into account.

CHAPTER 5. CONCLUSIONS

Overall, the quality of profile obtained in this study was poor. The presence of minus A, pull-up, allelic drop-in and other issues, likely due to too much DNA present in the samples, led to profiles that were not easily interpreted and would likely not be acceptable to analysts in real-life crime laboratory situations. These samples would probably have been re-amplified due to the poor overall quality of profiles obtained. Also, samples adjacent to the original samples that contained allelic drop-in and dropout were re-amplified and these issues did not reoccur. This may show that the use of FTATM cards as recommended by the manufacturer is unreliable for analysis of reference samples, as profiles obtained in this study were inconsistent between runs. As a result of similarly observed issues, most crime laboratories currently using FTA[™] paper take advantage of its long-term storage capabilities, but do not directly add the disc to the amplification reaction [27, 40]. Based on new technologies being developed, it is obvious this has been an issue for some time in crime labs using FTA[™] paper. The commercial STR kit manufacturers have been developing new, more robust STR kits to deal with this influx of PCR inhibitors and high concentrations of DNA, not just from FTATM paper, but also from other forensic samples. For example, Applied Biosystems has a newly developed kit, the Identifiler® Direct PCR amplification kit, which allows analysts to place directly into the PCR reaction unwashed FTATM card discs or any other piece of evidence (i.e. a cutting from a swab or a piece of clothing). This kit claims to be able to amplify STR loci from unwashed FTATM card punches [5].

The conclusion of this study was that the edge punch location seemed to have the fewest problems in regards to quality, although the difference in profile quality between the three punch locations overall was not very significant. The center punch location had

the most partial profiles, which adversely affects the statistical analysis that is able to be performed when comparing two profiles, such as an evidentiary sample and a suspect, as the discriminatory power of a profile decreases with the decreasing number of loci. The center punch location also exhibited he largest incidence of allelic dropout, which affects forensic sample comparisons. Because FTATM paper is mainly used for the analysis and storage of samples that contribute to the offender database, if allelic dropout leading to false homozygosity goes undetected in the analysis of an offender's profile, an incorrect profile will be uploaded into the database. However, in the case of CODIS searches, a difference of one allele would not be enough exclude a suspect because CODIS database searches have what is known as a "moderate" stringency setting [41]. Due to differences in primers between commercial STR kits, the possibility of a null allele occurring with use of one kit but not in another exists, which can lead to differences of one allele between profiles. Therefore, a "moderate" match occurs when all the alleles from one sample are present in the other, even if there are extras in the second [41]. For example, an allele call of homozygous 11, 11 would also be considered a moderate match to a heterozygous 11, 12.

The halfway punch location showed the lowest peak height ratios, and had the highest number of imbalanced peaks, but did not have a significantly lower imbalance ratio. Also, the issue of peak height imbalance is not as dire as the presence of allelic dropout, because if an analyst sees peak height imbalance and is unsure of whether a peak is a true peak, the sample may be reanalyzed, but if the peak has dropped out completely, an analyst may never know.

A comparison of profile quality between edge punches from three randomly selected individuals was undertaken to determine whether the differences in profile quality observed in the 150 sample study were truly due to punch location or simply because of variability between all punches. The results of this experiment showed that there was not a significant difference in profile quality when comparing only edge punches. These results showed that the differences observed between punch locations, although slight, do seem to be true differences. REFERENCES

REFERENCES

- 1. Divall, G.B., *The application of electrophoretic techniques in the field of criminology*. Electrophoresis, 1985. **6**(6): p. 249-258.
- 2. Bell, S., B. Fisher, and R. Shaler, *Encyclopedia of Forensic Science*2008: Facts on File, Inc.
- Jeffreys, A.J., V. Wilson, and S.L. Thein, *Hypervariable 'minisatellite' regions in human DNA*. Nature, 1985. **314**(6006): p. 67-73.
- 4. Tautz, D., Notes on the definition and nomenclature of tandemly repetitive DNA sequences. EXS, 1993. 67: p. 21-8.
- 5. Wang, D.Y., et al., Development and validation of the AmpFlSTR(R)
 Identifiler(R) Direct PCR Amplification Kit: a multiplex assay for the direct amplification of single-source samples. J Forensic Sci, 2011. 56(4): p. 835-45.
- Butler, J.M., et al., Forensic DNA typing by capillary electrophoresis using the ABI Prism 310 and 3100 genetic analyzers for STR analysis. Electrophoresis, 2004. 25(10-11): p. 1397-412.
- Gill, P., Role of short tandem repeat DNA in forensic casework in the UK--past, present, and future perspectives. Biotechniques, 2002. 32(2): p. 366-8, 370, 372, passim.
- Lee, H.C., et al., *DNA typing in forensic science. I. Theory and background.* Am J Forensic Med Pathol, 1994. 15(4): p. 269-82.
- 9. *AmpFlSTR*® *Identifiler*® *Plus PCR Amplification Kit User's Guide*, Applied Biosystems.
- DNA Analyst Training. November 2, 2011]; President's DNA Initiative DNA Analysts training website]. Available from: <u>http://www.nfstc.org/pdi/</u>.

- 11. Walsh, P.S., H.A. Erlich, and R. Higuchi, *Preferential PCR amplification of alleles: mechanisms and solutions*. PCR Methods Appl, 1992. **1**(4): p. 241-50.
- Mullis, K., et al., Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol, 1986. 51 Pt 1: p. 263-73.
- Budowle, B., et al., *Source Attribution of a Forensic DNA Profile*. Forensic Science Communications, 2000. 2(3).
- Wilson, I.G., *Inhibition and facilitation of nucleic acid amplification*. Appl Environ Microbiol, 1997. 63(10): p. 3741-51.
- 15. Akane, A., et al., *Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification.* J Forensic Sci, 1994. **39**(2): p. 362-72.
- 16. de Franchis, R., et al., *A potent inhibitor of Taq polymerase copurifies with human genomic DNA*. Nucleic Acids Res, 1988. **16**(21): p. 10355.
- Radstrom, P., et al., *Pre-PCR processing: strategies to generate PCR-compatible samples*. Mol Biotechnol, 2004. 26(2): p. 133-46.
- Comey, C.T., et al., DNA Extraction Strategies for Amplified Fragment Length Polymorphism Analysis Journal of Forensic Sciences, 1994. 39(5): p. 16.
- Burgoyne, L., et al. in *The Fifth International Symposium on Human Identification*. 1994. Madison, WI: Promega Corporation.
- 20. Smith, L.M. and L.A. Burgoyne, *Collecting, archiving and processing DNA from wildlife samples using FTA databasing paper*. BMC Ecol, 2004. **4**: p. 4.
- 21. WhatmanTM *FTA*TM for blood DNA. 2010. **Data file 51641**.
- Burgoyne, L.A., Solid Medium and Method for DNA Storage, U.S.P. Office, Editor 1996: United States.
- 23. Kline, M. DNA Stability Studies. in Forensics @ NIST. 2010. Gaithersburg, MD.
- Whatman®. FTA[™] Nucleic Acid Collection, Storage and Purification. November 2, 2011]; Available from: <u>http://www.whatman.com/FTANucleicAcidCollectionStorageandPurification.asp</u> <u>x</u>.

- 25. Comparative analysis of FTA[™] and NucleoSave[™] cards. 2010. Application note 28-9822-24 AA.
- 26. Pezzoli, N., et al., *Quantification of mixed chimerism by real time PCR on whole blood-impregnated FTA cards.* Leuk Res, 2007. **31**(9): p. 1175-83.
- 27. Picard, C. and S. Baneshwar, *An evaluation of FTA® card methods for genotyping reference samples*, 2011: Journal of Forensic Sciences (Under Review).
- 28. Picard, C., 2012.
- 29. SWGDAM Interpretation Guidelines for Autosomal STR Typing by Forensic DNA Testing Laboratories. 2010.
- Clark, J.M., Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res, 1988. 16(20): p. 9677-86.
- Magnuson, V.L., et al., Substrate nucleotide-determined non-templated addition of adenine by Taq DNA polymerase: implications for PCR-based genotyping and cloning. Biotechniques, 1996. 21(4): p. 700-9.
- Hauge, X.Y. and M. Litt, A study of the origin of 'shadow bands' seen when typing dinucleotide repeat polymorphisms by the PCR. Hum Mol Genet, 1993.
 2(4): p. 411-5.
- 33. Gill, P., R. Sparkes, and C. Kimpton, *Development of guidelines to designate alleles using an STR multiplex system.* Forensic Sci Int, 1997. **89**(3): p. 185-97.
- Fregeau, C.J. and R.M. Fourney, DNA typing with fluorescently tagged short tandem repeats: a sensitive and accurate approach to human identification. Biotechniques, 1993. 15(1): p. 100-19.
- 35. *Revised Validation Guidelines*. 2003.
- 36. Aranda, X., et al. Alkaline Extraction of DNA from FTA® Paper Spotted with Buccal Epithelial Cells and Whole Blood. in 15th International Symposium on Human Identification. 2004.
- 37. Cross-Contamination Study: Carryover does not occur during punching and processing of FTA[™] or CloneSaver[™] Cards. 2010. Application Note 51621.

- Butler, J.M. and C.R. Hill. ABI 3500 Studies. in Forensics @ NIST. 2010. Gaithersburg, MD.
- 39. Taberlet, P., et al., *Reliable genotyping of samples with very low DNA quantities using PCR*. Nucleic Acids Res, 1996. **24**(16): p. 3189-94.
- 40. Sobieralski, C., Indiana State Police, Personal Communication, 2011.
- 41. Crouch, K., Indiana State Police CODIS Section Supervisor, 2012.

APPENDIX

Sample Name	Peak Height	Height Ratio	Marker	Allele Profile Characteristics
CENTER				
008C	4678	1	D8S1179	14 Minus A, Imbalance
	4288	0.92	D8S1179	15
	4195	1	D21S11	30
	3788	0.9	D21S11	34.2
	2414	1	D7S820	12
	2111	0.87	D7S820	13
	2784	1	CSF1PO	10
	2714	0.97	CSF1PO	12
	4639	1	D3S1358	15
	4541	0.98	D3S1358	18
	6408	0.99	TH01	6
	6450	1	TH01	9.3
	6615	1	D13S317	8
	5610	0.85	D13S317	12
	13093	1	D16S539	12
	3473	1	D2S1338	20
	3064	0.88	D2S1338	24
	5123	1	D19S433	13
	4609	0.9	D19S433	14
	10656	1	vWA	17
	10430	1	TPOX	8
	4034	1	D18S51	12
	2548	0.63	D18S51	22
	6155	1	AMEL	x
	6124	0.99	AMEL	Υ
	9592	1	D5S818	11
	3783	1	FGA	19
	3439	0.91	FGA	20
062C	13092	1	D8S1179	14 Minus A
	6642	1	D21S11	29
	6447	0.97	D21S11	31.2
	2324	1	D7S820	10
	2084	0.9	D7S820	12
	3657	1	CSF1PO	11
	3406	0.93	CSF1PO	12
	6688	1	D3S1358	14
	6054	0.91	D3S1358	15
	11461	1	TH01	6
	11063	0.97	TH01	9.3

12538	1	D13S317	11	
17080	1	D16S539	11	
4766	1	D2S1338	18	
4408	0.92	D2S1338	19	
12128	1	D19S433	15	
9375	1	vWA	16	
8413	0.9	vWA	17	
8056	1	TPOX	8	
7867	0.98	ΤΡΟΧ	10	
3162	1	D18S51	16	
2715	0.86	D18S51	20	
11624	1	AMEL	Х	
11664	1	AMEL	Y	
10813	1	D5S818	12	
2574	1	FGA	23	
2325	0.9	FGA	24	
4991	1	D8S1179	13	Minus A
4693	0.94	D8S1179	14	
7930	1	D21S11	32.2	
4030	1	D7S820	12	
2437	1	CSF1PO	10	
2242	0.92	CSF1PO	13	
7366	1	D3S1358	15	
5431	0.99	TH01	7	
5474	1	TH01	9.3	
5783	1	D13S317	8	
5070	0.88	D13S317	13	
7050	1	D16S539	9	
6729	0.95	D16S539	10	
3124	1	D2S1338	20	
2953	0.95	D2S1338	23	
5159	1	D19S433	13	
4838	0.94	D19S433	14	
5025	1	vWA	15	
4824	0.96	VWA	18	
9334	1		8	
2773	1	D18551	15	
2544	0.92	D18551	18	
11526	1	AMEL	X	
4/50	1	D55818	11	
4642	0.98	D22818	13	
4614	1	FGA	24	
16694	1	D8S1179	13	Minus A
9526	1	D21S11	30	
8792	0.92	D21S11	30.2	

088C

127C

52

4524	1	D7S820	8	
4071	0.9	D7S820	12	
5861	1	CSF1PO	11	
5263	0.9	CSF1PO	14	
10859	1	D3S1358	15	
10003	0.92	D3S1358	18	
14978	1	TH01	6	
14417	0.96	TH01	7	
12804	1	D13S317	8	
11740	0.92	D13S317	11	
15608	1	D16S539	11	
8230	1	D2S1338	17	
7457	0.91	D2S1338	19	
12181	1	D19S433	12	
10672	0.88	D19S433	13	
13431	1	vWA	16	
13189	0.98	vWA	17	
14681	1	TPOX	8	
11128	1	D18S51	14	
12370	1	AMEL	Х	
10933	1	D5S818	11	
9846	0.9	D5S818	12	
5731	1	FGA	21.2	
5460	0.95	FGA	22	
6504	1	D8S1179	11	Minus A
5864	0.9	D8S1179	14	
5418	0.99	D21S11	28	
5476	1	D21S11	30	
3034	1	D7S820	10	
2/51	0.91	D75820	12	
3445	1	CSF1PO	10	
3332	0.97	CSF1PO	12	
6057	1	D3S1358	16	
52/1	0.87	D3S1358	19	
/56/	0.98	TH01	6	
//0/	1	TH01	9.3	
/892	0.95	D135317	9	
8316	1	D135317	10	
9071	1	D165539	12	
8/49	0.96	D165539	13	
5068	1	D251338	19	
4266	0.84	D2S1338	25	
/075	1	D195433	13	
~ ~ ~ ~ ~	-	D400400		
6436	0.91	D19S433	14	
6436 13922	0.91 1	D19S433 vWA	14 15	

144C

	6285	0.96	TPOX	9
	4224	1	D18S51	16
	4187	0.99	D18S51	18
	7300	0.99	AMEL	Х
	7368	1	AMEL	Y
	6776	1	D5S818	11
	6137	0.91	D5S818	13
	4205	1	FGA	20
	3895	0.93	FGA	21
146C	13783	1	D8S1179	14 Minus A
	8866	1	D21S11	28
	7468	0.84	D21S11	32.2
	4027	1	D7S820	11
	3605	0.9	D7S820	12
	4459	1	CSF1PO	10
	4213	0.94	CSF1PO	12
	8207	1	D3S1358	15
	7868	0.96	D3S1358	17
	11557	1	TH01	6
	11261	0.97	TH01	9.3
	16134	1	D13S317	11
	14121	1	D16S539	11
	6438	1	D2S1338	19
	5761	0.89	D2S1338	23
	10583	1	D19S433	13
	9753	0.92	D19S433	14
	10462	1	vWA	15
	9549	0.91	vWA	18
	8897	1	TPOX	10
	8503	0.96	TPOX	11
	11516	1	D18S51	14
	13360	1	AMEL	Х
	9952	1	D5S818	11
	9072	0.91	D5S818	12
	4951	1	FGA	21
	4252	0.86	FGA	24
21450	7852	1	D851179	12 Minus A
21430	7528	0.96	D851179	13
	5930	0.50	D031173	30
	6135	0.57	D21511	31 2
	2002	1	D75820	Q
	3752	۲ ۱ ۵ ۱	D75820	10
	5269	0.54	CSF1PO	10
	<u>4</u> 959	0 9 <i>1</i>	CSF1PO	11
	9537	5.54 1	D3S1358	14

8927	0.94	D3S1358	15	
8803	0.97	TH01	6	
9051	1	TH01	8	
8924	1	D13S317	8	
7971	0.89	D13S317	12	
10145	1	D16S539	9	
9196	0.91	D16S539	12	
5483	1	D2S1338	17	
4136	0.75	D2S1338	25	
7184	1	D19S433	13	
5892	0.82	D19S433	14	
12428	1	vWA	17	
10640	0.86	vWA	18	
8421	1	TPOX	8	
8224	0.98	TPOX	11	
13532	1	D18S51	14	
13846	1	AMEL	Х	
7158	1	D5S818	11	
7069	0.99	D5S818	12	
4860	1	FGA	22	
4524	0.93	FGA	23	
12309	1	D8S1179	13	Minus A, Imbalance
11497	0.93	D8S1179	14	
10994	1	D21S11	30	
10271	0.93	D21S11	31.2	
6255	1	D7S820	8	
5896	0.94	D7S820	10	
6923	1	CSF1PO	9	
6509	0.94	CSF1PO	12	
11158	1	D3S1358	14	
10072	0.9	D3S1358	17	
13737	1	TH01	6	
13592	0.99	TH01	9.3	
13246	1	D13S317	11	
11410	0.86	D13S317	12	
14748	1	D16S539	9	
14232	0.97	D16S539	12	
8527	1	D2S1338	21	
8240	0.97	D2S1338	24	
3630	0.34	D19S433	14	
10685	1	D19S433	15	
12523	1	vWA	17	
12172	0.97	vWA	19	
14677	1	TPOX	8	
9217	1	D18S51	12	
			4.0	

220C
	13162	1	AMEL	Х
	11636	0.99	D5S818	11
	11789	1	D5S818	12
	7686	1	FGA	21
	6797	0.88	FGA	24
247C	9459	1	D8S1179	10 Minus A
	9277	0.98	D8S1179	12
	7514	1	D21S11	31
	7326	0.97	D21S11	32.2
	7651	1	D7S820	11
	4164	1	CSF1PO	12
	3762	0.9	CSF1PO	14
	8986	1	D3S1358	17
	8229	0.92	D3S1358	18
	11694	1	TH01	6
	11562	0.99	TH01	8
	11817	1	D13S317	10
	11240	0.95	D13S317	11
	12514	1	D16S539	11
	11345	0.91	D16S539	13
	7274	1	D2S1338	17
	6375	0.88	D2S1338	19
	9959	1	D19S433	13
	9235	0.93	D19S433	14
	13995	1	vWA	16
	9219	1	TPOX	8
	8812	0.96	TPOX	9
	6692	1	D18S51	11
	4915	0.73	D18S51	19
	12766	1	AMEL	Х
	10499	1	D5S818	9
	9638	0.92	D5S818	11
	5881	1	FGA	20
	4624	0.79	FGA	25
2518C	11452	1	D8S1179	10 Minus A
	10555	0.92	D8S1179	11
	8246	1	D21S11	29
	7996	0.97	D21S11	31.2
	9378	1	D7S820	10
	6050	1	CSF1PO	11
	5787	0.96	CSF1PO	13
	14450	1	D3S1358	18
	12582	1	TH01	6
	12197	0.97	TH01	9.3
	13195	1	D13S317	8

12291	0.93	D13S317	11	
12857	1	D16S539	11	
7632	1	D2S1338	22	
7193	0.94	D2S1338	24	
10732	1	D19S433	13	
10112	0.94	D19S433	15	
12794	1	vWA	17	
12063	0.94	vWA	18	
9502	1	TPOX	8	
9423	0.99	TPOX	11	
8768	1	D18S51	15	
7838	0.89	D18S51	16	
12960	1	AMEL	Х	
12991	1	D5S818	11	
6368	1	FGA	23	
5868	0.92	FGA	26	
14243	1	D8S1179	13	Minus A, Imbalance
14178	1	D8S1179	14	
13308	1	D21S11	31.2	
12406	0.93	D21S11	32.2	
10476	1	D7S820	11	
12466	1	CSF1PO	10	
13775	1	D3S1358	14	
10487	0.76	D3S1358	19	
14178	0.94	TH01	7	
15015	1	TH01	8.3	
14489	0.99	D13S317	8	
14650	1	D13S317	11	
14873	1	D16S539	9	
14842	1	D16S539	13	
9896	1	D2S1338	17	
7957	0.8	D2S1338	24	
13653	1	D19S433	13	
4998	0.37	D19S433	14	
13839	0.97	vWA	18	
14217	1	vWA	19	
14376	1	TPOX	8	
13084	0.91	TPOX	11	
7895	1	D18S51	14	
6171	0.78	D18S51	17	
10829	0.95	AMEL	Х	
11375	1	AMEL	Y	
12889	1	D5S818	11	
12270	0.95	D5S818	12	
7850	1	FGA	20	
7213	0.92	FGA	21	

3104C	6457	1	D8S1179	13 Minus A
	5885	0.91	D8S1179	14
	5246	1	D21S11	28
	5051	0.96	D21S11	30
	5180	1	D7S820	10
	6771	1	CSF1PO	10
	6201	1	D3S1358	17
	5587	0.9	D3S1358	18
	13499	1	TH01	9.3
	7808	1	D13S317	8
	7252	0.93	D13S317	11
	8405	1	D16S539	12
	7765	0.92	D16S539	13
	4033	1	D2S1338	24
	3505	0.87	D2S1338	25
	7075	1	D19S433	13
	6808	0.96	D19S433	15
	8381	1	vWA	14
	7402	0.88	vWA	19
	6181	1	TPOX	11
	5770	0.93	TPOX	12
	4911	1	D18S51	13
	4207	0.86	D18S51	17
	7496	0.93	AMEL	Х
	8051	1	AMEL	Y
	11369	1	D5S818	13
	3482	1	FGA	23
	3241	0.93	FGA	25
2110	14720	1	0001170	12 Minus A
5110	8/36	1	D051175	12 Willius A 28
	7969	1 0 0 1	D21511	28
	2262	0.94	D21311	10
	2058	0.01	D73820	10
	4800	0.51	CSE1PO	10
	4363	0.91	CSF1PO	10
	9800	0.51	D351358	11
	8689	0.89	D351350	15
	136/18	0.05	TH01	6
	122/15	1		93
	9991	0.9	D135317	2.5 &
	8876	۲ ۵ ۵ ۱	D135317	11
	109/17	1	D165520	13
	9994	ـ ۱۹۱	D165539	15
	5594	1	D251333	19
	4532	0.81	D2S1338	26
		0.01		-•

	9933	0.79	D19S433	12
	8911	0.71	D19S433	14
	12189	1	vWA	15
	11044	0.91	vWA	17
	10264	1	TPOX	8
	9479	0.92	TPOX	11
	9959	1	D18S51	15
	2874	1	AMEL	Х
	8120	1	D5S818	12
	7395	0.91	D5S818	13
	4443	1	FGA	20
	3702	0.83	FGA	24
312AC	12387	1	D8S1179	10 Minus A
	10295	0.83	D8S1179	14
	10774	1	D21S11	30
	9863	0.92	D21S11	31
	3604	1	D7S820	10
	3579	0.99	D7S820	12
	10057	1	CSF1PO	12
	9448	1	D3S1358	14
	8816	0.93	D3S1358	16
	14456	1	TH01	6
	14458	1	IH01	9
	11862	1	D135317	8
	10975	0.93	D135317	9
	18023	1	D162239	11
	7780	1	D251338	18
	7039	0.9	D251338	22
	9444	1	D195433	15
	12449	0.94	D195455	16.2
	13440	1		10
	12033	0.9		20
	112032	0 03	ΤΡΟΧ	11
	5847	0.55	D18551	12
	5530	0.95	D18551	13
	10120	0.86	AMFI	X
	11764	1	AMFL	Ŷ
	9175	- 1	D5S818	12
	8327	0.91	D5S818	 13
	4597	1	FGA	20
	4201	0.91	FGA	21
312BC	15645	1	D8S1179	12 Minus A, Partial Profile, Imba
	14000	1	D21S11	28
	13431	0.96	D21S11	31.2

