
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

5-2016

Object-Oriented Programming: A Method for Pricing Options Object-Oriented Programming: A Method for Pricing Options

Leonard Stewart Higham

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

 Part of the Finance and Financial Management Commons

Recommended Citation Recommended Citation
Higham, Leonard Stewart, "Object-Oriented Programming: A Method for Pricing Options" (2016). All
Graduate Plan B and other Reports. 801.
https://digitalcommons.usu.edu/gradreports/801

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F801&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/631?utm_source=digitalcommons.usu.edu%2Fgradreports%2F801&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/801?utm_source=digitalcommons.usu.edu%2Fgradreports%2F801&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

OBJECT-ORIENTED PROGRAMMING: A METHOD FOR PRICING OPTIONS

by

Leonard Stewart Higham

A thesis submitted in partial fulfillment
Of the requirements for the degree

of

MASTER OF SCIENCE

in

Financial Economics

Approved:

Dr. Tyler Brough Dr. Ben Blau
Major Professor Committee Member

Dr. Ryan Whitby
Committee Member

UTAH STATE UNIVERSITY
Logan, Utah

2016

ii

Copyright © Leonard Stewart Higham 2016

All Rights Reserved

iii

ABSTRACT

Object-Oriented Programming: A Pricing Engine

by

Leonard Stewart Higham, Master of Science

Utah State University, 2016

Major Professor: Dr. Tyler J. Brough
Department: Finance

In the world of finance, it’s becoming necessary to obtain computer programming

knowledge and experience, a marketable skill that prepares one conduct quantitative analysis.

The objective of this thesis is to utilize concepts in finance and computer science together to

form a pricing library for financial derivatives, thus, develop a strong skillset in a specific area of

financial computational methods. Through implementation of object-oriented programming

and specific design patterns in Python, I develop a pricing engine for many types of options,

from plain vanilla to unique and complex options, with the focus on the ability to reuse and

extend various pieces of code without ruining the interface for the end user. The modules

implemented range from analytical Black Scholes models to binomial option trees to help

improve computational speed, power, and accuracy. I also utilize a beneficial platform called

Github to facilitate the storage and application of the pricing engines and related files. The

results of this project will show a dynamic, yet simple, interface for the end-user, and they will

show tangible benefits of object oriented programming.

(13 Pages)

iv

ACKNOWLEDGMENTS

I could never make it as far as I have without my family. Plain and simple.

Dr. Tyler Brough encouraged and helped me every step of the way. My experience and

education will always be influenced by my time with him. I want to give him a special thank you.

Thank you for all of your separate efforts, never-ending support, and encouragement.

Leonard Stewart Higham

v

CONTENTS

Page

COPYRIGHT NOTICE ... ii

ABSTRACT ... iii

ACKNOWLEDGMENTS ...iv

CHAPTER

INTRODUCTION .. 1

A DISCUSSION OF OOP ... 2

DESIGN PATTERNS ... 3

Façade Pattern .. 4

Abstract Factory Pattern ... 4

Strategy Pattern .. 6

SETUP ... 7

CODE .. 8

EXTENSIONS .. 12

CONCLUSION ... 13

REFERENCES ... 14

INTRODUCTION

The field of finance best suits those that have a love and interest in math and money. As

time goes on, computer programming is becoming more relevant and is becoming an important

part those interests. Financial economists, as well as the world, benefit from the technological

advances the field of computer science provides. Academics are applying models, theories, and

new research using computer programming techniques to further improve the finance field of

study. The finance industry benefits from these advances by utilizing both fields to find and

create comparative advantages. Using object-oriented programming (OOP) techniques to price

various options is a brilliant example of this. The importance of this concept affects everyone in

the industry; it applicable in various careers. This paper will go over why OOP is an important

concept to understand as a recent graduate in finance and economics, the specific design

patterns that my project covers and possible extensions to be added to the pricing library, and

the results of how studying these topics interact give the user a marketable skillset that has

helped jumpstart a career.

In this particular paper, I utilize OOP, implement various design patterns, and set the

interface for the end user to price financial options. I create four different files, each with a

portion of the necessary code, that interact with each other as the user calls them to receive the

option’s price. The files contain generic and specific code to be able to dynamically implement

the option the user wants to price at run time. For the scope of this paper, the functionality of

the designs I created is satisfactory, however, there may be more optimal approaches than the

ones I have implemented, and as such, the original code can be modified without the necessity

of changing the entire framework of the program. This is the importance of OOP. I will discuss

the specifics of the design and functionality in a later section. The files I included are an abstract

factory file that is the basic framework for the OOP process and starts the interaction via a price

function, a pricing engine file that contains all of the generic formulas or code to price specific

derivative options called through the first file, a market data file in which I set up the ability to

retrieve financial data necessary to price an option or pass that responsibility on to the user at

runtime, and a payoff function that returns a price based off the specific inputs from the user. I

use the abstract factory, façade, and strategy design patterns to standardize and facilitate the

structure of the code. I also use a setup tool in Python to abstract the code away from the user,

to provide flexibility of use. A computer that initially doesn’t have the code can access and run

the code with normal functionality with a simple import command. The written code is stored

on a Github repository where one can pull the code and modify as needed.

