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Abstract	

	
The	1973	Black-Scholes	model,	a	revolutionary	option	pricing	formula	whose	price	is	'relatively	
close	to	observed	prices,	makes	an	assumption	that	the	volatility	is	constant	and	thus,	
deterministic.	This	causes	some	inefficiencies	and	patterns	in	the	pricing	of	options	due	to	the	
model	providing	evidence	of	the	volatility	smile'	of	the	volatility.	Many	scholars	have	suggested	
that	the	volatility	should	be	modelled	by	a	stochastic	process	and	the	(1993)	Heston	Model	is	
one	of	many	proposed	solutions	to	remedy	this	problem.	The	Heston	Model	allows	for	the	
'smile'	by	defining	the	volatility	as	a	stochastic	process.	This	thesis	considers	a	solution	to	this	
problem	by	utilizing	Heston’s	stochastic	volatility	model	in	conjunction	with	Euler's	
discretization	scheme	in	a	simple	Monte	Carlo	engine.		

	
The	application	of	this	model	has	been	implemented	in	object-oriented	Cython,	for	it	

provides	the	simplicity	of	Python,	all	the	while,	providing	C	performance.	
	
	
Area	of	review:	Financial	Economics	
Subject	Classification:	Computational	Methods,	Monte	Carlo,	Heston,	Python,	Cython	
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Chapter	1.	Introduction	

This	thesis	shall	simulate	the	Heston	Model	by	the	use	of	Cython	and	thus,	the	reasoning	
behind	the	chosen	model	must	be	identified.	The	primary	factor	for	the	decision	to	implement	
the	Heston	Model	was	how	it	determines	the	evolution	of	volatility	of	the	underlying	asset.	
With	the	aid	of	continuous	time	diffusion	models	for	volatility,	the	Heston	Model	derives	its	
option	price	from	a	random	process.	Although	the	Black-Scholes	model	is	widely	supported,	it	is	
subject	to	inefficiencies,	error	and	incorrectly	pricing	securities	due	to	the	assumption	of	
constant	volatility.	If	the	Black-Scholes	assumption	were	correct	than,	when	viewing	strike	
prices,	the	implied	volatilities	of	same	type	options	would	be	constant.	This	is	not	the	case	as	
patterns	of	volatilities	varying	by	strike	can	be	seen	forming	a	smile	curve	or	"volatility	smile".		
	

Stochastic	volatility	models	were	formulated	in	order	to	solve	this	problem.	These	
models	incorporate	the	verifiable	observations,	for	which,	the	volatility	of	the	model	is	a	
random	process.	In	turn,	volatility	itself	is	made	into	stochastic	process.	Developed	by	Steven	
Heston,	the	widely	used	Heston	(1993)	model	not	only	took	time-dependent	volatility	into	
account,	it	also	presents	a	stochastic	process	element.	The	Heston	Model	provides	correlated	
shocks	between	asset	returns	and	volatility.	This	assumption	provides	insight	into	the	reasoning	
behind	return	skewness	and	strike-price	biases	in	the	Black-Scholes	model.	In	addition,	the	
Heston	provides	for	the	actuality	of	a	semi-analytical	resolution	for	European	options.	

	
	In	this	thesis,	we	shall	institute	a	simulation	of	one	of	the	most	widely	used	stochastic	

volatility	models,	the	Heston	Model's	volatility	stochastic	process.	The	implementation	is	
inclusive	of	random-number	generation	in	a	Monte	Carlo	engine.	Monte	Carlo	simulation	is	a	
vital	technique	used	in	option	pricing	as	it	not	only	provides	an	improvement	in	the	efficiency	of	
a	simulation,	but	it	does	so	by	sampling	values	randomly	from	all	possible	outcomes	from	the	
input	probability	distributions.	The	Monte	Carlo	simulation	does	this	iteration	as	many	times	as	
specified	and	the	result	is	a	probability	distribution	of	all	possible	outcomes.	The	Monte	Carlo	
simulation	implementation	is	quantified	in	Cython	within	the	Python	software.	Python	is	a	high-
level	programming	language	that	is	used	in	a	variety	of	technical	areas	including	finance.	
Although,	Python	is	widely	used	for	option	pricing	theory,	the	execution	of	the	aforementioned	
within	a	Cython	environment	is	relatively	new.	In	the	forthcoming	chapters	of	this	thesis,	we	
shall	introduce	and	review	these	methods.	
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Chapter	2.	The	Black-Scholes	Model	

The	most	recognized	and	widely	used	continuous	time	model	is	the	Black-Scholes.	With	its	
simplistic	nature	and	requirement	of	only	five	inputs:	strike	price,	asset	price,	expiry,	risk-free	
rate,	and	volatility,	the	Black-Scholes	makes	an	assumption	of	an	underlying	asset,	S,	where	it	
follows	a	geometric	Brownian	motion	and	we	assume	the	drift	and	volatility	is	constant.	The	
plain	Black-Scholes	model	process	is	as	follows:		
	 	

															 	 	 (2.1)		
	
where	both	 ,	the	drift	and	 ,	the	volatility,	are	under	the	assumption	of	being	constant.	As	
the	result	of	asset	price	changes	are	lognormal-distributions,	which	means	that	the	values	are	
positive	and	they	create	a	right	skewed	curve,	which	is	a	disadvantage	of	the	model.	In	
addition,	the	Black-Scholes	model	has	demonstrated	an	issue	with	being	consistent	with	the	
market	as	far	as	implied	volatility	is	concerned.	Let	us	allow:	
	

	 	 	 	 	 (2.2)	
	

to	denote	the	Black-Scholes	price	for	a	European	call	option	with	T	time	to	expiry,	strike	price	K,	
S	is	the	value	of	the	underlying	asset,	r	is	the	risk-free	rate	and	implied	volatility	is	the	value	of	I	
for	which,	is	the	volatility	that	allows	the	Black-Scholes	price	to	equal	that	of	what	is	observed	
in	the	market,	while	making	note	that	volatility,	which	has	a	drastic	effect	on	price	is	not	visible.	
When	calculating	implied	volatilities	from	market	data,	the	same	sigma	should	be	detectable	
for	all	options	on	the	same	underlying	asset,	but	this	is	not	what	is	observed.		
	

The	implied	volatilities	derived	from	market	data	are	not	constant	as	they	vary	with	the	
strike	price	and	time	to	expiry	even	when	associated	with	the	same	underlying	asset,	which	
entails	the	formation	of	a	skew	or	"volatility	smile."	The	implied	volatilities	also	vary	over	the	
course	of	time	in	a	stochastic	fashion.	This	directly	repudiates	the	assumptions	of	constant	
volatility	that	Black-Scholes	states.	A	stochastic	volatility	model	can	remedy	the	Black-Scholes	of	
this	contradiction.	

Chapter	3.	The	Heston	Model	

The	evolution	of	the	volatility	of	an	underlying	asset	provides	the	reasoning	behind	the	creation	
of	the	Heston	Model.	When	there	is	a	correlation	between	the	asset	price	and	volatility,	it	
produces	a	closed-form	solution	and	allows	the	model	to	make	the	addition	of	stochastic	
interest	rates.	The	Heston	(1993)	model	[1]	is	based	upon	the	following	stochastic	differential	
equations,	which	depicts	the	stock	price	and	variance	process	diffusions	under	a	probability	
measure	 	as:	

	 		 	 	 	 (3.1)		
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	 	 	 (3.2)		

Equation	(3.1)	assumes	the	underlying	asset	price	follows	the	diffusion	process	at	time	t	

where	where	 	is	the	drift	parameter,	and	 	is	a	standard	Wiener	process	(i.e.	random	

walk).	In	equation	(3.2)	the	volatility	 	itself	follows	a	diffusion	process	where	 is	a	

Wiener	process,	 	defines	the	correlation	between	 and	 	where,	 	=	 	

with	 	 .	Using	Ito’s	lemma,	the	variance	process	can	be	written	as	seen	in	(3.2)	as	the	
volatility	follows	an	Orstein-Uhlenbeck	(mean-reverting)	process.	

For	simplicity	at	this	stage,	under	the	risk-neutral	measure,	variations	of	(3.1)	and	(3.2)	are	
given	by:	

	 	 	 	 	 	 	 (3.3)	

	 	 	 	 	 	 (3.4)	

where	the	(3.3)	provides	the	dynamics	of	the	stock	price:	 	denotes	the	stock	at	time	 ,	 		is	

the	risk-neutral	drift	and	is	found	in	markets,	 	=	0.	The	second	equation	provides	the	
evolution	of	the	variance	where	 	is	the	long-run	mean	of	the	variance,	 	is	the	speed	of	mean	
reversion	parameter,	 	is	the	volatility	of	volatility	and		 	is	the	correlation	between	the	two	

Brownian	Motions	 	and	 .	

4.	The	Monte	Carlo	Method	

In	order	to	price	an	exotic	security,	one	would	be	poised	with	the	task	to	numerically	calculate	

	 	for	a	payoff	function	 ,	where	a	stochastic	function	describes	the	
underlying	asset	 :	

	 	 	 	 	 	 (3.5)	

where	 	is	a	normal	Weiner	process.	One	could	engage	a	partial	differential	equation(PDE)	
criteria	for	the	derivative,	but	this	is	ineffective,	laborious	and	given	the	payoff	path,	could	be	
too	computationally	complex.	Given	these	circumstances	and/or	if	the	stochastic	differential	
equations	do/do	not	yield	a	closed-form	solution,	one	could	utilize	a	Monte	Carlo	simulation	by	
discretizing	the	time	interval	and	simulating	the	state	process	dynamics	on	this	discrete-time	
grid.	In	this	scenario,	it	would	be	beneficial	to	implement	a	discrete-time	approximation	of	(3.5)	
to	acquire	a	Monte	Carlo	estimation	of	 	 .	The	Monte	Carlo	Simulation	simulates	many	
sample	trajectories	of	the	state	variables	e.g.,	stock	price,	volatility,	and	interest	rates.	The	
generations	of	trajectories	and	the	payoff	of	the	derivative	are	evaluated	for	each	sample	
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trajectory,	discounting	and	taking	the	mean	over	all	trajectories	gives	an	expected	payoff	
	of	the	derivative	price.		

Let	us	refer	to	(3.3),	Heston’s	underlying	asset	price:	

	 	 	 (3.6)	

where	there	are	no	dividends	and	 	is	deterministic.	In	order	to	smoothen	the	discretization	
transition,	let	us	work	with	the	underlying	asset’s	log	stock	price .	With	the	
application	of	Ito’s	lemma	to	(3.6),	in	conjunction	with	the	variance	process	instituted	earlier,	
the	Heston	model	we	will	look	at	is:	

	 	 (3.7)	

	 	 	 (3.8)	

We	have	to	discretize	these	SDE's	in	order	to	simulate	them	but,	we	must	ensure	that	
we	pinpoint	the	correct	time-discretization	of	(3.7)	and	(3.8).	Although	there	are	no	closed-
form	solutions	for	equations	(3.7)	and	(3.8),	we	can	use	the	most	uncomplicated	and	painless	
method,	the	Euler	discretization	technique.	While	it	is	easy	to	implement,	it	does	not	come	
without	its	problems.	When	transitioning	from	continuous-time	to	discrete-time	processes,	the	
draws	the	variance	equation	produces	will	be	negative	values	of	volatility	for	which,	posses	a	
significant	problem.	While	there	are	many	ways	to	rectify	this,	we	shall	work	directly	with	the	
natural	logarithm	of	the	variance.	By	utilizing	Ito's	lemma	once	more,	we	get	the	dynamics	of	

	as	follows:	

	 (3.7)		

Now	we	can	execute	the	Euler	discretization	technique	and	we	now	have	the	following	discrete	
time	solutions:	

	 	 (3.8)	
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Shocks	to	the	volatility,	 are	correlated	with	the	shocks	to	the	stock	price	process,	
.	This	is	denoted	by	 	and	the	relationship	between	shocks	

can	be	written:	

		 	 	 (3.9)		

where	the	 	are	iid	Standard	Normal	variables	that	each	have	zero	correlation	with	 .  