7245	1	D7S820	9	
6635	0.92	D7S820	12	
8501	1	CSF1PO	11	
8011	0.94	CSF1PO	12	
18152	1	D3S1358	14	
14678	1	TH01	6	
14552	0.99	TH01	8	
14785	1	D13S317	9	
14814	1	D13S317	11	
18198	1	D16S539	12	
10414	1	D2S1338	23	
9603	0.92	D2S1338	25	
14689	1	vWA	14	
13558	0.92	vWA	16	
14089	1	TPOX	9	
11189	0.79	TPOX	11	
10607	1	D18S51	14	
9266	0.87	D18S51	18	
4415	1	AMEL	Х	
14179	1	D5S818	11	
9624	0.68	D5S818	12	
9416	1	FGA	19	
8760	0.93	FGA	21	
117/15	1	0851179	10	Minus A
11745 11330	1	D8S1179	10 12	Minus A
11745 11330 10669	1 0.96 1	D8S1179 D8S1179 D21S11	10 12 27	Minus A
11745 11330 10669 10158	1 0.96 1 0.95	D8S1179 D8S1179 D21S11 D21S11	10 12 27 29	Minus A
11745 11330 10669 10158 9167	1 0.96 1 0.95 1	D8S1179 D8S1179 D21S11 D21S11 D7S820	10 12 27 29 12	Minus A
11745 11330 10669 10158 9167 6569	1 0.96 1 0.95 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSE1PO	10 12 27 29 12	Minus A
11745 11330 10669 10158 9167 6569 6191	1 0.96 1 0.95 1 1 0.94	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1P0 CSF1P0	10 12 27 29 12 12	Minus A
11745 11330 10669 10158 9167 6569 6191 12364	1 0.96 1 0.95 1 1 0.94 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1P0 CSF1P0 D3S1358	10 12 27 29 12 12 13	Minus A
11745 11330 10669 10158 9167 6569 6191 12364 11755	1 0.96 1 0.95 1 1 0.94 1 0.95	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358	10 12 27 29 12 12 13 15	Minus A
11745 11330 10669 10158 9167 6569 6191 12364 11755 19853	1 0.96 1 0.95 1 1 0.94 1 0.95 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358 TH01	10 12 27 29 12 12 13 15 17 9,3	Minus A
11745 11330 10669 10158 9167 6569 6191 12364 11755 19853 14633	1 0.96 1 0.95 1 1 0.94 1 0.95 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 D13S317	10 12 27 29 12 12 13 15 17 9.3 8	Minus A
11745 11330 10669 10158 9167 6569 6191 12364 11755 19853 14633 13201	1 0.96 1 0.95 1 1 0.94 1 0.95 1 1 0.95	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358 TH01 D13S317 D13S317	10 12 27 29 12 12 13 15 17 9.3 8 13	Minus A
11745 11330 10669 10158 9167 6569 6191 12364 11755 19853 14633 13201 15478	1 0.96 1 0.95 1 1 0.94 1 0.95 1 1 0.9 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 D13S317 D13S317 D16S539	10 12 27 29 12 12 13 15 17 9.3 8 13 8	Minus A
11745 11330 10669 10158 9167 6569 6191 12364 11755 19853 14633 13201 15478 14125	1 0.96 1 0.95 1 1 0.94 1 0.95 1 1 0.9 1 0.9	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 D13S317 D13S317 D16S539 D16S539	10 12 27 29 12 13 15 17 9.3 8 13 8 13 8	Minus A
11745 11330 10669 10158 9167 6569 6191 12364 11755 19853 14633 13201 15478 14125 9806	1 0.96 1 0.95 1 1 0.94 1 0.95 1 1 0.9 1 0.91 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 D13S317 D13S317 D16S539 D16S539 D2S1338	10 12 27 29 12 12 13 15 17 9.3 8 13 8 13 8 12	Minus A
11745 11330 10669 10158 9167 6569 6191 12364 11755 19853 14633 13201 15478 14125 9806 7884	1 0.96 1 0.95 1 1 0.94 1 0.95 1 1 0.9 1 0.91 1 0.8	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 D13S317 D13S317 D13S317 D16S539 D16S539 D2S1338 D2S1338	10 12 27 29 12 13 15 17 9.3 8 13 8 12 17 25	Minus A
11745 11330 10669 10158 9167 6569 6191 12364 11755 19853 14633 13201 15478 14125 9806 7884 10934	1 0.96 1 0.95 1 1 0.94 1 0.95 1 1 0.95 1 0.91 1 0.91 1 0.8 0.78	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO D3S1358 D3S1358 TH01 D13S317 D13S317 D16S539 D16S539 D2S1338 D2S1338 D19S433	10 12 27 29 12 13 15 17 9.3 8 13 8 13 8 12 17 25 14	Minus A
11745 11330 10669 10158 9167 6569 6191 12364 11755 19853 14633 13201 15478 14125 9806 7884 10934 10018	1 0.96 1 0.95 1 1 0.94 1 0.95 1 0.95 1 0.91 1 0.91 1 0.8 0.78 0.71	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO D3S1358 D3S1358 D3S1358 TH01 D13S317 D13S317 D13S317 D16S539 D16S539 D16S539 D2S1338 D2S1338 D19S433 D19S433	10 12 27 29 12 13 15 17 9.3 8 13 8 13 8 12 17 25 14 16.2	Minus A
11745 11330 10669 10158 9167 6569 6191 12364 11755 19853 14633 13201 15478 14125 9806 7884 10934 10934 10018 11131	1 0.96 1 0.95 1 1 0.94 1 0.94 1 0.95 1 0.95 1 0.91 1 0.91 1 0.8 0.78 0.71 0.81	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 D13S317 D13S317 D13S317 D16S539 D16S539 D16S539 D2S1338 D19S433 D19S433 VWA	10 12 27 29 12 13 15 17 9.3 8 13 8 13 8 12 17 25 14 16.2 14	Minus A
11745 11330 10669 10158 9167 6569 6191 12364 11755 19853 14633 13201 15478 14125 9806 7884 10934 10018 11131 13822	1 0.96 1 0.95 1 1 0.94 1 0.94 1 0.95 1 0.95 1 0.91 1 0.91 1 0.8 0.71 0.81 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO D3S1358 D3S1358 D3S1358 TH01 D13S317 D13S317 D16S539 D16S539 D16S539 D2S1338 D2S1338 D19S433 D19S433 VWA VWA	10 12 27 29 12 13 15 17 9.3 8 13 8 13 8 13 8 12 17 25 14 16.2 14 17	Minus A
11745 11330 10669 10158 9167 6569 6191 12364 11755 19853 14633 13201 15478 14125 9806 7884 10934 10934 10934 10934 10934 11131 13822 16187	1 0.96 1 0.95 1 1 0.94 1 0.95 1 0.95 1 0.91 1 0.91 1 0.8 0.78 0.71 0.81 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO D3S1358 D3S1358 D3S1358 TH01 D13S317 D13S317 D16S539 D16S539 D16S539 D2S1338 D2S1338 D19S433 D19S433 vWA vWA	10 12 27 29 12 13 15 17 9.3 8 13 8 13 8 12 17 25 14 16.2 14 16.2 14	Minus A
11745 11330 10669 10158 9167 6569 6191 12364 11755 19853 14633 13201 15478 14125 9806 7884 10934 10934 10934 10934 10938 11131 13822 16187 8688	1 0.96 1 0.95 1 1 0.94 1 0.94 1 0.95 1 0.95 1 0.91 1 0.91 1 0.8 0.71 0.81 1 1 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 D13S317 D13S317 D13S317 D13S317 D16S539 D16S539 D2S1338 D19S433 D19S433 D19S433 VWA vWA vWA	10 12 27 29 12 13 15 17 9.3 8 13 8 13 8 13 8 12 17 25 14 16.2 14 16.2 14	Minus A

	5691	1	AMEL	Х	
	11522	1	D5S818	12	
	11051	0.96	D5S818	13	
	6270	1	FGA	23	
	5853	0.93	FGA	26	
338C	14379	1	D8S1179	13	Minus A
	7309	1	D21S11	29	
	6758	0.92	D21S11	31	
	3980	1	D7S820	9	
	3961	1	D7S820	10	
	4295	1	CSF1PO	11	
	4072	0.95	CSF1PO	13	
	11638	1	D3S1358	16	
	9527	0.98	TH01	7	
	9760	1	TH01	9.3	
	10165	1	D13S317	12	
	9277	0.91	D13S317	13	
	11895	1	D16S539	11	
	11011	0.93	D16S539	12	
	5525	1	D2S1338	24	
	5016	0.91	D2S1338	25	
	9091	1	D19S433	14	
	8316	0.91	D19S433	15	
	14810	1	vWA	16	
	8737	1	TPOX	8	
	8178	0.94	TPOX	11	
	6416	1	D18S51	12	
	5108	0.8	D18S51	17	
	14286	1	AMEL	Х	
	13450	1	D5S818	12	
	4989	1	FGA	20	
	4577	0.92	FGA	22	
3701C	6297	1	D8S1179	11	Imbalance
	5647	0.9	D8S1179	14	
	5179	1	D21S11	28	
	4922	0.95	D21S11	29	
	3662	1	D7S820	8	
	3617	0.99	D7S820	10	
	4540	1	CSF1PO	11	
	4333	0.95	CSF1PO	12	
	7446	1	D3S1358	17	
	6970	0.94	D3S1358	18	
	7179	1	TH01	6	
	6757	0.94	TH01	9.3	
	11731	1	D13S317	11	

6	11	D16S539	0.99	8307
0	13	D16S539	1	8367
	24	D2S1338	1	5557
	25	D2S1338	0.93	5160
	12	D19S433	1	14057
	14	vWA	1	8201
	16	vWA	0.96	7847
	8	TPOX	0.96	5884
	11	TPOX	1	6125
	15	D18S51	1	7256
	16	D18S51	0.89	6473
	Х	AMEL	1	6149
	Y	AMEL	0.45	2747
	11	D5S818	0.96	6563
	12	D5S818	1	6829
	19	FGA	1	5009
	25	FGA	0.92	4596
Minus A, Allelic Dropout, Imb	12	D8S1179	1	9872
	13	D8S1179	0.91	8970
	28	D21S11	1	7613
	31	D21S11	0.94	7190
	9	D7S820	1	4313
	11	D7S820	0.99	4252
	11	CSF1PO	1	5727
	15	CSF1PO	0.91	5194
	14	D3S1358	1	9636
	16	D3S1358	0.9	8716
	9.3	TH01	1	17313
	12	D13S317	1	11019
	13	D13S317	0.89	9791
	10	D16S539	1	13505
	12	D16S539	0.99	13325
	22	D2S1338	1	6849
	24	D2S1338	0.94	6409
	12	D19S433	1	13853
	14	D19S433	0.65	9014
	17	vWA	1	12421
	18	vWA	0.91	11353
	8	TPOX	1	9800
	9	TPOX	0.98	9559
	14	D18S51	1	8914
	15	D18S51	0.89	7922
	Х	AMEL	1	10552
	11	D5S818	1	10655
	22	FGA	1	5871
	23	FGA	0.9	5273

399C	13316	1	D8S1179	11 Minus A
	11910	0.89	D8S1179	14
	12168	1	D21S11	28
	10125	0.83	D21S11	33.2
	9278	1	D7S820	10
	10636	1	CSF1PO	12
	14872	1	D3S1358	16
	14400	1	TH01	7
	14152	0.98	TH01	8
	13606	1	D13S317	12
	11847	0.87	D13S317	14
	14808	1	D16S539	11
	14432	0.97	D16S539	12
	9009	1	D2S1338	18
	8680	0.96	D2S1338	19
	12487	0.9	D19S433	14
	11175	0.81	D19S433	15.2
	13488	1	vWA	17
	12417	0.92	vWA	18
	11095	1	TPOX	8
	10438	0.94	TPOX	11
	12737	1	D18S51	16
	8714	1	AMEL	Х
	14181	1	D5S818	11
	6629	1	FGA	19
	5356	0.81	FGA	24
417C	14129	1	D8S1179	13 Minus A
	7402	1	D21S11	29
	7166	0.97	D21S11	30
	4402	1	D7S820	8
	4176	0.95	D7S820	10
	5313	1	CSF1PO	10
	4911	0.92	CSF1PO	12
	15611	1	D3S1358	15
	11751	1	TH01	6
	11571	0.98	TH01	9
	11953	1	D13S317	8
	11885	0.99	D13S317	11
	13685	1	D16S539	11
	12507	0.91	D16S539	12
	8215	1	D2S1338	17
	7841	0.95	D2S1338	19
	8434	1	D19S433	14
	7990	0.95	D19S433	15.2
	11374	1	vW/A	14

	9636	0.85	vWA	19	
	9618	1	TPOX	8	
	9309	0.97	TPOX	11	
	7984	1	D18S51	14	
	7064	0.88	D18S51	15	
	10222	1	AMEL	Х	
	10142	0.99	AMEL	Y	
	9649	1	D5S818	12	
	8799	0.91	D5S818	13	
	6241	1	FGA	22	
	5782	0.93	FGA	23	
1200	10885	1	0851170	13	
4200	10322	0.95	D051175	1/	
	8850	0.55	D031173	21.2	
	8150	0.02	D21311	22.2	
	6000	0.92	D21311	33.2	
	5613	0 92	D75820	12	
	6748	0.52		12	
	6310	0 9/		1/	
	12269	0.94	D351358	1/	
	14048	0.07	D351350	16	
	13942	1	TH01	10	
	13702	1 0 98	TH01	8	
	19526	1	D135317	12	
	14275	1	D165539	11	
	14059	0.98	D165539	13	
	14558	1	D2S1338	_0 19	
	14485	- 1	D195433		
	14550	- 1	vWA	19	
	14207	0.98	vWA	20	
	13926	1	TPOX	8	
	16233	1	D18S51	16	
	11096	0.94	AMEL	X	
	11766	1	AMEL	Y	
	11557	1	D5S818	11	
	7411	1	FGA	21	
	6486	0.88	FGA	25	
13750	10665	1	D851170	11	Minue A
43750	96/3	1	D051175	1/	WIIIIUS A
	10011	1	D21511	14 28	
	9176	۲ د ۵ ۱	D21511	20	
	4048	1	D75820	25 7	
	3345	י רא ח	D75820	, 12	
	4954	1	CSF1PO	11	
	4640	0.94	CSF1PO	12	

10313	1	D3S1358	15	
9175	0.89	D3S1358	16	
12529	1	TH01	7	
11618	0.93	TH01	9.3	
13291	1	D13S317	8	
11969	0.9	D13S317	12	
11753	0.88	D16S539	12	
13316	1	D16S539	13	
7263	1	D2S1338	17	
6092	0.84	D2S1338	23	
12405	1	D19S433	13	
12415	1	D19S433	13.2	
12902	1	vWA	17	
11613	0.9	vWA	18	
9074	1	TPOX	9	
9063	1	TPOX	11	
5470	1	D18S51	12	
4745	0.87	D18S51	20	
13114	1	AMEL	Х	
12206	1	D5S818	11	
9228	1	FGA	23	
8352	1	D8S1179	12	Minus A
8129	0.97	D8S1179	13	
7678	1	D21S11	29	
7500	0.98	D21S11	30	
4161	1	D7S820	8	
3704	0.89	D7S820	11	
4616	1	CSF1PO	10	
4291	0.93	CSF1PO	11	
7314	1	D3S1358	15	
6806	0.93	D3S1358	16	
14744	1	TH01	9.3	
10136	1	D13S317	9	
8828	0.87	D13S317	12	
10606	1	D16S539	11	
9966	0.94	D16S539	13	
5861	1	D2S1338	18	
4632	0.79	D2S1338	26	
8067	1	D19S433	13	
7472	0.93	D19S433	14	
12281	1	vWA	18	
7620	- 1	TPOX	8	
7134	0.94	TPOX	11	
5619	1	D18S51	12	
5056	0.9	D18S51	16	
11336	1	AMEL	Х	

	8619	1	D5S818	12	66
	7821	0.91	D5S818	13	00
	4969	1	FGA	23	
	4507	0.91	FGA	24	
550C	11531	1	D8S1179	13	Minus A
	10510	0.91	D8S1179	14	
	10068	1	D21S11	28	
	9484	0.94	D21S11	30	
	6229	1	D7S820	7	
	5859	0.94	D7S820	10	
	6934	1	CSF1PO	11	
	6338	0.91	CSF1PO	13	
	12152	1	D3S1358	15	
	11592	0.95	D3S1358	17	
	12122	0.85	TH01	6	
	14316	1	TH01	7	
	14351	1	D13S317	10	
	12169	0.85	D13S317	12	
	14427	1	D16S539	11	
	14411	1	D16S539	12	
	10007	1	D2S1338	19	
	9231	0.92	D2S1338	21	
	11465	1	D19S433	15.2	
	10174	0.89	D19S433	16.2	
	14252	1	vWA	14	
	13665	0.96	vWA	18	
	12871	1	TPOX	9	
	12271	0.95	ТРОХ	11	
	9900	1	D18S51	14	
	9361	0.95	D18S51	16	
	11884	1	AMEL	х	
	11860	1	AMEL	Y	
	15027	1	D5S818	11	
	9125	1	FGA	19	
	8098	0.89	FGA	20	
565C	14636	1	D8S1179	10	Minus A, Allelic Drop-In, Imba
	14222	0.97	D8S1179	12	
	20162	1	D21S11	29	
	7430	0.99	D7S820	11	
	7512	1	D7S820	12	
	9046	1	CSF1PO	9	
	8204	0.91	CSF1PO	12	
	14363	1	D3S1358	14	
	14055	0.98	D3S1358	17	
	19710	1	TH01	9.3	

21103	1	D13S317	12	
19501	1	D16S539	11	
14756	0.76	D16S539	13	
13589	1	D2S1338	17	
11393	0.84	D2S1338	22	
15003	1	D19S433	13	
16280	1	vWA	14	
14816	0.91	vWA	20	
14007	1	TPOX	8	
9050	1	D18S51	18	
7973	0.88	D18S51	21	
12175	1	AMEL	Х	
7015	0.58	AMEL	Y	
11532	1	D5S818	11	
11010	0.95	D5S818	12	
12575	1	FGA	21	
15924	1	D8S1179	13	Minus A, Imbalance
10145	1	D21S11	30	
9730	0.96	D21S11	31.2	
5026	1	D7S820	10	
4830	0.96	D7S820	12	
5975	1	CSF1PO	10	
5420	0.91	CSF1PO	13	
11462	1	D3S1358	14	
10735	0.94	D3S1358	16	
18355	1	TH01	9.3	
13555	1	D13S317	11	
12468	0.92	D13S317	13	
14620	1	D16S539	9	
14096	0.96	D16S539	11	
8901	1	D2S1338	17	
7061	0.79	D2S1338	24	
10692	1	D19S433	14.2	
2540	0.24	D19S433	16	
18482	1	vWA	16	
16086	1	TPOX	8	
14761	1	D18S51	12	
14899	1	AMEL	Х	
13352	1	D5S818	12	
6865	1	FGA	21	
5542	0.81	FGA	26	
7724	0.78	D8S1179	9	Minus A
7070	0.71	D8S1179	13	
7737	1	D21S11	28	
7097	0.92	D21S11	30	

6080C

4485			~	
1100	1	D7S820	8	
6316	1	CSF1PO	12	
5726	0.75	D3S1358	15	
4969	0.65	D3S1358	17	
14425	1	TH01	9.3	
7954	1	D13S317	11	
7527	0.95	D13S317	12	
16717	1	D16S539	9	
5945	1	D2S1338	17	
4857	0.82	D2S1338	24	
9606	1	D19S433	13	
8942	0.93	D19S433	14	
8564	0.85	vWA	17	
8079	0.8	vWA	19	
6829	1	TPOX	9	
6126	0.9	TPOX	11	
3871	1	D18S51	14	
3443	0.89	D18S51	16	
12368	1	AMEL	Х	
6757	1	D5S818	11	
6271	0.93	D5S818	13	
3031	1	FGA	20	
2475	0.82	FGA	23	
13553	1	D8S1179	10	Minus A, Partial Profile
13553 11976	1 0.88	D8S1179 D8S1179	10 15	Minus A, Partial Profile
13553 11976 11698	1 0.88 1	D8S1179 D8S1179 D21S11	10 15 27	Minus A, Partial Profile
13553 11976 11698 11063	1 0.88 1 0.95	D8S1179 D8S1179 D21S11 D21S11	10 15 27 29	Minus A, Partial Profile
13553 11976 11698 11063 4905	1 0.88 1 0.95 1	D8S1179 D8S1179 D21S11 D21S11 D7S820	10 15 27 29 9	Minus A, Partial Profile
13553 11976 11698 11063 4905 4481	1 0.88 1 0.95 1 0.91	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820	10 15 27 29 9 12	Minus A, Partial Profile
13553 11976 11698 11063 4905 4481 8252	1 0.88 1 0.95 1 0.91 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1PO	10 15 27 29 9 12 12	Minus A, Partial Profile
13553 11976 11698 11063 4905 4481 8252 8009	1 0.88 1 0.95 1 0.91 1 0.97	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1P0 CSF1PO	10 15 27 29 9 12 12 13	Minus A, Partial Profile
13553 11976 11698 11063 4905 4481 8252 8009 10671	1 0.88 1 0.95 1 0.91 1 0.97 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358	10 15 27 29 9 12 12 13 13	Minus A, Partial Profile
13553 11976 11698 11063 4905 4481 8252 8009 10671 9367	1 0.88 1 0.95 1 0.91 1 0.97 1 0.88	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358	10 15 27 29 9 12 12 13 16 17	Minus A, Partial Profile
13553 11976 11698 11063 4905 4481 8252 8009 10671 9367 11761	1 0.88 1 0.95 1 0.91 1 0.97 1 0.88 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358 D13S317	10 15 27 29 9 12 12 13 16 17	Minus A, Partial Profile
13553 11976 11698 11063 4905 4481 8252 8009 10671 9367 11761 10776	1 0.88 1 0.95 1 0.91 1 0.97 1 0.88 1 0.92	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358 D13S317 D13S317	10 15 27 29 9 12 12 13 16 17 10	Minus A, Partial Profile
13553 11976 11698 11063 4905 4481 8252 8009 10671 9367 11761 10776 20342	1 0.88 1 0.95 1 0.91 1 0.97 1 0.88 1 0.92 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358 D13S317 D13S317 D13S317	10 15 27 29 9 12 12 13 16 17 10 12	Minus A, Partial Profile
13553 11976 11698 11063 4905 4481 8252 8009 10671 9367 11761 10776 20342 9074	1 0.88 1 0.95 1 0.91 1 0.97 1 0.88 1 0.92 1 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358 D13S317 D13S317 D16S539 D2S1338	10 15 27 29 9 12 12 13 16 17 10 12 11 19	Minus A, Partial Profile
13553 11976 11698 11063 4905 4481 8252 8009 10671 9367 11761 10776 20342 9074 8375	1 0.88 1 0.95 1 0.91 1 0.97 1 0.88 1 0.92 1 1 0.92	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1PO CSF1PO D3S1358 D13S317 D13S317 D13S317 D16S539 D2S1338	10 15 27 29 9 12 12 13 16 17 10 12 11 19 20	Minus A, Partial Profile
13553 11976 11698 11063 4905 4481 8252 8009 10671 9367 11761 10776 20342 9074 8375 18817	1 0.88 1 0.95 1 0.91 1 0.97 1 0.88 1 0.92 1 1 0.92 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358 D13S317 D13S317 D13S317 D16S539 D2S1338 D2S1338 D19S433	10 15 27 29 9 12 12 13 16 17 10 12 11 19 20 14	Minus A, Partial Profile
13553 11976 11698 11063 4905 4481 8252 8009 10671 9367 11761 10776 20342 9074 8375 18817 14234	1 0.88 1 0.95 1 0.91 1 0.97 1 0.88 1 0.92 1 1 0.92 1 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D13S317 D13S317 D13S317 D16S539 D2S1338 D2S1338 D19S433 TPOX	10 15 27 29 9 12 12 13 16 17 10 12 11 19 20 14 8	Minus A, Partial Profile
13553 11976 11698 11063 4905 4481 8252 8009 10671 9367 11761 10776 20342 9074 8375 18817 14234 13946	1 0.88 1 0.95 1 0.91 1 0.97 1 0.88 1 0.92 1 1 0.92 1 1 0.98	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 D13S317 D13S317 D13S317 D13S317 D16S539 D2S1338 D2S1338 D19S433 TPOX TPOX	10 15 27 29 9 12 12 13 16 17 10 12 11 19 20 14 8 11	Minus A, Partial Profile
13553 11976 11698 11063 4905 4481 8252 8009 10671 9367 11761 10776 20342 9074 8375 18817 14234 13946 8916	1 0.88 1 0.95 1 0.91 1 0.97 1 0.88 1 0.92 1 1 0.92 1 1 0.92 1 1 0.92	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358 D3S1358 D13S317 D16S539 D2S1338 D2S1338 D19S433 TPOX TPOX D18S51	10 15 27 29 9 12 12 13 16 17 10 12 11 19 20 14 8 11 12	Minus A, Partial Profile
13553 11976 11698 11063 4905 4481 8252 8009 10671 9367 11761 10776 20342 9074 8375 18817 14234 13946 8916 8135	1 0.88 1 0.95 1 0.91 1 0.97 1 0.97 1 0.88 1 0.92 1 1 0.92 1 1 0.92 1 1 0.98 1 0.98	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1PO CSF1PO D3S1358 D13S317 D13S317 D13S317 D16S539 D2S1338 D2S1338 D19S433 TPOX TPOX TPOX D18S51	10 15 27 29 9 12 12 13 16 17 10 12 11 19 20 14 8 11 12 14	Minus A, Partial Profile
13553 11976 11698 11063 4905 4481 8252 8009 10671 9367 11761 10776 20342 9074 8375 18817 14234 13946 8916 8135 11700	1 0.88 1 0.95 1 0.91 1 0.97 1 0.97 1 0.88 1 0.92 1 1 0.92 1 1 0.92 1 1 0.92 1 1 0.92	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358 D13S317 D13S317 D13S317 D16S539 D2S1338 D2S1338 D19S433 TPOX TPOX D18S51 D18S51 D18S51 AMEL	10 15 27 29 9 12 12 13 16 17 10 12 11 19 20 14 8 11 12 14 X	Minus A, Partial Profile
13553 11976 11698 11063 4905 4481 8252 8009 10671 9367 11761 10776 20342 9074 8375 18817 14234 13946 8916 8135 11700 12278	1 0.88 1 0.95 1 0.91 1 0.97 1 0.97 1 0.97 1 0.92 1 1 0.92 1 1 0.92 1 1 0.98 1 0.98 1 0.91 0.95 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 D13S317 D13S317 D16S539 D2S1338 D2S1338 D19S433 TPOX TPOX TPOX D18S51 D18S51 D18S51 AMEL AMEL	10 15 27 29 9 12 12 13 16 17 10 12 11 19 20 14 8 11 12 14 × X Y	Minus A, Partial Profile

	9246	0.91	D5S818	11		69
	4601	1	FGA	20		0)
	4088	0.89	FGA	22		
6540	42000	4	D004470	40		
651C	12808	1	D8S1179	10	Minus A, Allelic Dropout	
	11174	0.87	D851179	15		
	10448	1	D21S11	29		
	8942	0.86	D21S11	32.2		
	4159	1	D7S820	10		
	3790	0.91	D7S820	12		
	9078	1	CSF1PO	12		
	10588	1	D3S1358	14		
	9244	0.87	D3S1358	17		
	13609	1	TH01	8		
	13272	0.98	TH01	9		
	10817	1	D13S317	12		
	20359	1	D16S539	11		
	6262	1	D2S1338	20		
	5895	0.94	D2S1338	22		
	11054	1	D19S433	13		
	9650	0.87	D19S433	15.2		
	14713	0.98	vWA	17		
	17790	1	TPOX	8		
	5166	1	D18S51	16		
	3861	0.75	D18S51	22		
	14383	1	AMEL	Х		
	11919	1	D5S818	11		
	10793	0.91	D5S818	12		
	9079	1	FGA	25		
7090	1/1275	1	0851170	10	Minus A. Imbalance	
7050	13905	0.97	D851179	13	Winds A, inibulance	
	12026	0.57	D031175	10		
	2724	0.21	D21511	20		
	7278	0.21	D21311	ے۔2 2		
	7278	0.07	D75020	11		
	8002	0.57		11		
	7245	1 0 0 2		12		
	12674	0.92	0201250	17		
	12106		0301320	10		
	13190	0.97	TU01	10		
	14505	1		0 7		
	14038	0.98		/		
	14024	T	D100530	8		
	14834	1	D102233	8		
	14419	0.97	D102233	13		
	11579	1	D251338	17		
	9239	0.8	D2S1338	24		

