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ABSTRACT 

As a basic principle in statistics, a larger sample size is preferred whenever possible. 

Nonetheless, in the financial world, especially equities and currencies trading, including all 

available data poses great challenges due to the noise present in the volatility estimation. In his 

paper I examine the Two Time Scales Realized Volatility estimator by Zhang, Mykland, and Ait-

Sahalia (2005b) and I find that it not only provides a more efficient estimator than a basic 

estimator of the integrated volatility of returns, but it also consistently estimates the 

microstructure noise present in the latent efficient return process. I find that by using this 

approach, it is possible to compare the efficiency of the prices of securities with lower 

transaction costs traded against those with higher transactions costs. 

by 

Aristides A. Romero Moreno, Master of Arts 

Utah State University, 2016 
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PUBLIC ABSTRACT 

 

Microstructure Noise: The Use of Two Scales Realized Volatility  

for Noisy High-Frequency Data and its Implications for Market Efficiency  

and Financial Forecasting 

 

This paper examines a proposed approach for integrated volatility and its implications for 

the informational efficiency in particular stocks and the use of the estimator for financial 

forecasting and market efficiency. 
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I. INTRODUCTION 

 

As a basic principle in statistics, sampling more frequently is preferred whenever possible. 

Most fields of study, however, are constrained by the amount and frequency of the data in question, 

in finance this is less of a problem. Trading data, particularly stocks and currencies, are abundant 

in the financial world. Data is generated in a sub-second time series, thus making it possible to 

sample at higher frequencies. One obvious application is to estimate the variance (realized 

volatility), or integrated volatility given the frequency of the data, of stock returns using the sum 

of log squared returns. Nonetheless, the problem with this approach is that when trying to estimate 

the variance, using all available high-frequency data, the data are noisy. This is known in 

the literature1 as market microstructure noise; a deviation from the fundamental value of a security. 

Microstructure noise arises from the trading process. The bid-ask spread is an example. 

 

In this paper I focus on an estimator that would be consistent and unbiased when estimating 

volatility, in the presence of the market microstructure noise, using high-frequency data generated 

every second.  Particularly, I focus focuses on equity returns. 

 

Understanding volatility is of utmost importance in the financial markets because it has broad 

economic and financial implications. Asset managers, traders, investment advisors, banks and 

policy makers pay special attention to volatility in the financial markets and its repercussions to 

the general economy. Since volatility is widely used as a measure of risk, participants in the 

financial markets need to estimate the volatility of returns for investment decisions or transacting 

                                                           
1 Andersen, Tobern G.; Benzoni, Luca (2008) “Realized Volatility.” Federal Reserve Bank of Chicago. 
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in particular stocks or sectors of the market. Similarly, policy makers look at market volatility 

before implementing policies, such as monetary policy, that would create instability in the financial 

markets and broad economy, such as tightening or loosening of monetary policy.  

 

While there are many estimators proposed, I focus on the Two Scales Realized Volatility 

(TSRV) estimator due to its novel approach of using all available data.2 It is widely known in the 

literature, that the sum of squared log returns, [𝑋, 𝑋]𝑇 ≜ ∑ (𝑋𝑡𝑖+1
− 𝑋𝑡𝑖𝑡𝑖

)2 (where the 𝑋𝑡𝑖
’s 

represent all the observations of the return process in a single time interval from 0 to T),   for high-

frequency data, in the absence of market microstructure noise, should consistently estimate the 

integrated volatility of the return process. The integrated volatility, also known as the continuous 

quadratic variation, is the cumulative volatility over successive time periods. The continuous 

quadratic variation is expressed as 〈𝑋, 𝑋〉𝑇 = ∫ 𝜎2𝑇

0
, where 𝜎2 is the instantaneous variance of the 

returns process 𝑋𝑡 for time period [0,T]. In the next section, however, I explain why this approach 

fails to work in the presence of market microstructure noise.  

 

This paper explores five volatility estimators to address the market microstructure noise 

problem and tests them empirically using a Monte Carlo simulation using the Heston model as the 

data generating process to simulate stock returns.  

 

The main two areas of interest of this paper are: the use of the TSRV as a consistent and 

unbiased estimator of volatility with high-frequency data and the use of a by product of the “fifth-

                                                           
2 Li et al. (2014); Camponovo et al. (2015); Ysusi et al. (2008); Yu (2014); Misaki (2015); Zhang et. al (2006). See 

references page for details. 
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best” estimator as a proxy for market microstructure noise.  

 

To accomplish these tasks, before discussing a review of the literature and the motivation 

behind the estimators in section 2, the market microstructure noise is defined. Then, section 3 

explains the mechanics of the model; section 4 examines the practical applications and 

implications; section 5 tests the model with a Monte Carlo study to check the robustness and 

consistency of the estimators. Section 6 addresses the use of an important ramification of the “fifth-

best” estimator to measure the market microstructure noise, using the bid-ask spread as a measure 

for efficiency, in the components of the Dow Jones Industrial Average (DJIA); and section 7 

concludes the study. 

 

A. THE MICROSTRUCTURE NOISE 

 

The market microstructure noise is a deviation of the fundamental price of a security. In the 

market microstructure literature, it known that high-frequency data are contaminated with this type 

of noise. The data contains, as most econometricians refer to, an “observation error”3 component. 

In a very simple form, Zhang, Mykland, and Ait-Sahalia (2005b) model the return process and the 

microstructure noise as, 

𝑌𝑡𝑖
= 𝑋𝑡𝑖

+ 𝜖𝑡𝑖
 (1) 

where 𝑌𝑡𝑖
is the observed return process, 𝑋𝑡𝑖

 represents the fundamental or efficient price of the 

return process, and ϵti
is the independent error term capturing the noise of the true return. Many 

                                                           
3 Zhang, Lan; Mykland, Per A.; Aït-Sahalia, Yacine (2005b). “A Tale of Two Time Scales: Determining Integrated 

Volatility With Noise High-Frequency Data.” 
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researchers such as Ait-sahalia and Yu (2009) and Hasbrouck (1993) conclude that it is the source 

of noise is attributable to the trading process, while Roll (1984) argues it is due to the bid-ask 

spread. Security dealers may have access to distinct sources of information or be motivated to buy 

or sell securities for diverse factors. This behavior adds noise to the latent, true price of a security. 

Stocks with wider bid-ask spreads, then, should exhibit more market microstructure noise than 

stocks with narrower bid-ask spreads. To test this hypothesis, I use the Two Time Scale Realized 

Volatility (TSRV) estimator, an estimator developed by Zhang, Mykland, and Ait-Sahalia (2005b) 

aimed at using high-frequency data to estimate the realized volatility of the return process. 