While	we	only	looked	at	the	basic	Euler	discretization	scheme,	there	are	plethora	of	
ways	to	overcome	the	negative	value	of	volatility	such	as	the	Full	Truncation	Euler,	Milstein,	
etc...	It	is	worth	noting	that	in	Brodie	and	Kaya’s	model	[3],	they	offer	a	method	where	the	
sample	stock	price	and	variance	from	the	exact	distribution	is	utilized	that	prompts	a	neutral	
estimator	of	the	price	of	a	derivative.	The	Brodie	and	Kaya	method,	when	compared	with	the	
Euler	discretization,	achieves	a	faster	convergence	rate	of	the	error.	While	their	model	
converges	faster	and	is	more	accurate,	it	is	very	complicated	and	difficult	implement.	Let	us	
take	a	brief	look	at	these	“improvements”	to	the	basic	Euler	scheme.	

A	simple	scheme,	Lord,	Koekkoek,	and	Dijks’	Full	Truncation	Euler	[4][18],	mitigates	the	

negative	variance	by	making	absorption	( 	)	and	reflection		 		and	
takes	the	following	form:	

	 	 	 (4.0)	

	 	 	 (4.1)	

The	procedure	for	V	is	allowed	to	become	negative	and	so	it	follows	that	the	next	time	
step	for	V	becomes	deterministic	with	an	upslope	drift	of	 	.	It	turns	out	that	this	model	
is	really	simple	and	easily	executed.	In	addition,	it	has	been	found	to	produce	the	smallest	
discretization	bias	of	all	plain	Euler	schemes.	

Another	“improvement”	of	the	Euler	scheme	is	Milstein’s.	While	there	are	numerous	
variations	of	the	Milstein	methods,	we	shall	look	at	the	(1974)	version	[5][6]:	

		(4.2)	

where	Milstein	adds	an	additional	term	for	the	variance	procedure	for	which,	has	an	improved	
strong	order	of	convergence	as	opposed	to	Euler’s	scheme.	
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Nevertheless,	whichever	method	is	chosen	to	approximate	a	continuous-time	process	
by	a	discrete-time	process	will	incorporate	bias	into	the	simulation	estimator.	In	Brodie	and	
Kaya’s	model,	they	provide	a	non-bias	model	that	generates	the	process	from	the	distribution	
,	by	constraining	the	values	simulated	by	the	variance	process.	This	notion	is	fairly	

straightforward	and	is	demonstrated	by,	revising	(3.3)	and	(3.4)	as	the	following:	

	

(4.3)	

where	in	order	to	sample	from	the	distribution	of	( , )	we,	

1.	Generate	 	given	 	(4.4)	

2.	Generate	 given	 	and	 	

3.	Calculate	 	from	(4.3)	

4.	Generate		 	given	 	and		 	  

The	predominant	aspect	of	their	model	that	they	depend	upon	is	given	 ,	 ,	 		is	up	to	
a	scale	factor,	a	non-central	chi-squared	[7]:	

(4.4)	

In	spite	of	the	fact	that,	Brodie	and	Kaya	have	created	an	exact	method	that	eliminates	
bias	and	it	works,	it	comes	a	a	high	price,	where	it	is	a	extrememly	complex	and	tedious	process	
among	other	noted	drawbacks.	While	the	exact	method	works	and	is	deserving	of	an	honerable	
mention	for	providing	a	method	that	excludes	bias,	it	shall	not	be	mentioned	throughout	the	
remainder	of	upcoming	chapters.	

	 While	we	mentioned	different	discretization	methods	in	this	chapter,	we	will	only	be	
working	with	the	Euler	scheme	for	the	remaining	chapters.	For	simplicity,	the	Euler	scheme	was	
chosen	as	it	performs	“reasonably	well”	and	is	easy	to	implement	and	thus,	we	will	explore	it	to	
a	greater	extent	in	later	chapters.	
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5.Python	Programming	Language	

As	the	complexity	in	financial	modeling	arises,	so	does	the	need	of	the	technology	that	executes	
a	variety	of	methods,	ranging	from	simple	models	i.e.	Euler	to	complex	exact	method	models.	
Typically,	these	models	are	executed	in	Fortran,	C	or	C++.	Although,	these	programming	
languages	excel	at	performance,	they	lack	in	other	important	aspects	of	being	a	“complete”	
package.	As	there	are	consistent	innovations	in	technology,	shouldn’t	your	programming	
language	be	a	reflection	of	those	innovations?	

												The	financial	industry	is	in	a	fascinating	time.	Now,	it	is	a	cliché	to	say	that	in	order	for	a	
bank	to	survive	and	thrive,	they	will	have	to	embrace	technology	and	innovation.	They	have	
already	bought	into	this	idea	as	they	have	essentially	become	technology	firms.	So,	if	that	holds	
true,	then	the	system/application	software	should	be	a	reflection	of	that,	which	is	why	we	are	
seeing	an	increase	in	demand	for	Python	in	finance.	The	reasoning	behind	this	increase	in	the	
demand	for	Python	for	finance	is	because	it	allows	for	quick,	powerful	and	effortless	structuring	
of	programs.	Ideas	translate	quickly	to	the	computer,	which	is	why	Python	has	been	called’’	
programming	at	the	speed	of	thought	[8].”	

From	the	Python	website,	you	can	find	Python's	executive	summary	[9]:		

Python	is	an	interpreted,	object-oriented,	high-level	programming	language	with	
dynamic	semantics.	Its	high-level	built	in	data	structures,	combined	with	dynamic	typing	
and	dynamic	binding,	make	it	very	attractive	for	Rapid	Application	Development,	as	well	
as	for	use	as	a	scripting	or	glue	language	to	connect	existing	components	together.	
Python’s	simple,	easy	to	learn	syntax	emphasizes	readability	and	therefore	reduces	the	
cost	of	program	maintenance.	Python	supports	modules	and	packages,	which	
encourages	program	modularity	and	code	reuse.	The	Python	interpreter	and	the	
extensive	standard	library	are	available	in	source	or	binary	form	without	charge	for	all	
major	platforms,	and	can	be	freely	distributed.	

This	adequately	sums	up	the	reasoning	behind	Pythons	evolution	to	becoming	a	
paramount	programming	language	as	of	late.	Additional	reasoning	for	the	support	of	Python	is	
because	of	its	characteristics,	libraries	and	tools.	Python	is	open	source,	interpreted,	multi-
paradigm,	multipurpose,	cross-platform,	dynamically	typed,	indention	aware	and	garbage	
collects[10].	Python	has	all	of	the	scientific	computing	tools	one	could	need.	Python	is	a	“one-
size-fits-all”	program.	It	supports	a	wide	range	of	programmers	such	as	your	casual	
programmer,	scientific	developers	and	professional	software	developers.	

	 As	we	mentioned	earlier,	technology	is	ever-evolving	and	the	financial	industry	is	
diversifying	and	becoming	more	technological	as	opposed	to	being	simply	a	financial	institution.	
Technology	is	becoming	a	significant	investment	tool	that	has	yield	a	prospective	competitive	
edge	or	lack	thereof.	Not	only	has	technology	increased	innovation,	efficiency,	speed,	within	
the	financial	sector,	it	also	increased	the	demand	for	computational	power	and	real-time	
analytics.	
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6.Implementing	Option	Pricing	Models	in	Python	

The	prior	chapter	provided	context	pertaining	to	technologies	advancement	of	the	financial	
sector.	In	this	chapter	we	shall	provide	a	more	in-depth	examination	as	to	how	Python	
contributes	to	the	growth	of	the	financial	industry	by	providing	insight	and	the	implementation	
of	an	option	pricing	model	in	Python	with	the	ultimate	goal	being	the	creation	of	a	simple,	yet	
interacted,	Heston	option	pricing	model	originating	from	the	culmination	of	the	forthcoming	
chapters.	

Now,	allow	us	to	demonstrate	the	ease	of	usability	of	Python	in	a	financial	context.	Notice	that	
Python’s	syntax	is	really	close	to	the	mathematical	syntax	utilized	to	outline	financial	algorithms	
and	because	the	desired	use	of	this	code	is	intended	to	be	reused	often,	this	example	often	
gets	organized	into	modules	(or	scripts),	which	are	single	Python	(i.e.,	text)	files	with	the	suffix	
.py.	Modules	of	this	type	typically	look	like	the	model	in	(4.5)	and	could	be	saved	as	a	file	
named	Naive_MC.py.	We	will	examine	a	simple	naïve	Monte	Carlo	option	pricing	model	as	it	
can	effortlessly	manage	high-dimensional	problems	where	the	complication	and	computational	
requirements,	both,	increase	in	sequential	manner.		
	
The	caveat	of	the	Monte	Carlo	method	is	that	it	quite	computationally	strenuous.	Thus,	it	
follows	that,	it	is	imperative	to	implement	Monte	Carlo	algorithms	as	efficiently	as	possible.	The	
following	examples	explicates	multiple	implementation	strategies	in	Python	and	provides	three	
different	viable	implementation	options	for	a	Monte	Carlo-based	valuation	of	a	European	
option.	The	three	methods	are[10]:	
	
Pure	Python	

Coding	in	pure	Python	utilizes	the	basic	library—i.e.,	the	use	of	built-in	only	Python	
capabilities	that	encapsulates	the	standard	packages	and	libraries	in	order	to	implement	
the	Monte	Carlo	valuation.	

Vectorized	with	NumPy	
This	implementation	utilizes	the	capabilities	of	NumPy	to	make	the	implementation	
more	compact,	easier	to	read	(and	maintain),	and	significantly	faster	execution	times.	

Fully	Vectorized	NumPy	
A	combination	of	different	mathematical	formulations	with	the	vectorization	
capabilities	of	NumPy	to	get	an	even	more	compact	version	of	the	same	algorithm.	 	

	
While	we	will	only	focus	on	the	vectorized	and	fully	vectorized	versions	with	NumPy.	It	is	worth	
noting	that,	in	regards	to	writing	code	in	Pure	Python,	the	only	difference	in	coding	between	
the	forthcoming	vectorized	Monte	Carlo	with	NumPy	and	a	Pure	Python	solution	is	the	
importation	of	NumPy	in	conjunction	with	omitting	a	few	simple	lines	of	code	that	would	be	a	
required	input	in	Pure	Python.	Thus,	it	is	more	beneficial	to	reap	the	benefits	of	NumPy	by	
importing	it	whilst	eliminating	a	few	lines	of	code.	Let	us	begin	with	the	simple	naïve	Monte	
Carlo	pricing	algorithm:	
	

For	i	=	1,	2,	….,M	
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	 	 1.Set	 	=	spot	price	

	 	 2.Simulate	from:	 	
	

3.	Apply	the	option	payoff	(in	this	case	for	a	Call):	 = 	

4.	 	
	
where	#4	provides	the	numerical	Monte	Carlo	estimator	for	the	value	of	the	call	option	and	the	
parameters	are	as	follows:	
	 	

• spot	=	41	
• strike	=	40	
• expiry	=	1	
• rate	=	.08	
• sigma	=	.30	
• M	=	50000	

	 	 	
	
Vectorized	with	NumPy	and	in	a	loop		 	 	 	 	 	 (4.5)	
import numpy as np        

 

## set up of the parameters 
spot = 41.0 

strike = 40.0 

expiry = 1.0 
rate = 0.08 

sigma = 0.30 
M = 50000 

 

## The main simulation loop 
spotT = np.empty((M, )) 

callT = np.empty((M, )) 

 
for i in range(M): 

    z = np.random.normal(size=1)   ## pseudorandom numbers 
    spotT[i] = spot * np.exp((rate - 0.5 * sigma * sigma)* expiry + sigma * n

p.sqrt(expiry) * z) 

    callT[i] = np.maximum(spotT[i] - strike, 0.0) 
 

price = np.exp(-rate * expiry) * callT.mean() 

print("The Call Option Price is: {0:.3f}".format(price)) 
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The Call Option Price is: 6.947 

	
Take	notice	that	the	estimated	option	value	itself	relies	on	the	pseudorandom	numbers	
generated	and	of	the	importation	of	NumPy.		
	