	12549	0.89	D19S433	14	
	14692	1	vWA	14	
	14236	0.97	vWA	17	
	12936	1	TPOX	8	
	10433	1	D18S51	13	
	9478	0.91	D18S51	16	
	8741	1	AMEL	Х	
	9799	0.76	D5S818	10	
	12963	1	D5S818	11	
	9164	1	FGA	20	
	7635	0.83	FGA	24.2	
735C	7344	1	D8S1179	12	Minus A
	6761	0.92	D8S1179	13	
	5798	1	D21S11	29	
	5306	0.92	D21S11	32.2	
	6875	1	D7S820	10	
	8911	1	CSF1PO	11	
	15108	1	D3S1358	15	
	10369	1	TH01	8	
	10298	0.99	TH01	9.3	
	9960	1	D13S317	11	
	9420	0.95	D13S317	12	
	11712	1	D16S539	11	
	10773	0.92	D16S539	12	
	7058	1	D2S1338	19	
	6140	0.87	D2S1338	24	
	7805	1	D19S433	13	
	7170	0.92	D19S433	14	
	8988	1	vWA	17	
	8475	0.94	vWA	18	
	7934	1	TPOX	8	
	7543	0.95	TPOX	11	
	5516	1	D18S51	18	
	4972	0.9	D18S51	22	
	8976	1	AMEL	Х	
	8936	1	AMEL	Y	
	7560	0.94	D5S818	11	
	8023	1	D5S818	13	
	4786	1	FGA	22.2	
	4719	0.99	FGA	24	
746C	10541	1	D8S1179	11	Minus A, Imbalance
	9360	0.89	D8S1179	13	
	8343	1	D21S11	30	
	8112	0.97	D21S11	31.2	
	5195	1	D75820	8	

5178	1	D7S820	10	
6466	1	CSF1PO	11	
5945	0.92	CSF1PO	12	
11720	1	D3S1358	14	
11278	0.96	D3S1358	15	
12120	1	TH01	6	
13241	1	D13S317	9	
13226	1	D13S317	10	
14081	1	D16S539	9	
13342	0.95	D16S539	13	
8461	1	D2S1338	19	
7140	0.84	D2S1338	25	
9289	1	D19S433	14.2	
4028	0.43	D19S433	15	
12346	1	vWA	18	
10676	0.86	vWA	19	
14834	1	TPOX	8	
8070	1	D18S51	15	
7384	0.91	D18S51	18	
11817	1	AMEL	Х	
11736	0.99	AMEL	Y	
11305	0.99	D5S818	11	
11422	1	D5S818	12	
6747	1	FGA	24	
6236	0.92	FGA	25	
3523	1	D8S1179	8	Minus A
3523 3097	1 0.88	D8S1179 D8S1179	8 13	Minus A
3523 3097 2707	1 0.88 1	D8S1179 D8S1179 D21S11	8 13 31.2	Minus A
3523 3097 2707 2418	1 0.88 1 0.89	D8S1179 D8S1179 D21S11 D21S11	8 13 31.2 32.2	Minus A
3523 3097 2707 2418 1582	1 0.88 1 0.89 1	D8S1179 D8S1179 D21S11 D21S11 D7S820	8 13 31.2 32.2 8	Minus A
3523 3097 2707 2418 1582 1344	1 0.88 1 0.89 1 0.85	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820	8 13 31.2 32.2 8 12	Minus A
3523 3097 2707 2418 1582 1344 1622	1 0.88 1 0.89 1 0.85 0.95	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1PO	8 13 31.2 32.2 8 12 10	Minus A
3523 3097 2707 2418 1582 1344 1622 1711	1 0.88 1 0.89 1 0.85 0.95 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1PO CSF1PO	8 13 31.2 32.2 8 12 10 12	Minus A
3523 3097 2707 2418 1582 1344 1622 1711 3013	1 0.88 1 0.89 1 0.85 0.95 1 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358	8 13 31.2 32.2 8 12 10 12 15	Minus A
3523 3097 2707 2418 1582 1344 1622 1711 3013 2947	1 0.88 1 0.89 1 0.85 0.95 1 1 0.98	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358	8 13 31.2 32.2 8 12 10 12 15 17	Minus A
3523 3097 2707 2418 1582 1344 1622 1711 3013 2947 3126	1 0.88 1 0.89 1 0.85 0.95 1 1 0.98 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358 TH01	8 13 31.2 32.2 8 12 10 12 15 17 6	Minus A
3523 3097 2707 2418 1582 1344 1622 1711 3013 2947 3126 3017	1 0.88 1 0.89 1 0.85 0.95 1 1 0.98 1 0.97	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358 TH01 TH01	8 13 31.2 32.2 8 12 10 12 15 17 6 9.3	Minus A
3523 3097 2707 2418 1582 1344 1622 1711 3013 2947 3126 3017 4147	1 0.88 1 0.89 1 0.85 0.95 1 1 0.98 1 0.97 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358 TH01 TH01 D13S317	8 13 31.2 32.2 8 12 10 12 15 17 6 9.3 12	Minus A
3523 3097 2707 2418 1582 1344 1622 1711 3013 2947 3126 3017 4147 3752	1 0.88 1 0.89 1 0.85 0.95 1 1 0.98 1 0.97 1 0.97	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1P0 D3S1358 D3S1358 TH01 TH01 D13S317 D13S317	8 13 31.2 32.2 8 12 10 12 15 17 6 9.3 12 13	Minus A
3523 3097 2707 2418 1582 1344 1622 1711 3013 2947 3126 3017 4147 3752 7787	1 0.88 1 0.89 1 0.85 0.95 1 1 0.98 1 0.97 1 0.97 1 0.9 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 TH01 D13S317 D13S317 D16S539	8 13 31.2 32.2 8 12 10 12 15 17 6 9.3 12 13 12	Minus A
3523 3097 2707 2418 1582 1344 1622 1711 3013 2947 3126 3017 4147 3752 7787 2751	1 0.88 1 0.89 1 0.85 0.95 1 1 0.98 1 0.97 1 0.9 1 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1P0 D3S1358 TH01 TH01 D13S317 D13S317 D13S317 D16S539 D2S1338	8 13 31.2 32.2 8 12 10 12 15 17 6 9.3 12 13 12 14	Minus A
3523 3097 2707 2418 1582 1344 1622 1711 3013 2947 3126 3017 4147 3752 7787 2751 1939	1 0.88 1 0.89 1 0.85 0.95 1 1 0.98 1 0.97 1 0.97 1 0.9 1 1 0.9	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1P0 D3S1358 D3S1358 D3S1358 TH01 TH01 D13S317 D13S317 D13S317 D16S539 D2S1338 D2S1338	8 13 31.2 32.2 8 12 10 12 15 17 6 9.3 12 13 12 13 12 14 26	Minus A
3523 3097 2707 2418 1582 1344 1622 1711 3013 2947 3126 3017 4147 3752 7787 2751 1939 3729	1 0.88 1 0.89 1 0.85 0.95 1 1 0.98 1 0.97 1 0.97 1 0.9 1 1 0.9 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 TH01 D13S317 D13S317 D16S539 D2S1338 D2S1338 D19S433	8 13 31.2 32.2 8 12 10 12 15 17 6 9.3 12 13 12 14 26 12	Minus A
3523 3097 2707 2418 1582 1344 1622 1711 3013 2947 3126 3017 4147 3752 7787 2751 1939 3729 3413	1 0.88 1 0.89 1 0.85 0.95 1 1 0.98 1 0.97 1 0.97 1 0.9 1 1 0.9 1 0.9 1 0.9 2	D8S1179 D8S1179 D21S11 D21S11 D7S820 D7S820 CSF1P0 D3S1358 D3S1358 TH01 TH01 D13S317 D13S317 D13S317 D13S317 D16S539 D2S1338 D2S1338 D19S433 D19S433	8 13 31.2 32.2 8 12 10 12 15 17 6 9.3 12 13 12 14 26 12 13	Minus A
3523 3097 2707 2418 1582 1344 1622 1711 3013 2947 3126 3017 4147 3752 7787 2751 1939 3729 3413 3629	1 0.88 1 0.89 1 0.85 0.95 1 1 0.98 1 0.97 1 0.97 1 0.97 1 0.97 1 0.92 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 TH01 D13S317 D13S317 D16S539 D2S1338 D2S1338 D19S433 D19S433 VWA	8 13 31.2 32.2 8 12 10 12 15 17 6 9.3 12 13 12 13 12 14 26 12 13 16	Minus A

74050
740JC

	2785	0.97	TPOX	8
	2876	1	TPOX	10
	2769	1	D18S51	13
	2566	0.93	D18S51	14
	3463	0.96	AMEL	Х
	3615	1	AMEL	Y
	3467	1	D5S818	12
	3232	0.93	D5S818	13
	4045	1	FGA	24
7572C	6015	1	D8S1179	10 Minus A
	5482	0.91	D8S1179	14
	4891	1	D21S11	28
	4705	0.96	D21S11	30
	5741	1	D7S820	10
	3755	1	CSF1PO	10
	3581	0.95	CSF1PO	12
	6350	1	D3S1358	17
	5727	0.9	D3S1358	18
	6510	1	TH01	7
	6374	0.98	TH01	9.3
	11256	1	D13S317	11
	8820	1	D16S539	12
	8329	0.94	D16S539	13
	5272	1	D2S1338	17
	4443	0.84	D2S1338	24
	6999	1	D19S433	14
	6278	0.9	D19S433	15
	7263	1	vWA	15
	7000	0.96	vWA	16
	10732	1	ТРОХ	8
	6033	1	D18S51	10
	5272	0.87	D18S51	14
	11802	1	AMEL	х
	11520	1	D5S818	12
	4115	1	FGA	22
	3941	0.96	FGA	25
			_	-
7758C	9050	0.83	D8S1179	10 Minus A
	7968	0.73	D8S1179	14
	8352	1	D21S11	28
	7820	0.94	D21S11	30
	2694	1	D7S820	9
	2692	1	D7S820	13
	4102	1	CSF1PO	10
	3884	0.95	CSF1PO	12
	9709	0.86	D3S1358	15

9758	0.99	TH01	7	
9850	1	TH01	9.3	
7951	1	D13S317	11	
7608	0.96	D13S317	14	
13272	1	D16S539	9	
12059	0.91	D16S539	12	
7748	1	D2S1338	17	
5892	0.76	D2S1338	24	
9899	1	D19S433	14	
9184	0.93	D19S433	16	
10068	0.96	vWA	16	
9259	0.88	vWA	19	
10371	0.97	TPOX	8	
4457	1	D18S51	15	
3929	0.88	D18S51	17	
10615	1	AMEL	Х	
7636	1	D5S818	11	
7075	0.93	D5S818	12	
3293	1	FGA	23	
2994	0.91	FGA	24	
9872	1	D8S1179	8	Minus A, Imbalance
8779	0.89	D8S1179	15	
8538	1	D21S11	29	
7630	0.89	D21S11	32.2	
3897	1	D7S820	10	
3780	0.97	D7S820	13	
10167	1	CSF1PO	10	
10309	1	D3S1358	14	
9462	0.92	D3S1358	15	
12977	1	TH01	6	
12478	0.96	TH01	9.3	
12208	1	D13S317	8	
11123	0.91	D13S317	11	
13673	1	D16S539	9	
12203	0.89	D16S539	12	
6664	1	D2S1338	20	
6115	0.92	D2S1338	23	
10123	1	D19S433	13	
2276	0.22	D19S433	15	
11890	1	vWA	16	
11172	0.94	vWA	18	
10504	1	TPOX	9	
9892	0.94	TPOX	11	
7553	1	D18S51	13	
7052	0.93	D18S51	14	
13598	1	AMEL	Х	

	13644	1	D5S818	9	
	5793	1	FGA	21	
	4816	0.83	FGA	25	
802C	14108	1	D8S1179	10	Minus A
	13166	0.93	D8S1179	11	
	12036	1	D21S11	28	
	10698	0.89	D21S11	31	
	4691	1	D7S820	10	
	4261	0.91	D7S820	12	
	10920	1	CSF1PO	12	
	12209	1	D3S1358	15	
	11088	0.91	D3S1358	16	
	14536	0.98	TH01	6	
	14908	1	TH01	9.3	
	14438	1	D13S317	10	
	13958	0.97	D13S317	11	
	15064	1	D16S539	10	
	15125	1	D16S539	11	
	8788	1	D2S1338	18	
	7567	0.86	D2S1338	23	
	13075	1	D19S433	14	
	12051	0.92	D19S433	15.2	
	13582	0.57	vWA	16	
	12118	1	TPOX	10	
	11486	0.95	TPOX	11	
	6139	1	D18S51	16	
	5589	0.91	D18S51	18	
	11658	1	AMEL	Х	
	11510	0.99	AMEL	Y	
	12018	1	D5S818	9	
	11898	0.99	D5S818	11	
	6636	1	FGA	20	
	6043	0.91	FGA	22	
8339C	577	1	D21S11	30	Minus A, Partial Profile
	694	1	D3S1358	15	
	644	0.93	D3S1358	17	
	535	1	TH01	6	
	507	0.95	TH01	7	
	868	1	D13S317	11	
	556	1	D16S539	11	
	556	1	D16S539	12	
	1269	1	D19S433	13	
	572	1	vWA	16	
	1255	1	AMEL	Х	
	501	1	D5S818	11	

	575	1	FGA	21	75
9066C	12566	1	D8S1179	11 Minus A, Allelic Dropout	
	11529	0.92	D8S1179	13	
	10045	1	D21S11	28	
	9661	0.96	D21S11	30	
	5359	1	D7S820	9	
	3727	0.7	D7S820	11	
	13109	1	CSF1PO	11	
	11614	1	D3S1358	17	
	10229	0.88	D3S1358	18	
	11288	0.79	TH01	7	
	14278	1	TH01	9.3	
	11567	0.86	D13S317	8	
	13410	1	D13S317	13	
	15615	1	D16S539	11	
	9321	1	D2S1338	20	
	8202	0.88	D2S1338	21	
	14754	1	D19S433	12	
	12446	0.84	D19S433	15	
	14209	1	vWA	18	
	13222	0.93	vWA	19	
	11937	1	TPOX	9	
	9868	1	D18S51	12	
	8280	0.84	D18S51	16	
	12828	1	AMEL	Х	
	11727	1	D5S818	10	
	11204	0.96	D5S818	13	
	6659	1	FGA	23	
	5789	0.87	FGA	26	
931C	10718	1	D8S1179	11 Minus A	
	9218	0.86	D8S1179	15	
	8383	1	D21S11	28	
	7608	0.91	D21S11	30	
	4856	1	D7S820	8	
	4669	0.96	D7S820	10	
	6161	1	CSF1PO	12	
	5398	0.88	CSF1PO	13	
	17575	1	D3S1358	15	
	13230	1	TH01	8	
	12637	0.96	TH01	9.3	
	12461	1	D13S317	9	
	11800	0.95	D13S317	11	
	14290	1	D16S539	8	
	13500	0.94	D16S539	12	
	8278	1	D2S1338	20	

	6982	0.84	D2S1338	24
	16184	1	D19S433	13
	11353	1	vWA	15
	10596	0.93	vWA	18
	9774	1	TPOX	8
	9821	1	TPOX	10
	7723	1	D18S51	14
	6397	0.83	D18S51	19
	12170	1	AMEL	Х
	11241	0.92	AMEL	Y
	10022	0.98	D5S818	11
	10214	1	D5S818	13
	7336	1	FGA	19
	6363	0.87	FGA	24
940C	8501	1	D8S1179	14
	8100	0.95	D8S1179	15
	12394	1	D21S11	30
	4371	1	D7S820	8
	3929	0.9	D7S820	11
	5658	1	CSF1PO	11
	5270	0.93	CSF1PO	12
	10597	1	D3S1358	14
	10070	0.95	D3S1358	15
	10819	1	TH01	6
	10474	0.97	TH01	9
	10779	1	D13S317	10
	10344	0.96	D13S317	11
	19729	1	D16S539	9
	6966	1	D2S1338	19
	6224	0.89	D2S1338	22
	8156	1	D19S433	13
	8065	0.99	D19S433	13.2
	9756	1	vWA	16
	9417	0.97	vWA	19
	8562	1	TPOX	9
	8337	0.97	TPOX	11
	7209	1	D18S51	14
	6691	0.93	D18S51	17
	14707	1	AMEL	Х
	8502	1	D5S818	12
	8046	0.95	D5S818	13
	11338	1	FGA	22
9439C	10447	1	D8S1179	14 Minus A
	9765	0.93	D8S1179	15
	14512	1	D21S11	30

4822	1	D7S820	8	
3484	0.72	D7S820	11	
6062	1	CSF1PO	10	
5496	0.91	CSF1PO	12	
14784	1	D3S1358	16	
11587	0.99	TH01	7	
11690	1	TH01	9.3	
13754	1	D13S317	11	
13384	0.97	D13S317	12	
14204	1	D16S539	11	
7769	1	D2S1338	19	
7577	0.98	D2S1338	22	
11008	1	D19S433	15	
10137	0.92	D19S433	17.2	
13532	1	vWA	14	
12562	0.93	vWA	18	
10218	1	TPOX	8	
9728	0.95	TPOX	9	
8768	1	D18S51	12	
7635	0.87	D18S51	16	
11948	1	AMEL	Х	
11990	1	AMEL	Y	
11622	1	D5S818	12	
11178	0.96	D5S818	13	
7050	1	FGA	21	
6288	0.89	FGA	23	
14683	1	D8S1179	9	Minus A, Imbalance
14076	0.96	D8S1179	15	
21072	1	D21S11	28	
5986	1	D7S820	11	
2061	0.34	D7S820	12	
14086	1	CSF1PO	12	
17880	1	D3S1358	18	
21526	1	TH01	9.3	
14264	1	D13S317	12	
13842	0.97	D13S317	13	
14649	1	D16S539	10	
14204	0.97	D16S539	12	
9165	1	D2S1338	17	
7511	0.82	D2S1338	22	
13528	0.92	D19S433	12	
12429	0.84	D19S433	13.2	
12155	0.72	vWA	17	
16802	1	vWA	18	
19493	1	TPOX	11	
7983	1	D18S51	19	

	6948	0.87	D18S51	20
	4654	1	AMEL	Х
	12567	1	D5S818	9
	11188	0.89	D5S818	11
	6933	1	FGA	20
	5837	0.84	FGA	24
CaseyC	8644	1	D8S1179	10 Imbalance
	8408	0.97	D8S1179	12
	4203	1	D21S11	28
	3854	0.92	D21S11	31.2
	2021	1	D7S820	8
	1863	0.92	D7S820	11
	2004	1	CSF1PO	10
	1886	0.94	CSF1PO	11
	18032	1	D3S1358	14
	6563	0.99	TH01	6
	6655	1	TH01	8
	6143	1	D13S317	9
	5687	0.93	D13S317	11
	4892	1	D16S539	11
	4712	0.96	D16S539	12
	2010	1	D2S1338	20
	1899	0.94	D2S1338	25
	3596	0.53	D19S433	14
	6756	1	D19S433	16
	13707	1	vWA	18
	3977	1	TPOX	9
	3735	0.94	TPOX	11
	3486	1	D18S51	10
	3122	0.9	D18S51	14
	10755	1	AMEL	Х
	8992	1	D5S818	12
	8130	0.9	D5S818	13
	3915	1	FGA	20
	3753	0.96	FGA	21
ChristiC	15178	1	D8S1179	14 Imbalance
	6881	1	D21S11	28
	6113	0.89	D21S11	30
	4502	1	D7S820	8
	3870	0.86	D7S820	12
	4274	1	CSF1PO	10
	3916	0.92	CSF1PO	11
	12290	0.97	D3S1358	14
	12624	1	D3S1358	16
	14461	1	TH01	6

15818	1	D13S317	11
9486	1	D16S539	11
9140	0.96	D16S539	12
4697	1	D2S1338	23
3821	0.81	D2S1338	24
10621	1	D19S433	15
2550	0.24	D19S433	16
11642	1	vWA	14
10656	0.92	vWA	18
6371	0.93	TPOX	8
6870	1	TPOX	9
13613	1	D18S51	12
14205	1	AMEL	Х
11229	1	D5S818	11
10670	0.95	D5S818	12
6492	1	FGA	20
6285	0.97	FGA	23
6252	1	D8S1179	10
5383	0.86	D8S1179	14
2678	1	D21S11	30
2607	0.97	D21S11	31
1303	1	D7S820	10
1286	0.99	D7S820	12
2523	1	CSF1PO	12
8033	1	D3S1358	14
7192	0.9	D3S1358	16
5048	1	TH01	6
4129	0.82	TH01	9
5016	1	D13S317	8
4598	0.92	D13S317	9
7106	1	D16S539	11
1904	1	D2S1338	18
1582	0.83	D2S1338	22
4900	1	D19S433	15
4826	0.98	D19S433	16.2
5481	1	vWA	16
5024	0.92	vWA	18
3048	1	TPOX	8
2787	0.91	TPOX	11
2544	1	D18S51	12
2274	0.89	D18S51	13
6513	1	AMEL	Х
6395	0.98	AMEL	Y
6262	1	D5S818	12
4817	0.77	D5S818	13
3015	1	FGA	20

JDWC

	2625	0.87	FGA	21	
LauiaC	5022	1	D001170	10	
LouieC	5032	1	D8S1179	12	
	4253	0.85	D851179	13	
	5014	1	D21511	29	
	1246	0.99	D75820	10	
	1261	1	D75820	12	
	2577	1	CSFIPO	10	
	5839	1	D3S1358	15	
	5557	0.95	D3S1358	18	
	/535	1	THU1	9.3	
	6914	1	D13531/	12	
	6035	1	D165539	12	
	1423	1	D2S1338	23	
	1227	0.86	D2S1338	24	
	9550	1	D19S433	14	
	4933	1	vWA	15	
	4550	0.92	vWA	18	
	3009	0.96	TPOX	7	
	3124	1	ΤΡΟΧ	8	
	2097	1	D18S51	12	
	1934	0.92	D18S51	14	
	10050	1	AMEL	Х	
	7568	1	D5S818	12	
	2323	1	FGA	22	
	1997	0.86	FGA	23	
HALFWAY					
008H	/0/5	1	D8S11/9	14	Minus A, Imbalance
	6499	0.92	D8S1179	15	
	6533	1	D21S11	30	
	5883	0.9	D21S11	34.2	
	3842	1	D7S820	12	
	3419	0.89	D7S820	13	
	4493	1	CSF1PO	10	
	4249	0.95	CSF1PO	12	
	8775	1	D3S1358	15	
	8324	0.95	D3S1358	18	
	11090	1	TH01	6	
	10543	0.95	TH01	9.3	
	11443	1	D13S317	8	
	10115	0.88	D13S317	12	
	19416	1	D16S539	12	
	6351	1	D2S1338	20	
	5707	0.9	D2S1338	24	
	8858	1	D19S433	13	
	7923	0.89	D19S433	14	

	14502	1	vWA	17	
	14333	1	TPOX	8	
	6895	1	D18S51	12	
	4651	0.67	D18S51	22	
	9723	0.96	AMEL	Х	
	10107	1	AMEL	Y	
	13541	1	D5S818	11	
	6104	1	FGA	19	
	5745	0.94	FGA	20	
062H	12990	1	D8S1179	14	Minus A, Imbalance
	5666	1	D21S11	29	
	5372	0.95	D21S11	31.2	
	2680	1	D7S820	10	
	2428	0.91	D7S820	12	
	3772	1	CSF1PO	11	
	3472	0.92	CSF1PO	12	
	7517	1	D3S1358	14	
	4212	0.56	D3S1358	15	
	10135	1	TH01	6	
	9628	0.95	TH01	9.3	
	13761	1	D13S317	11	
	14856	1	D16S539	11	
	4997	1	D2S1338	18	
	4437	0.89	D2S1338	19	
	10895	1	D19S433	15	
	8631	1	vWA	16	
	7922	0.92	vWA	17	
	7735	1	TPOX	8	
	7176	0.93	TPOX	10	
	3901	1	D18S51	16	
	3259	0.84	D18S51	20	
	10126	1	AMEL	Х	
	10144	1	AMEL	Y	
	12152	1	D5S818	12	
	3535	1	FGA	23	
	3265	0.92	FGA	24	
088H	8826	1	D8S1179	13	Minus A
	7963	0.9	D8S1179	14	
	13902	1	D21S11	32.2	
	7263	1	D7S820	12	
	4368	1	CSF1PO	10	
	4072	0.93	CSF1PO	13	
	13869	1	D3S1358	15	
	3347	0.32	TH01	6.3	
	10530	1	TH01	7	

10482	1	TH01	9.3
11055	1	D13S317	8
9610	0.87	D13S317	13
13481	1	D16S539	9
12644	0.94	D16S539	10
6029	1	D2S1338	20
5692	0.94	D2S1338	23
9701	1	D19S433	13
8753	0.9	D19S433	14
9538	1	vWA	15
8908	0.93	vWA	18
14837	1	TPOX	8
5290	1	D18S51	15
4521	0.85	D18S51	18
11956	1	AMEL	Х
8557	1	D5S818	11
8350	0.98	D5S818	13
8314	1	FGA	24
17672	1	0851170	12 Minus A
17073	1	D031179	20 20
9320	0.96	D21511	30.2
/870	0.50	D21311	8
4070	0.87	D75820	12
5980	0.07	CSE1PO	11
5542	0.93	CSF1PO	14
12525	0.55	D3S1358	15
11241	0.9	D351358	18
14990	1	TH01	6
12997	0.87	TH01	7
13873	1	D13S317	8
12774	0.92	D13S317	11
18142	1	D16S539	11
8657	1	D2S1338	17
8119	0.94	D2S1338	19
12821	0.9	D19S433	12
13225	1	vWA	16
10823	0.82	vWA	17
20855	1	TPOX	8
11813	1	D18S51	14
5750	1	AMEL	х
11466	1	D5S818	11
11128	0.97	D5S818	12
6402	1	FGA	21.2
6377	1	FGA	22
10578	1	D8S1179	11 Minus A