Particularly, in assessing the market microstructure noise, a by product of one of the estimators, 

the “fifth-best” estimator, is used to estimate the noise contained in the the constituents of the Dow 

Jones Industrial Average (DJIA). 

 

II. LITERATURE REVIEW 

 

As financial data becomes more abundant due to high-frequency trading, more researchers 

have made realized volatility a center of focus. For instance, Campnovo et al. (2015) developed a 

nonparametric estimator for realized volatility using high-frequency data using conventional 

statistics and a Pearson’s chi-square for special cases. Additionally, Ysusi et al. (2008) highlight 

the issues when using the central limit theorem and high-frequency intra-day data and propose an 

absolute high-frequency return estimator.  

 

More pertinent to this study, Misaki et al. (2015) suggest the use of a Separating Information 

Maximum Likelihood (SMIL) estimator. They show that after accounting for market 

microstructure noise and through random sample of high-frequency data, their estimator “is 
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consistent and has a stable convergence.”4 Others such as Yu et al.(2014) suggested a threshold 

kernel estimator that estimates the spot volatility when it is time-dependent and the latent price has 

been contaminated by finite activity jumps. While Yu et al. (2014) propose the use of this estimator 

in analyzing intra-day volatility patterns, they do not address the market microstructure noise 

component. 

 

Zhang, Mykland, and Ait-Sahalia (2005b) construct five estimators to estimate volatility using 

high-frequency data. After a sample adjustment, they zero in one consistent and bias-adjusted 

estimator, “the first-best”, to estimate the variance of returns. These five nonparametric estimators 

are the basis of this paper and will be discussed in detail in the next section.  

 

Zhang et al. (2005a) propose a closed-form optimal sampling frequency, even when the noise 

distribution is misspecified, for high-frequency data by explicitly modelling the noise. Their 

estimator, they argue, possesses the same asymptotical properties as if it were correctly specified. 

Therefore, they recommend to sample as often as possible. Zhang (2006) proposed a generalized 

version of the TSRV, the MSRV5 which expands the TSRV from a two period time scale to a 

multiple time scale approach. 

 

Relying on the TSRV estimator, Aït-sahalia and Yu (2009) studied the fundamental and noise 

component of stock prices. Using different measures of liquidity, they found that more liquid 

stocks were priced more adequately; that is, their price contained a lower pricing error than stocks 

                                                           
4 Misaki et al. (2015). “On robust properties of the SIML estimation of volatility under micro-market noise and 

random sampling.” International Review of Economics and Finance.  
5 Zhang, Lan (2006). Efficient estimation of stochastic volatility using noisy observations: a multi-scale approach. 

Bernoulli Volume 12, Number 6 (2006), 1019-1043. 
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traded less often. Aït-Sahalia and Mykland (2009)6 provide a didactic overview of the main 

properties and uses of the TSRV and MTSRV (Multi Time Scale Realized Volatility) estimators. 

Their paper lays out a summarized version of the two estimators aimed at explaining the estimators 

in its simplest form. This paper follows a similar approach by summarizing the five estimators 

developed by Zhang, Mykland, and Ait-Sahalia (2005b). 

  

A. OVERVIEW OF THE ESTIMATORS 

 

The Two Time Scale realized Volatility (TSRV) estimator reconciles the use of a continuous-

time estimator, the sum of squared log returns, with a discrete-time estimator. The end goal of 

Zhang, Mykland, and Ait-Sahalia (2005b) is to estimate the realized volatility of returns using as 

much data as possible. This approach follows Zhang et al. (2005a)’s paper on the optimal sampling 

frequency. In their paper, they develop five estimators. They start with the most inadequate, the 

“fifth-best” estimator, and count down to the most appropriate and consistent, the “first-best” 

estimator. 

 

  The “fifth-best” estimator is based on theory, since the sum of squared log returns for high-

frequency data, in the absence of microstructure noise, should consistently estimate the integrated 

volatility of the return process. The problem with transaction’s data is that data are noisy, thus, 

making this estimator biased. This shortcoming is widely known among researchers and Zhang, 

Mykland, and Ait-Sahalia (2005b) provide a review of the literature. 

 

                                                           
6 Aït-Sahalia, Yacine; Mykland, Per A. (2009). T.G. Anderson et al., Handbook of Financial Time Series, DOI: 

10.1007/978-3-540-71297-8_25, © Springer-Verlag Berlin Heidelberg 2009 



 7 

The “fourth-best” estimator is the approach most popular among researchers, which is 

sampling sparsely, say every 5 minutes. Zhang, Mykland, and Ait-Sahalia (2005b) argue that 

sparse sampling takes care of the microstructure noise in the return process, but throws away most 

of the data. For instance, if one were to sample every 5 minutes, one would only be using 78 out 

of 23,400 observations7 available in a trading day. A general rule of statistical analysis is: never 

throw away data. 

 

While the “third-best” estimator uses arbitrary sampling, the “third-best” estimator aims to 

find an optimal sampling interval while using more data. This estimator has good properties, but 

needs an adjustment discussed later in this section. 

 

The “second-best estimator,” seeks to use more data in the volatility estimation. A 

compelling way to use all the data is by combining the properties of the “fifth and third-best” 

estimators. The result is a blend of optimal sampling and averaging across subsamples. The 

construction of the subsamples is straight forward. Let 𝐺𝑘, 𝑘 = 1, … , 𝐾, be the subsamples of the 

original data set where 
𝑛

𝐾
→ ∞ as 𝑛 → ∞. Start at the first observation 𝐺1 and record an observation 

every 5 minutes; for 𝐺2, start at the second observation and record an observation every 5 minutes, 

and so on. The average the estimators obtained from the subsamples. Unfortunately, this estimator 

remains biased. 

 

Finally, the “first-best” estimator combines the fifth and second-best estimator: using all 

                                                           
7 One day of trading is 6.5 hours, as is the case of the NYSE and NASDAQ exchanges. With data generated every 

second, this would amount to 300 seconds/5 minutes; 23,400 observations in a day. 
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the data in the fifth estimator and the averaged subsamples in the second estimator. The result is a 

consistent estimator with a bias-adjustment. 