The	major	components	we	will	consider	in	this	code	is	the	for	loop	and	the	importation	
of	NumPy.	The	for	loop	implements	the	repeated	execution	of	code	based	on	a	loop	variable	
and	in	this	case,	M.	The	Monte	Carlo	estimator	is	then	calculated	by	utilizing	Python’s	list	
comprehension	syntax.	Python’s	list	comprehension	syntax	is	much	more	compact	and	is	pretty	
close	to	the	actual	mathematical	notation	of	the	Monte	Carlo	estimator.			
	

NumPy,	short	for	Numerical	Python,	is	a	third-party	package	for	high	performance	
scientific	computing	in	Python	provides	a	powerful	multidimensional	array	data	types,	called	
ndarrays,	as	well	as	a	comprehensive	set	of	functions	and	methods	to	manipulate	them	and	
implement(complex)	operations	on	such	objects.	To	hone	in	on	it	a	little	further,	there	are	
essentially	two	substantial	benefits	of	using	NumPy[10]:	
Syntax	

NumPy	essentially	permits	implementations	that	are	more	compact	as	opposed	to,	
when	done	in	pure	Python	and	that	are	simpler	to	read	and	maintain.	With	that	being	
said	it	provides	standard	mathematical	functions	for	quick	operations	(vectorization)	
and	tools	that	allow	access	to	very efficient	low-level	C,	C++,	and	Fortran	codes.	

Speed	
Because	NumPy	code	is	predominately	implemented	in	C	or	Fortran,	this	makes	NumPy,	
considerably	faster	than	pure	Python.	

	
The	root	of	a	more	compact	syntax	arises	from	the	characteristics	of	NumPy	as	it	provides	
Python	with	robust	vectorization	and	broadcasting	capabilities.	This	is	comparable	to	using	
vector	notation	that	is	used	in	mathematical	vectors	for	large	vectors	or	matrices.	Let	us	see	
how	we	can	make	this	code	more	compact,	faster	and	more	efficient	by	omitting	the	for	loop	
for	full	vectorization:	
 
Fully	Vectorized	NumPy	 	 	 	 	 	 	 	 	 (4.6)	
 
import numpy as np 
 
spot = 41.0 
strike = 40.0 
expiry = 1.0 
rate = 0.08 
sigma = 0.30 
M = 1000000 
z = np.random.normal(size=M) 

spotT = spot * np.exp((rate - 0.5 * sigma * sigma)* expiry + sigma * np.sqrt(

expiry) * z) 
callT = np.maximum(spotT - strike, 0.0) 
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price = np.exp(-rate * expiry) * callT.mean() 

print("The Call Option Price is: {0:.3f}".format(price)) 
The Call Option Price is: 6.965 

	
Vectorization	is	not	only	substantially	faster	than	pure	Python,	it	is	also	noticeably	more	
compact.	The	estimated	Monte	Carlo	call	option	value	is	very	close	to	the	standard	that	was	set	
from	(4.5).	
	
The	vectorization	is	quite	clear	now	as	we	notice	the	removal	of	the	for	loop	and	a	substantial	
increase	in	numbers	to	be	generated	by	our	pseudorandom	numbers	generator.	The	number	
generation	requirement	has	increased	from	50000	to	1000000	numbers.	All	of	which,	have	
been	done	so	by	a	single	line	of	code:	
	
z	=	np.random.normal(size=M)	
	
The	result	of	the	vectorization	via	NumPy	is	code	that	is	typically	more	compact,	simpler	to	read	
and	maintain	and	faster	in	regards	to	execution	times.	These	characteristics	are	necessities	
when	applied	to	financial	applications.	Now	that	we	understand	the	importance	of	
vectorization	and	NumPy,	let	us	expand	our	knowledge	of	Python	programming	and	its	benefits	
to	finance.	

7.Object-Oriented	Programming	

Now	we	see	the	benefits	that	NumPy	and	vectorization	have	on	the	application	of	complex	
mathematical	and	financial	algorithms,	we	shall	build	upon	that	knowledge	by	introducing	what	
is	considered	the	foundation	of	modern	programming	languages,	object-oriented	programming	
(OOP).	But	before	we	do,	we	must	introduce	Python’s	functions	in	order	to	completely	
understand	the	relevance	of	OOP	and	to	further	our	required	skillset	targeted	towards	our	goal	
of	implementing	the	Heston	option	pricing	model	in	object-oriented	Cython.	Take	note	that	in	
this	chapter	as	well	as	the	following	two	chapters,	we	will	provide	basic	examples	of	the	
chapter	subjects	with	the	intention	of	applying	those	subjects	in	a	financial	application	at	the	
completion	of	chapter	9.		
	
7.1	Functions	
	 	
Functions	are	organized	reusable	pieces	of	code.	They	provide	you	with	the	ability	to	assign	a	
name	to	a	block	of	statements.	Thus,	allowing	you	to	run	a	block	of	code	utilizing	the	
designated	name	anywhere	in	your	program	and	as	often	as	you	would	like.	Functions	
underline	the	separation	of	the	utility	of	a	program	into	individualistic,	
interchangeable	modules,	such	that	each	module	holds	every	requisite	to	execute	only	one	
feature	of	the	desired	functionality.	This	is	what	is	recognized	as	calling	the	function.	
Functions	are	essentially	the	single	most	crucial	element	in	any	programming	language	and	it	
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remains	true	for	Python	as	well.		Although	there	are	various	aspects	of	functions,	we	shall	
focus	on	the	aspects	that	we	will	utilize	in	the	upcoming	chapters.		
	

Functions	are	defined	using	the	keyword	def	followed	by	the	identifying	name	for	the	
function,	then	by	parentheses	(	(	)	)	which	may	surround	some	input	parameters	or	
arguments,	and	then	the	insertion	of	a	colon	(:)	that	ends	the	line	of	code.	Now	we	
implement	the	block	of	statements	that	are	are	encapsulated	within	the	function.	Let	us	
provide	a	general	illustration	of	this	were	we	employ	the	widely	recognized	Hello	World	
example	and	save	it	as	well:	
	
Example	(save	module	as	helloworld.py):	 	 	 	 	 	 (4.7)	  
    
def saying_hello(): 
    ## Block belonging to the function 
    Print(‘hello world’) 

    ## End of the function 
 

saying_hello()  ## Calling the function 
 
$ python helloworld.py 
 
hello world     ## Output 
	
The	syntax	above	provides	the	definition	of	the	function	called	saying_hello.	The	
saying_hello	function	takes	no	parameters	or	arguments	and	thus	providing	the	justification	
for	the	emptiness	expressed	between	the	parentheses.	Parameters	assigned	to	functions	are	
simply	inputs	where	we	can	assign	different	values	to	it	and	obtain	the	corresponding	
results.	
	
7.2	Object-Oriented	Python	
	 	
Program	(4.7),	was	built	around	a	function	and	this	method	of	construction	is	called	
procedure	programming.	One	can	organize	their	program	in	a	different	manor,	which	is	to	
combine	both	data	and	behavior.	This,	in	its	basic	definition	is	called	an	object.	Object-
oriented	programming	(OOP)	allows	objects	to	fully	utilize	other	objects’	services	as	well	as	
inherit	their	functionality,	promotes	code	portability	and	reuse	[11].	While	there	is	nothing	
intrinsically	wrong	with	procedure	programming,	there	are	definitely	opportunities	and	
instances	that	merits	the	use	of	OOP.	For	instance,	when	writing	large	programs	or	reusing	
code,	object-oriented	programming	is	extremely	valuable.	
	
	 This	section	provides	an	overview	of	the	basic	OO	concepts.	While	the	concepts	
expressed	here	are	the	basic	essentials,	we	shall	explore	how	each	concept	operates	and	
implement	them	in	our	Heston	option	pricing	model	in	later	chapters.	But	first	let	us	
differentiate	procedural	versus	OOP.	
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Procedural	Versus	OOP	
	 	
In	procedural	programming,	for	example,	code	is	designated	towards	completely	different	
functions	or	procedures[11].	Then,	these	procedures	or	functions	(behaviors)	become,	what	
Weisfield	calls,	“black	boxes,”	for	which,	inputs	go	in	and	outputs	are	the	result.	The	data	is	
deposited	into	unconnected	structures	and	is	controlled	by	these	behaviors	as	shown	in	
example	(4.8)[11]:	
	

Inputs	 	 														 	 														Outputs	 													(4.8)	
	
																													
	 	

where,	on	the	other	hand,	one	can	easily	see	how	OOP	provides	more	developer	options	such	
as	allowing	some	members	of	an	object,	both	attributes	and	methods,	to	be	hidden	from	other	
objects	in	the	course	of	interaction.	Let	us	look	at	the	best	demonstration	of	object-to-object	
communication[11]:		

	 	 	 	 	 	 myObject	 	 	 	 	 (4.9)	

	

																		

	 	 	 	 	 	 				Math	

For	instance,	an	object	Math	holds	two	integers,	Itsint1	and	Itsint2.	Additionally,	the	Math	
object	holds	the	required	methods	to	set	and	recover	the	values	of	Itsint1	and	Itsint2	while	

Method	 Method	 Method	

Method	 Method	 Method	

Data	

Data	
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possibly	holding	a	method	called	sum	(	)	that	combines	the	two	integers.	When	the	
combination	of	attributes	and	methods	meet	in	the	same	entity,	this	is	called	encapsulation	and	
we	can	regulate	access	to	the	data	in	the	Math	object.	When	we	restrict	access	to	particular	
attributes	and	methods,	we	are	data	hiding.	

So,	the	best	way	to	comprehend	the	object-to-object	communication	in	(4.9)	is	to	
imagine	that-for	instance,	myObject-would	like	to	have	access	to	the	sum	of	Itsint1	and	Itsint2.	
It	asks	the	math	object:	myObject	sends	a	message	to	the	Math	object.	Ultimately,	it	is	just	
sending	a	message	to	the	Math	object’s	sum	method.	Then	the	sum	method	provides	the	value	
to	myObject.	This	is	extremely	useful	because	myObject	has	no	need	to	know	how	the	sum	was	
calculated.	Now,	with	this	methodology,	we	can	change	how	the	Math	object	calculates	the	
sum	withholding	the	need	to	change	myObject	because	all	we	desire	is	the	sum.	We	do	not	
care	about	how	it	was	calculated.	Now	that	we	understand	the	differences	between	procedure	
programming	and	OOP,	we	come	to	the	conclusion	that	the	primary	benefit	of	OOP	is	that	the	
data	and	the	operations	that	control	the	code	are	both	encapsulated	within	the	object.	But,	
what	is	an	object?	

Objects	

Objects	are	the	essential	foundation	of	OOP.	OOP	in	itself	is	essentially	an	assortment	of	
objects.	These	objects	are	comprised	of	object	data	and	object	behavior.		