144H

10024	0.95	D8S1179	14	
9630	0.99	D21S11	28	
9733	1	D21S11	30	
4748	1	D7S820	10	
4668	0.98	D7S820	12	
5705	0.99	CSF1PO	10	
5760	1	CSF1PO	12	
9572	1	D3S1358	16	
8157	0.85	D3S1358	19	
3219	0.25	TH01	5.3	
12709	0.97	TH01	6	
13086	1	TH01	9.3	
13661	0.99	D13S317	9	
13810	1	D13S317	10	
14368	1	D16S539	12	
14017	0.98	D16S539	13	
7800	1	D2S1338	19	
6864	0.88	D2S1338	25	
11922	1	D19S433	13	
10673	0.9	D19S433	14	
14958	1	vWA	15	
10589	1	TPOX	8	
10180	0.96	TPOX	9	
6864	1	D18S51	16	
6326	0.92	D18S51	18	
11971	1	AMEL	Х	
11211	0.94	AMEL	Y	
11253	1	D5S818	11	
10115	0.9	D5S818	13	
6817	1	FGA	20	
6303	0.92	FGA	21	
13451	1	D8S1179	14	Minus A
7063	1	D21S11	28	
6209	0.88	D21S11	32.2	
3344	1	D7S820	11	
3199	0.96	D7S820	12	
4097	1	CSF1PO	10	
3623	0.88	CSF1PO	12	
5886	1	D3S1358	15	
5666	0.96	D3S1358	17	
2424	0.29	TH01	5.3	
8408	1	TH01	6	
8449	1	TH01	9.3	
14459	1	D13S317	11	
17577	1	D16S539	11	
5293	1	D2S1338	19	

	5044	0.95	D2S1338	23
	8051	1	D19S433	13
	7245	0.9	D19S433	14
	8292	1	vWA	15
	7611	0.92	vWA	18
	7371	1	TPOX	10
	7311	0.99	TPOX	11
	10595	1	D18S51	14
	13111	1	AMEL	Х
	7273	1	D5S818	11
	6503	0.89	D5S818	12
	4062	1	FGA	21
	3621	0.89	FGA	24
220H	15135	1	D8\$1179	13 Minus A
22011	14128	0.93	D8S1179	14
	14173	0.95	D21511	30
	14868	0.55	D21511	31.2
	8602	1	D75820	8
	8202	0.95	D75820	10
	9497	1	CSE1PO	9
	8855	0.93	CSF1PO	12
	14500	0.55	D351358	14
	13857	0.96	D351358	17
	6891	0.37	TH01	5.3
	17851	0.96	TH01	6
	18538	1	TH01	9.3
	19891	1	D13S317	11
	16391	0.82	D13S317	12
	16998	1	D16S539	9
	14708	0.87	D16S539	12
	11616	1	D2S1338	21
	10707	0.92	D2S1338	24
	14429	0.98	D19S433	15
	15287	1	vWA	17
	14379	0.94	vWA	19
	17100	1	ТРОХ	8
	12595	1	D18S51	12
	9236	0.73	D18S51	18
	4309	1	AMEL	Х
	11398	0.8	D5S818	11
	14306	1	D5S818	12
	9766	1	FGA	21
	8506	0.87	FGA	24
247H	10626	1	D851179	10 Minus A
	10554	0.99	D8S1179	12

9447	1	D21S11	31	
9227	0.98	D21S11	32.2	
9755	1	D7S820	11	
5376	1	CSF1PO	12	
4959	0.92	CSF1PO	14	
9506	1	D3S1358	17	
8473	0.89	D3S1358	18	
3059	0.24	TH01	5.3	
12973	1	TH01	6	
3103	0.24	TH01	7.3	
12930	1	TH01	8	
13294	1	D13S317	10	
12718	0.96	D13S317	11	
14023	1	D16S539	11	
13657	0.97	D16S539	13	
8424	1	D2S1338	17	
7925	0.94	D2S1338	19	
11593	1	D19S433	13	
10451	0.9	D19S433	14	
18406	1	vWA	16	
11111	1	TPOX	8	
10637	0.96	TPOX	9	
8622	1	D18S51	11	
6237	0.72	D18S51	19	
13523	1	AMEL	Х	
10781	1	D5S818	9	
10288	0.95	D5S818	11	
6486	1	FGA	20	
5315	0.82	FGA	25	
13876	1	D8S1179	10	Minus A
12408	0.89	D8S1179	11	
10468	1	D21S11	29	
9928	0.95	D21S11	31.2	
11426	1	D7S820	10	
7829	1	CSF1PO	11	
7340	0.94	CSF1PO	13	
16301	1	D3S1358	18	
14737	1	TH01	6	
14203	0.96	TH01	9.3	
11730	0.84	D13S317	8	
13933	1	D13S317	11	
17771	1	D16S539	11	
8313	1	D2S1338	22	
7290	0.88	D2S1338	24	
11343	1	D19S433	13	
10811	0.95	D19S433	15	

	16680	1	vWA	17	
	14584	0.87	vWA	18	
	14118	1	TPOX	8	
	13962	0.99	TPOX	11	
	11156	1	D18S51	15	
	10380	0.93	D18S51	16	
	13776	1	AMEL	Х	
	15172	1	D5S818	11	
	6686	1	FGA	23	
	5825	0.87	FGA	26	
297H	13263	1	D8S1179	13 Minus A	
	12180	0.92	D8S1179	14	
	12354	1	D21S11	31.2	
	11080	0.9	D21S11	32.2	
	9262	1	D7S820	11	
	11602	1	CSF1PO	10	
	11268	1	D3S1358	14	
	8636	0.76	D3S1358	19	
	6770	0.46	TH01	6.3	
	12066	0.82	TH01	7	
	14649	1	TH01	8.3	
	11658	0.85	D13S317	8	
	13657	1	D13S317	11	
	14765	1	D16S539	9	
	11749	0.8	D16S539	13	
	9305	1	D2S1338	17	
	7493	0.81	D2S1338	24	
	13844	1	D19S433	13	
	4648	0.34	D19S433	14	
	13887	1	vWA	18	
	11858	0.85	vWA	19	
	11502	1	TPOX	8	
	10658	0.93	TPOX	11	
	6275	1	D18S51	14	
	5690	0.91	D18S51	17	
	10474	0.91	AMEL	Х	
	11457	1	AMEL	Y	
	11515	0.99	D5S818	11	
	11673	1	D5S818	12	
	6493	1	FGA	20	
	5999	0.92	FGA	21	
3104H	4548	1	D8S1179	13 Minus A, Imbalan	ce
	4100	0.9	D8S1179	14	
	3255	1	D21S11	28	
	3067	0.94	D21S11	30	

2715	1	D7S820	10	
3728	1	CSF1PO	10	
3845	1	D3S1358	17	
3413	0.89	D3S1358	18	
10325	1	TH01	9.3	
5063	1	D13S317	8	
4184	0.83	D13S317	11	
4907	1	D16S539	12	
4373	0.89	D16S539	13	
2294	1	D2S1338	24	
2033	0.89	D2S1338	25	
4800	1	D19S433	13	
4264	0.89	D19S433	15	
6113	1	vWA	14	
4412	0.72	vWA	19	
3915	1	ΤΡΟΧ	11	
3473	0.89	TPOX	12	
2589	1	D18S51	13	
2217	0.86	D18S51	17	
7462	1	AMEL	Х	
7406	0.99	AMEL	Y	
7016	1	D5S818	13	
2099	1	FGA	23	
1953	0.93	FGA	25	
13652	1	D8S1179	12	Minus A
6344	1	D21S11	28	
6233	0.98	D21S11	29	
2254	1	D7S820	10	
2026	0.9	D7S820	13	
3366	1	CSF1PO	10	
3240	0.96	CSF1PO	11	
7875	1	D3S1358	11	
6655	0.85	D3S1358	15	
10916	1	TH01	6	
10125	0.93	TH01	9.3	
7922	1	D13S317	8	
6756	0.85	D13S317	11	
8601	1	D16S539	13	
7507	0.87	D16S539	15	
4169	1	D2S1338	19	
3331	0.8	D2S1338	26	
3331 7267	0.8 1	D2S1338 D19S433	26 12	
3331 7267 6652	0.8 1 0.92	D2S1338 D19S433 D19S433	26 12 14	
3331 7267 6652 9050	0.8 1 0.92 1	D2S1338 D19S433 D19S433 vWA	26 12 14 15	
33317267665290508272	0.8 1 0.92 1 0.91	D2S1338 D19S433 D19S433 vWA vWA	26 12 14 15 17	

	7084	0.96	TPOX	11	
	7005	1	D18S51	15	
	12845	1	AMEL	Х	
	6503	1	D5S818	12	
	5916	0.91	D5S818	13	
	3490	1	FGA	20	
	2843	0.81	FGA	24	
212411	12220	1	D0C1170	10	Ndiaua A
312AN	13339	1	D851179	10	IVIIIIUS A
	11984	0.9	D21011	14	
	10948	L 0.01	D21511	30	
	9979	0.91	DZ1511	31 10	
	4771	1	D75820	10	
	4703	0.99	D75820	12	
	11903	1	CSFIPU	12	
	13143	1	D351358	14	
	11834	0.9	D351358	16	
	14522	1	TH01	6	
	144/3	1	1H01	9	
	14224	1	D13S317	8	
	13938	0.98	D13S317	9	
	19721	1	D16S539	11	
	8722	1	D2S1338	18	
	7722	0.89	D2S1338	22	
	11191	1	D19S433	15	
	10629	0.95	D19S433	16.2	
	11645	0.85	vWA	16	
	13703	1	vWA	18	
	13419	1	TPOX	8	
	12599	0.94	TPOX	11	
	8390	1	D18S51	12	
	7635	0.91	D18S51	13	
	10420	0.87	AMEL	Х	
	11931	1	AMEL	Y	
	11612	1	D5S818	12	
	10570	0.91	D5S818	13	
	6676	1	FGA	20	
	6306	0.94	FGA	21	
312BH	14169	1	D8S1179	12	Minus A, Imbalance
	7060	1	D21S11	28	·
	6610	0.94	D21S11	31.2	
	4964	1	D7S820	9	
	4795	0.97	D7S820	12	
	5869	1	CSF1PO	11	
	5517	0.94	CSF1PO	12	
	14517	1	D3S1358	14	

9890	1	TH01	6	
9440	0.95	TH01	8	
11503	1	D13S317	9	
10824	0.94	D13S317	11	
19306	1	D16S539	12	
7082	1	D2S1338	23	
6605	0.93	D2S1338	25	
4212	0.55	D19S433	14	
7682	1	D19S433	15.2	
9549	1	vWA	14	
9099	0.95	vWA	16	
8279	1	TPOX	9	
7948	0.96	TPOX	11	
8246	1	D18S51	14	
7312	0.89	D18S51	18	
13356	1	AMEL	Х	
10856	1	D5S818	11	
8787	0.81	D5S818	12	
6654	1	FGA	19	
6196	0.93	FGA	21	
7486	1	D8S1179	10	Minus A
6594	0.88	D8S1179	15	
5587	0.99	D21S11	29	
5658	1	D21S11	31.2	
3659	1	D7S820	9	
3347	0.91	D7S820	12	
4803	1	CSF1PO	10	
4534	0.94	CSF1PO	13	
7859	1	D3S1358	15	
7445	0.95	D3S1358	17	
9051	1	TH01	6	
8773	0.97	TH01	7	
9238	1	D13S317	9	
9151	0.99	D13S317	11	
17262	1	D16S539	13	
6700	1	D2S1338	19	
6149	0.92	D2S1338	20	
8470	1	D19S433	14	
6869	0.81	D19S433	15	
9111	1	vWA	15	
8520	0.94	vWA	18	
13630	1	TPOX	11	
7721	_ 1	D18S51	13	
6933	0.9	D18S51	14	
7461	0.94	AMEL	Х	
7958	1	AMEL	Y	

	7751	0.99	D5S818	11
	7855	1	D5S818	12
	4948	1	FGA	21
	4773	0.96	FGA	26
333H	10381	1	D8S1179	10 Minus A
	9874	0.95	D8S1179	12
	8777	1	D21S11	27
	8272	0.94	D21S11	29
	7342	1	D7S820	12
	5438	1	CSF1PO	12
	4937	0.91	CSF1PO	13
	11158	1	D3S1358	15
	10126	0.91	D3S1358	17
	19292	1	TH01	9.3
	13031	1	D13S317	8
	10905	0.84	D13S317	13
	14691	1	D16S539	8
	13894	0.95	D16S539	12
	8388	1	D2S1338	17
	6374	0.76	D2S1338	25
	10077	1	D19S433	14
	8875	0.88	D19S433	16.2
	13204	1	vWA	14
	12110	0.92	vWA	17
	14645	1	TPOX	8
	7075	1	D18S51	12
	6372	0.9	D18S51	16
	15497	1	AMEL	Х
	10035	1	D5S818	12
	9373	0.93	D5S818	13
	5083	1	FGA	23
	4873	0.96	FGA	26
338H	14547	1	D8S1179	13 Minus A
	7371	1	D21S11	29
	7178	0.97	D21S11	31
	3577	0.98	D7S820	9
	3640	1	D7S820	10
	3981	1	CSF1PO	11
	3692	0.93	CSF1PO	13
	11134	1	D3S1358	16
	3094	0.31	TH01	6.3
	9975	1	TH01	7
	9948	1	TH01	9.3
	9372	1	D13S317	12
	8573	0.91	D13S317	13

11730	1	D16S539	11	
10889	0.93	D16S539	12	
5315	1	D2S1338	24	
4726	0.89	D2S1338	25	
8590	1	D19S433	14	
7743	0.9	D19S433	15	
15173	1	vWA	16	
8044	1	ТРОХ	8	
7592	0.94	ТРОХ	11	
5553	1	D18S51	12	
4377	0.79	D18S51	17	
12182	1	AMEL	х	
13936	1	D5S818	12	
4701	1	FGA	20	
4336	0.92	FGA	22	
7256	1	D8S1179	11	Minus A, Imbalance
6809	0.94	D8S1179	14	,
6367	1	D21S11	28	
6109	0.96	D21S11	29	
3354	1	D7S820	8	
3229	0.96	D7S820	10	
3879	1	CSF1PO	11	
3707	0.96	CSF1PO	12	
7022	1	D3S1358	17	
6071	0.86	D3S1358	18	
1649	0.21	TH01	5.3	
7805	1	TH01	6	
7585	0.97	TH01	9.3	
13513	1	D13S317	11	
9284	1	D16S539	11	
8753	0.94	D16S539	13	
4904	1	D2S1338	24	
4355	0.89	D2S1338	25	
13394	1	D19S433	12	
8561	1	vWA	14	
8121	0.95	vWA	16	
6291	1	TPOX	8	
6028	0.96	TPOX	11	
5271	1	D18S51	15	
4846	0.92	D18S51	16	
8439	1	AMEL	Х	
1952	0.23	AMEL	Y	
8061	1	D5S818	11	
8088	1	D5S818	12	
5150	1	FGA	19	
4072	0.79	FGA	25	
3805H	12992	1	D8S1179	12 Imbalance
-------	-------	------	---------	--------------
	12268	0.94	D8S1179	13
	11602	1	D21S11	28
	11356	0.98	D21S11	31
	8090	1	D7S820	9
	7330	0.91	D7S820	11
	9420	1	CSF1PO	11
	8738	0.93	CSF1PO	15
	14752	1	D3S1358	14
	13035	0.88	D3S1358	16
	23580	1	TH01	9.3
	14601	1	D13S317	12
	14357	0.98	D13S317	13
	14704	1	D16S539	10
	14515	0.99	D16S539	12
	10721	1	D2S1338	22
	9937	0.93	D2S1338	24
	14824	1	D19S433	12
	6806	0.46	D19S433	14
	14742	0.89	vWA	17
	16618	1	vWA	18
	13064	0.91	ТРОХ	8
	14286	1	TPOX	9
	13947	1	D18S51	14
	13422	0.96	D18S51	15
	11499	1	AMEL	X
	4101	0.36	AMEL	Y
	10943	1	D5S818	11
	9606	1	FGA	22
	8990	0.94	FGA	23
399H	14031	1	D8S1179	11 Minus A
	12753	0.91	D8S1179	14
	13214	1	D21S11	28
	11063	0.84	D21S11	33.2
	10000	1	D7S820	10
	11725	1	CSF1PO	12
	16585	1	D3S1358	16
	6274	0.44	TH01	6.3
	14419	1	TH01	7
	6035	0.42	TH01	7.3
	12287	0.85	TH01	8
	14021	1	D13S317	12
	12986	0.93	D13S317	14
	15363	1	D16S539	11
	14779	0.96	D16S539	12

	9931	1	D2S1338	18
	8902	0.9	D2S1338	19
	13299	1	D19S433	14
	12452	0.94	D19S433	15.2
	13782	0.99	vWA	17
	13924	1	vWA	18
	12784	1	TPOX	8
	11678	0.91	TPOX	11
	13399	1	D18S51	16
	9432	1	AMEL	Х
	13061	1	D5S818	11
	6987	1	FGA	19
	5445	0.78	FGA	24
417H	15695	1	D8S1179	13
	9512	1	D21S11	29
	9126	0.96	D21S11	30
	6926	1	D7S820	8
	6699	0.97	D7S820	10
	7164	1	CSF1PO	10
	6768	0.94	CSF1PO	12
	17556	1	D3S1358	15
	14288	1	TH01	6
	13776	0.96	TH01	9
	14441	1	D13S317	8
	14075	0.97	D13S317	11
	14373	1	D16S539	11
	14239	0.99	D16S539	12
	10020	1	D2S1338	17
	9236	0.92	D2S1338	19
	9495	1	D195433	14
	9014	0.95	D195433	15.2
	14541	1	VWA	14
	11610	0.8		19
	13409	1		0
	11/61	0.98		14
	10486	⊥ 0 01	D18551	14
	10465	0.91		x x
	11052	0.50		× v
	10149	1	D55818	12
	9287	0.92	D55818	13
	8119	1	FGA	22
	7460	0.92	FGA	23
420H	5/25	1	0851170	13 Minus A
72011	4928	0.91	D851179	14
		0.01		÷ ·

4336	1	D21S11	31.2	
4085	0.94	D21S11	33.2	
2768	1	D7S820	9	
2643	0.95	D7S820	12	
3244	1	CSF1PO	12	
3131	0.97	CSF1PO	14	
6914	1	D3S1358	14	
6866	0.99	D3S1358	16	
7659	1	TH01	6	
7316	0.96	TH01	8	
14025	1	D13S317	12	
7763	1	D16S539	11	
7796	1	D16S539	13	
9702	1	D2S1338	19	
11405	1	D19S433	15	
7563	1	vWA	19	
6841	0.9	vWA	20	
13331	1	TPOX	8	
9743	1	D18S51	16	
6671	1	AMEL	Х	
6670	1	AMEL	Y	
10913	1	D5S818	11	
3944	1	FGA	21	
3387	0.86	FGA	25	
6895	1	D8S1179	11	Minus A
6409	0.93	D8S1179	14	
6490	1	D21S11	28	
5869	0.9	D21S11	29	
2493	1	D7S820	7	
2063	0.83	D75820	12	
2966	1	CSF1PO	11	
2843	0.96	CSF1PO	12	
6202	0.92	D3S1358	15	
5552	0.82	D3S1358	16	
3191	0.43	TH01	6.3	
7475	1	TH01	/	
/366	0.99	TH01	9.3	
8032	1	D135317	8	
6/52	0.84	D135317	12	
8/45	1	D165539	12	
/812	0.89	D165539	13	
4198	1	D2S1338	17	
3387	0.81	D2S1338	23	
/974	1	D195433	13	
//26	0.97	D195433	13.2	
0.010	1	\/\//A	17	

	7571	0.92	vWA	18	
	5796	1	TPOX	9	
	5767	0.99	TPOX	11	
	4099	1	D18S51	12	
	2876	0.7	D18S51	20	
	10491	1	AMEL	х	
	11342	1	D5S818	11	
	5564	1	FGA	23	
444H	12460	1	D8S1179	12 Minus A, Imbalance	2
	11556	0.93	D8S1179	13	
	11273	1	D21S11	29	
	10643	0.94	D21S11	30	
	6031	1	D7S820	8	
	5641	0.94	D7S820	11	
	6291	1	CSF1PO	10	
	5842	0.93	CSF1PO	11	
	11688	1	D3S1358	15	
	6572	0.56	D3S1358	15.2	
	10842	0.93	D3S1358	16	
	12906	1	TH01	9.3	
	12064	0.9	D13S317	9	
	13456	1	D13S317	12	
	14587	1	D16S539	11	
	13506	0.93	D16S539	13	
	8827	1	D2S1338	18	
	7243	0.82	D2S1338	26	
	13187	1	D19S433	13	
	11951	0.91	D19S433	14	
	19129	1	vWA	18	
	11282	1	TPOX	8	
	11030	0.98	TPOX	11	
	3395	0.44	D18S51	12	
	7729	1	D18S51	16	
	14767	1	AMEL	Х	
	11980	1	D5S818	12	
	11416	0.95	D5S818	13	
	7643	1	FGA	23	
	6987	0.91	FGA	24	
550H	10999	1	D8S1179	13 Minus A	
	10083	0.92	D8S1179	14	
	10124	1	D21S11	28	
	9528	0.94	D21S11	30	
	5160	1	D7S820	7	
	4658	0.9	D7S820	10	
	5588	1	CSF1PO	11	

5258	0.94	CSF1PO	13	
11176	1	D3S1358	15	
10198	0.91	D3S1358	17	
14505	1	TH01	6	
14517	1	TH01	7	
13979	1	D13S317	10	
13291	0.95	D13S317	12	
14814	1	D16S539	11	
14559	0.98	D16S539	12	
8191	1	D2S1338	19	
7293	0.89	D2S1338	21	
10369	1	D19S433	15.2	
8916	0.86	D19S433	16.2	
11134	0.94	vWA	14	
11847	1	vWA	18	
10916	1	TPOX	9	
10502	0.96	TPOX	11	
7264	1	D18S51	14	
6722	0.93	D18S51	16	
12684	1	AMEL	Х	
12656	1	AMEL	Y	
14213	1	D5S818	11	
7502	1	FGA	19	
6861	0 91	FGA	20	
0004	0.51	IGA	20	
14405	0.51	D001170	20	N 45 A
14405	1	D8S1179	10	Minus A
14405 14038	1 0.97	D8S1179 D8S1179	10 12	Minus A
14405 14038 11294	0.91 0.97 1	D8S1179 D8S1179 D21S11	10 12 29	Minus A
14405 14038 11294 6380	1 0.97 1 0.99	D8S1179 D8S1179 D21S11 D7S820	10 12 29 11	Minus A
14405 14038 11294 6380 6431 7635	1 0.97 1 0.99 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSE1PO	10 12 29 11 12	Minus A
14405 14038 11294 6380 6431 7635 6882	1 0.97 1 0.99 1 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1P0 CSF1P0	10 12 29 11 12 9	Minus A
14405 14038 11294 6380 6431 7635 6882 13745	1 0.97 1 0.99 1 1 0.9 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358	10 12 29 11 12 9 12	Minus A
14405 14038 11294 6380 6431 7635 6882 13745 12226	1 0.97 1 0.99 1 1 0.9 1 0.9	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358	10 12 29 11 12 9 12 14	Minus A
14405 14038 11294 6380 6431 7635 6882 13745 12226 23379	1 0.97 1 0.99 1 1 0.9 1 0.89 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358 TH01	10 12 29 11 12 9 12 14 17 9,3	Minus A
14405 14038 11294 6380 6431 7635 6882 13745 12226 23379 17155	1 0.97 1 0.99 1 1 0.9 1 0.89 1 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358 TH01 D13S317	10 12 29 11 12 9 12 14 17 9.3 12	Minus A
14405 14038 11294 6380 6431 7635 6882 13745 12226 23379 17155 14942	1 0.97 1 0.99 1 1 0.9 1 0.89 1 1 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358 TH01 D13S317 D16S539	10 12 29 11 12 9 12 14 17 9.3 12 11	Minus A
14405 14038 11294 6380 6431 7635 6882 13745 12226 23379 17155 14942 14968	1 0.97 1 0.99 1 1 0.9 1 0.89 1 1 1 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 D13S317 D16S539 D16S539	10 12 29 11 12 9 12 14 17 9.3 12 11 13	Minus A
14405 14038 11294 6380 6431 7635 6882 13745 12226 23379 17155 14942 14968 11679	1 0.97 1 0.99 1 1 0.9 1 0.89 1 0.89 1 1 1 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358 TH01 D13S317 D16S539 D16S539 D2S1338	10 12 29 11 12 9 12 14 17 9.3 12 11 13 17	Minus A
14405 14038 11294 6380 6431 7635 6882 13745 12226 23379 17155 14942 14968 11679 9749	1 0.97 1 0.99 1 1 0.99 1 0.89 1 1 1 1 1 1 0.83	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 D13S317 D16S539 D16S539 D2S1338 D2S1338	10 12 29 11 12 9 12 14 17 9.3 12 11 13 17 22	Minus A
14405 14038 11294 6380 6431 7635 6882 13745 12226 23379 17155 14942 14968 11679 9749 13497	1 0.97 1 0.99 1 1 0.99 1 0.89 1 1 1 1 1 1 0.83 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 D13S317 D16S539 D16S539 D2S1338 D2S1338 D19S433	10 12 29 11 12 9 12 14 17 9.3 12 11 13 17 22 13	Minus A
14405 14038 11294 6380 6431 7635 6882 13745 12226 23379 17155 14942 14968 11679 9749 13497 14689	1 0.97 1 0.99 1 1 0.9 1 0.89 1 1 1 1 1 0.83 1 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1PO D3S1358 D3S1358 TH01 D13S317 D16S539 D16S539 D16S539 D2S1338 D2S1338 D19S433 vWA	10 12 29 11 12 9 12 14 17 9.3 12 11 13 17 22 13 14	Minus A
14405 14038 11294 6380 6431 7635 6882 13745 12226 23379 17155 14942 14968 11679 9749 13497 14689 11251	1 0.97 1 0.99 1 1 0.99 1 0.89 1 1 1 1 1 0.83 1 1 0.83 1 1 0.77	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 D13S317 D16S539 D16S539 D2S1338 D2S1338 D2S1338 D19S433 vWA vWA	10 12 29 11 12 9 12 14 17 9.3 12 11 13 17 22 13 14 20	Minus A
14405 14038 11294 6380 6431 7635 6882 13745 12226 23379 17155 14942 14968 11679 9749 13497 14689 11251 13115	1 0.97 1 0.99 1 1 0.99 1 0.89 1 1 1 1 0.89 1 1 1 0.83 1 1 0.83 1 1 0.83 0.83	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 D13S317 D16S539 D16S539 D16S539 D2S1338 D2S1338 D19S433 vWA vWA	10 12 29 11 12 9 12 14 17 9.3 12 11 13 17 22 13 14 20 8	Minus A
14405 14038 11294 6380 6431 7635 6882 13745 12226 23379 17155 14942 14968 11679 9749 13497 14689 11251 13115 7484	1 0.97 1 0.99 1 1 0.99 1 0.89 1 0.89 1 1 1 0.83 1 1 0.83 1 1 0.77 0.98 1	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1PO D3S1358 D3S1358 D3S1358 TH01 D13S317 D16S539 D16S539 D16S539 D2S1338 D2S1338 D19S433 vWA vWA vWA TPOX D18S51	10 12 29 11 12 9 12 14 17 9.3 12 14 17 9.3 12 11 13 17 22 13 14 20 8 18	Minus A
14405 14038 11294 6380 6431 7635 6882 13745 12226 23379 17155 14942 14968 11679 9749 13497 14689 11251 13115 7484 6473	1 0.97 1 0.99 1 1 0.99 1 0.89 1 0.89 1 1 1 0.83 1 1 0.83 1 1 0.77 0.98 1 0.86	D8S1179 D8S1179 D21S11 D7S820 D7S820 CSF1P0 D3S1358 D3S1358 D3S1358 TH01 D13S317 D16S539 D16S539 D2S1338 D19S433 vWA vWA vWA TPOX D18S51 D18S51	10 12 29 11 12 9 12 14 17 9.3 12 11 13 17 22 13 14 20 8 18 21	Minus A