 

The mechanics of theses estimators are explained as follows: 

 

Fifth-Best Estimator 

It is widely known in the market microstructure literature that the sum of log squared 

returns, in the absence of market microstructure noise, should consistently estimate the volatility 

of returns (McDonald, 2006). In the presence of market microstructure noise, however,  the sum 

of log squared returns fails to estimate the true variance of the returns,〈𝑋, 𝑋〉𝑇
(𝑎𝑙𝑙)

, computed as 

  [𝑋, 𝑋]𝑇 ≜ ∑ (𝑋𝑡𝑖+1
− 𝑋𝑡𝑖𝑡𝑖

)2, where the 𝑋𝑡𝑡
’s are all trade observations in [0, T], and 

instead estimates the variance of the microstructure noise, 𝐸𝜖2, scaled by (2𝑛)−1. More formally, 

it estimates, 

∑ (𝑌𝑡𝑖+1
− 𝑌𝑡𝑖𝑡𝑖,𝑡𝑖+1∈[0,𝑇] )2 = 2𝑛𝐸𝜖2 + 𝑂𝑝 (𝑛

1

2),  (2) 

where n is the number of sampling interval over [0,T]. The first term is the variance of the noise 

the noise and the second term is, as Zhang, Mykland, and Ait-Sahalia (2005b) argue, the 

asymptotically Gaussian term, which dwarfs the integrated volatility, 𝑂𝑝. This estimator has 

undesirable properties. Nonetheless, section 4 discusses important ramifications from this 

estimator. From this point forward, this estimator will be referred to as [𝑌, 𝑌]𝑇
(𝑎𝑙𝑙)

. 

 

Fourth-Best Estimator 

This is the approach used by most researchers. By taking a subsample of the observations 

ensures one does not ignore the market microstructure noise. Nonetheless, for 6.5 hours trading 
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day with data generated every second, a total of 23,400 observations are produced. If one were to 

only sample every 5 minutes, one would the throwing away 299 out of 300 observations. Following 

Zhang’s et al. (2005b) notation, [𝑌, 𝑌]𝑇
(𝑠𝑝𝑎𝑟𝑠𝑒)

  or the “fourth-best” estimator only uses 78 

observations. This is the shortcoming this paper seeks to address. 

 

Third Best Estimator 

This estimator, [𝑌, 𝑌]𝑇
(𝑠𝑝𝑎𝑠𝑒,𝑜𝑝𝑡)

, follows the same intuition as the fourth-best estimator. The 

difference is that it seeks to find an optimal sampling method, quantitatively, instead of arbitrarily 

selecting a number. The optimal sampling method Zhang et al. (2005a,b) computed is given by 

𝑛𝑠𝑝𝑎𝑟𝑠𝑒
∗ = (

𝑇

4(𝐸𝜖2)2
∫ 𝜎𝑡

4𝑑𝑡
𝑇

0

)

1
3

 

(3) 

Zhang, Mykland, and Ait-Sahalia (2005b) recognize that due to the sample size in (3) a 

higher-order adjustment is needed.  

 

Second-Best Estimator 

Even after developing an optimal sampling method, many observations are thrown out. 

The second-best estimator, [𝑌, 𝑌]𝑇
(𝑎𝑣𝑔)

, addresses this issue by averaging estimators, [𝑌, 𝑌]𝑇
(𝑘)

 

across K grids of size 𝑛̅. Although this estimator remains biased, it is a better estimator than 

[𝑌, 𝑌]𝑇
(𝑎𝑙𝑙)

 in terms of bias. 

[𝑌, 𝑌]𝑇
(𝑎𝑣𝑔) ℒ

≈
〈𝑋, 𝑋〉𝑇 + 2𝑛̅𝐸𝜖2 + [4

𝑛̅

𝐾
𝐸𝜖4 +

4𝑇

3𝑛̅
∫ 𝜎𝑡

4
𝑇

0

𝑑𝑡]

1
2

𝑍𝑡𝑜𝑡𝑎𝑙 , 

(4) 

where the first term is the matrix of squared log returns, the second is the biased due to the noise. 

𝑍𝑡𝑜𝑡𝑎𝑙 is standard normal, indicating noise. The first term in the squared brackets represents noise 
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and second term is the result of discretization; these two terms combined represent the total 

variance.8 See Zhang (2005b) for details, derivation and bias reduction techniques.  

 

First-Best Estimator 

The first-best estimator, 〈X, X〉̂T, controls for the market microstructure noise and uses all 

of the data by combining the “fifth-best” and the “second-best” estimators; thus the “Two Scale” 

name. Further, Zhang, Mykland, and Ait-Sahalia (2005b) apply a bias-correction method. The 

“first-best” estimator becomes, 

〈X, X〉T =̂ [Y, Y]T
avg

−
n̅

n
[Y, Y]T

all 
(5) 

𝑛̅ =
1

𝐾
∑ 𝑛𝑘

𝐾

𝑘=1

=
𝑛 − 𝐾 + 1

𝐾
 

(6) 

where K is the number of subsamples, the first term comes from the “second-best” estimator, slow 

time scale, and the second term is the “fifth-best” estimator, fast time scale. After a sample 

adjustment,  

〈𝑋, 𝑋̂〉𝑇
𝑎𝑑𝑗

= (1 −
𝑛̅

𝑛
)

−1

〈𝑋, 𝑋〉𝑇
̂ , 

(6) 

The estimator (6) is unbiased of higher order than the estimator (5)9. 

 

 

III. BASIS FOR THE MODEL 

 

 

Theoretically, one could use the sum of squared log returns to get the variance. Zhang et 

                                                           
8 Zhang, Lan; Mykland, Per A.; Aït-Sahalia, Yacine (2005a). “A Tale of Two Time Scales: Determining Integrated 

Volatility with Noise High-Frequency Data.” American Statistical Association. 
9 Ibid 
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al. (2005a,b) and Aït-Sahalia (2009) argue that doing so ignores the market microstructure noise 

contained in the latent return process. Had this not been the case, the sum of squared log returns, 

[𝑋, 𝑋]𝑇 ≜ ∑(𝑋𝑡𝑖+1
− 𝑋𝑡𝑖

𝑡𝑖

)2, (7) 

where the 𝑋𝑡𝑡
’s are all trade observations in [0, T],10 estimate the integrated realized volatility.  

Further, they argue that as the sampling frequency increases, in the limit,  

𝑝𝑙𝑖𝑚 ∑(𝑋𝑡𝑖+1
− 𝑋𝑡𝑖

𝑡𝑖

)2 = ∫ 𝜎𝑡
2𝑑𝑡

𝑇

0

 
                                            (8) 

is the best estimator, theoretically, for the integrated volatility. Nonetheless, this method fails to 

account for the microstructure noise contained in high-frequency trade data. Despite this 

shortcoming, important implications can be derived from this estimator, which are discussed in 

sections 3. 

 

A common practice among finance researchers is to sample sparsely, say for instance every 

5 minutes11. This sampling method tries to ignore the microstructure noise by only taking into 

account some, but not all, of the data. While this method addresses the market microstructure noise 

component, it discards too much of the available data; this otherwise would be optimal. As 

mentioned previously, in a normal trading day, 6.5 hours, with data being generated every second 

sampling every, say 5 minutes, one would reduce the sampled observations from 23,400 (all data) 

to 78 (5 minute intervals). Sampling every 5 minutes does not seem adequate when much more 

data are available.  