	 Object	data	are	the	attributes	of	the	data	that	is	contained	within	an	object	that	depicts	
the	condition	of	the	object.	For	example,	let	us	look	at	a	teacher.	A	teachers’	attributes	could	
be	date	of	birth,	gender,	phone	number,	salary,	and	so	on.	Attributes	contain	information	that	
distinguishes	different	objects	from	one	another.	We	shall	analyze	attributes	more	closely	later	
in	the	discussion.	Object	behaviors	are	behaviors	of	an	object	that	tell	what	the	the	objects	
abilities	are	or	what	it	can	do.	These	behaviors	are	held	within	methods,	for	which	you	solicit	
methods	by	calling	to	it.	Really,	though,	when	it	comes	down	to	it,	attributes	and	behaviors	are	
essentially	variables	(class	and	instance)	and	functions	that	pertain	to	an	object	or	a	class.		

Class		

Classes	and	objects	go	hand-in-hand.	They	depend	on	one	another	to	complete	a	task.	
Although,	objects	are	listed	first	in	this	thesis,	they	do	not	come	first.	The	class	comes	first	
because	it	is	the	blueprint	for	an	object.	A	class	defines	an	object	or	is	a	template	from	which	
objects	are	created	and	is	callable.	When	we	instantiate	an	object	(create	an	object),	we	use	a	
class	as	the	foundation	for	how	the	object	is	constructed.	It	is	difficult	to	explain	one	without	
the	other.	Ultimately,	an	object	cannot	be	instantiated	without	a	class.	Okay,	let	us	now	
demonstrate	a	class	and	how	it	functions.	An	easy	and	straightforward	example	of	a	basic	class	
is	as	follows:	
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class World:         (5.0)	

    pass   ## This is an empty block of code 
 
w = World() 
print(w) 

For	this	example,	we	have	created	a	class	by	using	the	class	keyword	and	followed	by	the	name	
of	the	class	(World).	The	body	of	the	the	class	is	recognized	by	the	indented	block	statements.	
For	our	example,	this	block	statement	is	empty	per	our	pass	statement.	We	then	created	an	
object/instance	of	this	class	that	utilizes	the	name	of	the	class	(World)	that	is	then	preceded	by	
empty	parentheses.	Then	we	print	the	type	of	variable.	Now	that	we	have	established	a	basic	
class	example,	let	us	refer	to	the	fact	that	objects	can	have	functionality	by	utilizing	the	
functions	that	are	apart	of	a	class.	These	were	called	methods.	These	class	methods	are	
essentially	the	same	as	normal	functions,	but	they	have	a	requirement	that	must	be	fulfilled.	
The	requirement	is	that	they	have	to	have	an	unassigned	parameter	value	with	an	additional	
name	at	the	beginning	of	the	the	parameter	list.	This	variable	alludes	to	the	object	itself	and	is	
designated	by	the	name	self.	

The	Self	

The	key	aspects	of	the	self	are	that	it	is	not	advisable	to	change	its’	name,	even	though	you	can,	
you	should	not	and	the	fact	that	you	do	not	have	to	worry	about	assigning	it	a	value	when	
calling	the	method	as	Python	has	taken	care	of	this.	How	Python	gives	the	value	of	self	can	be	
illustrated	by	the	following	example,	for	instance,	let	us	say	that	we	have	a	class	names	
MyClass	with	MyObject	being	an	instance	of	that	class.	When	MyObject.method(param1,	
param2),	a	method	of	MyObject	has	been	called,	Python	converts	it	into	
MyClass.method(MyObject,	param1,	param2)	automatically.	This	is	what	is	unique	in	regards	
to,	the	self.	This	implies	that	even	if	you	have	a	method	that	does	not	consider	any	parameters	
or	arguments,	you	will	always	have	at	least	one,	the	self.	

With	the	recognition	that	classes	and	objects	can	have	methods,	similar	to	functions	
with	the	addition	of	the	self	variable,	let	us	look	at	an	example:	

class World:         (5.1) 
    def hello_world(self): 

  print(‘Hi. How is it going?’) 
 
w = World() 
w.hello_world()   
Hi. How is it going?  ## Output  

In	example	(5.1)	we	can	see	how	the	self	operates.	We	can	see	how	hello_world	does	not	
consider	any	parameters,	but	yet	the	within	the	function	definition,	we	have	the	self.	
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__init_	Method	

While	we	will	not	cover	all	of	the	special	methods	that	are	contained	within	Python	and	
significant,	we	shall	consider	the	__init__	method	as	we	will	utilize	this	method	in	our	upcoming	
simulation.	

The	__init__	method	is	a	special	method	in	classes,	that	represents	a	constructor	in	
Python.	A	constructor	is	a	method	that	shares	the	same	name	as	the	class	and	has	no	return	
type[11].	The	__init__	methods	primary	use	is	to	initialize	Python	packages	whenever	an	object	
class	is	constructed.	So,	whenever	we	instantiate	an	object,	the	first	argument	we	will	use	is	the	
self.	Consider	the	example	below:	

	class World:         (5.2) 
    def __init__(self, name): 
   self.name = name 
    def hello_world(self): 

  print(‘Hi. My name is’, self.name) 
 
w = World(’Earth’) 
w.hello_world()   
Hi. My name is Earth  ## Output  

You	can	see	in	example	(5.2)	we	define	the	__init__	method	as	taking	the	self	and	name.	We	
also	generated	a	name.	Self.name	implies	that	the	object	self	has	“name”	apart	of	it	and	the	
other	name	is	a	local	variable.		When	we	made	w,	of	the	class	World,	we	did	so	by	utilizing	the	
class	name	for	which,	the	arguments	contained	within	the	parenthesis:	w	=	World(‘Earth’).	We	
did	not	clearly	call	the	__init__	method	and	that	is	why	this	method	is	very	unique	and	notable.	
Now,	we	can	utilize	self.name	in	our	methods,	for	which,	it	is	displayed	in	the	hello_world	
method.	

Encapsulation	and	Data	Hiding	

Encapsulation	as	stated	earlier,	is	when	the	combination	of	attributes	and	methods	meet	in	the	
same	entity.	Thus,	data	hiding	is	a	major	component	of	encapsulation.	One	of	the	main	benefits	
of	using	objects	is	that	they	do	not	have	to	completely	disclose	all	of	their	attributes	and	
behaviors.	In	OOP	construction,	an	object	should	only	disclose	the	necessary	interfaces	needed	
in	order	for	other	objects	to	communicate	with	it.	

To	provide	context,	for	example,	let	us	say	we	have	an	object	that	calculates	the	
multiplication	of	two	numbers.	The	object	has	to	provide	an	interface	in	order	to	acquire	the	
result.	But,	the	internal	attributes	and	set	of	rules	specifying	how	to	multiply	the	numbers	does	
not	need	to	be	readily	available	to	petitioning	object.	Classes	constructed	with	encapsulation	at	
the	forefront	are	considered	extremely	powerful.	Now,	we	will	look	more	closely	at	interface	
and	implementation	as	they	are	underlying	foundation	of	encapsulation.		
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The	interface	provides	communication	between	objects	where	each	class	design	
determines	the	interfaces	for	the	correct	instantiation	and	operation	of	objects.	Any	behaviors	
that	the	object	presents,	has	to	be	implored	by	a	message	sent	by	one	of	the	supplied	
interfaces.	This	interface	should	outline	how	users	of	the	class	communicate	with	the	class.	
Methods	that	are	components	of	interface	should	not	be	constructed	as	public	but	as	private.	
Every	attribute	should	be	recognized	as	private	in	order	for	data	hiding	to	function	effectively	
because	then	the	attributes	are	under	no	circumstances	part	of	the	interface.	If	attributes	are	
expressed	as	being	public,	the	notion	of	data	hiding	shall	cease	to	exist.	It	is	worth	mentioning	
that	there	are	interfaces	to	the	classes	along	with	the	methods.	But,	do	not	mistake	one	for	the	
other.	Public	methods	are	the	interfaces	to	the	classes	and	the	interfaces	to	the	methods	are	
associated	with	how	you	implore	them.	Regarding	the	implementation,	solely	the	public	
attributes	and	methods	are	regarded	as	the	interface.	

The	end-user	should	not	be	able	to	see	any	portion	of	the	implantation.	They	should	
only	be	able	to	interact	with	the	object	only	via	class	interfaces.	Although,	there	are	often	times	
when	the	methods	should	be	hidden	as	well.	Resuming	the	example	of	the	object	that	
calculates	the	addition	of	two	numbers,	the	end-user	ultimately	is	not	concerned	with	how	the	
multiplication	was	calculated,	provided	that	the	answer	was	right.	Thereby,	the	implementation	
is	allowed	to	change,	but	not	at	the	expense	of	having	an	impact	on	the	end-user’s	code[11].	
This	would	allow	the	firm	that	makes	the	software	that	calculates	the	multiplication	example	
from	above	to	have	the	ability	to	change	their	formula	(maybe	because	their	new	software	
update	provides	quicker	calculations)	and	it	would	not	affect	the	result.	

Inheritance		

One	of	the	most	notable	aspects	of	OOP	is	being	able	to	reuse	code.	Inheritance	allows	you	to	
not	only	reuse	code	but	it	allows	you	define	relationships	between	classes	and	thus,	providing	
one	with	a	comprehensive	design,	by	allowing	the	organization	of	classes	while	taking	
similarities	of	different	classes	into	account.	

	 Inheritance	allows	a	class	to	inherit	characteristics	(attributes	and	methods)	of	another	
class.	Inheritance	allows	for	the	formation	of	a	completely	original	class	by	abstracting	out	
similar	attributes	and	behaviors.	Inheritance	is	best	thought	of	as	implementing	a	superclass	
and	subclass	relationship	between	the	classes.	

Superclasses	are	the	derived	class.	This	class	holds	all	of	the	attributes	and	behaviors	
that	are	mutual	to	classes	that	inherit	from	it.	The	subclasses	inherit	the	characteristics	from	
the	superclass	and	they	can	be	used	in	the	same	fashion	as	if	they	were	defined	in	the	subclass.	

	 Before	this	gets	to	complicated,	here	is	an	example.	Say	you	want	to	code	a	program	
that	has	the	observe	the	father	and	the	son	of	a	family.	They	share	mutual	attributes	such	as	
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name	and	age.	They	also	have	distinct	attributes	such	as	salary	for	the	father	and,	toy	for	the	
son.	

	 We	could	create	two	independent	classes	but,	we	would	not	necessarily	want	to	do	that	
because	it	could	get	very	complex.	So,	let	us	do	this	in	a	simpler	fashion.	We	could	create	a	
mutual	class	called	FamilyMember	and	then	would	could	have	the	father	and	son	classes	inherit	
from	the	main	superclass.	There	are	quite	a	few	benefits	to	this	technique.	For	one,	if	we	
decided	to	change	any	functionality	of	the	superclass,	the	subclass	would	recognize	this	change	
as	well.	An	additional	benefit	would	be	that	if	we	could	refer	to	a	father	or	son	object	as	a	
FamilyMember	object	which	could	be	practical	in	some	circumstances	such	as	computing	the	
number	of	family	members.	This	would	then	be	what	is	known	as	polymorphism.		

Polymorphism	is	one	of	the,	if	not	the	major	benefit	of	OOP.	It	simply	means	many	
shapes.	It	is	a	principal	feature	of	class	definition	in	Python	that	is	used	when	you	have	mutually	
named	methods	across	various	superclasses	or	subclasses.	This	is	powerful	because	it	provides	
access	for	functions	to	use	objects	of	any	of	these	polymorphic	classes	without	the	
requirements	of	having	to	be	aware	of	distinctions	across	the	classes.	Polymorphism	is	
executed	via	inheritance,	with	subclasses	inheriting	from	superclasses	or	overriding	them.	We	
will	get	more	into	polymorphism	in	later	chapters.	