	10461	0.99	AMEL	Y
	13198	1	D5S818	11
	12768	0.97	D5S818	12
	9282	1	FGA	21
589H	14519	1	D8S1179	13 Minus A
	7469	1	D21S11	30
	7050	0.94	D21S11	31.2
	3298	0.99	D7S820	10
	3319	1	D7S820	12
	3968	1	CSF1PO	10
	3639	0.92	CSF1PO	13
	8273	1	D3S1358	14
	7788	0.94	D3S1358	16
	14834	1	TH01	9.3
	9699	1	D13S317	11
	8842	0.91	D13S317	13
	12950	1	D165539	9
	11965	0.92	D165539	11
	6307	0.52	D251338	17
	5136	0.81	D251338	24
	8339	1	D195/33	1/1 2
	7797	1 0 0 1	0105433	16
	1/1579	0.54	ν/۸/Δ	16
	17570	1		8
	10087	1		12
	10987	1		12
	12307	1		12
	13403	1	D32010	12
	4290	1	FGA	21
	3008	0.83	FGA	20
6080H	6109	0.83	D8S1179	9 Minus A
	5344	0.72	D8S1179	13
	5822	1	D21S11	28
	5587	0.96	D21S11	30
	3467	1	D7S820	8
	5004	1	CSF1PO	12
	3869	0.76	D3S1358	15
	3559	0.7	D3S1358	17
	12979	1	TH01	9.3
	5583	1	D13S317	11
	5382	0.96	D13S317	12
	14704	1	D16S539	9
	4389	1	D2S1338	17
	3549	0.81	D2S1338	24
	7429	1	D19S433	13
	6872	0.93	D19S433	14

	6745	0.88	vWA	17	9
	6538	0.85	vWA	19	,
	5288	1	TPOX	9	
	5024	0.95	TPOX	11	
	3031	1	D18S51	14	
	2821	0.93	D18S51	16	
	11151	1	AMEL	х	
	4983	1	D5S818	11	
	4702	0.94	D5S818	13	
	2166	1	FGA	20	
	1737	0.8	FGA	23	
6233H	9745	0.73	D8S1179	10 Minus A	
	8130	0.61	D8S1179	15	
	9531	1	D21S11	27	
	9248	0.97	D21S11	29	
	2814	1	D7S820	9	
	2454	0.87	D7S820	12	
	4211	1	CSF1PO	12	
	3734	0.89	CSF1PO	13	
	6626	0.75	D3S1358	16	
	5806	0.66	D3S1358	17	
	5739	0.51	TH01	8.3	
	10759	0.96	TH01	9	
	11211	1	TH01	9.3	
	9492	1	D13S317	10	
	8694	0.92	D13S317	12	
	14035	1	D16S539	11	
	7752	1	D2S1338	19	
	7034	0.91	D2S1338	20	
	16576	1	D195433	14	
	11236	0.83	VWA	17	
	10557	0.78	VWA	18	
	7944	1	TPOX	8	
	7854	0.99		11	
	2131	1	D10001	12	
	4025	0.9		14 V	
	11630	0.99		×	
	8596	1		10	
	780/	۲ ۱ ۵ ۱	D55818	11	
	3521	1	FGA	20	
	3239	0.92	FGA	22	
	2_33	0.52			
651H	14607	1	D8S1179	10 Minus A, Stutter, Partial Pro	fi
	14199	0.97	D8S1179	15	
	11961	1	D21S11	29	

10327	0.86	D21S11	32.2
4289	1	D7S820	10
4016	0.94	D7S820	12
8384	1	CSF1PO	12
14476	1	D3S1358	14
13623	0.94	D3S1358	17
14616	1	TH01	8
4473	0.31	TH01	8.3
14589	1	TH01	9
14644	1	D13S317	11
13617	0.93	D13S317	12
20176	1	D16S539	11
6226	1	D2S1338	20
5642	0.91	D2S1338	22
14724	1	D19S433	13
16943	1	TPOX	8
5373	1	D18S51	16
3730	0.69	D18S51	22
8373	1	AMEL	Х
14281	1	D5S818	11
10969	0.77	D5S818	12
11376	1	FGA	25
13798	1	D8S1179	10
12609	0.91	D8S1179	13
10751	1	D21S11	28
8789	0.82	D21S11	32.2
6772	1	D7S820	8
6466	0.95	D7S820	11
7776	1	CSF1PO	11
7120	0.92	CSF1PO	12
13142	0.9	D3S1358	17
14592	1	D3S1358	18
11875	0.98	TH01	6
12107	1	TH01	7
14941	1	D13S317	8
15579	1	D16S539	8
13915	0.89	D16S539	13
9715	1	D2S1338	17
7789	0.8	D2S1338	24
15513	1	D19S433	14
15389	1	vWA	14
15031	0.98	vWA	17
17096	1	TPOX	8
10981	1	D18S51	13
9417	0.86	D18S51	16
17261	1	AMEL	Х

	12274	1	D5S818	10	
	10982	0.89	D5S818	11	
	7735	1	FGA	20	
	6459	0.84	FGA	24.2	
735H	13640	1	D8S1179	12	Imbalance
	12854	0.94	D8S1179	13	
	10604	1	D21S11	29	
	10057	0.95	D21S11	32.2	
	13412	1	D7S820	10	
	14060	1	CSF1PO	11	
	18364	1	D3S1358	15	
	9131	0.62	TH01	8	
	14725	1	TH01	9.3	
	14353	1	D13S317	11	
	12178	0.85	D13S317	12	
	14508	1	D16S539	11	
	14489	1	D16S539	12	
	11235	1	D2S1338	19	
	9566	0.85	D2S1338	24	
	13305	1	D19S433	13	
	13024	0.98	D19S433	14	
	14763	1	vWA	17	
	14735	1	vWA	18	
	14530	1	TPOX	8	
	14243	0.98	ΤΡΟΧ	11	
	10571	1	D18S51	18	
	8959	0.85	D18S51	22	
	12493	1	AMEL	Х	
	11048	0.88	AMEL	Y	
	10973	0.95	D5S818	11	
	11603	1	D5S818	13	
	7278	1	FGA	22.2	
	6990	0.96	FGA	24	
746H	8869	1	D8S1179	11	Minus A
	8020	0.9	D8S1179	13	
	6888	1	D21S11	30	
	6604	0.96	D21S11	31.2	
	4948	1	D7S820	8	
	4569	0.92	D7S820	10	
	5917	1	CSF1PO	11	
	5438	0.92	CSF1PO	12	
	10649	1	D3S1358	14	
	10063	0.94	D3S1358	15	
	18807	1	TH01	6	
	11547	1	D13S317	9	

11/17	0 00	D120217	10	
12622	0.55	D165530	01	
11382	1	D165530	13	
7595	0.5	0103333	10	
6425	0.95	0231330	15	
7706	0.83	D231330	1/ 2	
6272	L 0.91	D105433	14.2	
10442	0.01	D193435	10	
10443	1		10	
9740 17675	0.95		19	
7764	1		0 15	
7704	0.02	D10551	10	
9665	0.92		10 V	
9553			× ×	
9555	0.99		11	
10262	0.95	D55010	12	
6505	1	ECV	24	
5929	0.91	FGA	24	
5525	0.51	IUA	23	
7/09	1	D851179	8	Minus A Imbalance
7209	0.97	D851179	13	Minus A, inibulance
6199	0.57	D031173	21.2	
5475	0.88	D21511	32.2	
3920	1	D75820	8	
1105	0.28	D75820	12	
4948	1	CSF1PO	10	
4485	0.91	CSF1PO	12	
7846	0.99	D3S1358	15	
7945	1	D3S1358	17	
8009	0.98	TH01	6	
8163	1	TH01	9.3	
9924	1	D13S317	12	
9186	0.93	D13S317	13	
14843	1	D16S539	12	
7483	1	D2S1338	14	
5401	0.72	D2S1338	26	
9456	1	D19S433	12	
8201	0.87	D19S433	13	
8519	1	vWA	16	
8236	0.97	vWA	19	
6670	0.97	TPOX	8	
6860	1	TPOX	10	
7978	1	D18S51	13	
7403	0.93	D18S51	14	
7605	0.98	AMEL	Х	
7773	1	AMEL	Y	
8413	1	D5S818	12	

	7420	0.88	D5S818	13	102
	10295	1	FGA	24	102
7572H	7458	1	D8S1179	10 N	/linus A
	7100	0.95	D8S1179	14	
	6130	1	D21S11	28	
	5879	0.96	D21S11	30	
	7424	1	D7S820	10	
	4843	1	CSF1PO	10	
	4538	0.94	CSF1PO	12	
	8038	1	D3S1358	17	
	7263	0.9	D3S1358	18	
	7931	1	TH01	7	
	7669	0.97	TH01	9.3	
	13604	1	D13S317	11	
	10507	1	D16S539	12	
	9869	0.94	D16S539	13	
	6262	1	D2S1338	17	
	5376	0.86	D2S1338	24	
	8429	1	D19S433	14	
	7497	0.89	D19S433	15	
	9127	1	vWA	15	
	8396	0.92	vWA	16	
	13464	1	ТРОХ	8	
	7239	1	D18S51	10	
	6665	0.92	D18S51	14	
	13052	1	AMEL	X	
	12739	1	D5S818	12	
	5126	1	FGA	22	
	4696	0.92	FGA	25	
		0.01			
7758H	10109	0.76	D8S1179	10 N	Ainus A. Allelic Dropout. Imb
	8710	0.65	D8S1179	14	
	9460	1	D21S11	28	
	9376	0.99	D21S11	30	
	2943	1	D7S820	9	
	2771	0.94	D75820	13	
	4314	1	CSF1PO	10	
	4041	0.94	CSF1PO	12	
	10676	0.79	D3S1358		
	5156	0.45	TH01	6.3	
	11440	1	TH01	7	
	9118	1	D135317	11	
	8040	0 88	D135317	14	
	13909	1	D165539	9	
	13622	0.98	D165539	12	
	8208	1	D2S1338		
		-			

	6380	0.78	D2S1338	24	
	11073	1	D19S433	14	
	10490	0.95	D19S433	16	
	10820	0.6	vWA	16	
	18036	1	vWA	19	
	14270	1	TPOX	8	
	4720	1	D18S51	15	
	4285	0.91	D18S51	17	
	12608	1	AMEL	Х	
	8752	1	D5S818	11	
	7977	0.91	D5S818	12	
	3447	1	FGA	23	
	3178	0.92	FGA	24	
777H	6115	1	D8S1179	8	Minus A
	5438	0.89	D8S1179	15	
	4911	1	D21S11	29	
	4624	0.94	D21S11	32.2	
	2948	1	D7S820	10	
	2850	0.97	D7S820	13	
	7426	1	CSF1PO	10	
	6582	1	D3S1358	14	
	6222	0.95	D3S1358	15	
	6881	1	TH01	6	
	6667	0.97	TH01	9.3	
	7818	1	D13S317	8	
	7324	0.94	D13S317	11	
	8655	1	D16S539	9	
	8006	0.93	D16S539	12	
	4700	1	D2S1338	20	
	4315	0.92	D2S1338	23	
	5870	1	D19S433	13	
	5517	0.94	D19S433	15	
	6950	1	vWA	16	
	6476	0.93	vWA	18	
	6018	1	TPOX	9	
	5761	0.96	TPOX	11	
	6065	1	D18S51	13	
	5469	0.9	D18S51	14	
	12265	1	AMEL	Х	
	12106	1	D5S818	9	
	4446	1	FGA	21	
	3941	0.89	FGA	25	
9066H	11609	1	D8S1179	11	Minus A, Imbalance
	11379	0.98	D8S1179	13	
	10164	1	D21S11	28	

9469	0.93	D21S11	30	
4830	1	D7S820	9	
1337	0.28	D7S820	11	
12247	1	CSF1PO	11	
11323	1	D3S1358	17	
9834	0.87	D3S1358	18	
14002	1	TH01	7	
13928	0.99	TH01	9.3	
13982	1	D13S317	8	
12211	0.87	D13S317	13	
17336	1	D16S539	11	
8858	1	D2S1338	20	
7686	0.87	D2S1338	21	
14930	1	D19S433	12	
11845	0.79	D19S433	15	
13615	1	vWA	18	
13274	0.97	vWA	19	
17663	1	ΤΡΟΧ	9	
8401	1	D18S51	12	
7185	0.86	D18S51	16	
13244	1	AMEL	Х	
7390	0.56	AMEL	Y	
11779	1	D5S818	10	
10966	0.93	D5S818	13	
5904	1	FGA	23	
5392	0.91	FGA	26	
8546	1	D8S1179	11	Minus A
7619	0.89	D8S1179	15	
6573	1	D21S11	28	
6405	0.97	D21S11	30	
3872	1	D7S820	8	
3693	0.95	D7S820	10	
4572	1	CSF1PO	12	
4141	0.91	CSF1PO	13	
14981	1	D3S1358	15	
10462	0.93	TH01	8	
11208	1	TH01	9.3	
10889	1	D13S317	9	
9935	0.91	D13S317	11	
13018	1	D16S539	8	
11159	0.86	D16S539	12	
6524	1	D2S1338	20	
5627	0.86	D2S1338	24	
13502	1	D19S433	13	
10005	1	vWA	15	
9574	0.96	vWA	18	

	8793	1	TPOX	8
	8018	0.91	TPOX	10
	6478	1	D18S51	14
	5284	0.82	D18S51	19
	10858	1	AMEL	х
	10665	0.98	AMEL	Y
	8656	1	D5S818	11
	8225	0.95	D5S818	13
	5838	1	FGA	19
	5042	0.86	FGA	24
0104	7049	1	D851170	14 Minus A
94011	704 <i>3</i> 6617	1 0 0 1	D051179	14 Minus A 15
	10880	0.94	D031179	30
	10880	1	DZ1311	8
	2282	1 0 00	D73020	11
	J383 //837	0.88		11
	4857	0 01		12
	4385	0.91		14
	9344	1 0 8 0	D201250	14
	0200	0.89	TU01	13
	9555	1 0.00		0
	9133	0.90	1001	9 10
	9028	1 0 0 2	0120217	10
	14962	0.92	D165520	0
	6449	1	0203333	10
	5850	⊥ 0 01	D251338	22
	7188	0.51	D195/33	13
	7100		D105/33	13.2
	8604	0.50	V\N/A	16
	8310	0 97		19
	7948	0.57	τροχ	9
	7948	1	ΤΡΟΧ	11
	6479	1	D18551	14
	5771	0.89	D18551	17
	13131	0.05	AMFI	X
	7580	1	D55818	12
	6874	0.91	D55818	13
	9886	1	FGA	22
01201	0667	1	D851170	14 Minus A
545511	002 <i>1</i>	U 03 T	D851179	14 WIIIUS A 15
	1017/	0.93	001119	3U T2
	131/4	1	021311	5U 0
	41/U 2072	T T	073020	0 11
	7072	0.95		10
	4944 1520	د ۵ U ۲		10
	+505	0.55	C31 I 1 0	14

13	209	0.97	D3S1358	16	
3	040	0.27	TH01	6.3	
11	249	1	TH01	7	
11	.068	0.98	TH01	9.3	
13	326	1	D13S317	11	
11	.862	0.89	D13S317	12	
20	262	1	D16S539	11	
6	790	1	D2S1338	19	
6	492	0.96	D2S1338	22	
9	686	1	D19S433	15	
8	729	0.9	D19S433	17.2	
12	248	1	vWA	14	
10	478	0.86	vWA	18	
8	943	1	TPOX	8	
8	399	0.94	TPOX	9	
6	871	1	D18S51	12	
5	807	0.85	D18S51	16	
12	.023	1	AMEL	Х	
11	.894	0.99	AMEL	Y	
10	700	1	D5S818	12	
9	873	0.92	D5S818	13	
5	926	1	FGA	21	
5	441	0.92	FGA	23	
12	307	1	D8S1179	9	Minus A
9	561	0.78	D8S1179	15	
15	160	1	D21S11	28	
3	886	1	D7S820	11	
3	610	0.93	D7S820	12	
9	694	1	CSF1PO	12	
12	457	0.9	D3S1358	18	
12	281	1	TH01	9.3	
11	.939	1	D13S317	12	
10	645	0 00		10	
14		0.69	D13S317	13	
13	480	0.89	D13S317 D16S539	13 10	
13	480 883	0.89 1 0.96	D13S317 D16S539 D16S539	13 10 12	
7	480 883 643	0.89 1 0.96 1	D13S317 D16S539 D16S539 D2S1338	13 10 12 17	
7 6	480 883 643 822	0.89 1 0.96 1 0.89	D13S317 D16S539 D16S539 D2S1338 D2S1338	13 10 12 17 22	
13 7 6 13	480 883 643 822 252	0.89 1 0.96 1 0.89 0.95	D13S317 D16S539 D16S539 D2S1338 D2S1338 D19S433	13 10 12 17 22 12	
13 7 6 13 10	480 883 643 822 252 429	0.89 1 0.96 1 0.89 0.95 0.84	D13S317 D16S539 D16S539 D2S1338 D2S1338 D19S433 vWA	13 10 12 17 22 12 17	
13 7 6 13 10 12	480 883 643 822 252 429 370	0.89 1 0.96 1 0.89 0.95 0.84 1	D13S317 D16S539 D16S539 D2S1338 D2S1338 D19S433 vWA vWA	13 10 12 17 22 12 17 18	
13 7 6 13 10 12 15	480 883 643 822 252 429 370 559	0.89 1 0.96 1 0.89 0.95 0.84 1 1	D13S317 D16S539 D16S539 D2S1338 D2S1338 D19S433 vWA vWA vWA	13 10 12 17 22 12 17 18 11	
13 7 6 13 10 12 15 5	480 883 643 822 252 429 370 559 491	0.89 1 0.96 1 0.89 0.95 0.84 1 1 1	D13S317 D16S539 D2S1338 D2S1338 D19S433 vWA vWA TPOX D18S51	13 10 12 17 22 12 17 18 11 19	
13 7 6 13 10 12 15 5 4	480 883 643 822 252 429 370 559 491 917	1 0.96 1 0.89 0.95 0.84 1 1 0.9	D13S317 D16S539 D2S1338 D2S1338 D19S433 vWA vWA TPOX D18S51 D18S51	13 10 12 17 22 12 17 18 11 19 20	
13 7 6 13 10 12 15 5 4 7	480 883 643 822 252 429 370 559 491 917 929	0.89 1 0.96 1 0.89 0.95 0.84 1 1 1 0.9 1	D13S317 D16S539 D2S1338 D2S1338 D19S433 vWA vWA vWA TPOX D18S51 D18S51 AMEL	13 10 12 17 22 12 17 18 11 19 20 X	
13 7 6 13 10 12 15 5 4 7 11	480 883 643 822 252 429 370 559 491 917 929 090	0.89 1 0.96 1 0.89 0.95 0.84 1 1 0.9 1 1	D13S317 D16S539 D2S1338 D2S1338 D19S433 vWA vWA TPOX D18S51 D18S51 AMEL D5S818	13 10 12 17 22 12 17 18 11 19 20 X 9	

	5294	1	FGA	20	107
	4193	0.79	FGA	24	
Саселин	/1357	1	D851179	10	
Caseyn	3979	0.91	D851179	10	
	1772	0.91	D031173	28	
	1806	0.50	D21511	31.2	
	813	0.97	D75820	8	
	836	0.57	D75820	11	
	1000	1	CSF1PO	10	
	991	0 99	CSF1PO	11	
	11940	0.55	D351358	14	
	3752	1	TH01	6	
	3205	0.85	TH01	8	
	3103	1	D135317	9	
	2938	0.95	D135317	11	
	2330	0.55	D165539	11	
	2409	0.99	D165539	12	
	1074	1	D2S1338	20	
	952	0.89	D2S1338	25	
	3651	0.97	D195433	14	
	3754	1	D195433	16	
	7038	- 1	vWA	18	
	2330	- 1	TPOX	9	
	2037	0.87	TPOX	11	
	1541	1	D18S51	10	
	1465	0.95	D18S51	14	
	9699	1	AMEL	х	
	4687	1	D5S818	12	
	4132	0.88	D5S818	13	
	2025	1	FGA	20	
	1891	0.93	FGA	21	
ChristiH	13418	1	D8S1179	14 Minu	ıs A, Allelic Dropout
	8458	1	D21S11	28	
	7886	0.93	D21S11	30	
	4458	1	D7S820	8	
	3814	0.86	D7S820	12	
	4773	1	CSF1PO	10	
	4236	0.89	CSF1PO	11	
	13915	1	D3S1358	14	
	13977	1	D3S1358	16	
	14896	1	TH01	6	
	14855	1	D13S317	11	
	11073	1	D16S539	11	
	10168	0.92	D16S539	12	
	5170	1	D2S1338	23	

	4748	0.92	D2S1338	24
	11500	1	D19S433	15
	13586	1	vWA	14
	10852	0.8	vWA	18
	8453	1	TPOX	8
	7898	0.93	TPOX	9
	14246	1	D18S51	12
	10960	1	AMEL	Х
	13643	1	D5S818	11
	11840	0.87	D5S818	12
	8090	1	FGA	20
	7038	0.87	FGA	23
JDWH	9657	1	D8S1179	10
	7603	0.79	D8S1179	14
	4766	1	D21S11	30
	4148	0.87	D21S11	31
	2462	1	D7S820	10
	2429	0.99	D7S820	12
	4549	1	CSF1PO	12
	10506	1	D3S1358	14
	10487	1	D3S1358	16
	6928	1	TH01	6
	6816	0.98	TH01	9
	7588	1	D13S317	8
	7305	0.96	D13S317	9
	11314	1	D16S539	11
	2839	1	D2S1338	18
	2728	0.96	D2S1338	22
	7913	1	D19S433	15
	7133	0.9	D19S433	16.2
	8134	1	vWA	16
	8054	0.99	vWA	18
	4971	1	TPOX	8
	4458	0.9	TPOX	11
	4346	1	D18S51	12
	3966	0.91	D18S51	13
	9093	1	AMEL	Х
	8429	0.93	AMEL	Y
	10137	1	D5S818	12
	7549	0.74	D5S818	13
	4739	1	FGA	20
	4295	0.91	FGA	21
LouieH	2971	1	D8S1179	12
	2599	0.87	D8S1179	13
	2770	1	D21S11	29

768	1	D7S820	10	
669	0.87	D7S820	12	
1443	1	CSF1PO	10	
3715	1	D3S1358	15	
3371	0.91	D3S1358	18	
4592	1	TH01	9.3	
3817	1	D13S317	12	
3450	1	D16S539	12	
907	1	D2S1338	23	
702	0.77	D2S1338	24	
5229	1	D19S433	14	
2908	1	vWA	15	
2703	0.93	vWA	18	
1853	1	TPOX	7	
1554	0.84	TPOX	8	
1304	1	D18S51	12	
1292	0.99	D18S51	14	
6256	1	AMEL	Х	
5062	1	D5S818	12	
1360	1	FGA	22	
1193	0.88	FGA	23	
6306	1	D8S1179	14	Minus A
6015	0.95	D8S1179	15	
5985	1	D21S11	30	
5644	0.94	D21S11	34.2	
4397	1	D7S820	12	
3764	0.86	D7S820	13	
4492	1	CSF1PO	10	
4337	0.97	CSF1PO	12	
8487	1	D3S1358	15	
7878	0.93	D3S1358	18	
8818	1	TH01	6	
8664	0.98	TH01	9.3	
10806	1	D13S317	8	