                                                           
10 Ibid 
11 Aït-Sahalia, Yacine; Mykland, Per A.; Zhang, Lan. (2009). “High-frequency Market Microstructure Noise 

Estimates and Liquidity Measures.” 
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IV. IMPLICATIONS AND PRACTICAL APPLICATIONS 

 

While the “fifth-best” estimator fails to accurately estimate the variation of returns for high-

frequency observations due to the market microstructure noise, this estimator has important and 

useful applications. For instance, Zhang et al., (2005b) argue that the “fifth-best” estimator, 

[𝑌, 𝑌]𝑇
𝑎𝑙𝑙, when used with high-frequency data, consistently estimators the variance of the 

microstructure noise. That is,  

𝐸𝜖 2̂ =
1

2𝑛
[𝑌, 𝑌]𝑇

𝑎𝑙𝑙 ,    (9) 

for where a consistent asymptotic variance estimator is also available, see Zhang et al., (2005b).  

 

If Zhang et al., (2005b) are right, the “fifth-best” estimator has important applications in 

finance and economics. For instance, an immediate application of this estimator, beyond equities, 

is currencies. Economists and traders interested in studying the drivers and efficiency of currency 

trading may use equation (9) to separate the fundamental price drivers from the noise. In doing so, 

the researcher might find this estimator to be a straightforward method for estimating the variance 

of the noise term, and therefore, the efficiency of currency prices in the exchange rate market.  

 

The implications for equity prices is more obvious. Researchers can take advantage of 

high-frequency trading to better understand the markets and its efficiency by observing investor 

and trading behavior. Nonetheless, this does not come without challenges. As the number of trade 

data increase, so does the noise. Bid-ask prices, the size of the trade, and direction of the trade are 

just but a few examples of the constituents of the market microstructure noise in the finance 
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literature. For instance, Roll (1984) claims the bid-ask spread is the sole responsible for the market 

microstructure noise. 

 

Understanding how the variance of the noise affects prices when using high-frequency data 

has a direct impact in financial decisions. This is especially true for asset managers when they 

invest in equities and hedge positions against exchange rate fluctuations and for companies and 

governments engaging in foreign exchange transactions. 

  

Another interesting application is the use of the first-best estimator for evaluating the efficiency 

of prices of stocks traded by institutional investors. See Hasbrouck, Boehmer and Kelley (2009) 

for research on this topic.  

 

 

V. MONTE CARLO SIMULATION 

 

To test the results obtained by Aït-Sahalia et al, (2005) a Monte Carlo Analysis is 

conducted. Using the the parameters below12 25,000 simulations are performed. To simulate stock 

prices, the Heston (1993) Model was used,  

𝑑𝑋𝑡 = (𝜇 − 𝑣𝑡)𝑑𝑡 + 𝜎𝑡𝑑𝐵𝑡  (10) 

𝑑𝑣𝑡 = 𝜅(𝛼 − 𝑣𝑡)𝑑𝑡 + 𝛾𝑣𝑡

1

2𝑑𝑊𝑡   
(11) 

                                                           
12 See Zhang, Mykland, and Ait-Sahalia (2005b) page 1404 of the American Statistical Association Journal. Also 

these parameters and code are available in the Appendix A. 
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The same approach and parameter values used by Zhang, Mykland, and Ait-Sahalia 

(2005b) were employed. The Greek parameters below are assumed to be constant between 

Brownian motions, B and W:  𝝁 = 𝟎. 𝟎𝟓, 𝜿 = 𝟓 , 𝜶 = 𝟎. 𝟎𝟒 , 𝜸 = 𝟎. 𝟓 , 𝝆 = −𝟎. 𝟓 , 𝑬(𝝐𝟐 )
𝟏

𝟐 =

𝟎. 𝟎𝟎𝟎𝟓, ∆𝒕 = 𝟏 second. For the market microstructure noise, 𝜖, it is assumed Gaussian and small, 

the standard deviation is 0.05% of the value of the asset price. T=1/252, one trading day, 252 

trading days a year. The Feller’s condition is also assumed, 2𝜅𝛼 ≥ 𝛾2, to prevent the volatility 

process from trespassing the zero boundary. 

 

Table 1 shows the results of the Mote Carlo Simulation. These results are consistent with 

the findings of Zhang, Mykland, and Ait-Sahalia (2005b). The fifth best estimator fails to 

accurately estimate the variance of the true process. One can see how, generally, the results 

improve as one approaches the “first-best” estimator, especially after the small sample adjustment 

in the “first-best” estimator. 

 

The TSRV estimator provides a novel approach in estimating the realized volatility using 

high-frequency financial data. The fourth best estimator, which uses sparse sampling is the most 

common in practice, but the results obtained in this simulation, show that while the effect of the 

market microstructure noise is reduced, one throws away too much data. Instead, the “first-best” 

estimator produces statistically better results, that while slightly biased, are asymptotically 

equivalent to the true integrated volatility. After a small sample adjustment and bias correction, 

the “first-best” estimator results in a major improvement over the current methods for estimating 

the realized volatility using high-frequency data.  

 

Additionally, it is evident that the sample bias and sample variance become drastically 

smaller   with each estimator, specially with the sample adjustment in the “first-best” estimator. 
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The same is true for the root-mean-square error (RMSE) and the relative statistics. Another point 

worth noticing is that there is a substantial difference between the sparse sample estimator, “third-

best” estimator which Zhang, Mykland, and Ait-Sahalia (2005b) want to compare to, and the 

adjusted “first-best” estimator. Consistent with Zhang, Mykland, and Ait-Sahalia (2005b), the 

“first-best” estimator has a smaller sample bias and sample variance. 

 

While “fifth-best” estimator is widely known not to be reliable in estimating the volatility 

of returns using high-frequency data, Zhang, Mykland, and Ait-Sahalia (2005b) found that it 

consistently estimates the market microstructure noise. This finding has a major implication for 

market efficiency. For instance, further research on this topic could use the equation (9) to asses if 

stocks of institutional investors are priced more efficiently and the extent that their trades 

contribute to the efficiency of the financial markets across the board.  