Now,	back	to	our	example,	the	father	and	son	class	would	be	the	subclasses	and	we	
could	make	the	addition	of	distinct	characteristics	to	these	subclasses.	Because	the	father	and	
son	both	inherit	from	the	FamilyMember	superclass,	this	relationship	is	referred	to	as	an	is-a	
relationship	because	a	father	is	a	family	member	and	son	is	a	family	member.	When	a	subclass	
inherits	from	a	superclass,	it	has	all	of	the	capabilities	as	such.	Let	us	look	at	a	program	
example[12]:	

class FamilyMember:        (5.3) 
 ## Represents any family member 
    def __init__(self, name, age): 
   self.name = name 
   self.age = age 
   print(‘ (Initialized FamilyMember: {})’.format(self.name)) 
       
    def tell(self): 
 ## Tell my details 
   print(‘Name:”{}” Age:”{}”’ .format(self.name, self.age), end=” “) 
 
class Father(FamilyMember): 
  ## Represents a father 
    def __init__(self, name, age, salary): 
        FamilyMember.__init__(self, name, age) 
   self.salary = salary 
             print(‘ (Initialized Father: {})’.format(self.name)) 
    def tell(self): 
   FamilyMember.tell(self) 
   Print(‘Salary: “{.d}”’.format(self.salary)) 
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class Son(FamilyMember): 
       ## Represents a son 
    def __init__(self, name, age, toy): 
   FamilyMember.__init__(self, name, age) 
   self.toy = toy 
   print(‘ (Initialized Son: {})’.format(self.name)) 
 
    def tell(self): 
   FamilyMember.tell(self) 
   print(‘Toy: “{.d}”’.format(self.toy)) 
 
f = Father(‘Mr. Davis’, 50, 50000) 
s = Son(‘Ronald’, 10, 200) 
 
# Print a blank line 
print() 
 
members = [f, s]  
For member in members: 
 ## Works for both Father and Son 
 member.tell() 
 
Output: 
 
(Initialized FamilyMember: Mr. Davis) 
(Initialized Father: Mr. Davis) 
(Initialized FamilyMember: Ronald) 
(Initialized Son: Ronald) 
Name:”Mr. Davis” Age:”50” Salary:”50000” 
Name:”Ronald” Age:”10” Toy:”200” 

So,	you	now	see.	In	order	to	use	inheritance,	we	specified	the	superclass	names	in	a	tuple	
following	the	class	name	in	the	class	definition.	We	then	saw	that	the	__init__	method	of	the	
superclass	was	clearly	called	utilizing	the	self	variable	so	that	we	could	then	initialize	the	
superclass	portion	of	the	object.	We	saw	that	the	methods	of	the	superclass	can	be	called	by	
prefixing	the	class	name	to	the	method	called	and	then	by	passing	through	the	self	variable	
with	any	parameters.	

Take	note	that	we	can	treat	instances	of	Father	or	Son	as	just	instances	of	
FamilyMember	when	we	utilize	the	tell	method	of	the	FamilyMember	class.	Also,	notice	that	we	
call	the	tell	method	of	the	subclass	as	opposed	to	the	tell	method	of	the	superclass.	This	is	easy	
to	comprehend	in	the	sense	that	Python	consistently	begins	looking	for	methods	in	the	actual	
type	and	in	our	scenario,	it	does.	If	it	cannot	find	the	method,	it	begins	searching	through	the	
superclass,	one	after	the	other	in	the	order	that	they	were	identified	in	the	tuple	of	the	class	
definition.	

	
So	far,	we	have	seen	inheritance	from	one	class	or	single-inheritance.	It	is	worth	

mentioning	that	we	can	have	inheritance	from	multiple	classes.	This	is	called	multiple-
inheritance.	It	is	an	aspect	of	OOP	that	allows	a	class	to	inherit	attributes	and	methods	from	
more	than	one	superclass.	Let	us	have	a	brief	look:	
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class MyClass(Superclass1, Superclass2, Superclass3,…):  (5.4) 
    def __init__(self): 
   Superclass1.__init__(self) 
   Superclass2.__init__(self) 
	
It	is	pretty	intuitive	since	we	have	just	completed	an	example	in	inheritance.	But	make	no	
mistake	about	it,	it	can	become	extremely	complex	really	quick.	We	will	discuss	this	further	
later	on	in	upcoming	chapters	as	we	utilize	this	feature	in	our	simulation.	Back	to	our	example.	
The	end	parameter	is	utilized	in	when	we	call	the	print	function	in	the	FamilyMemeber’s	tell()	
method	to	print	a	line	and	to	permit	the	next	print	to	proceed	on	the	same	line.	This	is	a	simple	
ploy	to	make	print	not	print	a	new	line	symbol	at	the	completion	of	printing.	Now,	we	can	see	
how	inheritance	can	become	quite	large.	So,	let	us	briefly	talk	about	abstraction.	
	
Abstraction	
	
When	the	FamilyMember	and	Father	are	complete,	other	family	members,	such	as	sons	(or	
mothers,	daughters	and	cousins),	can	be	added	fairly	effortlessly.	The	Father	class	can	also	be	a	
superclass	to	other	classes,	making	those	classes	subclasses.	For	instance,	one	may	have	to	
abstract	the	Son	class	further,	to	include	classes	for	Davis	who	is	a	son,	Thomas	who	is	a	son	
and	so	on.	Just	as	with	Son,	the	Father	class	can	be	the	parent	class	for	Darian	who	is	a	father	
and	Dillan	who	is	a	father.	A	class	can	have	may	subclasses	and	this	is	where	multiple-
inheritance	takes	place.	Now,	that	we	have	some	understanding	of	abstraction	and	its	place	in	
inheritance,	let	us	talk	about	composition	[11].	
	
Composition	
	
It	is	common	for	people	to	imagine	objects	as	containing	other	objects,	an	object	within	an	
object.	For	instance,	a	telephone	contains	a	chip	and	a	LCD.	Or	a	video	game	system	contains	
drives,	chips	and	controllers.	Even	though,	the	video	game	system	is	an	object	unto	itself,	the	
chip	is	also	a	valid	object	unto	itself	too.	In	regards	to	the	video	game	system,	we	could	take	it	
apart	and	physically	hold	all	of	the	parts	it	contains.	The	thing	is	that,	the	video	game	system	
contains	all	of	the	other	objects	within	it.	It	is	in	this	sense	that	objects	are	sometimes	
constructed	from	other	objects	and	this	is	what	is	known	as	composition.	Similarly,	as	with	
inheritance,	there	is	abstraction	with	composition	[11].	
	
Abstraction	
	
Similar	to	inheritance,	composition	supplies	a	technique	for	constructing	objects.	The	
difference	between	the	construction	of	classes	from	other	classes	in	inheritance	and	in	
composition	is	that	inheritance	allows	one	class	to	inherit	from	another	class.	So,	we	can	then	
abstract	out	attributes	and	behaviors	for	mutual	classes.	The	relationship	is	a	key	aspect	in	
inheritances’	abstraction.	Inheritance	has	a	is-a	relationship.	In	composition,	classes	can	also	
construction	by	implanting	classes	in	other	classes.	
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	 The	difference	really	comes	down	to	the	fact	that	composition	relationships	are	of	the	
has-a(n)	sort.	Let	us	refer	to	the	example	in	the	prior	section,	a	telephone	has-a	chip	and	it	has-
a	LCD.	A	telephone	is	not	a	chip	and	nor	is	it	a	LCD.	Let	us	consider	the	relationship	between	a	
smart	phone	and	its’	operating	system	(OS).	We	can	see	benefits	from	separating	the	two	as	
they	are	apparent,	such	as	writing	a	favorable	user-friendly	OS	to	another	phone	where	its	
current	OS	is	not	as	friendly.	By	building	the	OS	separately,	we	can	use	the	OS	in	an	assortment	
of	phones.	This	is	just	one	benefit	of	doing	so.	There	are	plenty	of	other	advantages.	The	thing	
we	cannot	say	is	that	the	OS	is-a	phone.	So,	instead,	we	use	the	expression	has-a	to	describe	
the	composition	relationship	because	a	phone	has-a(n)	OS	[11].		
	 		

While	there	is	a	lot	we	did	not	cover	in	our	exploration	of	OOP,	we	did	cover	quite	a	bit	
and	we	can	exit	this	section	with	a	fundamental	understanding	of	encapsulation,	inheritance,	
polymorphism	and	composition.	Python	is	a	highly	OO	capable	program	and	now	that	we	have	
a	good	grip	on	understanding	some	of	these	OOP	concepts,	we	can	move	forward	with	
understanding	design	patterns	and	how	we	will	implement	them	in	our	simulation.	
	
8.	Design	Patterns	in	Computation	Finance	

With	everything	we	have	just	learned	about	OOP,	we	can	see	how	our	code	can	become	very	
complex	and	cumbersome	really	quick.	Even	if	you	have	not	realized	it	but,	just	because	we	
understand	the	OO	essentials	does	not	mean	that	we	will	automatically	be	good	at	building	
flexible,	reusable	and	maintainable	systems.	So,	we	need	a	way	to	structure	our	own	
applications	in	ways	that	are	easier	to	understand,	more	maintainable	and	flexible	[13].	This	is	
where	the	knowledge	of	Design	Patterns	becomes	very	useful.	

A	design	pattern	is	not	something	that	directly	goes	into	your	code	per	se,	it	is	a	way	of	
thinking.	These	patterns	provide	general	solutions	to	design	problems	where	once	you	have	an	
understanding	of	how	each	pattern	fits	in	with	your	application	and	OO,	you	can	then	apply	
them	to	your	new	designs	and	rework	old	code	when	you	realize	that	that	code	is	not	flexible	or	
easy	to	maintain.	Design	patterns	show	you	how	to	construct	systems	that	exhibit	robust	OO	
design	qualities.	They	do	this	by	telling	us	how	to	structure	classes	and	objects	more	efficiently.	
While	there	are	many	design	patterns,	the	design	patterns	we	will	focus	on	are	the	Facade	and	
Strategy	patterns.	

8.1	Strategy	Pattern	

The	strategy	pattern	enables	the	selection	of	an	algorithm	at	runtime	by	defining	a	family	of	
algorithms,	encapsulating	each	one,	and	making	them	interchangeable	[13].	The	strategy	
pattern	lets	the	algorithm	vary	independently	from	clients	that	use	it	[13].	In	order	to	utilize	the	
strategy	pattern,	we	must	be	able	to	store	a	reference	code	in	some	data	structure	and	have	
the	ability	to	recover	it	and	we	can	be	accomplished	via	class	or	class	instances	in	OOP	[14].	
Now,	that	we	know	what	the	strategy	pattern	is,	let	us	provide	an	example.	
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For	instance,	a	class	that	performs	validation	on	incoming	data	may	use	a	Strategy	pattern	to	
select	a	validation	algorithm	depending	on	the	type	of	data,	the	source	of	the	data,	user	choice	
and	other	discriminating	factors.	These	factors	are	not	known	until	run-time	and	may	require	
radically	different	validation	to	be	performed.	The	validation	algorithms	(strategies),	
encapsulating	separately	from	the	validating	object,	may	be	used	by	other	validating	objects	in	
different	areas	of	the	system	(or	even	different	systems)	without	code	duplication.	The	Strategy	
pattern	is	best	understood	in	a	visual	manner,	so	let	us	have	a	look	an	example	from	Freeman	&	
Freeman	[13]:	

	 	 	 	 	 	 	 	 	 	 (5.5)	

Freeman	&	Freeman’s	example	in	(5.5)	is	a	great	example	of	the	Strategy	pattern	put	to	use.	It	
provides	the	illustration	and	big	picture	of	a	duck	simulator	design	they	created.	The	coding	is	
not	what	is	the	big	idea	behind	this	example	for	us.	The	idea	for	us	is	to	see	the	structure	of	the	
Strategy	pattern,	so	when	we	do	our	simulation,	we	know	how	to	organize	it	in	a	similar	
fashion.	The	example	provides	a	completely	reworked	class	structure	for	their	duck	simulator	
design.	You	can	see	how	they	have	put	last	chapters	OO	discussion	to	use.	You	see	that	they	
have	ducks	extending	Duck,	fly	behaviors	implementing	FlyBehavior	and	quack	behaviors	
implementing	QuackBehaviors.	We	can	see	how	their	thought	process	changed	from	thinking	of	
duck	behaviors	as	a	set	of	behaviors	to	a	family	of	algorithms.	This	illustration	really	provides	a	
lot	of	context	in	regards	to,	the	relationships	between	classes.	We	can	really	begin	to	establish	
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the	difference	between	the	is-a(n)	and	has-a	relationships.	Now,	we	can	see	how	we	should	
structure	our	complex	simulation	by	way	of	the	Strategy	pattern,	let	us	enhance	and	alter	the	
interface.	Let	us	hide	all	of	the	complexity	of	the	classes	behind	a	clean	Facade	pattern.	