0.89 D13S317

0.87 D2S1338

0.94

0.75

1 D16S539

1 D2S1338

1 D19S433

D19S433

vWA

TPOX

D18S51

D18S51

AMEL

Х

EDGE

008E

	6740	0.85	AMEL	Y
	11738	1	D5S818	11
	6114	1	FGA	19
	5823	0.95	FGA	20
062E	14222	1	D8S1179	14 Minus A
	10571	1	D21S11	29
	10227	0.97	D21S11	31.2
	4755	1	D7S820	10
	4507	0.95	D7S820	12
	6758	1	CSF1PO	11
	5953	0.88	CSF1PO	12
	13828	0.97	D3S1358	14
	14220	1	D3S1358	15
	14769	0.99	TH01	6
	14978	1	TH01	9.3
	20844	1	D13S317	11
	20419	1	D16S539	11
	9100	1	D2S1338	18
	8274	0.91	D2S1338	19
	9928	1	D19S433	15
	14930	1	vWA	16
	14112	0.95	vWA	17
	13835	1	ТРОХ	8
	13341	0.96	TPOX	10
	6593	1	D18551	16
	5564	0.84	D18551	20
	10715	0.88	AMFL	X
	12211	1	AMFL	Ŷ
	13209	1	D5S818	12
	6443	1	FGA	23
	5691	0.88	FGA	24
	0001	0.00		
088E	7655	1	D8S1179	13 Minus A
	7092	0.93	D8S1179	14
	12630	1	D21S11	32.2
	8148	1	D7S820	12
	4676	1	CSF1PO	10
	4016	0.86	CSF1PO	13
	13722	1	D3S1358	15
	8288	0.97	TH01	7
	8532	1	TH01	9.3
	10685	1	D13S317	8
	9694	0.91	D13S317	13
	12357	1	D16S539	9
	11252	0.91	D16S539	10
	6059	1	D2S1338	20

	5423	0.9	D2S1338	23	
	7875	1	D19S433	13	
	7332	0.93	D19S433	14	
	7995	0.97	vWA	15	
	8214	1	vWA	18	
	11700	1	TPOX	8	
	6043	1	D18S51	15	
	5452	0.9	D18S51	18	
	12883	1	AMEL	х	
	7934	0.92	D5S818	11	
	8591	1	D5S818	13	
	9841	1	FGA	24	
127E	14200	1	D8S1179	13	Minus A
	8420	1	D21S11	30	
	7662	0.91	D21S11	30.2	
	3984	1	D7S820	8	
	3521	0.88	D7S820	12	
	4911	1	CSF1PO	11	
	4405	0.9	CSF1PO	14	
	9592	1	D3S1358	15	
	8656	0.9	D3S1358	18	
	13713	1	TH01	6	
	13715	1	TH01	7	
	12274	1	D13S317	8	
	10626	0.87	D13S317	11	
	18060	1	D16S539	11	
	7090	1	D2S1338	17	
	6541	0.92	D2S1338	19	
	10940	1	D19S433	12	
	9836	0.9	D19S433	13	
	12966	1	vWA	16	
	11468	0.88	vWA	17	
	15517	1	TPOX	8	
	12310	1	D18S51	14	
	12404	1	AMEL	Х	
	9873	1	D5S818	11	
	8889	0.9	D5S818	12	
	5181	1	FGA	21.2	
	4858	0.94	FGA	22	
144E	8592	1	D8S1179	11	Minus A, Imbalance
	7787	0.91	D8S1179	14	
	7428	1	D21S11	28	
	7372	0.99	D21S11	30	
	4305	1	D7S820	10	
	4012	0.93	D7S820	12	

4986	1	CSF1PO	10	
4810	0.96	CSF1PO	12	
8346	1	D3S1358	16	
7209	0.86	D3S1358	19	
2145	0.22	TH01	6	
9890	1	TH01	9.3	
11266	1	D13S317	9	
11098	0.99	D13S317	10	
12210	1	D16S539	12	
11750	0.96	D16S539	13	
6472	1	D2S1338	19	
5565	0.86	D2S1338	25	
8862	1	D19S433	13	
8329	0.94	D19S433	14	
14549	1	vWA	15	
8260	1	TPOX	8	
8140	0.99	TPOX	9	
6159	1	D18S51	16	
5733	0.93	D18S51	18	
9493	0.98	AMEL	Х	
9685	1	AMEL	Y	
9631	1	D5S818	11	
8538	0.89	D5S818	13	
6237	1	FGA	20	
5650	0.91	FGA	21	
11193	1	D8S1179	14	Minus A
5560	1	D21S11	28	
5160	0.93	D21S11	32.2	
3612	1	D7S820	11	
3197	0.89	D7S820	12	
3891	1	CSF1PO	10	
3681	0.95	CSF1PO	12	
5642	1	D3S1358	15	
5389	0.96	D3S1358	17	
5982	0.94	TH01	6	
6334	1	TH01	9.3	
12081	1	D13S317	11	
13345	1	D16S539	11	
5125	1	D2S1338	19	
4568	0.89	D2S1338	23	
6309	1	D19S433	13	
5824	0.92	D19S433	14	
6820	1	vWA	15	
6359	0.93	vWA	18	
5610	1	TPOX	10	
5510	0.98	TPOX	11	

	11324	1	D18S51	14	
	12125	1	AMEL	Х	
	6732	1	D5S818	11	
	6301	0.94	D5S818	12	
	4511	1	FGA	21	
	4235	0.94	FGA	24	
2145E	14657	1	D8S1179	12	Minus A, Imbalance
	14402	0.98	D8S1179	13	
	12861	1	D21S11	30	
	12637	0.98	D21S11	31.2	
	7859	1	D7S820	9	
	7190	0.91	D7S820	10	
	10013	1	CSF1PO	10	
	9476	0.95	CSF1PO	11	
	17280	1	D3S1358	14	
	14891	0.86	D3S1358	15	
	14836	1	TH01	6	
	12215	0.82	TH01	8	
	14922	1	D13S317	8	
	14605	0.98	D13S317	12	
	17476	1	D16S539	9	
	14808	0.85	D16S539	12	
	11065	1	D2S1338	17	
	8615	0.78	D2S1338	25	
	12669	0.84	D19S433	13	
	3968	0.26	D19S433	14	
	13077	0.72	vWA	17	
	18285	1	vWA	18	
	14158	0.95	ТРОХ	8	
	14932	1	ТРОХ	11	
	14707	1	D18S51	14	
	7456	1	AMEL	х	
	12944	1	D5\$818	11	
	12404	0.96	D5S818	12	
	9217	1	FGA	22	
	8493	0.92	FGA	23	
220E	14308	1	D8S1179	13	Minus A
	14058	0.98	D8S1179	14	
	14024	1	D21S11	30	
	13377	0.95	D21S11	31.2	
	7968	1	D7S820	8	
	7416	0.93	D7S820	10	
	8417	1	CSF1PO	9	
	7919	0.94	CSF1PO	12	
	13682	1	D3S1358	14	

9400	0.69	D3S1358	16.2	
12186	0.89	D3S1358	17	
14770	1	TH01	6	
14601	0.99	TH01	9.3	
13335	0.92	D13S317	11	
14519	1	D13S317	12	
19297	1	D16S539	9	
14674	0.76	D16S539	12	
10195	1	D2S1338	21	
9729	0.95	D2S1338	24	
11001	0.78	D19S433	14	
10684	0.75	D19S433	15	
12476	0.89	vWA	17	
13958	1	vWA	19	
16433	1	TPOX	8	
10970	1	D18S51	12	
8428	0.77	D18S51	18	
8215	1	AMEL	Х	
13290	1	D5S818	11	
13119	0.99	D5S818	12	
9359	1	FGA	21	
8294	0.89	FGA	24	
8596	1	D8S1179	10	Minus A, Imbalance
8110	0.94	D8S1179	12	
7262	1	D21S11	31	
6891	0.95	D21S11	32.2	
6568	1	D7S820	11	
3701	1	CSF1PO	12	
3464	0.94	CSF1PO	14	
6607	1	D3S1358	17	
6092	0.92	D3S1358	18	
9085	1	TH01	6	
8901	0.98	TH01	8	
9813	1	D13S317	10	
8890	0.91	D13S317	11	
10327	1	D16S539	11	
9863	0.96	D16S539	13	
5832	1	D2S1338	17	
5261	0.9	D2S1338	19	
8017	1	D19S433	13	
7449	0.93	D19S433	14	
14891	1	vWA	16	
7669	1	TPOX	8	
6994	0.91	TPOX	9	
5559	1	D18S51	11	

247E

	12834	1	AMEL	Х	
	8836	1	D5S818	9	
	7959	0.9	D5S818	11	
	4664	1	FGA	20	
	3868	0.83	FGA	25	
2518E	9543	1	D8S1179	10	Minus A
	8608	0.9	D8S1179	11	
	6866	1	D21S11	29	
	6733	0.98	D21S11	31.2	
	7419	1	D7S820	10	
	4914	1	CSF1PO	11	
	4401	0.9	CSF1PO	13	
	14036	1	D3S1358	18	
	10932	1	TH01	6	
	10358	0.95	TH01	9.3	
	10477	1	D13S317	8	
	9607	0.92	D13S317	11	
	18860	1	D16S539	11	
	5740	1	D2S1338	22	
	5303	0.92	D2S1338	24	
	9373	1	D19S433	13	
	8818	0.94	D19S433	15	
	11539	1	vWA	17	
	10214	0.89	vWA	18	
	9141	1	TPOX	8	
	8674	0.95	TPOX	11	
	7192	1	D18S51	15	
	6388	0.89	D18S51	16	
	12943	1	AMEL	Х	
	13506	1	D5S818	11	
	4737	1	FGA	23	
	4275	0.9	FGA	26	
297E	13417	1	D8S1179	13	Minus A, Imbalance
	12221	0.91	D8S1179	14	
	13116	1	D21S11	31.2	
	11640	0.89	D21S11	32.2	
	9914	1	D7S820	11	
	12779	1	CSF1PO	10	
	11746	0.98	D3S1358	14	
	8654	0.72	D3S1358	19	
	11460	0.98	TH01	7	
	11671	1	TH01	8.3	
	14486	1	D13S317	8	
	13999	0.97	D13S317	11	
	11644	0.8	D16S539	9	

14588	1	D16S539	13	
10092	1	D2S1338	17	
8206	0.81	D2S1338	24	
14371	1	D19S433	13	
8048	0.56	D19S433	14	
13645	1	vWA	18	
13199	0.97	vWA	19	
12759	1	TPOX	8	
11564	0.91	TPOX	11	
7697	1	D18S51	14	
6543	0.85	D18S51	17	
13750	1	AMEL	Х	
11003	0.8	AMEL	Y	
11671	1	D5S818	11	
11659	1	D5S818	12	
6845	1	FGA	20	
6314	0.92	FGA	21	
10584	1	D8S1179	13	Minus A
9125	0.86	D8S1179	14	
8411	1	D21S11	28	
8120	0.97	D21S11	30	
7472	1	D7S820	10	
9437	1	CSF1PO	10	
9075	1	D3S1358	17	
8063	0.89	D3S1358	18	
17086	1	TH01	9.3	
12318	1	D13S317	8	
10902	0.89	D13S317	11	
13327	1	D16S539	12	
12299	0.92	D16S539	13	
5937	1	D2S1338	24	
5321	0.9	D2S1338	25	
10825	1	D19S433	13	
9833	0.91	D19S433	15	
12291	1	vWA	14	
10813	0.88	vWA	19	
8903	1	TPOX	11	
8175	0.92	TPOX	12	
6018	1	D18S51	13	
5297	0.88	D18S51	17	
11877	1	AMEL	Х	
11395	0.96	AMEL	Y	
14375	1	D5S818	13	
4774	1	FGA	23	
4432	0.93	FGA	25	

L1E	17306	1	D8S1179	12	Minus A, Imbalance	117
	11093	1	D21S11	28		11/
	10802	0.97	D21S11	29		
	4397	1	D7S820	10		
	3966	0.9	D7S820	13		
	6453	1	CSF1PO	10		
	5879	0.91	CSF1PO	11		
	12430	0.93	D3S1358	11		
	13343	1	D3S1358	15		
	14987	1	TH01	6		
	14907	0.99	TH01	9.3		
	12409	0.87	D13S317	8		
	14259	1	D13S317	11		
	14396	0.99	D16S539	13		
	14471	1	D16S539	15		
	8301	1	D2S1338	19		
	6883	0.83	D2S1338	26		
	14130	0.95	D19S433	12		
	13555	0.91	D19S433	14		
	3551	0.3	vWA	15		
	11800	1	vWA	17		
	13880	1	TPOX	8		
	12856	0.93	TPOX	11		
	14034	1	D18S51	15		
	5723	1	AMEL	Х		
	11267	1	D5S818	12		
	11060	0.98	D5S818	13		
	7090	1	FGA	20		
	5894	0.83	FGA	24		
L2A	15000	1	D8S1179	10	Minus A	
	14304	0.95	D8S1179	14		
	13037	1	D21S11	30		
	11662	0.89	D21S11	31		
	6455	1	D7S820	10		
	6283	0.97	D7S820	12		
	14201	1	CSF1PO	12		
	12208	0.98	D3S1358	14		
	12461	1	D3S1358	16		
	14574	0.83	TH01	6		
	17602	1	TH01	9		
	14622	0.98	D13S317	8		
	14890	1	D13S317	9		
	22760	1	D16S539	11		
	10621	1	D2S1338	18		
	9803	0.92	D2S1338	22		
	12916	1	D19S433	15		

		12349	0.96	D19S433	16.2
		14953	1	vWA	16
		14158	0.95	vWA	18
		14720	1	TPOX	8
		14318	0.97	TPOX	11
		11540	1	D18S51	12
		10609	0.92	D18S51	13
		11676	0.92	AMEL	Х
		12719	1	AMEL	Y
		10709	0.95	D5S818	12
		11305	1	D5S818	13
		9213	1	FGA	20
		8474	0.92	FGA	21
312	BE	13512	1	D8S1179	12 Minus A
		7540	1	D21S11	28
		7115	0.94	D21S11	31.2
		3536	1	D7S820	9
		3227	0.91	D7S820	12
		4029	1	CSF1PO	11
		3783	0.94	CSF1PO	12
		14186	1	D3S1358	14
		9314	1	TH01	6
		9230	0.99	TH01	8
		10125	1	D13S317	9
		9330	0.92	D13S317	11
		14527	1	D16S539	12
		5162	1	D2S1338	23
		4909	0.95	D2S1338	25
		4848	0.61	D19S433	14
		7896	1	D19S433	15.2
		9916	1	vWA	14
		9335	0.94	vWA	16
		7800	1	TPOX	9
		7213	0.92	TPOX	11
		5173	1	D18S51	14
		4472	0.86	D18S51	18
		11957	1	AMEL	Х
		9084	1	D5S818	11
		8286	0.91	D5S818	12
		4765	1	FGA	19
		4437	0.93	FGA	21
3 3 5	DE	7101	1	0001170	
5250)L	/ 104 6789	0 0 U T	071170	
		0200 5602	U.00 1	001119	20
		5200		D21011	23 21 2
		2200	0.95	116170	J1.Z

4046	1	D7S820	9	
3847	0.95	D7S820	12	
5348	1	CSF1PO	10	
5125	0.96	CSF1PO	13	
8320	1	D3S1358	15	
7777	0.93	D3S1358	17	
8789	1	TH01	6	
8296	0.94	TH01	7	
10008	1	D13S317	9	
9536	0.95	D13S317	11	
14913	1	D16S539	13	
7342	1	D2S1338	19	
6932	0.94	D2S1338	20	
8251	1	D19S433	14	
7070	0.86	D19S433	15	
9063	1	vWA	15	
8994	0.99	vWA	18	
14191	1	ΤΡΟΧ	11	
8318	1	D18S51	13	
7704	0.93	D18S51	14	
7115	0.93	AMEL	Х	
7626	1	AMEL	Y	
7441	0.94	D5S818	11	
7938	1	D5S818	12	
5731	1	FGA	21	
5428	0.95	FGA	26	
13868	0.97	D8S1179	10	Minus A
14346	1	D8S1179	12	
11914	1	D21S11	27	
11201	0.94	D21S11	29	
10792	1	D7S820	12	
7228	1	CSF1PO	12	
6629	0.92	CSF1PO	13	
14892	0.99	D3S1358	15	
15042	1	D3S1358	17	
14372	1	TH01	9.3	
14494	1	D13S317	8	
13036	0.9	D13S317	13	
14994	1	D16S539	8	
13107	0.87	D16S539	12	
9501	1	D2S1338	17	
7177	0.76	D2S1338	25	
11423	0.84	D19S433	14	
10364	0.76	D19S433	16.2	
13280	1	vWA	14	
11778	0.89	vWA	17	

	15608	1	TPOX	8	
	10881	1	D18S51	12	
	8988	0.83	D18S51	16	
	6322	1	AMEL	Х	
	11719	1	D5S818	12	
	11372	0.97	D5S818	13	
	6375	1	FGA	23	
	5677	0.89	FGA	26	
338E	16495	1	D8S1179	13 Minus A, St	utter
	13785	1	D21S11	29	
	13043	0.95	D21S11	31	
	7046	1	D7S820	9	
	6984	0.99	D7S820	10	
	7441	1	CSF1PO	11	
	7072	0.95	CSF1PO	13	
	14645	1	D3S1358	16	
	14462	0.98	TH01	7	
	14741	1	TH01	9.3	
	14681	0.99	D13S317	12	
	14890	1	D13S317	13	
	18480	1	D16S539	11	
	14863	0.8	D16S539	12	
	10333	1	D2S1338	24	
	8612	0.83	D2S1338	25	
	13430	0.89	D19S433	14	
	14259	0.95	D19S433	15	
	13665	0.91	vWA	16	
	14271	1	ТРОХ	8	
	14115	0.99	ΤΡΟΧ	11	
	10951	1	D18S51	12	
	8756	0.8	D18S51	17	
	7879	1	AMEL	Х	
	6097	0.92	D5S818	12	
	9310	1	FGA	20	
	8473	0.91	FGA	22	
3664E	11665	1	D8S1179	11 Minus A	
	10150	0.87	D8S1179	15	
	10251	1	D21S11	33.2	
	5403	1	D7S820	8	
	5010	0.93	D7S820	11	
	6509	1	CSF1PO	10	
	5944	0.91	CSF1PO	12	
	15197	1	D3S1358	15	
	13207	1	TH01	6	
	13194	1	TH01	9.3	

14113	1	D13S317	8	
13777	0.98	D13S317	9	
12302	0.85	D16S539	9	
14446	1	D16S539	13	
8476	1	D2S1338	20	
7964	0.94	D2S1338	23	
11739	1	D19S433	14	
10985	0.94	D19S433	16	
15116	1	vWA	15	
10747	1	TPOX	8	
10462	0.97	TPOX	11	
8921	1	D18S51	12	
8870	0.99	D18S51	14	
12006	1	AMEL	Х	
11620	0.97	AMEL	Y	
13848	1	D5S818	12	
7412	1	FGA	20	
6372	0.86	FGA	24	
7286	1	D8S1179	11	Minus A, Imbalance
6814	0.94	D8S1179	14	
6384	1	D21S11	28	
6145	0.96	D21S11	29	
3361	1	D7S820	8	
3139	0.93	D7S820	10	
4084	1	CSF1PO	11	
3831	0.94	CSF1PO	12	
7613	1	D3S1358	17	
6718	0.88	D3S1358	18	
8228	1	TH01	6	
8029	0.98	TH01	9.3	
14657	1	D13S317	11	
9886	1	D16S539	11	
9453	0.96	D16S539	13	
5401	1	D2S1338	24	
4636	0.86	D2S1338	25	
14756	1	D19S433	12	
9044	1	vWA	14	
8588	0.95	vWA	16	
6724	1	TPOX	8	
6326	0.94	TPOX	11	
6137	1	D18S51	15	
5440	0.89	D18S51	16	
8571	1	AMEL	х	
2085	0.24	AMEL	Y	
8292	1	D5S818	11	
7971	0.96	D5S818	12	

	5169	1	FGA	19		122
	4158	0.8	FGA	25		122
3805E	9802	1	D8S1179	12	Minus A, Allelic Dropout	
	8593	0.88	D8S1179	13		
	7655	1	D21S11	28		
	7355	0.96	D21S11	31		
	4613	1	D7S820	9		
	4340	0.94	D7S820	11		
	5537	1	CSF1PO	11		
	5381	0.97	CSF1PO	15		
	10085	1	D3S1358	14		
	9455	0.94	D3S1358	16		
	17088	1	TH01	9.3		
	12143	1	D13S317	12		
	11134	0.92	D13S317	13		
	13730	0.98	D16S539	10		
	13986	1	D16S539	12		
	7178	1	D2S1338	22		
	6740	0.94	D2S1338	24		
	13468	1	D19S433	12		
	11907	1	vWA	17		
	11399	0.96	vWA	18		
	9935	1	TPOX	8		
	9443	0.95	TPOX	9		
	8956	1	D18S51	14		
	8233	0.92	D18S51	15		
	10791	1	AMEL	Х		
	11699	1	D5S818	11		
	6759	1	FGA	22		
	6092	0.9	FGA	23		
2005	14222	1	0001170	11	Minue	
599L	14232		D051179	11	WIITUS A	
	13734	0.97	D051175	28		
	17528	1 88 0	D21511	20		
	12528	0.00	D21311	10		
	13370	1	CSE1PO	10		
	17091	0 92	0351358	16		
	1/031	1	TH01	10		
	14210	0 96		7 Q		
	12237	0.90	D135217	0 17		
	13939	0.00	D120217	1/		
	17503	1 1	D166230	11		
	14683	۲ ۸ ۵ ۵	D165539	17		
	10554	1	D221228	12		
	10108	0 96	D251228	10		
	10100	0.90	0201000	13		

	14147	0.97	D19S433	14
	12994	0.89	D19S433	15.2
	14962	1	vWA	17
	14087	0.94	vWA	18
	13473	1	TPOX	8
	13358	0.99	TPOX	11
	14679	1	D18S51	16
	5482	1	AMEL	Х
	8733	1	D5S818	11
	7900	1	FGA	19
	6526	0.83	FGA	24
417E	10759	1	D8S1179	13 Minus A
	5426	1	D21S11	29
	5100	0.94	D21S11	30
	3627	1	D7S820	8
	3553	0.98	D7S820	10
	4176	1	CSF1PO	10
	3751	0.9	CSF1PO	12
	12516	1	D3S1358	15
	8242	1	TH01	6
	7783	0.94	TH01	9
	9853	1	D13S317	8
	8715	0.88	D13S317	11
	9691	1	D16S539	11
	8934	0.92	D16S539	12
	6290	1	D2S1338	17
	6099	0.97	D2S1338	19
	6028	1	D19S433	14
	5851	0.97	D19S433	15.2
	8431	1	vWA	14
	7625	0.9	vWA	19
	6678	1	TPOX	8
	6311	0.95	TPOX	11
	6635	1	D18S51	14
	6185	0.93	D18S51	15
	7307	0.99	AMEL	Х
	7359	1	AMEL	Y
	7247	1	D5S818	12
	6801	0.94	D5S818	13
	5367	1	FGA	22
	4763	0.89	FGA	23
420E	1690	1	0001170	12 Minus A
42UE	400U 1200		D861120	
	4200 2710	0.92	031011	14 21 2
	5/18 2/72	T 0.02	D21011	51.2 22.2
	3472	0.93	DTIZIT	33.Z

2274	1	D7S820	9	
2134	0.94	D7S820	12	
2624	1	CSF1PO	12	
2341	0.89	CSF1PO	14	
4892	1	D3S1358	14	
4809	0.98	D3S1358	16	
5536	1	TH01	6	
5428	0.98	TH01	8	
10781	1	D13S317	12	
6410	1	D16S539	11	
5938	0.93	D16S539	13	
7130	1	D2S1338	19	
8260	1	D19S433	15	
5473	1	vWA	19	
4998	0.91	vWA	20	
9439	1	ΤΡΟΧ	8	
7063	1	D18S51	16	
5559	0.97	AMEL	Х	
5727	1	AMEL	Y	
9491	1	D5S818	11	
3172	1	FGA	21	
2879	0.91	FGA	25	
5126	1	D8S1179	11	Minus A
4649	0.91	D8S1179	14	
4651	1	D21S11	28	
4259	0.92	D21S11	29	
1877	1	D7S820	7	
1618	0.86	D7S820	12	
2334	1	CSF1PO	11	
2146	0.92	CSF1PO	12	
4470	0.95	D3S1358	15	
3912	0.83	D2042E0		
		D321328	16	
5583	1	D351358 TH01	16 7	
5583 5537	1 0.99	D351358 TH01 TH01	16 7 9.3	
5583 5537 5631	1 0.99 1	D3S1358 TH01 TH01 D13S317	16 7 9.3 8	
5583 5537 5631 4873	1 0.99 1 0.87	D3S1358 TH01 TH01 D13S317 D13S317	16 7 9.3 8 12	
5583 5537 5631 4873 6432	1 0.99 1 0.87 1	D3S1358 TH01 TH01 D13S317 D13S317 D16S539	16 7 9.3 8 12 12	
5583 5537 5631 4873 6432 5949	1 0.99 1 0.87 1 0.92	D351358 TH01 TH01 D135317 D135317 D165539 D165539	16 7 9.3 8 12 12 13	
5583 5537 5631 4873 6432 5949 3146	1 0.99 1 0.87 1 0.92 1	D3S1358 TH01 TH01 D13S317 D13S317 D16S539 D16S539 D2S1338	16 7 9.3 8 12 12 13 13	
5583 5537 5631 4873 6432 5949 3146 2710	1 0.99 1 0.87 1 0.92 1 0.86	D3S1358 TH01 TH01 D13S317 D13S317 D16S539 D16S539 D2S1338 D2S1338	16 7 9.3 8 12 12 13 17 23	
5583 5537 5631 4873 6432 5949 3146 2710 5500	1 0.99 1 0.87 1 0.92 1 0.86 1	D3S1358 TH01 TH01 D13S317 D13S317 D16S539 D16S539 D2S1338 D2S1338 D19S433	16 7 9.3 8 12 12 13 17 23 13	
5583 5537 5631 4873 6432 5949 3146 2710 5500 5360	1 0.99 1 0.87 1 0.92 1 0.86 1 0.97	D351358 TH01 TH01 D13S317 D13S317 D16S539 D16S539 D2S1338 D2S1338 D19S433 D19S433	16 7 9.3 8 12 13 17 23 13 13.2	
5583 5537 5631 4873 6432 5949 3146 2710 5500 5360 5799	1 0.99 1 0.87 1 0.92 1 0.86 1 0.97 1	D3S1358 TH01 TH01 D13S317 D13S317 D16S539 D16S539 D2S1338 D2S1338 D19S433 D19S433 vWA	16 7 9.3 8 12 12 13 17 23 13 13.2 17	
5583 5537 5631 4873 6432 5949 3146 2710 5500 5360 5360 5799 5213	1 0.99 1 0.87 1 0.92 1 0.86 1 0.97 1 0.9	D3S1358 TH01 TH01 D13S317 D13S317 D16S539 D16S539 D2S1338 D19S433 D19S433 vWA vWA	16 7 9.3 8 12 13 17 23 13 13.2 13.2 17 18	
5583 5537 5631 4873 6432 5949 3146 2710 5500 5360 5799 5213 4216	1 0.99 1 0.87 1 0.92 1 0.86 1 0.97 1 0.97 0.99	D3S1358 TH01 TH01 D13S317 D13S317 D16S539 D16S539 D2S1338 D19S433 D19S433 VWA vWA vWA	16 7 9.3 8 12 13 17 23 13 13.2 17 18 9	