A Discussion of OOP

There are numerous benefits to OOP. I utilize of the benefits in a finance setting to

estimate an option price. An example of an advantage of OOP is being able to abstract away

pieces, generally the more complex portion of a formula or code, from the client or main

function. For instance, I abstract away the Black Scholes formula, how to run a Monte Carlo

simulation, how to calculate certain variables. This brings more simplicity to the end user, can

be less computationally expensive, dependent on structure, and advances the reusability of the

code. Mark S. Joshi, Ph.D., explains in his book, C++ Design Patterns and Derivatives Pricing, that

the functionality of OOP resembles that to the natural mental maps of people (Joshi 2010).

Another example that I applied to the project is the ability to implement suboptimal, yet

functional, code in the time of necessity and have the ability to modify and improve the

abstracted code without changing other files, as needed. The versatility of OOP allows meto

add on to code with extended variations and techniques. OOP gives coding structure and

reliability that otherwise would be difficult to produce every time a new code is needed. For

example, an option needs a model to price it, data, and a payoff function. This structure makes

sense and allows the analyst to focus on each part of the option without difficulty. The

reliability comes from the code becoming cleaner and easier for others to read and work

together without error.

“One of the key elements of OOP is inheritance, which allows you to base a new class on

an existing one. It’s like getting all of the work that went into writing the existing class for free!”

(Joshi 2010) I used specific types of pricing engines, or models that were able to inherit from a

generic pricing engine. The generic engine is able to collect the common information from all of

the subclasses that existed such as a calculate function. It is important to understand the

objective of the inheritance concept. Inheritance abstracts complicated methods and objects

away from the end user which creates a simpler environment in which he/she utilizes and

reuses.

DESIGN PATTERNS

To build on an object-oriented design, I use various design patterns to add more

structure and construct standardized solutions to my code. The creation of design patterns is

accredited to a group popularly known as the ‘Gang of Four’ through a software engineering

book that was written to solve recurring functional and design problems. While I could use the

whole list of patterns, the patterns that best fit the bill helped organize my pricing library. The

main design pattern applied, called the façade design pattern, is an essential piece used to

facilitate the pricing of the option for the end user while creating structure under the hood of

the engine. Other important designs that I have in my code are the abstract factory pattern and

the strategy pattern.

Façade Pattern

In finance terms, the façade pattern takes the complexities of a pricing engine, payoff

function, and the necessary data together and is able to make them interact in the right way

without the end user needing to know where the information is coming from. The purpose of a

façade pattern is to build a simple interface and hide the complexity of the low-level code that is

not necessary to know and understand. A downside to this pattern is that the end user will

forego some control over the general code. The main point in using this pattern is to simplify

usage and speed up the process for the end user that is pricing options. In Figure 1 the Façade

class takes the initializer function to set up the three other files and how they will interact once

instantiated from the analyst.

Figure 1

Abstract Factory Pattern

In my project, I use an abstract factory to call the calculate function that is required by

the façade pattern, which is passed on to each concrete factory of specific pricing engines to

calculate the encapsulated function specifically. The function behind using an abstract factory

pattern in the sense of a pricing engine is that the abstract factory pattern is designed to create

complex objects that are composed of other objects where the composed objects are all of one

particular family (Summerfield 2014). This basically means that the abstract factory is passing

on or assigning certain responsibilities to another object or class, known as loose coupling. This

is also a good way of testing concrete price engines. One downfall of the abstract factory

pattern can be when the code or concrete factories get to be sufficiently large, the central point

of abstraction, or the responsibility being passed on, may start to change or modify, making

more levels of complexity and abstraction necessary. The reason behind using this pattern is to

pass on responsibility of deciding which pricing engine in the library to use until runtime, which

greatly benefits the client user. In Figure 2 one sees that the abstract factory class called

“PricingEngine” contains a calculate function that passes on its responsibility on to a concrete

factory class. There is an example of this in the second class mentioned in the figure that

contains the calculate function at the bottom.

Figure 2

Strategy Pattern

The different payoff functions which are a part of a particular payoff class that is called

from the correct pricing engine are dynamically decided at runtime. Other examples include the

different types of Monte Carlo variance reduction techniques. Strategy patterns encapsulate

the different algorithms that can be used interchangeably depending on the user’s needs

(Summerfield 2014). The user only needs to know that there exists an abstraction interface and

the actual implementation (payoff or engine) chosen will do the same thing, but in different

ways to come up with the right answer, but the interface is identical (Phillips 2010). The payoff

function in Figure 3 shows the call and put payoffs being referenced by the abstract method in

the payoff class above it. This shows inheritance as well as the vanilla payoff class inherits from

the payoff class, but because we do not need to decide on a payoff until runtime, we have the

ability to call the specific function dynamically.