8.2	Facade	Pattern		

The	Facade	pattern	provides	a	unified	interface	to	a	set	of	interfaces	in	a	subsystem.	The	
Facade	pattern	defines	a	higher-level	interface	that	makes	the	subsystem	easier	to	use	[15].	
Facade	does	this	by	making	a	software	library	easier	to	use,	because	it	has	convenient	methods	
for	common	tasks,	makes	the	library	more	readable,	reduce	dependencies	of	outside	code	on	
the	inner	workings	a	library,	since	most	codes	use	the	facade,	thus	allowing	more	flexibility	in	
the	developing	system,	wrap	a	poorly	design	collection	of	API’s	with	a	single	well-designed	API	
[15].	

In	order	to	utilize	the	Facade	pattern,	we	must	create	a	class	that	simplifies	and	unifies	a	
set	of	more	complex	classes	that	belong	to	some	subsystem	[15].	Ultimately,	we	devise	the	
facade	with	its	subsystem	and	assign	the	subsystem	to	perform	the	work	of	the	facade	pattern.	
Do	not	mistake	the	Facade	pattern’s	simplicity	for	weakness,	it	is	a	very	powerful.	Let	us	see	it	
in	action	so	we	can	clearly	understand	why	it	is	powerful:	
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													(5.6)	

	

Freeman	&	Freeman	provide	yet,	another	excellent	example	of	a	Design	pattern.	In	the	
example	above,	they	have	taken	a	complex	home	theater	subsystem	and	simplified	it	by	
implementing	a	Facade	Class	that	provides	for	a	single,	user-friendly	interface	[15].	We	can	see	
they	created	a	HomeTheaterFacade	that	includes	some	simple	methods.	Then	we	notice	the	
subsystem	the	Facade	is	going	to	make	simpler	and	followed	by	the	calling	of	the	subsystem	to	
apply	the	watchMovie()	method.	From	this	point,	it	gets	even	more	simple.	It	is	simple	because	
the	client	calls	methods	on	the	HomeTheaterFacade	and	not	directly	through	the	subsystem	
itself.	So,	if	we	call	one	method	from	the	Facade,	it	communicates	with	the	the	subsystem	for	
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us.	This	is	extremely	powerful	not	only	for	it	simplicity,	but	because	you	still	have	full	direct	
access	to	the	subsystem	if	you	need.	So,	it	is	clear,	what	the	purpose	of	this	pattern’s	intention	
is.	It	is	for	a	simplified	interface	that	decouples	a	client	from	a	subsystem	of	components,	for	
which,	it	accomplishes	and	is	demonstrated	in	the	pattern’s	class	diagram	[15]:	

	 	 	 	 	 	 	 	 	 	 														(5.7)	

	

So,	now	that	we	have	an	understanding	of	how	the	Strategy	and	Facade	patterns	work,	it	is	
easy	to	see	their	place	in	computational	finance.	It	is	as	simple	as	the	patterns	themselves.	It	is	
the	simplification	of	extremely	complex	subsystems	for	which,	not	only	become	easily	
manageable	and	simple	but,	simpler	for	the	client.	For	example,	in	earlier	chapters	we	
discussed	technologies	influence	on	finance	and	complex	financial	models.	With	the	
implementation	of	these	Design	patterns,	we	can	have	multiple	programs	of	financial	pricing	
models	ready	for	client	use.	These	complex	models	are	programmed	in	an	OO	capacity	and	
computational	time	is	quick.	A	client	says	they	want	to	price	an	exotic	option.	They	do	not	care	
how	it	is	calculated,	they	just	want	the	price.	With	the	implementation	of	these	patterns,	the	
client	doesn’t	have	to	see	what	is	going	on	in	the	background	as	we	can	restrict	their	access.	
But,	what	they	do	receive	is	an	excellent	interface	that	is	simple	and	provides	them	with	the	
answer	they	need	without	any	regard	to	how	it	is	calculated.	They	would	simply	place	their	
input	(parameters	and	market	data)	into	the	client	portal,	choose	a	pricing	engine	and	then	
they	receive	their	request	calculated	for	them.	Simple.		
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9.Cython	

This	purpose	of	this	section	is	to	provide	the	essentials	of	Cython	as	we	will	provide	more	
details	when	we	implement	our	simulation	in	Cython.	For	now,	let	us	dive	into	the	essentials	of	
Cython.	Cython	is	programming	language	that	combines	Python	with	the	static	type	system	of	C	
and	C++	[16].	Cython	is	an	optimizing	static	compiler	for	both	Python	and	the	extended	Python	
language,	Cython.	But,	the	primary	feature	of	Cython	is	the	ability	to	convert	source	code	into	
optimized	C/C++	source	code	via	static	type	declarations	that	allows	for	very	fast	program	
execution	in	conjunction	with	an	increase	in	developer	velocity	because	of	the	utilization	of	
Python-like	syntax.	This	optimized	source	code	can	then	be	compiled	into	a	Python	extension	
module	or	a	standalone	executable.	Cython	is	positioned	between	high-level	Python	and	low-
level	C.	So,	we	get	the	best	of	both	worlds.	We	get	Python’s	user-friendly	syntax	with	the	very	
powerful	and	quick	speed	of	C.	The	motivation	behind	the	use	of	Cython	is	best	seen	as	
illustrated	by	Stefan	van	der	Walt’s	diagram	from	Sammi	Mourya’s	presentation	[17]:	

	 	 	 	 	 	 	 	 	 																										(5.8)	

	

Cython	has	secured	its	positioning	as	Python	code	is	essentially	legitimate	Cython	code.	The	
difference	in	Python	code	to	Cython	code	is	very	minimal.	It	is	roughly	the	addition	of	a	few	key	
words	that	allows	Python’s	language	to	gain	access	to	C’s	type	system	that	ultimately	allows	
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Cython’s	compiler	to	produce	quick	and	efficient	C	code.	This	means	that	if	we	have	an	
understanding	of	Python	and	may	come	C	or	C++,	we	do	not	have	to	learn	another	interface.	
This	will	contribute	greatly	to	increasing	developer	velocity.	

Cython	can	contribute	in	many	areas.	We	can	use	Cython	to	increase	the	performance	of	
Python	code	or	to	apply	Cython	to	C/C++	code	that	requires	an	optimized	Python	interface.	In	
order	make	Python	code	faster,	Cython	complies	Python	source	code	with	optional	static	type	
declarations	to	obtain	tremendous	performance	improvements.	We	can	use	Cython	to	interface	
with	external	code	and	to	create	optimized	wrappers	that	allows	for	the	interfacing	of	C	or	C++	
libraries	with	Python.	Let	us	have	a	look	at	an	example	of	the	optimization	of	Python	code	with	
Cython’s	static	type	declarations.	Also,	taking	note	of	the	syntax	differences[YouTube]:	

Pure	Python:	
def f(x):          (5.9) 
    return x**2-x 
 
def integrate_f(a, b, N): 
    s = 0  
    dx = (b-a)/N 
    for i in range(N): 
        s += f(a+i*dx) 
 
    return s * dx 
 
	
Static	Type	Declarations	Included:	
def f(double x):         (6.0) 
    return x**2-x 
 
def integrate_f(double a, double b, int N): 
    cdef int i  
    cdef double s, dx 
    s = 0  
    dx = (b-a)/N 
    for i in range(N): 
        s += f(a+i*dx) 
 
    return s * dx 

So,	we	can	see	that	in	(6.0),	which	would	be	saved	as	an	.pyx	file	(Cython	file	as	opposed	to	
Python	file)	we	have	added	a	type	to	i,	s	and	dx.	So,	we	have	made	three	static	type	
declarations.	We	made	these	declarations	by	utilizing	cdef	as	opposed	to	the	def	keyword.	With	
these	implementations,	we	saw	in	increase	in	speed	of	35%	over	that	of	pure	Python.	This	is	the	
result	of	the	code	bypassing	CPython’s	interface	to	run	the	code	directly	in	C.	So,	the	code	that	
Cython	has	just	generated	has	been	optimized	and	now	performs	substantially	better	than	its	
pure	Python	counterpart.	It	did	this	while	maintain	Python-like	syntax.	We	can	see	it	really	is	
not	that	different.	So,	now	let	us	briefly	discuss	cdef	as	we	discussed	the	def	keyword	in	an	
earlier	chapter.	
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As	a	refresher,	def	is	Python	and	is	utilized	for	code	that	will	be	called	straight	from	Python,	
utilizing	Python	object	arguments	and	gives	back	a	Python	object.	There	are	no	c’s	before	
anything	in	this	code.	Now,	cdef	essentially	places	c’s	before	its	def	to	signify	C	use	and	it	is	for	
when	we	want	Cython	functions	to	be	“C”	functions,	all	types	are	required	to	be	declared	and	
when	you	want	to	generate	code	that	is	almost	as	fast	as	it	can	be.	There	is	a	middle	ground	in	
terms	of	the	def	keyword,	cpdef.	

Cpdef	combine	def	and	cdef.	It	does	this	by	creating	two	function,	cdef	for	C	types	and	def	for	
Python	types.	Cpdef	takes	advantage	of	early	binding	so	that	cpdef	functions	can	be	as	fast	
possible	when	called	from	other	Cython	code	but	utilizes	dynamic	binding	when	passing	Python	
objects	and	this	can	be	just	as	slow	as	def.	Now	that	we	have	an	understanding	of	the	
declarations	and	cdef,	let	us	compare	Python,	C,	and	Cython’s	version	of	an	easy	Python	
function	fib	example,	that	calculates	the	nth	Fibonacci	number[16]:	

Python:	
def fib(n):          (6.1) 
    a, b = 0.0, 1.0 
    for i in range(n): 
        a, b = a + b, a 
    return a 
	
C:	
double cfib(int n) {          
    int i; 
    double a=0.0, b=1.0, tmp; 
    for (i=0; i<n; ++i) { 
        tmp = a; a = a + b; b = tmp; 
    } 
    return a; 
} 
 
	
Cython:	
def fib(int n):           
    cdef int i 
    cdef double a=0.0, b=1.0 
    for i in range(n): 
        a, b = a + b, a 
    return a 

As	we	stated	earlier,	Python	code	is	essentially	valid	Cython	code	and	we	can	see	the	
similarities	in	(6.1).	We	can	also	see	that	the	C	version	of	the	code	closely	resembles	the	Python	
version.	Thus,	if	we	can	envision	the	merging	of	C	with	Python	code,	we	can	see	where	the	
statically	typed	Cython	emerges.	So,	how	does	Cython’s	performance	measure	up	in	this	
example	to	Python	and	C?		
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Cython	attained	C-level	performance.	It	does	so	because	the	pure	C	portions	of	any	
algorithm	will	allow	Cython	to	typically	produce	code	as	efficient	as	in	pure	C.	In	this	example,	
this	is	demonstrated	by	the	significant	speedup	of	approximately	75	times	that	of	Python	in	
regards	to,	the	loop	runtime.	So,	we	can	see	that	coding	in	Cython	is	like	coding	in	Python	and	C	
simultaneously.	It	is	worth	mentioning	that,	although	we	will	not	purse	this	example	any	
further,	we	could	make	the	addition	of	a	few	optimizations	in	order	to	squeeze	out	some	
additional	performance	from	Cython.	