	2898	1	D18S51	12	125
	2110	0.73	D18S51	20	
	12188	1	AMEL	Х	
	9467	1	D5S818	11	
	4345	1	FGA	23	
444E	12517	1	D8S1179	12 Minus A, Partial Profile, Imb	Ja
	11892	0.95	D8S1179	13	
	12433	1	D21S11	29	
	11874	0.96	D21S11	30	
	6358	1	D7S820	8	
	5584	0.88	D7S820	11	
	6734	1	CSF1PO	10	
	6421	0.95	CSF1PO	11	
	11019	1	D3S1358	15	
	9984	0.91	D3S1358	16	
	12270	0.88	D13S317	9	
	13901	1	D13S317	12	
	14737	1	D16S539	11	
	14106	0.96	D16S539	13	
	9648	1	D2S1338	18	
	7472	0.77	D2S1338	26	
	12384	1	D19S433	13	
	11158	0.9	D19S433	14	
	11028	1	TPOX	8	
	10775	0.98	TPOX	11	
	3392	0.46	D18S51	12	
	7346	1	D18S51	16	
	12575	1	AMEL	Х	
	11800	1	D5S818	12	
	11538	0.98	D5S818	13	
	7539	1	FGA	23	
	6468	0.86	FGA	24	
550F	11054	1	D851179	13 Minus A	
5562	10198	0.92	D8S1179	14	
	10160	1	D21511	28	
	9481	0.93	D21511	30	
	5260	1	D75820	7	
	4916	0.93	D75820	10	
	5805	1	CSF1PO	11	
	5339	0.92	CSF1PO	13	
	10680	1	D3S1358	 15	
	9559	0.9	D3S1358	 17	
	12300	0.89	TH01	6	
	13860	1	TH01	7	
	14038	1	D13S317	10	
		-			

12040	0.02	D12C217	12	
13040	0.95	D155517	11	
1223/	1 93	D165539	12	
8166	0.55	D100000	19	
7514	0.92	D251338	21	
10834	1	D195433	15.2	
9684	- 0.89	D195433	16.2	
13227	1	vWA	14	
11998	0.91	vWA	18	
11177	1	трох	9	
10813	0.97	трох	11	
7938	1	D18551	 14	
7146	0.9	D18S51	16	
12449	0.98	AMEL	X	
12644	1	AMEL	Ŷ	
14898	1	D5S818	11	
7238	1	FGA	19	
6586	0.91	FGA	20	
8144	0.99	D8S1179	10	
8192	1	D8S1179	12	
12830	1	D21S11	29	
4077	1	D7S820	11	
3930	0.96	D7S820	12	
5071	1	CSF1PO	9	
4628	0.91	CSF1PO	12	
9469	1	D3S1358	14	
8781	0.93	D3S1358	17	
14676	1	TH01	9.3	
14615	1	D13S317	12	
9748	1	D16S539	11	
8951	0.92	D16S539	13	
6100	1	D2S1338	17	
5258	0.86	D2S1338	22	
13799	1	D19S433	13	
13153	1	vWA	14	
11365	0.86	vWA	20	
14555	1	TPOX	8	
5926	1	D18S51	18	
5496	0.93	D18S51	21	
8912	0.98	AMEL	Х	
9082	1	AMEL	Y	
7211	1	D5S818	11	
7082	0.98	D5S818	12	
9647	1	FGA	21	
14533	1	D8S1179	13	Minus A, Imbalance

589E

7916	1	D21S11	30	
7905	1	D21511	31.2	
4567	0.93	D7S820	10	
4897	1	D7S820	12	
5686	1	CSF1PO	10	
5111	0.9	CSF1PO	13	
8982	1	D3S1358	14	
8626	0.96	D3S1358	16	
16797	1	TH01	9.3	
11283	1	D13S317	11	
11004	0.98	D13S317	13	
13994	1	D16S539	9	
12424	0.89	D16S539	11	
7904	1	D2S1338	17	
6449	0.82	D2S1338	24	
8786	1	D19S433	14.2	
2099	0.24	D19S433	16	
14741	1	vWA	16	
14476	1	TPOX	8	
14622	1	D18S51	12	
11531	1	AMEL	Х	
14441	1	D5S818	12	
6297	1	FGA	21	
5340	0.85	FGA	26	
12023	1	D8S1179	9	Minus A
11822	0.98	D8S1179	13	
10761	1	D21S11	28	
10166	0.94	D21S11	30	
8618	1	D7S820	8	
12126	1	CSF1PO	12	
10144	1	D3S1358	15	
9372	0.92	D3S1358	17	
22254	1	TH01	9.3	
11369	1	D13S317	11	
11034	0.97	D13S317	12	
20962	1	D16S539	9	
8217	1	D2S1338	17	
6673	0.81	D2S1338	24	
10769	1	D19S433	13	
9788	0.91	D19S433	14	
14557	1	vWA	17	
12592	0.87	vWA	19	
13046	0.98	TPOX	9	
13277	1	TPOX	11	
6927	1	D18S51	14	
~	~ ~ ~ ~		10	

6080E

6233E
651E

1200		0 0120217	1 1 2	
129:		1 D165E20	12 IZ	
100:	52	1 2222010 1	, 11 , 20	
92.		1 UZ31330	ວ 20 ວ ວວ	
040	55 U.9	2 D231330) <u>2</u> 2) 10	
110	+2 U.	0 D193453 1 D100423) 15) 150	
1400	17 O C) 13.2 17	
1404	+/ U.U 10	7 VVV <i>F</i> 1 ΤΡΟΝ	· 1/	
1404	+2		0 10	
70.			10	
70	DU U.7		L 22	
190	م 17 م		- ^ > 11	
904 102	+/ 0.9	1 DEC010	> 11 > 12	
102	/ 2	1 D00010) 12) 25	
117.	11	I FGA	A 25	
1443	17	1 D8S1179	9 10	Minus A
1447	72	1 D8S1179) 13	
1399	97	1 D21S11	28	
1159	91 0.8	3 D21S11	32.2	
804	19	1 D7S820) 8	
773	34 0.9	6 D7S820) 11	
880	00	1 CSF1PC) 11	
806	54 0.9	2 CSF1PC) 12	
1465	56	1 D3S1358	3 17	
1423	32 0.9	7 D3S1358	3 18	
1656	56	1 TH01	6	
1545	52 0.9	3 TH01	L 7	
1107	79	1 D13S317	7 8	
1272	20 0.7	6 D16S539) 8	
1675	53	1 D16S539) 13	
1268	30	1 D2S1338	3 17	
1042	28 0.8	2 D2S1338	3 24	
1484	46 0.9	8 D19S433	3 14	
1469	97	1 vWA	A 14	
1455	58 0.9	9 vWA	A 17	
1738	31	1 TPOX	(8	
1120	65	1 D18S51	13	
1017	76 0.	9 D18S51	L 16	
588	33	1 AMEI	_ X	
1264	43	1 D5S818	3 10	
97:	18 0.7	7 D5S818	3 11	
1113	32	1 FGA	A 20	
878	81 0.7	9 FGA	24.2	
0.2	10	1 0001170) 17	
83. 741	20 00	1 DOSI1/5	, 12) 12	IVIIIIUS A
(43) (43)	17 17	1 D031175	, 13 70	
0.34	T 6		L 27	

709E

735E

5642	0.89	D21S11	32.2	
6994	1	D7S820	10	
9100	1	CSF1PO	11	
14932	1	D3S1358	15	
10254	1	TH01	8	
10300	1	TH01	9.3	
10583	1	D13S317	11	
9792	0.93	D13S317	12	
11815	1	D16S539	11	
10673	0.9	D16S539	12	
6666	1	D2S1338	19	
5804	0.87	D2S1338	24	
8969	1	D19S433	13	
8289	0.92	D19S433	14	
10659	1	vWA	17	
9466	0.89	vWA	18	
9123	1	TPOX	8	
8573	0.94	TPOX	11	
6171	1	D18S51	18	
5252	0.85	D18S51	22	
9292	1	AMEL	Х	
9270	1	AMEL	Y	
7954	0.97	D5S818	11	
8164	1	D5S818	13	
4665	1	FGA	22.2	
4280	0.92	FGA	24	
6544	1	D8S1179	11	Minus A
5969	0.91	D8S1179	13	
5015	1	D21S11	30	
4999	1	D21S11	31.2	
3691	1	D7S820	8	
3536	0.96	D7S820	10	
4374	1	CSF1PO	11	
4023	0.92	CSF1PO	12	
8550	1	D3S1358	14	
8052	0.94	D3S1358	15	
14615	1	TH01	6	
9820	1	D13S317	9	
9255	0.94	D13S317	10	
9526	1	D16S539	9	
9242	0.97	D16S539	13	
6039	1	D2S1338	19	
5136	0.85	D2S1338	25	
6600	1	D19S433	14.2	
6403	0.97	D19S433	15	
8401	1	vWA	18	

	7796	0.93	vWA	19	
	14009	1	TPOX	8	
	6462	1	D18S51	15	
	5879	0.91	D18S51	18	
	7702	1	AMEL	Х	
	7646	0.99	AMEL	Y	
	7509	0.95	D5S818	11	
	7894	1	D5S818	12	
	5085	1	FGA	24	
	4577	0.9	FGA	25	
7485E	6005	1	D8S1179	8 Minus	A, Imbalance
	5412	0.9	D8S1179	13	
	4767	1	D21S11	31.2	
	4492	0.94	D21S11	32.2	
	2677	1	D7S820	8	
	2491	0.93	D7S820	12	
	3217	1	CSF1PO	10	
	3129	0.97	CSF1PO	12	
	5837	1	D3S1358	15	
	5445	0.93	D3S1358	17	
	6393	1	TH01	6	
	6040	0.94	TH01	9.3	
	7537	1	D13S317	12	
	7226	0.96	D13S317	13	
	14107	1	D16S539	12	
	5252	1	D2S1338	14	
	3622	0.69	D2S1338	26	
	6680	1	D19S433	12	
	6369	0.95	D19S433	13	
	6346	1	vWA	16	
	6059	0.95	vWA	19	
	5308	1	TPOX	8	
	5135	0.97	TPOX	10	
	4825	1	D18S51	13	
	4476	0.93	D18S51	14	
	6863	1	AMEL	Х	
	6890	1	AMEL	Y	
	6617	1	D5S818	12	
	6027	0.91	D5S818	13	
	7105	1	FGA	24	
7572E	9604	1	D8S1179	10 Minus	A
	8782	0.91	D8S1179	14	
	7868	1	D21S11	28	
	7789	0.99	D21S11	30	
	8352	1	D7S820	10	

5445	1	CSF1PO	10	
5031	0.92	CSF1PO	12	
9522	1	D3S1358	17	
8606	0.9	D3S1358	18	
10074	0.99	TH01	7	
10227	1	TH01	9.3	
13601	1	D13S317	11	
12949	1	D16S539	12	
12376	0.96	D16S539	13	
7501	1	D2S1338	17	
6286	0.84	D2S1338	24	
10682	1	D19S433	14	
9598	0.9	D19S433	15	
11408	1	vWA	15	
10783	0.95	vWA	16	
13177	1	ΤΡΟΧ	8	
8338	1	D18S51	10	
7215	0.87	D18S51	14	
13604	1	AMEL	Х	
13051	1	D5S818	12	
6312	1	FGA	22	
5670	0.9	FGA	25	
6965	0.74	D8S1179	10	Minus A
5879	0.62	D8S1179	14	
6606	1	D21S11	28	
6378	0.97	D21S11	30	
1991	1	D7S820	9	
1977	0.99	D7S820	13	
3017	1	CSF1PO	10	
2750	0.91	CSF1PO	12	
7514	0.77	D3S1358	15	
7911	0.99	TH01	7	
7985	1	TH01	9.3	
6112	1	D13S317	11	
5749	0.94	D13S317	14	
10135	1	D16S539	9	
9337	0.92	D16S539	12	
5412	1	D2S1338	17	
4345	0.8	D2S1338	24	
7486	1	D19S433	14	
7026	0.94	D19S433	16	
7373	0.86	vWA	16	
7032	0.82	vWA	19	
10952	1	TPOX	8	
2980	1	D18S51	15	
2815	0.94	D18551	17	

7758E

	9485	1	AMEL	Х	
	6161	1	D5S818	11	
	5651	0.92	D5S818	12	
	2458	1	FGA	23	
	2207	0.9	FGA	24	
777E	6732	1	D8S1179	8	
	5839	0.87	D8S1179	15	
	5176	1	D21S11	29	
	5090	0.98	D21S11	32.2	
	3908	1	D7S820	10	
	3769	0.96	D7S820	13	
	8734	1	CSF1PO	10	
	8391	1	D3S1358	14	
	7860	0.94	D3S1358	15	
	6918	1	TH01	6	
	6782	0.98	TH01	9.3	
	9871	1	D13S317	8	
	9472	0.96	D13S317	11	
	8720	1	D16S539	9	
	8689	1	D16S539	12	
	5744	1	D2S1338	20	
	5727	1	D2S1338	23	
	6836	1	D19S433	13	
	6514	0.95	D19S433	15	
	8646	1	vWA	16	
	8439	0.98	vWA	18	
	6403	1	TPOX	9	
	6104	0.95	TPOX	11	
	7358	1	D18S51	13	
	6844	0.93	D18S51	14	
	12079	1	AMEL	Х	
	13679	1	D5S818	9	
	5382	1	FGA	21	
	5037	0.94	FGA	25	
802E	14366	1	D8S1179	10 N	linus A
	13527	0.94	D8S1179	11	
	12314	1	D21S11	28	
	10827	0.88	D21S11	31	
	5485	1	D7S820	10	
	5035	0.92	D7S820	12	
	11163	1	CSF1PO	12	
	12583	1	D3S1358	15	
	11493	0.91	D3S1358	16	
	11842	1	TH01	6	
	11074	0.94	TH01	9.3	

1447	' 5	1 D	13S317	10	
1131	4 0.7	8 D	13\$317	11	
1453	.9 0.9	9 D	16\$539	10	
1474	12	1 D	16\$539	11	
849)3	1 D	2S1338	18	
738	.8 0.8	7 D	2S1338	23	
1279	98	1 D	19\$433	14	
1187	' 1 0.9	3 D	19\$433	15.2	
1483	35	1	vWA	16	
1177	/4	1	трох	10	
1121	.5 0.9	5	ТРОХ	11	
717	78	1	D18S51	16	
667	6 0.9	3 1	D18S51	18	
1139	06 0.9	5	AMEL	Х	
1202	25	1	AMEL	Y	
1301	2	1	D5S818	9	
1141	.3 0.8	8 1	D5S818	11	
780)8	1	FGA	20	
726	62 0.9	3	FGA	22	
1020)1	1 D	8S1179	11	Minus A, Imbalance
979	0.9	6 D	8S1179	13	
896	50	1	D21S11	28	
791	.8 0.8	8 1	D21S11	30	
433	35	1	D7S820	9	
352	.7 0.8	1 1	D7S820	11	
997	2	1 (CSF1PO	11	
980)7	1 D	3S1358	17	
857	7 0.8	7 D	3S1358	18	
1302	28	1	TH01	7	
1274	16 0.9	8	TH01	9.3	
1289	91	1 D	13S317	8	
1087	'1 0.8	4 D	13S317	13	
2002	25	1 D	16S539	11	
744	16	1 D	2S1338	20	
686	67 0.9	2 D	2S1338	21	
1480)4	1 D	19\$433	12	
1064	0.7	2 D	19S433	15	
1262	27	1	vWA	18	
1134	19 0.	9	vWA	19	
1469	95	1	TPOX	9	
767	2	1	D18S51	12	
621	.4 0.8	1	D18S51	16	
1171	2	1	AMEL	Х	
448	32 0.3	8	AMEL	Y	
1041	.6	1 I	D5S818	10	
943	34 0.9	1	D5S818	13	

9066E

	5036	1	FGA	23	
	4663	0.93	FGA	26	
940E	5412	1	D8S1179	14	
	5245	0.97	D8S1179	15	
	8034	1	D21S11	30	
	3063	1	D7S820	8	
	2997	0.98	D7S820	11	
	3622	1	CSF1PO	11	
	3387	0.94	CSF1PO	12	
	6713	1	D3S1358	14	
	6415	0.96	D3S1358	15	
	5911	1	TH01	6	
	5741	0.97	TH01	9	
	7123	1	D13S317	10	
	6606	0.93	D13S317	11	
	14256	1	D16S539	9	
	4830	1	D2S1338	19	
	4284	0.89	D2S1338	22	
	5592	1	D19S433	13	
	5477	0.98	D19S433	13.2	
	6954	1	vWA	16	
	6735	0.97	vWA	19	
	5844	1	TPOX	9	
	5711	0.98	ТРОХ	11	
	5538	1	D18S51	14	
	5048	0.91	D18S51	17	
	10019	1	AMEL	Х	
	5644	1	D5S818	12	
	4927	0.87	D5S818	13	
	7526	1	FGA	22	
04205	7770	1	0001170	14	
9439L	7775	1	D051179	14	winnus A
	1250	0.95	D031179	20	
	12040	1 0.00	DZ1311	50	
	4004	0.99	D73620	0	
	5220	1	CSE1DO	10	
	5024	1 0 0 1		10	
	12716	0.94	C3F1FU	12	
	12710	1	TU01	10	
	0004 0705			/ 0.2	
	070J 10677	0.55	1001 7120217	J.J 11	
	10002		L126210	12	
	110192	0.95	D166E30	11	
	1404U 7110	1	6202010	10	
	7115		0201000	19	
	7.040	0.77	0601000		

	8308	1	D19S433	15	
	7604	0.92	D19S433	17.2	
	10323	1	vWA	14	
	9665	0.94	vWA	18	
	7640	1	TPOX	8	
	7651	1	TPOX	9	
	8669	1	D18S51	12	
	7408	0.85	D18S51	16	
	7780	0.93	AMEL	Х	
	8350	1	AMEL	Y	
	8370	0.96	D5S818	12	
	8685	1	D5S818	13	
	6090	1	FGA	21	
	5897	0.97	FGA	23	
9899E	14056	1	D8S1179	9 Minus A, Imbaland	ce
	12236	0.87	D8S1179	15	
	20565	1	D21S11	28	
	5050	1	D7S820	11	
	1579	0.31	D7S820	12	
	12196	1	CSF1PO	12	
	15814	1	D3S1358	18	
	21713	1	TH01	9.3	
	11039	0.83	D13S317	12	
	13348	1	D13S317	13	
	15536	1	D16S539	10	
	14791	0.95	D16S539	12	
	10132	1	D2S1338	17	
	8886	0.88	D2S1338	22	
	14182	0.98	D19S433	12	
	14314	0.99	D19S433	13.2	
	14504	1	vWA	17	
	14337	0.99	vWA	18	
	18532	1	TPOX	11	
	7313	1	D18S51	19	
	6510	0.89	D18S51	20	
	8785	1	AMEL	Х	
	11290	0.99	D5S818	9	
	11400	1	D5S818	11	
	6960	1	FGA	20	
	5821	0.84	FGA	24	
CaseyE	8072	1	D8S1179	10 Imbalance	
	7703	0.95	D8S1179	12	
	4608	1	D21S11	28	
	4571	0.99	D21S11	31.2	
	3023	1	D7S820	8	

	2648	0.88	D7S820	11
	3038	0.95	CSF1PO	10
	3192	1	CSF1PO	11
	14516	1	D3S1358	14
	7870	1	TH01	6
	7217	0.92	TH01	8
	7600	1	D13S317	9
	7033	0.93	D13S317	11
	6677	1	D16S539	11
	6502	0.97	D16S539	12
	3390	1	D2S1338	20
	3221	0.95	D2S1338	25
	1746	0.24	D19S433	14
	7366	1	D19S433	16
	14272	1	vWA	18
	6053	1	ΤΡΟΧ	9
	5754	0.95	ΤΡΟΧ	11
	5392	1	D18S51	10
	4459	0.83	D18S51	14
	13320	1	AMEL	Х
	8225	1	D5S818	12
	7637	0.93	D5S818	13
	4406	1	FGA	20
	4142	0.94	FGA	21
ChristiE	1140	1	D8S1179	14
	930	0.9	D3S1358	14
	1036	1	D3S1358	16
	1388	1	TH01	6
	1218	1	D13S317	11
	572	1	D16S539	11
	815	1	D19S433	15
	749	0.92	D19S433	16
	814	1	vWA	14
	714	0.88	vWA	18
	716	1	D18S51	12
	1558	1	AMEL	Х
	786	1	D5S818	11
	615	0.78	D5S818	12
JDWE	8525	1	D8S1179	10 Imbalance
	6200	0.73	D8S1179	14
	4014	1	D21S11	30
	3653	0.91	D21S11	31
	2160	0.96	D7S820	10
	2260	1	D7S820	12
	4262	1	CSF1PO	12

9170	1	D3S1358	14
8553	0.93	D3S1358	16
6479	0.99	TH01	6
6536	1	TH01	9
6671	1	D13S317	8
6561	0.98	D13S317	9
10804	1	D16S539	11
3272	1	D2S1338	18
2819	0.86	D2S1338	22
6652	1	D19S433	15
6525	0.98	D19S433	16.2
7306	1	vWA	16
6836	0.94	vWA	18
4540	1	TPOX	8
4496	0.99	TPOX	11
3824	1	D18S51	12
3448	0.9	D18S51	13
7437	1	AMEL	х
7434	1	AMEL	Ŷ
8977	1	D5S818	12
6231	0.69	D5S818	13
3601	0.94	FGA	20
3829	1	FGA	21
		_	
2146	1	D8S1179	12
1934	0.9	D8S1179	13
2144	1	D21S11	29
583	1	D7S820	10
559	0.96	D7S820	12
1378	1	CSF1PO	10
2661	1	D3S1358	15
2664	1	D3S1358	18
3225	1	TH01	9.3
3344	1	D13S317	12
3129	1	D16S539	12
863	1	D2S1338	23
757	0.88	D2S1338	24
4414	1	D19S433	14
2346	1	vWA	15
1852	0.79	vWA	18
1380	1	TPOX	7
1231	0.89	TPOX	8
1208	1	D18S51	12
958	0.79	D18S51	14
4400	1	AMEL	X
3576	1	D5S818	12
1065	0.95	FGA	22

LouieE

	1124	1	FGA	23	
ADDITIONAL EXPER	IMENTS				
3701a	5890	1	D8S1179	11 Minus A	
	5223	0.89	D8S1179	14	
	5270	1	D21S11	28	
	4918	0.93	D21S11	29	
	2464	1	D7S820	8	
	2299	0.93	D7S820	10	
	3353	1	CSF1PO	11	
	3093	0.92	CSF1PO	12	
	5415	1	D3S1358	17	
	4//2	0.88	D3S1358	18	
	/118	1	TH01	6	
	6828	0.96	TH01	9.3	
	12285	1	D13S31/	11	
	7602	1	D165539	11	
	/432	0.98	D165539	13	
	4155	1	D2S1338	24	
	3802	0.92	D2S1338	25	
	14029	1	D195433	12	
	6950	1	VVVA	14	
	6450 F710	0.93		10	
	5/19			8	
	54ZI 4210	0.95		11	
	4219	1	D10551	15	
	504Z	0.91		X 10	
	6022	1		×	
	5071	0.82		1	
	5882		D55818	12	
	3626	0.55	FCV	10	
	2851	0.79	FGA	25	
	2001	0.75	IUA	25	
3701b	6607	1	D8S1179	11 Minus A	
	5705	0.86	D8S1179	14	
	5696	1	D21S11	28	
	5158	0.91	D21S11	29	
	2518	1	D7S820	8	
	2396	0.95	D7S820	10	
	3369	1	CSF1PO	11	
	3127	0.93	CSF1PO	12	
	5801	1	D3S1358	17	
	4997	0.86	D3S1358	18	
	7774	1	TH01	6	
	7382	0.95	TH01	9.3	
	13140	1	D13S317	11	