 

 

VI. MARKET DATA RESULTS 

 

Aït-Sahalia and Yu (2009) proved that liquid stocks tend to have a lower market 

microstructure noise. Noisy trading occurs as a result of diverse factors. These factors may include 

asymmetric information, macroeconomic developments, and industry specific factors. In addition 

to these factors, investors trade securities at difference prices depending on the side of the 

transaction they are in, buying or selling. Since there are many buyers and sellers with distinct 

sources of information, prices might deviate from the latent price. This paper uses the bid-ask price 

to as a measure of price efficiency. Stocks with lower bid-ask spreads are generally more liquid 

and thus should be priced more efficiently than stocks with higher bid-ask spreads. 
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Table 1. Monte Carlo Simulation for the Five Estimators plus the Small Sample Adjusted Estimator (FirstBestAdj)13

                                                           
13 MATLAB code for this results is available in the Appendix.  

 Fifth Best Fourth Best Third Best Second Best First Best First Best Adj 

Sample Bias 0.0468 1.5619 𝑥 10−4 3.5169 𝑥 10−5 3.0417 𝑥 10−5 −3.2491 𝑥 10−6 4.2509 𝑥 10−8 

Sample Variance 2.8115 𝑥 10−7 3.2367 𝑥 10−9 4.8898 𝑥 10−9 2.476 𝑥 10−9 1.9749 𝑥 10−10 1.8918 𝑥 10−10 

Sample RMSE 7.3992 0.0247 0.0056 0.0048 5.1373 𝑥 10−4 6.7213 𝑥 10−6 

Sample Relative Bias 

Sample Relative 

Variance 

Sample Replative RMSE 

295.1631 

18.1706 

4.6668 𝑥 104 

0.9851 

0.1972 

154.7654 

0.2218 

0.6090 

34.0732 

−0.1919 

0.4000 

29.3349 

−0.0205 

−0.0530 

2.2403 

−2.6812 𝑥 10−4 

0.0158 

−0.9576 
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Security dealers may quote different prices for securities based on how liquid is the stock, 

the size of the transaction or outstanding inventory. This paper argues that these factors, especially 

the bid-ask spread, contribute to the market microstructure noise. See Aït-Sahalia and Yu (2009), 

Sarr and Lybek (2002), and Roll (1984) attribute the microstructure noise to liquidity, trade size, 

noise-to-signal ratio and bid-ask bounce. This paper took a simple approach, just like Roll (1984) 

and focused on the bid-ask spread as a measure of liquidity and transaction costs. 

 

To test this hypothesis, this paper looks at the divergence of the market microstructure 

noise in the components of the Dow Jones Industrial Average using the equation (9). Theoretically, 

stocks with lower bid-ask spreads should be priced more efficiently, and consequently, should 

exhibit less noise incorporated into the true return process.  

 

Equation (9) is used as an estimator for market microstructure for the 30 stocks14 of the 

Dow Jones Industrial Average (DJIA). These stocks are classified into two categories: stocks with 

an average bid-ask spread below the index’s mean as group 1, and stocks with a bid-ask spread 

above the index’s mean as group 2. The data was collected from CRSP15 using the end of day bid-

ask spread reported and TAQ for trade data from the Wharton Research Data Services database. 

The data only includes information for the one month, October 2013, due to computing and 

software limitations.   

 

                                                           
14 These are the components of the Dow Jones Industrial Average as of January 22, 2016.  
15 Data for the month of October 2013. Center for Research in Security Prices (CRSP) and Trade and Quote (TAQ), 

Wharton Research Data Services, University of Pennsylvania.  
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The bid-ask spread is defined as the difference between the ask price, price at which a 

security can be bought in the market, and the bid price, price at which a security can be sold in the 

market. Thus, the bid-ask spread can be computed as  

𝐴𝑆𝐾 − 𝐵𝐼𝐷 = 𝑆𝑃𝑅𝐸𝐴𝐷, (12) 

 

 From Table 2, it can be seen that for the month of October 2013 the average bid-ask spread 

of the components of the DJIA, based on January 2016 components, is 1.6 cents. Group 1 is 

composed of 25 stocks and group 2 is composed of 5 stocks. 

 

Table 2. Bid-Ask Spread: Summary Statistics for Dow Jones Industrial Average Components16  

Variable Obs Mean Std. Dev. Min Max 

Spread 690 0.0158116 0.0256241 0 0.0600052 

Spread = 1 575 0.0110261 0.0040239 0 0.0416708 

Spread = 2 115 0.0397393 0.0565134 0 0.1100006 

 

Table 3. Group categories and stocks in the Dow Jones Industrial Average (DJIA) 

GROUPS Stock Symbol 

GROUP 1: 

 

  

AXP, BA, CAT, CSCO, CVX 

DD, DIS, GE, HD, INTC 

JNJ, JPM, KO, MCD, MMM 

MRK, MSFT, NKE, PFE, PG 

TRV, UNH, UTX, VZ, WMT 

GROUP 2: AAPL, IBM, GS, V, XOM 

 

 

 

                                                           
16 STATA code for this calculations available in the Appendix B. 
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Table 4. Components of the Dow Jones Industrial Average (DJIA) 

Stock Symbol Company Name 

AXP American Express Co. 

AAPL Apple Inc. 

BA Boeign Co. 

CAT Caterpillar Inc. 

CSCO Cisco System Inc. 

Stock Symbol Company Name 

CVX Chevron Corp. 

DD El du Pont de Nemours and Co. 

DIS Walt Disney Co. 

XOM Exxon Mobil Cop. 

GE General Electric Co. 

GS Goldman Sachs Group Inc. 

HD Home Depot Inc. 

IBM International Business Machines Corp. 

INTC Intel Corp. 

JNJ Johnson & Johnson 

KO Cola-Cola Co. 

JPM JPMorgan Chase and Co. 

MCD McDonald’s Cop. 

MMM 3M Co. 

MRK Merck & Co Inc. 

MSFT Microsoft Corp. 

NKE Nike Inc. 

PFE Pfizer Inc. 

PG Procter & Gamble Co. 

TRV Travelers Companies Inc. 

UNH UnitedHealth Group Inc. 

UTX United Technologies Corp. 

VZ Verizon Communications Inc. 

V Visa Inc. 

WMT Wal-Mart Stores Inc. 

 

Table 3 shows the summary statistics for group 1 and group 2. Group 1 contains the stocks 

with a bid-ask spread below the mean, 0.016 cents, while Group 2 contains the stocks with a bid-

ask spread above the mean. Due to how liquid these stocks are, the size of the groups should not 

create unbalance.  
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The DJIA is one of the most important stock indexes in the U.S. Due to its importance and 

the amount of research available on its constituents, the individual prices of the DJIA constituents 

should be close to the efficient price.  

 

The results from table 4 are do not support the hypothesis.  For Group 1, the estimated 

market microstructure noise from equation (9) is larger than stocks in Group 2. These results are 

likely affected by the high liquidity of the components of the Dow Jones Industrial Average and 

the size of the sample. This claim is supported by the estimated microstructure noise in both 

groups. The noise is virtually zero for both groups, indicating that the price in the market for these 

stocks is close to the efficient price. 