With	that	being	said,	we	can	see	the	benefits	of	adding	a	few	minor	tweaks	to	Python	
code,	such	as	the	cdef	keyword,	in	order	to	see	significant	performance	improvements.	But	not	
all	Python	code	complied	into	Cython	will	exhibit	performance	increases.	We	would	not	see	any	
increases	or	the	performance	benefit	would	be	decreased	if	functions	are	memory-bound	or	
I/O–bound	or	network-bound	operations.	It	is	best	if	we	can	see	where	we	can	actually	make	
improvements	to	Python	code	before	looking	towards	Cython.	

10.	The	Heston	Model	in	Cython	

The	motivation	behind	this	thesis	was	to	implement	an	object-oriented	Cython	program	that	
evaluates	exotic	options	via	the	Heston	option	pricing	model.	Now,	that	we	have	developed	the	
theory	and	have	an	understanding	of	programming	in	Python	and	Cython	with	an	emphasis	
being	placed	on	object-oriented	design,	we	can	apply	design	patterns	to	our	Cython	program	
called	Malik	that	provides	the	end-user	with	a	clean,	user-friendly,	option	pricing	interface.	
	
Here,	we	implement	the	Heston	option	pricing	model	via	the	client	experience	of	the	unified	
interface	(Facade)	of	the	Malik	program	called	test_mc.py	and	it	is	designed	as	such:	
	

 

   # make a call option                                                            (6.2) 
  the_call_payoff = payoff.VanillaCallPayoff(40.0) 

   the_call = option.Option(1.0, the_call_payoff) 

 	
	   # make a put option 

   the_put_payoff = payoff.VanillaPutPayoff(40.0) 

   the_put = option.Option(1.0, the_put_payoff) 

 	
	   # make a Monte Carlo Heston engine 

   sigmav = 0.61 

  kappa  = 6.21 

  theta  = 0.019 

  rho    = -0.70 

  nsteps = 100 

  nreps  = 10000 

   mc_engine = engine.MCHestonEngine(500, 50) 
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	   # make a basic market data handle 

   mdata = marketdata.MarketData(41.0, 0.08, 0.30, 0.0) 

 	
	   # price the options 

   opt1 = facade.OptionFacade(the_call, mc_engine, mdata) 

   opt2 = facade.OptionFacade(the_put, mc_engine, mdata) 

   print("The value of the call option is: {0:0.3f}".format(opt1.price())) 

   print("The value of the put option is: {0:0.3f}".format(opt2.price())) 

   

  Output: 6.8061 

   
Note,	we	could	easily	implement	a	Python	graphical	user	interface(GUI)	framework	on	top	of	
our	code	that	would	allow	clients	and/or	users	to	interact	with	our	Malik	program	through	
graphical	icons	and	visual	indicators,	as	opposed	to	our	currently	utilized	text-based	user	
interface.	But,	for	now,	let	us	proceed	with	our	model.	
	
We	can	explain	the	various	aspects	of	test_mc.py	in	the	following	fashion:	
	

• We	have	the	option	to	select	the	type	of	option	(call	or	put)	that	we	wish	to	evaluate	
the	option	by	as	demonstrated	in	#	make	a	call	option	and	the	#	make	a	put	option	
fields.	Although,	there	are	inputs	for	both	call	and	put	options,	we	make	the	decision	of	
which	one	to	utilize	at	run-time.	

• We	have	the	option	to	select	the	type	of	engine	we	would	like	to	run.	In	this	case,	we	
have	chosen	to	utilize	the	Heston	model	where	we	list	the	parameters,	its	associated	
values	and	the	engine	we	would	like	to	run.	

• We	also	have	basic	market	data	field	and	its	inputs.		
• We	have	the	field	that	prices	the	options.	Here,	again	we	see	we	have	both	call	and	put	

options	listed.	It	is	only	listed	to	show	what	the	code	and	option	looks	like.	But,	when	
running	the	module,	we	would	choose	which	one	we	want	to	use.	We	would	then	
choose	the	associated	print	option.	At	this	point,	we	would	execute	the	program.	

• We	have	an	output	field	that	provides	the	evaluated	option	price	and	in	(6.2),	we	see	
the	option	price	is	6.8061.		

	
	
While	the	Heston	option	pricing	model	was	successfully	implemented	in	Cython,	modelled	by	
the	test_mc.py	module,	the	countless	expansion	possibilities	of	the	Malik	program	are	endless.	
For	instance,	we	could	provide	the	optionality	of	different	engines	for	the	end-user	to	choose	
from	such	as	a	Black-Scholes,	a	naive	Monte	Carlo,	antithetic	sampling,	etc.	without	ever	having	
to	re-code	anything.	We	could	build	out	this	program	as	far	as	we	saw	fit	and	it	would	perform	
at	the	“speed	of	thought”	and	have	the	performance	of	C/C	++.		That	is	the	unique	beauty	of	
OOP,	Cython	and	the	Malik	program.	It	could	provide	the	client	with	endless	options	without	
ever	unveiling	what’s	behind	the	curtain	as	the	client	does	not	care	about	how	the	asset	was	
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calculated.	They	only	care	about	its	accuracy,	speed	and	ease-of-use.	No	one	cares	about	how	a	
calculator	calculates	the	sum,	only	the	result.	So,	it’s	time	to	take	a	peak	behind	the	curtain	also	
known	as	the	Facade	and	Strategy,	of	this	extremely	useful	and	buildable	object-oriented	
Cython	program.	
	
11.	The	Facade	and	Strategy	Patterns	
	
While	the	background	of	the	Malik	program	is	neat,	it	is	also	extremely	complex	and	intricate.	
So,	with	that	in	mind,	the	primary	focus	of	this	chapter	will	be	to	discuss	some	of	the	aspects	of	
the	Facade	and	Strategy	Patterns	used	in	our	Malik	program.	We	shall	provide	a	brief	overview	
of	some	of	their	components	without	going	into	too	much	detail	to	keep	things	simple	and	
concise.	In	addition,	we	shall	only	discuss	new,	relevant,	aspects	of	Python	and	Cython	that	we	
have	yet	to	discuss	with	brief	references	of	learnings	from	prior	chapters.	Let	us	begin	with	the	
Facade.	
	
11.1	Facade		
	
Our	Facade	is	quite	simple	and	straight-forward	as	clearly	seen	by	the	following	illustration:	
	 	 	 	 	 	 	 	 	 	 	 (6.3)	

	
Our	facade	is	comprised	of	three	modules:	Option,	Engine	and	MarketData.	We	utilized	
Cython’s	cimport	where	the	Cython	compiler	locates	each	of	these	files	such	as	Option.pxd	in	
its’	search	for	included	files.	There	are	3	file	types	associated	with	Cython.	Cython	consists	of	
.pyx	(implementation),	.pxd(definition)	and	.pxi(included)	file	types.	It	is	worth	mentioning	that	
when	we	compile	the	file	Option.pyx,	the	associated	Option.pxd	is	searched	first,	and	if	it	is	
located,	it	is	used	before	applying	the	.pyx	file.	This	is	easily	understood	because	unlike	Python,	
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Cython	code	has	to	be	complied.	First	the	.pyx	file	is	complied	into	.c	file	that	contains	the	code	
of	a	Python	extension	fie.	Then	.c	file	is	complied	into	a	.pyd	file	that	can	be	imported	straight	
into	live	Python.	In	order	to	build	this	Cython	code,	we	wrote	a	distutils	setup.py	as	this	is	the	
most	natural	method	Cython	files	are	distributed	and	built.	
	
Python	Distribution	Utilities	(distutils)	are	a	way	to	distribute	Python	packages	and	extensions	
from	the	standard	established	Python	library.	The	setup.py	module	was	created	where	it	simply	
complies	the	.pyx	file	into	an	extension	module.	This	is	similar	to	a	Python	Makefile	for	which,	
was	also	used.	A	Makefile	is	essentially	a	file	that	tells	the	program	make	how	to	compile	and	
connect	programs.	It	is	an	extremely	powerful	tool	that	is	used	to	construct	large	programs	and	
ultimately	aids	in	the	compilation	of	portions	of	code	that	are	modified	and	contingent	upon	
the	modifications.		
	
In	addition	to	the	above,	we	also	applied	cdef	to	a	class	in	our	Facade	called	OptionFacade.	This	
facade	is	a	facade	class	to	price	an	option.	Yes,	we	did	use	more	than	one	facade	pattern	but,	
we	will	not	get	into	the	details	in	the	interest	of	simplicity	and	finally	we	added	a	cpdef	
statement	to	our	price.	We	see	how	simple	and	straight-forward	our	Facade	really	is.	So,	let	us	
move	on	to	address	our	more	complex	Strategy.	
	
11.2	Strategy	
	
The	Strategy	contains	the	inner	workings	of	our	Malik	program.	As	we	stated	earlier,	“no	one	
cares	about	how	a	calculator	calculates	the	sum,	only	the	result.”	But	in	this	instance,	we	shall	
look	at	the	thought	process	behind	the	calculation	and	not	the	formulating	methods.	But,	in	
order	to	do	so,	let	us	provide	an	illustration	of	our	Strategy	so	we	can	comprehend	its	
components	and	structure.	Then	we	shall	discuss	the	components	and	their	interactions.	The	
Unified	Modeling	Language	(UML)	helps	us	visualize	the	design	of	our	Strategy	and	is	illustrated	
by	the	following:	
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	 	 	 	 	 	 	 	 	 	 	 (6.4)	 	
	 	 	 	

	
Note:	Not	all	classes	in	this	illustration	are	implemented.	Some	are	only	used	as	place-holders	
to	signify	some	of	the	different	possibilities	we	could	execute	with	our	program.	
	
	
With	respect	to	the	Facade,	we	can	clearly	see	the	has-a(n)	relationship	at	work	between	the	
Facade	and	Strategy	as	we	now	see	that	our	Facade	abstracted	away	from	the	Strategy.	So,	
allow	us	to	take	a	closer	look	at	the	Strategy.	In	an	effort	to	maintain	simplicity,	we	will	divide	
the	analysis	of	the	Strategy	into	three	portions:	Option,	MarketData	and	PricingEngine.		
	
Option	 	
	
Our	Option	is	quite	simple.	It	simply	contains	two	Cython	functions,	option	and	payoff.	We	
created	two	properties	of	classes	within	the	option	class,	the	expiry	and	strike	class.	The	
properties	behave	and	appear	like	regular	attributes	but,	you	equip	procedures	that	control	
access	to	the	attributes.	We	then	return	the	payoff.	It’s	worth	mentioning	that	we	utilize	self	
throughout	all	of	the	Malik	program	so	that	when	we	create	a	class	instance	of	class	name	and	
call	its	methods,	it	will	be	passed	instinctively.	Now,	let	us	take	a	step	back	to	the	payoff	for	a	
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moment.	We	separated	the	payoff	so	that	it	has	its	own	file	in	the	interest	of	future	endeavors.	
Let’s	explore	the	payoff	for	a	moment.	
	