8353	1	D16S539	11	
7759	0.93	D16S539	13	
4378	1	D2S1338	24	
3872	0.88	D2S1338	25	
14455	1	D19S433	12	
7394	1	vWA	14	
6862	0.93	vWA	16	
6151	1	TPOX	8	
5701	0.93	TPOX	11	
4138	1	D18S51	15	
3816	0.92	D18S51	16	
8553	1	AMEL	Х	
3862	0.45	AMEL	Y	
6558	1	D5S818	11	
6147	0.94	D5S818	12	
3655	1	FGA	19	
2898	0.79	FGA	25	
8603	1	D851179	11	Μίριις Δ
7557	0.88	D851179	14	Willias A
7529	0.00	D031173	28	
7061	1 0 9/	D21511	20	
3/56	0.54	021311	25	
3129	0.91	D75820	10	
4754	0.51	CSF1PO	11	
4734	0.91	CSF1PO	12	
7965	0.51	D351358	17	
7260	0.91	D351358	18	
10947	1	TH01		
10343	0.94	TH01	93	
14838	0.54	D135317	11	
11893	- 1	D165539	11	
10776	0.91	D165539	13	
6217	1	D251338	24	
5674	0.91	D251338	25	
14949	1	D195433	12	
10374	- 1	vWA	14	
9552	0.92	vWA	16	
8242	1	ТРОХ	-0	
7987	0.97	TPOX	11	
6119	1	D18551		
5381	0.88	D18S51	16	
11061	1	AMFI	X	
4266	0.39	AMFI	Y	
8880	1	D55818	11	
8701	0.98	D55818	12	
5010	1	FGA	19	

3701c

394	3 0.79	FGA	25
3/01d 50/	8 1	D8S11/9	11 Minus A
484	2 0.95	D8S11/9	14
467	1 1	D21S11	28
457	0 0.98	D21S11	29
210	0 1	D7S820	8
194	6 0.93	D7S820	10
283	1 1	CSF1PO	11
260	3 0.92	CSF1PO	12
476	3 1	D3S1358	17
420	4 0.88	D3S1358	18
646	5 1	TH01	6
634	6 0.98	TH01	9.3
1129	5 1	D13S317	11
701	4 1	D16S539	11
679	1 0.97	D16S539	13
374	1 1	D2S1338	24
331	9 0.89	D2S1338	25
1341	3 1	D19S433	12
629	8 1	vWA	14
565	6 0.9	vWA	16
499	1 1	TPOX	8
468	9 0.94	TPOX	11
356	8 1	D18S51	15
322	2 0.9	D18S51	16
707	7 1	AMEL	Х
606	7 0.86	AMEL	Y
552	1 1	D5S818	11
519	3 0.94	D5S818	12
312	7 1	FGA	19
240	1 0.77	FGA	25
3701e 746	9 1	D8S1179	11 Minus A
668	2 0.89	D8S1179	14
634	0 1	D21S11	28
620	2 0.98	D21S11	29
281	9 1	D7S820	8
276	9 0.98	D7S820	10
383	5 1	CSF1PO	11
364	2 0.95	CSF1PO	12
682	4 1	D3S1358	17
605	8 0.89	D3S1358	18
892	3 1	TH01	6
854	2 0.96	TH01	9.3
1184	7 1	D13S317	11
950	7 1	D16S539	11

0.070	0.01	D466500	4.2	
8679	0.91	D165539	13	
4830	1	D2S1338	24	
4406	0.91	D2S1338	25	
14580	1	D19S433	12	
8690	1	vWA	14	
7814	0.9	vWA	16	
6849	1	TPOX	8	
6561	0.96	TPOX	11	
4818	1	D18S51	15	
4363	0.91	D18S51	16	
9642	1	AMEL	Х	
4071	0.42	AMEL	Y	
7517	1	D5S818	11	
7050	0.94	D5S818	12	
4162	1	FGA	19	
3290	0.79	FGA	25	
6117	1	D8S1179	12	Minus A
5790	0.95	D8S1179	13	
5039	1	D21S11	28	
4584	0.91	D21S11	31	
2532	1	D7S820	9	
2361	0.93	D7S820	11	
3250	1	CSF1PO	11	
3027	0.93	CSF1PO	15	
6205	1	D3S1358	14	
5567	0.9	D3S1358	16	
14101	1	TH01	9.3	
7328	1	D13S317	12	
6612	0.9	D13S317	13	
8637	1	D16S539	10	
8048	0.93	D16S539	12	
4317	1	D2S1338	22	
4230	0.98	D2S1338	24	
7212	1	D19S433	12	
6864	0.95	D19S433	14	
7056	1	vWA	17	
6591	0.93	vWA	18	
6067	1	TPOX	8	
6096	1	TPOX	9	
4784	1	D18S51	14	
4360	0.91	D18S51	15	
7945	1	AMEL	Х	
7927	1	AMEL	Y	
11717	1	D5S818	11	
3764	1	FGA	22	
3348	0.89	FGA	23	

3805C_2

3805E_2	6999	1	D8S1179	12 Minus A
	6315	0.9	D8S1179	13
	5932	1	D21S11	28
	5339	0.9	D21S11	31
	2372	1	D7S820	9
	2190	0.92	D7S820	11
	3213	1	CSF1PO	11
	2801	0.87	CSF1PO	15
	6274	1	D3S1358	14
	5546	0.88	D3S1358	16
	11713	1	TH01	9.3
	7095	1	D13S317	12
	6441	0.91	D135317	13
	9254	1	D165539	10
	8437	0.91	D165539	12
	4188	0.51	D1000000	22
	3812	0.91	D251330	24
	9/15	0.51	D231330	12
	7211	0.87	D195455	1/
	7511	0.87	U193433	14
	7333	0.01		10
	635	0.91		18
	0330	1		8
	6337	1		9
	3961	1	D18551	14
	3574	0.9	D18551	15
	10084	1	AMEL	X
	2274	0.23	AMEL	Y
	11823	1	D5S818	11
	3325	1	FGA	22
	3079	0.93	FGA	23
565C_2	5833	1	D8S1179	10 Minus A
	5538	0.95	D8S1179	12
	8569	1	D21S11	29
	2001	1	D7S820	11
	1880	0.94	D7S820	12
	2700	1	CSF1PO	9
	2411	0.89	CSF1PO	12
	5519	1	D3S1358	14
	4923	0.89	D3S1358	17
	13740	1	TH01	9.3
	11227	1	D13S317	12
	6950	1	D16S539	11
	6440	0.93	D16S539	13
	3956	1	D2S1338	17

3494 0.88 D2S1338 22

	12527	1	D19S433	13
	6452	1	vWA	14
	5394	0.84	vWA	20
	11303	1	TPOX	8
	2915	1	D18S51	18
	2606	0.89	D18S51	21
	7449	1	AMEL	Х
	7416	1	AMEL	Y
	5781	1	D5S818	11
	5426	0.94	D5S818	12
	5891	1	FGA	21
6233a	9502	1	D8S1179	10 Minus A
	8097	0.85	D8S1179	15
	8042	1	D21S11	27
	7424	0.92	D21S11	29
	3108	1	D7S820	9
	2803	0.9	D7S820	12
	4289	1	CSF1PO	12
	3968	0.93	CSF1PO	13
	8028	1	D3S1358	16
	7102	0.88	D3S1358	17
	10969	1	TH01	9
	10713	0.98	TH01	9.3
	9892	1	D13S317	10
	9384	0.95	D13S317	12
	15679	1	D16S539	11
	6481	1	D2S1338	19
	5843	0.9	D2S1338	20
	14904	1	D19S433	14
	10632	1	vWA	17
	9681	0.91	vWA	18
	8717	1	TPOX	8
	7863	0.9	TPOX	11
	5492	1	D18S51	12
	5126	0.93	D18S51	14
	11949	1	AMEL	Х
	11513	0.96	AMEL	Y
	9623	1	D5S818	10
	9011	0.94	D5S818	11
	4551	1	FGA	20
	4187	0.92	FGA	22
6233b	5814	1	D8S1179	10 Minus A
	4953	0.85	D8S1179	15
	4899	1	D21S11	27
	4645	0.95	D21S11	29

1905	1	D7S820	9	
1724	0.9	D7S820	12	
2564	1	CSF1PO	12	
2331	0.91	CSF1PO	13	
4833	1	D3S1358	16	
4422	0.91	D3S1358	17	
6606	0.97	TH01	9	
6831	1	TH01	9.3	
6308	1	D13S317	10	
5686	0.9	D13S317	12	
13964	1	D16S539	11	
3837	1	D2S1338	19	
3624	0.94	D2S1338	20	
11418	1	D19S433	14	
6300	1	vWA	17	
5965	0.95	vWA	18	
5195	1	TPOX	8	
4774	0.92	TPOX	11	
3395	1	D18S51	12	
3178	0.94	D18S51	14	
8633	0.99	AMEL	Х	
8711	1	AMEL	Y	
5828	1	D5S818	10	
5285	0.91	D5S818	11	
2741	1	FGA	20	
2561	0.93	FGA	22	
9482	1	D8S1179	10	Minus A
8154	0.86	D8S1179	15	
7527	1	D21S11	27	
7185	0.95	D21S11	29	
3117	1	D7S820	9	
2866	0.92	D/S820	12	
4198	1	CSF1PO	12	
3909	0.93	CSF1PO	13	
//34	1	D3S1358	16	
6968	0.9	D3S1358	1/	
10412	1	TH01	9	
10361	1	THU1	9.3	
9638	1	D135317	10	
8827	0.92	D13S31/	12	
18306	1	D165539	11	
6506	1	D251338	19	
5707	0.88	D2S1338	20	
13206	1	D195433	14	
10157	1	vWA	17	
9416	0.93	vWA	18	

6233c

	8170	1	TPOX	8
	7692	0.94	TPOX	11
	5706	1	D18S51	12
	5207	0.91	D18S51	14
	11883	1	AMEL	Х
	11742	0.99	AMEL	Y
	9124	1	D5S818	10
	8453	0.93	D5S818	11
	4539	1	FGA	20
	4077	0.9	FGA	22
6233d	10867	1	D8S1179	10 Minus A
	9433	0.87	D8S1179	15
	8973	1	D21S11	27
	8047	0.9	D21S11	29
	3628	1	D7S820	9
	3318	0.91	D7S820	12
	4786	1	CSF1PO	12
	4456	0.93	CSF1PO	13
	8808	1	D3S1358	16
	7785	0.88	D3S1358	17
	11781	0.97	TH01	9
	12113	1	TH01	9.3
	11213	- 1	D135317	10
	10353	0.92	D135317	12
	12491	1	D165539	11
	7517	- 1	D2S1338	19
	6674	0.89	D2S1338	20
	15718	1	D195433	14
	12011	- 1	vWA	17
	10787	0.9	vWA	18
	9616	1	ТРОХ	8
	9087	0.94	трох	11
	6583	1	D18551	12
	5925	0.9	D18551	14
	12068	1	AMFI	X
	12037	- 1	AMFI	Ŷ
	10753	- 1	D55818	10
	9914	0.92	D55818	11
	5152	1	FGA	20
	4743	0.92	FGA	20
	7775	0.52		~ ~
6233e	9205	1	D8S1179	10 Minus A
-	7970	0.87	D8S1179	15
	7325	1	D21S11	27
	6998	0.96	D21S11	29
	3226	1	D7S820	9

2965	0.92	D7S820	12	
4191	1	CSF1PO	12	
4061	0.97	CSF1PO	13	
7892	1	D3S1358	16	
6842	0.87	D3S1358	17	
9350	0.95	TH01	9	
9802	1	TH01	9.3	
9943	1	D13S317	10	
9157	0.92	D13S317	12	
17454	1	D16S539	11	
6455	1	D2S1338	19	
5742	0.89	D2S1338	20	
13046	1	D19S433	14	
10305	1	vWA	17	
9122	0.89	vWA	18	
7872	1	ΤΡΟΧ	8	
7081	0.9	TPOX	11	
5766	1	D18S51	12	
5300	0.92	D18S51	14	
11067	1	AMEL	Х	
10866	0.98	AMEL	Y	
9323	1	D5S818	10	
8798	0.94	D5S818	11	
4740	1	FGA	20	
4559	0.96	FGA	22	
8727	1	D8S1179	10	Minus A
7314	0.84	D8S1179	15	
6414	1	D21S11	29	
5728	0.89	D21S11	32.2	
2314	1	D7S820	10	
2209	0.95	D7S820	12	
5757	1	CSF1PO	12	
8105	1	D3S1358	14	
7153	0.88	D3S1358	17	
10090	1	TH01	8	
9608	0.95	TH01	9	
8430	1	D13S317	11	
7602	0.9	D13S317	12	
14531	1	D16S539	11	
4473	1	D2S1338	20	
4037	0.9	D2S1338	22	
8779	1	D19S433	13	
7721	0.88	D19S433	15.2	
14221	1	vWA	17	
40	_			
13923	1	TPOX	8	

651C

	2503	0.74	D18S51	22
	11384	1	AMEL	Х
	8255	1	D5S818	11
	7522	0.91	D5S818	12
	6059	1	FGA	25
7572a	8538	1	D8S1179	10 Minus A
	7746	0.91	D8S1179	14
	6539	1	D21S11	28
	6401	0.98	D21S11	30
	6689	1	D7S820	10
	4741	1	CSF1PO	10
	4326	0.91	CSF1PO	12
	8188	1	D3S1358	17
	7334	0.9	D3S1358	18
	9560	1	TH01	7
	9571	1	TH01	9.3
	13890	1	D13S317	11
	11265	1	D16S539	12
	10484	0.93	D16S539	13
	6448	1	D2S1338	17
	5608	0.87	D2S1338	24
	9050	1	D19S433	14
	8231	0.91	D19S433	15
	10089	1	vWA	15
	9492	0.94	vWA	16
	14530	1	TPOX	8
	7021	1	D18S51	10
	6068	0.86	D18S51	14
	14716	1	AMEL	Х
	13328	1	D5S818	12
	4852	1	FGA	22
	4331	0.89	FGA	25
7572b	8435	1	D8S1179	10 Minus A
	7306	0.87	D8S1179	14
	6422	1	D21S11	28
	6240	0.97	D21S11	30
	6409	1	D7S820	10
	4446	1	CSF1PO	10
	4227	0.95	CSF1PO	12
	7641	1	D3S1358	17
	6944	0.91	D3S1358	18
	9160	1	TH01	7
	9120	1	TH01	9.3
	13372	1	D13S317	11
	10815	1	D16S539	12

	10184	0.94	D16S539	13
	6404	1	D2S1338	17
	5381	0.84	D2S1338	24
	8464	1	D19S433	14
	7872	0.93	D19S433	15
	9748	1	vWA	15
	8941	0.92	vWA	16
	14435	1	TPOX	8
	6713	1	D18S51	10
	5891	0.88	D18S51	14
	9753	1	AMEL	Х
	8522	1	D5S818	12
	4689	1	FGA	22
	4222	0.9	FGA	25
7572c	7311	1	D8S1179	10 Minus A
	6543	0.89	D8S1179	14
	5379	0.99	D21S11	28
	5452	1	D21S11	30
	5671	1	D7S820	10
	3986	1	CSF1PO	10
	3740	0.94	CSF1PO	12
	6842	1	D3S1358	17
	6215	0.91	D3S1358	18
	8353	1	TH01	7
	8159	0.98	TH01	9.3
	12195	1	D13S317	11
	9885	1	D16S539	12
	9457	0.96	D16S539	13
	5791	1	D2S1338	17
	4812	0.83	D2S1338	24
	7721	1	D19S433	14
	7169	0.93	D19S433	15
	8486	1	vWA	15
	8193	0.97	vWA	16
	13361	1	TPOX	8
	6202	1	D18S51	10
	5434	0.88	D18S51	14
	13205	1	AMEL	Х
	11672	1	D5S818	12
	4069	1	FGA	22
	3733	0.92	FGA	25
7572d	8588	1	D8S1179	10 Minus A
	7796	0.91	D8S1179	14
	6538	1	D21S11	28
	6373	0.97	D21S11	30

6602	1	D7S820	10	
4379	1	CSF1PO	10	
4346	0.99	CSF1PO	12	
7981	1	D3S1358	17	
7233	0.91	D3S1358	18	
9201	1	TH01	7	
9092	0.99	TH01	9.3	
14640	1	D13S317	11	
11059	1	D16S539	12	
10233	0.93	D16S539	13	
6742	1	D2S1338	17	
5564	0.83	D2S1338	24	
8344	1	D19S433	14	
7792	0.93	D19S433	15	
9572	1	vWA	15	
9065	0.95	vWA	16	
14285	1	TPOX	8	
6936	1	D18S51	10	
6116	0.88	D18S51	14	
10970	1	AMEL	Х	
13245	1	D5S818	12	
4749	1	FGA	22	
4241	0.89	FGA	25	
6166	1	0001170	10	
6166	1	D8S1179	10	Minus A
6166 5516 4975	1 0.89 1	D8S1179 D8S1179	10 14 28	Minus A
6166 5516 4975	1 0.89 1	D8S1179 D8S1179 D21S11 D21S11	10 14 28 30	Minus A
6166 5516 4975 4493 5093	1 0.89 1 0.9	D8S1179 D8S1179 D21S11 D21S11 D7S820	10 14 28 30	Minus A
6166 5516 4975 4493 5093 3611	1 0.89 1 0.9 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSE1PO	10 14 28 30 10	Minus A
6166 5516 4975 4493 5093 3611 3245	1 0.89 1 0.9 1 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1P0 CSE1P0	10 14 28 30 10 10	Minus A
6166 5516 4975 4493 5093 3611 3245 6043	1 0.89 1 0.9 1 1 0.9	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1P0 CSF1P0 D3S1358	10 14 28 30 10 10 12	Minus A
6166 5516 4975 4493 5093 3611 3245 6043 5387	1 0.89 1 0.9 1 1 0.9 1 0.89	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358	10 14 28 30 10 10 12 17	Minus A
6166 5516 4975 4493 5093 3611 3245 6043 5387 6788	1 0.89 1 0.9 1 1 0.9 1 0.89	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358	10 14 28 30 10 10 12 17 18 7	Minus A
6166 5516 4975 4493 5093 3611 3245 6043 5387 6788 6648	1 0.89 1 0.9 1 1 0.9 1 0.89 1 0.98	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1P0 CSF1P0 D3S1358 D3S1358 TH01 TH01	10 14 28 30 10 10 12 17 18 7 9 3	Minus A
6166 5516 4975 4493 5093 3611 3245 6043 5387 6788 6648 13464	1 0.89 1 0.9 1 1 0.9 1 0.89 1 0.98 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 TH01 TH01 D13S317	10 14 28 30 10 10 12 17 18 7 9.3 11	Minus A
6166 5516 4975 4493 5093 3611 3245 6043 5387 6788 6648 13464 8312	1 0.89 1 0.9 1 0.9 1 0.89 1 0.98 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 TH01 D13S317 D16S539	10 14 28 30 10 10 12 17 18 7 9.3 11	Minus A
6166 5516 4975 4493 5093 3611 3245 6043 5387 6788 6648 13464 8312 7781	1 0.89 1 0.9 1 0.9 1 0.89 1 0.98 1 1 0.94	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 TH01 D13S317 D16S539 D16S539	10 14 28 30 10 10 12 17 18 7 9.3 11 12 13	Minus A
6166 5516 4975 4493 5093 3611 3245 6043 5387 6788 6648 13464 8312 7781 4936	1 0.89 1 0.9 1 0.9 1 0.89 1 0.98 1 1 0.94 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 TH01 D13S317 D16S539 D16S539 D2S1338	10 14 28 30 10 10 12 17 18 7 9.3 11 12 13	Minus A
6166 5516 4975 4493 5093 3611 3245 6043 5387 6788 6648 13464 8312 7781 4936 4348	$ \begin{array}{c} 1\\ 0.89\\ 1\\ 0.9\\ 1\\ 0.9\\ 1\\ 0.89\\ 1\\ 0.98\\ 1\\ 0.98\\ 1\\ 0.94\\ 1\\ 0.88 \end{array} $	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 TH01 D13S317 D16S539 D16S539 D16S539 D2S1338	10 14 28 30 10 10 12 17 18 7 9.3 11 12 13 17 24	Minus A
6166 5516 4975 4493 5093 3611 3245 6043 5387 6788 6648 13464 8312 7781 4936 4348 6170	1 0.89 1 0.9 1 1 0.99 1 0.98 1 1 0.94 1 0.88 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO D3S1358 D3S1358 TH01 TH01 D13S317 D16S539 D16S539 D2S1338 D2S1338 D19S433	10 14 28 30 10 10 12 17 18 7 9.3 11 12 13 17 24	Minus A
6166 5516 4975 4493 5093 3611 3245 6043 5387 6788 6648 13464 8312 7781 4936 4348 6170 5651	1 0.89 1 0.9 1 0.9 1 0.89 1 0.98 1 1 0.94 1 0.88 1 0.92	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 D3S1358 TH01 TH01 D13S317 D16S539 D16S539 D16S539 D2S1338 D2S1338 D19S433 D19S433	10 14 28 30 10 10 12 17 18 7 9.3 11 12 13 17 24 14	Minus A
6166 5516 4975 4493 5093 3611 3245 6043 5387 6788 6648 13464 8312 7781 4936 4348 6170 5651 7235	1 0.89 1 0.9 1 0.9 1 0.89 1 0.98 1 0.94 1 0.88 1 0.88 1 0.92 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 TH01 D13S317 D16S539 D16S539 D16S539 D2S1338 D2S1338 D19S433 D19S433	10 14 28 30 10 10 12 17 18 7 9.3 11 12 13 17 24 14 15 15	Minus A
6166 5516 4975 4493 5093 3611 3245 6043 5387 6788 6648 13464 8312 7781 4936 4348 6170 5651 7235 6551	1 0.89 1 0.9 1 0.99 1 0.89 1 0.98 1 0.94 1 0.88 1 0.92 1 0.91	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 D3S1358 TH01 TH01 D13S317 D16S539 D16S539 D16S539 D16S539 D2S1338 D2S1338 D19S433 D19S433 VWA	10 14 28 30 10 10 12 17 18 7 9.3 11 12 13 17 24 14 15 15	Minus A
6166 5516 4975 4493 5093 3611 3245 6043 5387 6788 6648 13464 8312 7781 4936 4348 6170 5651 7235 6551 11573	1 0.89 1 0.9 1 0.9 1 0.89 1 0.98 1 0.94 1 0.94 1 0.88 1 0.92 1 0.91 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO CSF1PO D3S1358 D3S1358 TH01 TH01 D13S317 D16S539 D16S539 D16S539 D16S539 D2S1338 D2S1338 D19S433 D19S433 VWA VWA	10 14 28 30 10 10 12 17 18 7 9.3 11 12 13 17 24 14 15 15 16 8	Minus A
6166 5516 4975 4493 5093 3611 3245 6043 5387 6788 6648 13464 8312 7781 4936 4348 6170 5651 7235 6551 11573 5542	1 0.89 1 0.9 1 0.99 1 0.89 1 0.98 1 0.94 1 0.94 1 0.94 1 0.92 1 0.91 1	D8S1179 D8S1179 D21S11 D21S11 D7S820 CSF1PO D3S1358 D3S1358 D3S1358 TH01 TH01 D13S317 D16S539 D16S539 D16S539 D2S1338 D2S1338 D19S433 D19S433 VWA VWA VWA VWA	10 14 28 30 10 10 12 17 18 7 9.3 11 12 13 17 24 14 15 15 16 8 10	Minus A

7572e

	12049	1	AMEL	Х
	11576	1	D5S818	12
	3866	1	FGA	22
	3436	0.89	FGA	25
7758H_2	9056	1	D8S1179	10 Minus A
	7880	0.87	D8S1179	14
	7619	1	D21S11	28
	6895	0.9	D21S11	30
	3063	1	D7S820	9
	2872	0.94	D7S820	13
	4225	1	CSF1PO	10
	3786	0.9	CSF1PO	12
	12077	1	D3S1358	15
	11061	1	TH01	7
	11005	0.99	TH01	9.3
	8669	1	D13S317	11
	8054	0.93	D13S317	14
	12053	1	D16S539	9
	10840	0.9	D16S539	12
	6427	1	D2S1338	17
	5155	0.8	D2S1338	24
	9685	1	D19S433	14
	8460	0.87	D19S433	16
	9717	1	vWA	16
	8787	0.9	vWA	19
	14160	1	TPOX	8
	4637	1	D18S51	15
	4186	0.9	D18S51	17
	12744	1	AMEL	Х
	8490	1	D5S818	11
	8051	0.95	D5S818	12
	3950	1	FGA	23
	3578	0.91	FGA	24
9066C_2	7847	1	D8S1179	11 Minus A
	7120	0.91	D8S1179	13
	6301	1	D21S11	28
	5984	0.95	D21S11	30
	3591	1	D7S820	9
	1210	0.34	D7S820	11
	9274	1	CSF1PO	11
	8264	1	D3S1358	17
	7306	0.88	D3S1358	18
	8831	0.96	TH01	7
	9164	1	TH01	9.3
	10451	1	D13S317	8

	9041	0.87	D13S317	13
	14770	1	D16S539	11
	6636	1	D2S1338	20
	6096	0.92	D2S1338	21
	9546	1	D19S433	12
	8193	0.86	D19S433	15
	9042	1	vWA	18
	8475	0.94	vWA	19
	14153	1	ТРОХ	9
	7237	1	D18S51	12
	6580	0.91	D18S51	16
	9158	1	AMEL	Х
	8731	0.95	AMEL	Y
	8083	0.98	D5S818	10
	8260	1	D5S818	13
	5193	1	FGA	23
	4663	0.9	FGA	26
ChristiH 2	6618	1	D8S1179	14 Minus A
_	2253	1	D21S11	28
	1972	0.88	D21S11	30
	1071	1	D7S820	8
	968	0.9	D7S820	12
	1212	0.98	CSF1PO	10
	1238	1	CSF1PO	11
	4785	1	D3S1358	14
	4446	0.93	D3S1358	16
	7111	1	TH01	6
	6199	1	D13S317	11
	3121	1	D16S539	11
	2888	0.93	D16S539	12
	1388	1	D2S1338	23
	1217	0.88	D2S1338	24
	3917	1	D19S433	15
	3376	0.86	D19S433	16
	3909	1	vWA	14
	3396	0.87	vWA	18
	2743	1	TPOX	8
	2341	0.85	TPOX	9
	4098	1	D18S51	12
	10106	1	AMEL	Х
	4641	1	D5S818	11
	3553	0.77	D5S818	12
	2234	1	FGA	20
	1845	0.83	FGA	23