 

 

Table 5.  Microstructure Noise Estimates for Dow Jones Industrial Average Components17 
Group Obs Microstructure Noise TSRV 𝝈𝟐 

Group 1 5,411,634.8 5.1399 𝑥 10−7 1.0280 𝑥 10−6 

Group 2 4,579,738 4.9501 𝑥 10−7 9.9003 𝑥 10−7 

 

There is not conclusive evidence that the stocks with narrower bid-ask spread than stocks 

exhibit lower market microstructure noise than stocks with wider bid-ask spreads. The results of 

this study are likely affected by the limited sample size and the high liquidity of the stocks among 

the groups. Since constituents in the DJIA are closely monitored in the market, the bid-ask spread 

may not be the only conclusive factor affecting the market microstructure noise. Further, the length 

of time for the data collected, one month18, might have not been sufficient to account for more 

                                                           
17 Data from October 1st to October 31st, 2013. Python code for this estimation is available in the Appendix C.  
18 One more of data was used due to computing and software limitations. 
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variation in the bid-ask spread. Other factors such as volume, price changes, and research coverage 

could prove useful in estimating the market microstructure noise. 

 

It is important to highlight that the above results might be influenced by the fact that certain 

stocks were not in the DJIA in October 2013. For instance, Apple was not included in the DJIA 

until spring of 2015. Further research should test whether inclusion in the DJIA decreases the 

microstructure noise contained in the stock price, and thus, returns. Further, increasing the amount 

of time in the study, sample size, and number of stocks may prove beneficial to corroborate or 

update the results. 

 

 

VII. CONCLUSION 

 

In this study, I looked into the characteristics of the Two Scales Realized Volatility 

estimator and how it can be used to estimate realized volatility with high-frequency financial and 

economic data. The “first-best” estimator with its small sample and bias adjustment uses all 

available data by using two time scales: a slow time scale, averaging across subsamples, and a fast 

time scale, using all available data using the sum of squared log returns. The Monte Carlo 

simulation results are consistent with those of Zhang, Mykland, and Ait-Sahalia (2005b) and Aït-

Sahalia and Mykland (2009). The TSRV consistently estimates the realized volatility in high-

frequency financial data while minimizing the market microstructure noise. 

  

An important ramification of the TSRV estimator comes from the “fifth-best” estimator. 
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While this estimator does a poor job in estimating the volatility of returns at high-frequencies due 

to the noise contained in the return process, this estimator provides special insights into the market 

microstructure noise. Zhang, Mykland, and Ait-Sahalia (2005b) prove that using the using 

equation (9), which is based on the “fifth-best” estimator, one can consistently estimate the market 

microstructure noise in high-frequency data. Using equation (9), I tested the hypothesis that stocks 

that trade with narrower bid-ask spreads, more liquid with lower transaction costs, have less market 

microstructure noise than those with wider bid-ask spreads. Particularly, this paper looked at the 

constituents of the Dow Jones Industrial Average (DJIA). The study found that bid-ask spread, by 

itself, was not a conclusive measure to determine a marked difference in the market microstructure 

noise in the DJIA components. The study was likely affected by the high liquidity of the stocks, 

the number of stocks in the sample and the size of the data. 

  

Further research should increase the length of time of the study to account for more 

variation in the bid-ask spread; include a large selection of stocks, and more rankings. Moreover, 

this study can be expanded by controlling for other variables such as economy policy intervention, 

research coverage, volume, price changes and other macroeconomic and market wide factors. 

Finally, further research may also include a comparison between the DJIA and other domestic, and 

international indexes and/or equities. 
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APPENDICES 

 

 

APPENDIX A 

 

% MATLAB CODE FOR TSRV ESTIMATION 

 
% Five estimators 

  
M = 25000; %number of MCs 
T = 1/252; %length of time in years -- this is fixed, the sample size n is 

T/delta 

  
tic; %start time counter 
randn('state',sum(100*clock));  

  
nbseconds = 1;  
delta = nbseconds/(60*60*(6.5)*252); % data available every 5 seconds, this 

is dt 
deltasparse = 5/(60*(6.5)*252); % arbitrary sparse sampling every 5 minutes 
n = round(T/delta); 

  
if nbseconds == 5; 
    Kgrid = 

[1,2,3,4,5,6,8,9,10,12,13,15,18,20,24,26,30,36,39,40,45,52,60,65,72,78,90,104

,117,120,130,156,180,195,234,260,312,360,390,468,520,585,780,936,1170,1560,23

40,4680]'; 
    % these are the divisors of n=4680, corresponding to nbseconds = 5 
    % they are such that each value of Kgrid is integer and so is each value 

of nsparse = n/Kgrid 
    Ksparsek = 

[1,12,60,65,72,78,90,104,117,120,130,156,180,195,234,260,312,360,390,468,520,

585,780,936]'; 
    % Ksparsek = grid used for RMSE plot, this is a subset of Kgrid 
elseif nbseconds == 1;  
    Kgrid = 

[1,2,3,4,5,6,8,9,10,12,13,15,18,20,24,25,26,30,36,39,40,45,50,52,60,65,72,75,

78,90,100,104,117,120,130,150,156,180,195,200,225,234,260,300,312,325,360,390

,450,468,520,585,600,650,780,900,936,975,1170,1300,1560,1800,1950,2340,2600,2

925,3900,4680,5850,7800,11700,23400]'; 
    Ksparsek = 

[1,60,120,200,300,360,390,450,468,520,585,600,650,780,900,936,975,1170,1300,1

560,1800,1950,2340,2600,2925,3900]'; 
else 
    disp(['Error -- adjust nbseconds']); return; 
end 
nKgrid = size(Kgrid,1); nKsparsek =  size(Ksparsek,1); 
% will always pick K as the closest value on Kgrid 
nsparsek = n./Ksparsek; % nsparsek = sample size for the sparsek estimator 

  
% the objective 
XX=zeros(M,1); 

  
% the five estimators 
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YYall=zeros(M,1); YYsparse=zeros(M,1); YYsparsek=zeros(M,nKsparsek); 

YYsparseopt=zeros(M,1); YYavg=zeros(M,1); YYavgBC=zeros(M,1); 

XXhat=zeros(M,1); XXhatadj=zeros(M,1);  
% other quantities to export 
Ee2hat=zeros(M,1); Ee4hat=zeros(M,1); a2hat=zeros(M,1); 

quarticity=zeros(M,1); nsparseopt=zeros(M,1); Ksparseopt=zeros(M,1); 

nbarstarNBC=zeros(M,1); KstarNBC=zeros(M,1);  
nbarstar=zeros(M,1); Kstar=zeros(M,1); cstar=zeros(M,1); XXall=zeros(M,1); 

  
if nbseconds == 5;        a2true = (0.15/100)^2; % a2 = variance of 

microstructure noise term 
elseif nbseconds == 1;    af2true = (0.10/100)^2; % a2 needs to decrease with 

the sampling size for the optimal RMSE calculations to be meaningful 
else 
    disp(['Error -- adjust nbseconds']); return; 
end 
%a2true = 0; % no noise case 