Figure 3

SETUP

Python has a package that enables a user to install a third party package into Python

called setuptools. This means that a user with a computer that is not connected to the physical

code can install the package via Python and it generates the interface necessary for the end user

without intensive knowledge of how or why Python works. There is a need for experience in

using the package, necessary knowledge of what needs to be called within the package, and the

ability to use it correctly. The format used in this project utilized a folder that contained all four

of the necessary modules and an initializer module. At the same level as the aforementioned

folder were two other modules, a setup module and a test module to assure that the format

functions correctly. Below in Figure 4 one sees that once in in the Thesis work folder, there

doesn’t exist a Probo folder, but with a simple git clone command with the correct URL, or

holding place for the pricing library. After the command, one can see highlighted in blue that

Probo (the pricing library) is now installed in the Thesis work folder. In Figure 5, the last

command uses Python to call the setup file which imports the pricing library package, where the

analysts can now price the options in the library.

Figure 4

Figure 5

THE CODE

The benefit of the ability to abstract away the payoff function from the specific options,

the pricing engine formulas are generic. Although generic, the user has the ability to call the

code to estimate the price of a variety options using the binomial option pricing method, Black

Scholes, and the Monte Carlo pricing method along with adding variance reduction techniques

such as antithetic sampling, stratified sampling, and control variate sampling, and the ability to

extend the code. The payoff class consists of a vanilla payoff, which is the maximum of the

difference between the spot and strike, depending on the type of option, orzero (Figure .

There is also a Black Scholes payoff and I have the exotic payoff initiated and will extend this

project to encompass multiple exotic pricing engines. I also have produced a data class that is a

blueprint for pulling data from a predetermined source to price the options with “live” data. I

will extend this as well using a package in Python called pandas.

Figures 6 and 7 are examples of the Monte Carlo code and a Monte Carlo simulation

with a control variate to reduce variance.

Figure 6

Figure 7

15

Figure 8

It’s noticeable that I used the Black Scholes Delta formula as the control variate and it’s resultof

3.410 compared to the naïve Monte Carlo engine’s result of 3.079, as seen in Figures 8 and 9.

Figure 9

Below is examples of the file that will execute the Black Scholes and European Binomial

pricing method as the interface for the analyst. First, in figure 10 we see the Black Scholes

formula and its result versus the European option being priced by the binomial method and the

corresponding results in Figure 11.

Figure 11

Figure 12

The end user can utilize whichever method deemed most useful or optimal at runtime

to price an option. As the modules were executed, benchmark prices from the McDonald

textbook Derivative Markets were used to check accuracy of the estimated prices. If the user

needs a specific option that doesn’t exist, all that is needed is an implementation of apricing

engine and a payoff. If the user wants a better computational turnaround time for a current

method of pricing, the software engineering team works on an enhanced algorithm that

increases the computational speed without compromising the OOP and design pattern

concepts. This will not break any code for the end user and increases the efficiency of the

library.

EXTENSIONS

One of the most intriguing aspects of this project is the fact that a countless number of

variations and additions can be done to extend and modify the original code, customizing it to

one’s needs without compromising the framework of the code. One can amend the pricing

engine code by using other design patterns, or implementing more patterns, like a builder or

decorator pattern, as the code grows. Adding methods like the Brownian Bridge, the Heston

model, and a trinomial tree model are examples of additions that can be made. A linter can be

added to find errors in the programming code. Even a graphical user interface (GUI) can be

implemented for the end user to see the various methods in which the option can be priced.

Different types of variance reduction techniques such as importance sampling and Low

discrepancy sequences (McDonald 2006). The option pricing library can even be implemented

for real options, depending on the size of the scope. This list is not comprehensive and is meant

to be a building block to add on to the library.

18

CONCLUSION

By implementing the techniques discussed in this paper one will be able to accurately

price options using conventional methods with the ability to have reusable code the can be

enhanced and extended to take on more complexities and volume. Coding is becoming more

commonplace in the financial industry and its application can be a marketable skill for recent

graduates. While there are existing software packages in the world that do this type of work

automatically, a quick search for quantitative finance jobs required compute software

engineering skills will show that there is a demand for these related skillsets. Skills associated

with being able to make unique adjustments and variations to be more applicable to a specific

need, or to be able to fix various problems or bugs. These are what provide the most value to

me.

19

REFERENCES

Joshi, Mark S. 2010. C++ Design Patterns and Derivatives Pricing. 2nd. New York, New York: Cambridge

University Press. Accessed March 2016.

McDonald, Robert L. 2006. Derivatives Markets. 2nd . Boston, MA: Pearson Education, Inc. Accessed Feb

2016.

Phillips, Dusty. 2010. Python 3 Object Oriented Programming. Birmingham: Packt Publishing Ltd.

Accessed April 2016.

Summerfield, Mark. 2014. Python in Practice. Crawfordsville, Indiana: Pearson Education, Inc. Accessed

March 2016.

	Object-Oriented Programming: A Method for Pricing Options
	Recommended Citation

	tmp.1462475525.pdf.diGcf