The	payoff	is	not	that	much	different	from	option	in	the	sense	of	structure.	We	simply	define	
more	elements.	In	the	payoff	contains	three	Cython	functions	for	three	classes:	Payoff,	
VanillaCallPayoff	and	VanillaPutPayoff	where	Payoff	is	a	base	class	for	option	payoffs,	
VanillaCallPayoff	is	a	concrete	class	for	the	vanilla	call	option	payoff	and	VanillaPutPayoff	is	a	
concrete	class	for	the	vanilla	put	option	payoff.	We	import	Numy	and	cimport	NumPy	to	
vectorize	our	program	by	having	access	to	NumPy	Python	functions	and	NumPy	C	API.	We	
utilize	the	special	method	__init__()	and	create	a	property	for	the	strike	within	the	payoff.	We	
take	advantage	of	using	the	Cpdef	statement	so	functions	can	be	quick	as	we	are	calling	from	
other	Cython	code	for	both	the	VanillaCallOption	and	the	VanillaPutOption.	We	then	return	the	
result.	
	
MarketData	
	
MarketData	consists	of	two	Cython	functions	for	our	two	classes	MarketData	and	HestonData,	
where	HestonData	inherits	from	MarketData.	MarketData	is	a	class	that	holds	market	data	for	
option	pricing.	The	HestonData	is	a	class	that	holds	market	data	and	estimated	parameters	for	
the	Heston	model.	Both	MarketData	and	HestonData	utilize	class	instantiation	and	each	class	
defines	a	special	method	__init__()	where	we	have	input	many	arguments	that	yielded	more	
flexibility.	The	arguments	in	MarketData	such	as	self,	spot,	rate,	div,	etc.	were	inherited	by	the	
HestonData	and	then	the	HestonData	adds	its	arguments	such	as	kappa,	theta,	rho,	etc.	for	the	
estimation	parameters	for	the	Heston	model.	Next,	we	utilized	properties	for	each	argument	
within	MarketData	and	HestonData	with	HestonData	inheriting	from	MarketData	and	
expanding	its	properties.	
	
PricingEngine	
	
Because	the	PricingEngine	utilizes	multiple-inheritance	abstraction	and	composition,	needless	
to	say,	it	gets	fairly	complicated	extremely	quick.	So,	in	an	effort	to	minimize	any	confusion,	we	
shall	be	brief	and	provide	an	extremely	broad	overview	of	our	pricing	engine.	To	begin,	from	
libc.math	we	cimported	exp	as	cexp,	sqrt	as	csqrt,	from	scipy.stats	we	imported	binom	and	
then	we	imported	NumPy	and	cimported	NumPy.	We	utilized	the	learnings	from	prior	
programming	chapters	to	create	and	define	multiple	pricing	engines	that	interact	in	an	OO	
environment	where	we	have	base,	interface	and	concrete	classes	that	have	declared	regular	C	
ints,	floats,	and	doubles	from	which	the	option	price	is	derived.		
	
Now	that	we	have	had	some	insight	into	what	is	behind	the	veil	of	the	Malik	program,	we	can	
see	how	the	Facade	and	Strategy	compliment	our	Cython	financial	program.	We	can	discern	
how	the	structure	or	layout	of	the	program	is	vital	for	its	success	and	implementation.	We	are	
able	to	have	access	to	key	areas	without	too	much	hassle	and	distinctly	be	able	to	make	
changes	and	see	how	those	changes	will	affect	our	program.	Ultimately,	it	provides	us	with	
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accessibility	to	each	aspect	of	our	program	in	a	structured	manner	that	is	easy	to	visualize	and	
see	how	things	interact.	
	
12.	Conclusion	
	
The	Heston	model	was	successfully	modeled	by	the	Malik	Cython	program	in	conjunction	with	
Euler’s	discretization	scheme	in	a	simple	Monte	Carlo	engine	and	in	doing	so,	we	have	
remedied	some	inefficiencies	and	patterns	expressed	by	the	Black-Scholes	model,	namely	by	
allowing	for	the	‘smile’	by	defining	the	volatility	as	a	stochastic	process.	While	the	Heston	
model	is	widely	recognized,	the	program	for	which,	the	model	was	programmed	in	is	what	is	
truly	unique	and	beneficial	to	the	financial	industry.	
	
Having	implemented	the	Heston	model	in	object-oriented	Cython	is	what	should	entice	the	
financial	industry	into	making	Cython	the	normal	programming	language	for	the	vast	majority	
of	their	operations.	It	provides	the	simplicity	or	user-friendliness	of	Python,	all	the	while,	
providing	C	performance.	It	literally	is…the	best	of	both	worlds	as	demonstrated	by	the	
implementation	of	the	Heston	model	by	the	Malik	program.	Cython	proves	to	be	beneficial	to	
programmers	and	the	Malik	program	by	increasing	computational	efficiency	and	developer	
velocity.	
	
Assuming	you	are	utilizing	Cython	for	the	“right”	purpose,	it	is	just	as	efficient	as	the	
programming	language	it	calls	and	the	Malik	program	is	the	right	purpose.	We	could	have	used	
pure	Python	to	model	the	Heston	but,	the	loss	of	computational	efficiency	is	not	advantageous	
to	the	Malik	program	nor	any	other	mathematically	complex	model	especially	financial	models	
use	by	the	financial	sector	for	which,	utilize	complex	mathematical	formulations	to	price	
similarly	complex	options.	The	increase	in	developer	velocity	stemming	from	OO	Cython	and	
the	Malik	program	are	substantial.	Not	only	does	it	allow	for	code	reuse	which,	boosts	
productivity,	it	is	also	blazingly	quick	too.	Tapping	into	some	of	Python’s	hidden	powers	are	as	
simple	as	adding	c’s	before	def	and	that	is	not	even	the	best	part.	The	best	aspect	of	OO	Cython	
and	the	Malik	program	is	it’s	ease	of	construction.	
	
Not	only	was	the	coding	for	the	Malik	program	simple	and	straightforward	but,	it’s	expansion	
capabilities	are	endless.	It	provides	the	optionality	of	expansion	without	recoding	anything.	It	is	
as	simple	as	the	addition	of	classes,	subclasses	and	its	calculation	formula.	This	will	not	have	
any	detrimental	effects	on	the	client.	They	will	only	see	what	you	allow	them	to	see.	The	added	
benefit	is	that	the	client	has	the	ability	to	price	different	options.	This	program	in	conjunction	
with	Cython,	can	be	whatever	you	want.	We	could	have	it	pull	data	from	Bloomberg	or	CNBC	
Finance	or	whatever	data	source	we	saw	fit.	Any	way	you	look	at	it,	you	cannot	go	wrong	with	
OO	Cython	or	the	Malik	program	as	they	are	both	in	the	money.		
	
	
	
	



	 36	

References	
	
	
	

1. L.	Heston,	Steven.	A	Closed-Form	Solution	for	Options	with	Stochastic	Volatility	with	
Applications	to	Bond	and	Currency	Options.	The	Review	of	Financial	Studies,	Vol.	6,	No.	2	
(1993),	pp.	327-343	Oxford	University	Press.	Sponsor:	The	Society	for	Financial	Studies.	

2. Hull,	J.	C.,	1989,	Options,	Futures,	and	Other	Derivative	Instruments,	Prentice-Hall,	
Englewood	Cliffs,	NJ.	

3. Broadie,	Mark	and	Kaya,	Ozgur.	Exact	Simulation	of	Stochastic	Volatility	and	Other	Affine	
Jump	Diffusion	Processes.	Operations	Research,	Vol.	54,	No.	2,	March-April	2006,	pp.	
217-231		

4. Lord,	R.	Koekkoek,	and	D.	V.	Dijk.	A	comparison	of	biased	simulation	schemes	for	
stochastic	volatility	models.	Quantitative	Finance,	10(2):177–194,	2010.		

5. Mil'shtein,	G.	N.	(1974).	Approximate	Integration	of	Stochastic	Differential	Equations.	
Teor.	Veroyatnost.	i	Primenen	(in	Russian).	19	(3):	583–588.	

6. Mil’shtejn,	G.	N.	(1975).	Approximate	Integration	of	Stochastic	Differential	
Equations.	Theory	of	Probability	&	Its	Applications.	19(3):	557–000.	

7. Cox,	J.	C.,	J.	E.	Ingersoll,	S.	A.	Ross.	1985.	A	theory	of	the	term	structure	of	interest	rates.	
Econometrica	53(2)	385–407.		

8. Dawson,	Michael.,	2010,	Python	Programming,	for	the	absolute	beginner.	Third	Edition.	
Course	Technology,	Boston,	MA.	

9. No	Author	(n.d.).	Python.	What	is	Python?	Executive	Summary.	Retrieved	August	5,	
2017,	from	<https://www.python.org/doc/essays/blurb/>	

10. Hilpisch,	Yves.,	2014,	Python	for	Finance.	O’Reilly,	Sebastopol,	CA.	
11. Weisfield,	Matt.,	2013,	The	Object-Oriented	Thought	Process.	Fourth	Edition.	Addison-

Wesley,	London.	
12. Swaroop,	C.H.,	2015.	A	Byte	of	Python.	CreateSpace	Independent	Publishing	Platform,	

USA.	
13. Freeman,	Eric,	Elisabeth	Robson,	Kathy	Sierra,	and	Bert	Bates.	2004.	Head	First	design	

patterns.	O’Reilly,	Sebastopol,	CA.	pp.	315-420	

14. Erich	Gamma,	Richard	Helm,	Ralph	Johnson,	and	John	Vlissides.	1994,	Design	Patterns:	
Elements	of	Reusable	Object-Oriented	Software.	Addison-Wesley,	Sydnes,	Zurich,	
Urbana,	Hawthorne	

15. Erich	Gamma,	Richard	Helm,	Ralph	Johnson,	John	Vlissides.	1994.	Design	Patterns:	
Elements	of	Reusable	Object-Oriented	Software.	Addison	Wesley.	pp.	185-210	

16. W.	Smith,	Kurt.,	2015,	Cython.	O’Reilly,	Sebastopol,	CA.	

17. EuroPython	Conference.,	“Friday,	14	July	–	Anfiteatro	2	EuroPython	2017”YouTube.	
YouTube,	Web	Retrieved	July	29,	2017.	Scientific	computing	using	Cython:	Best	of	both	
worlds!	by	Simmi	Mourya,	2:05:15<https://www.youtube.com/watch?v=IZ5P12GASDQ>	



	 37	

18. Zhu,	Jianwei.	2009.	Applications	of	Fourier	Transform	to	Smile	Modeling:	Theory	and	
Implementation.	Springer	Science	and	Business	Media.		

19. Stefan	Behnel,	Robert	Bradshaw,	Craig	Citro,	Lisandro	Dalcin,	Dag	Sverre	Seljebotn	and	
Kurt	Smith.	Cython:	The	Best	of	Both	Worlds.	Computing	in	Science	&	Engineering.	IEEE	
CS	and	The	AIP.	March/April	2011		

20. Voit,	Johannes.	2013.	The	Statistical	Mechanics	of	Financial	Markets.	Springer	Science	
and	Business	Media.	

21. Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William	Stein	and	
Gabriel	Gellner.	Cython.	Cython	Documentation.	Retrieved	August	1,	2017,	from	
<http://docs.cython.org/en/latest/index.html>	

22. Wikipedia	Page	https://en.wikipedia.org/wiki/Strategy_pattern	

23. Wikipedia	Page	https://en.wikipedia.org/wiki/Facade_pattern	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 38	

Appendices			
	 	
Appendix	A	
	
To	view	code	for	this	thesis,	please	visit	https://github.com/brandonhardin	
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