  

  

  
% dX(t) = (mu - V(t)/2) dt + sqrt(V(t)) dW(t),  dV(t) = kappa (alpha - V(t)) 

+ gamma*sqrt(V(t)) dB(t),  E[dW(t) dB(t)] = rho dt, E[e2] = a2 
mutrue = 0.05; 
kappatrue = 5; 
alphatrue = 0.04; 
gammatrue = 0.5; 
% gammatrue = 0; % gammatrue = 0 makes volatility non-stochastic 
% Feller's condition for 0 boundary of v is q >= 0  
% where omegatrue = (2*kappatrue)/gammatrue^2; nutrue = gammatrue*alphatrue; 

qtrue = nutrue-1;  
rhotrue = - 0.5; 

  
Ee2 = a2true;  
Ee4 = 3 * a2true^2; 
Equarticity = T * (alphatrue^2 + alphatrue*gammatrue^2/(2*kappatrue)); 

  

  

  
for iMC=1:M, %loop on Monte Carlos 

     
    % n is the number of dY's -- to get there, need to simulate n+1 Y's  
    % in fact, use 2*n to be able to take the central part (n/2):(3*n/2-1) so 

that we can lead and lag properly for the avg estimator 
    dB = sqrt(delta)*randn(2*n+1,1); 
    dW = sqrt(delta)*randn(2*n+1,1);    % aka random('Normal',0,1,n,1); 
    dB = sqrt(1-rhotrue^2)*dB + rhotrue*dW; % generates correlated dB and dW 

such that E[dB*dW] = rho dt 

     

     
    x = zeros(2*n+1,1); % x = log-price 
    v = zeros(2*n+1,1); % v = local stochastic variance 
    sigma = zeros(2*n+1,1); % sigma = sqrt(v) = local stochastic volatility 

     
    x(1) = log(100); % initial log-price  
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    if gammatrue == 0; % case where volatility is non-stochastic 
        v(1) = alphatrue; 
    else 
        omegatrue = (2*kappatrue)/gammatrue^2; nutrue = omegatrue*alphatrue; 
        A = nutrue; B = 1/omegatrue; 
        v(1) = gamrnd(A,B); % draws initial value from stationary 

distribution which is Gamma since v is a CIR process 
        % from Mathematica: omegatrue = (2*kappatrue)/gammatrue^2; nutrue = 

omegatrue*alphatrue; qtrue = nutrue-1; 
        % pidens[x_] = (omegatrue^nutrue/Gamma[nutrue])*x^qtrue*exp(-

omegatrue*x);  
        % R = gamrnd(A,B) generates gamma random numbers with parameters A 

and B.  
        % gampdf(x,A,B) computes the gamma pdf at each of the values in x 

using the corresponding parameters in A and B.  
        % gampdf(x,A,B) = (1/(B^A * Gamma(A)) * x^(A-1) * exp(-x/B) 
        % therefore A = nutrue; B = 1/omegatrue;  
        % vplot = (1:n+1)*0.40^2/n; plot(vplot,gampdf(vplot,A,B)); return; 
        % pX[del_, x_, x0_, K_] = Dg[x]*pY[del, g[x], g[x0], K]; 
        % Delta method: X = sigma, Y = v = g[X} = X^2, Dg[X] = 2*X 
        % sigmaplot = (1:n+1)*0.40/n; 

plot(sigmaplot,2*sigmaplot.*gampdf(sigmaplot.^2,A,B)); return; 
    end; 

     

     
    sigma(1) = sqrt(v(1));  
    % simulate more that one day's (T) worth of data and we will use the 

center observations from n/2 to 3*n/2 to allow for leads and lags 
    for i=2:(2*n+1), 
        v(i) = v(i-1) + kappatrue*(alphatrue - v(i-1))*delta + 

gammatrue*sqrt(v(i-1))*dW(i); 
        sigma(i) = sqrt(v(i)); 
        x(i) = x(i-1) + (mutrue - sigma(i-1)^2/2)*delta + sigma(i-1)*dB(i); 
    end; 

     

     
    %x = zeros(2*n+1,1); %to get no x 

     
    epsilon = sqrt(a2true)*randn(2*n+1,1); % epsilon = market microstructure 

noise 
    y = x + epsilon; % y = noisy data 

     
    %plot((n/2):(3*n/2+1),exp(x)); pause(1); plot((n/2):(3*n/2+1),sigma*100); 

return; 

     
    % use the middle part of the sample so we can go backward and forward by 

up to n/2 obs when computing subgrids 
    XX(iMC) = sum(sigma((n/2):(3*n/2-1)).^2)*delta; % this is the integral 

from 0 to T of sigma^2 = v 
    quarticity(iMC) = sum(sigma((n/2):(3*n/2-1)).^4)*delta; % this is the 

integral from 0 to T of sigma^4 = v^2 

     
    Ee2hat(iMC) = mean(epsilon((n/2):(3*n/2)).^2); 
    Ee4hat(iMC) = mean(epsilon((n/2):(3*n/2)).^4); 



 28 

     
    % this is the end simulated data 

     

     
    % Fifth best estimator: YYall 
    dY = y((n/2)+1:(3*n/2)) - y((n/2):(3*n/2-1)); % dY = increments of Y, 

there are n increments 
    YYall(iMC) = sum(dY.^2); 
    a2hat(iMC) = YYall(iMC)/(2*n); % YYall is an estimator of the variance of 

the noise, used later to center YYavg 

     
    dX = x((n/2)+1:(3*n/2)) - x((n/2):(3*n/2-1)); 
    XXall(iMC) = sum(dX.^2); 

     
    % Fourth best estimator: YYsparse 
    Ksparse = deltasparse/delta; % goes from nbseconds seconds to 5 minutes 
    nsparse = n/Ksparse; % nsparse = sample size for the sparse estimator, 

numbers must be such that this is a round number 
    % by construction 1 + (nsparse*Ksparse) = n + 1  
    ysparse=zeros(nsparse+1,1); 

     
    ysparse(1) = y(n/2); 
    for i=2:(nsparse+1); 
        ysparse(i) = y(n/2+(i-1)*Ksparse); 
    end; 

     
    dYsparse = ysparse(2:(nsparse+1)) - ysparse(1:nsparse);  
    YYsparse(iMC) = sum(dYsparse.^2); 

     

     
    % loop on Ksparse to get a RMSE curve for different values of Ksparsek  
    % by construction (nsparsek*Ksparsek) = n 

                
        for j=1:nKsparsek; 
        ysparsek = zeros(nsparsek(j),1); 

         
        ysparsek(1) = y(n/2); 
        for i=2:(nsparsek(j)+1); 
            ysparsek(i) = y(n/2+(i-1)*Ksparsek(j)); 
        end; 

         
        dYsparsek = ysparsek(2:(nsparsek(j)+1)) - ysparsek(1:nsparsek(j));  
        YYsparsek(iMC,j) = sum(dYsparsek.^2); 
        end; 

     

     

     
    % Third best estimator: YYsparseopt 

     
    if a2true > 0; 
    nsparseopt(iMC) = 

max(1,round((T*quarticity(iMC)/(4*Ee2hat(iMC)^2))^(1/3))); % this is nstar = 

sample size for the sparseopt estimator 
else 
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    nsparseopt(iMC) = n/40; 
    % normally, set nsparseopt(iMC) = n in this case, but use n/40 for 

testing purposes 
end; 
    %nsparseopt(iMC) = max(1,round((T*Equarticity/(4*Ee2^2))^(1/3))); % this 

is nstar = sample size for the sparseopt estimator 
    Ksparseopt(iMC) = n/nsparseopt(iMC); 

     
    [tmp,idx] = min(abs(Kgrid-Ksparseopt(iMC))); % idx is the index of the 

vector Kgrid that gives the closest value to n/nsparseopt(iMC) 
    Ksparseopt(iMC) = Kgrid(idx);  
    nsparseopt(iMC) = n/Ksparseopt(iMC);  

     

     
    ysparseopt=zeros(nsparseopt(iMC)+1,1); 

     
    ysparseopt(1) = y(n/2); 
    for i=2:(nsparseopt(iMC)+1); 
        ysparseopt(i) = y(n/2+(i-1)*Ksparseopt(iMC)); 
    end; 

     
    dYsparseopt = ysparseopt(2:(nsparseopt(iMC)+1)) - 

ysparseopt(1:nsparseopt(iMC));  
    YYsparseopt(iMC) = sum(dYsparseopt.^2); 
    % the factor n/(nsparseopt(iMC)*Ksparseopt(iMC)) is to adjust for the 

rounding 
    % making sure that we integrate on 0 to T, not 0 to a smaller number due 

to rounding 

     

     
    % Second best estimator: YYavg 

     
    % first compute YYgrid(k) over subgrid k, k=1,...,K 
    % there are Kstar equally spaced grids each with size nbarstar 
    % NBC means Not Bias Corrected 

     
    if a2true > 0; 
    nbarstarNBC(iMC) = 

min(n,max(1,round((T*quarticity(iMC)/(6*Ee2hat(iMC)^2))^(1/3)))); % nbarstar 

= size of each subgrid 
else 
    nbarstarNBC(iMC) = n/40; 
    % normally, set nsparseopt(iMC) = n in this case, but use n/40 for 

testing purposes 
end; 
    KstarNBC(iMC) = n/nbarstarNBC(iMC); % to ensure that the largest y point 

used,  Kstar + nbarstar*Kstar = (nbarstar+1)*Kstar <= n + 1 

     
    [tmp,idx] = min(abs(Kgrid-KstarNBC(iMC))); % idx is the index of the 

vector Kgrid that gives the closest value to n/nsparseopt(iMC) 
    KstarNBC(iMC) = Kgrid(idx);  % forces Kstar onto the grid 
    nbarstarNBC(iMC) = n/KstarNBC(iMC); % n = nbar*K is exact by construction 

of Kgrid 

     
    % KstarNBC(iMC) = 300; % to test formula 
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    % without noise, large values of Kstar tend to generate skewness and 

kurtosis of the standardized second best distribution 
    % nbarstarNBC(iMC) = n/KstarNBC(iMC); 

     
    ygridk = zeros(nbarstarNBC(iMC)+1,1); dYgridk=zeros(nbarstarNBC(iMC),1); 

YYgrid = zeros(KstarNBC(iMC),1); 
    for k=1:KstarNBC(iMC);        
        ygridk(1) = y(n/2 - round(KstarNBC(iMC)/2) + k); 
        for i=2:(nbarstarNBC(iMC)+1); 
            ygridk(i) = y(n/2 - round(KstarNBC(iMC)/2) + k + (i-

1)*KstarNBC(iMC)); 
        end; 
        dYgridk = ygridk(2:(nbarstarNBC(iMC)+1)) - 

ygridk(1:nbarstarNBC(iMC));  
        YYgrid(k) = sum(dYgridk.^2); 
    end; 
    % now YYavg is the average of YYgrid(k) over subgrid k, k=1,...,K 
    YYavg(iMC) = mean(YYgrid); 

     

     
    % First best estimator: XXhat 
    % need to compute YYavg differently from the second best, between Kstar 

is now K = cstar * n^(2/3) 

     
    cstar(iMC) = ((12*Ee2hat(iMC)^2)/(T*quarticity(iMC)))^(1/3);  
    % cstar(iMC) = ((12*Ee2^2)/(T*Equarticity))^(1/3);  
    Kstar(iMC) = cstar(iMC) * n^(2/3); % nbarstar = n^(1/3) / cstar,   Kstar 

= cstar * n^(2/3), nbarstar * Kstar = n 

     
    [tmp,idx] = min(abs(Kgrid-Kstar(iMC))); % idx is the index of the vector 

Kgrid that gives the closest value to n/nsparseopt(iMC) 
    Kstar(iMC) = Kgrid(idx); % forces Kstar onto the grid 
    nbarstar(iMC) = n/Kstar(iMC); % n = nbar*K is exact by construction of 

Kgrid 
    cstar(iMC) = Kstar(iMC)/n^(2/3); 

     
    % Kstar(iMC) = 200; % to test formula 
    % increasing Kstar gives better approx to bias, but increases non-

normality 
    % nbarstar(iMC) = n/Kstar(iMC); 
    % cstar(iMC) = Kstar(iMC)/n^(2/3); 

     
    ygridk = zeros(nbarstar(iMC)+1,1); dYgridk=zeros(nbarstar(iMC),1);  

YYgrid = zeros(Kstar(iMC),1); 
    for k=1:Kstar(iMC); 
        ygridk(1) = y(n/2 - round(Kstar(iMC)/2) + k); 
        for i=2:(nbarstar(iMC)+1); 
            ygridk(i) = y(n/2 - round(Kstar(iMC)/2) + k + (i-1)*Kstar(iMC)); 
        end; 
        dYgridk = ygridk(2:(nbarstar(iMC)+1)) - ygridk(1:nbarstar(iMC));  
        YYgrid(k) = sum(dYgridk.^2); 
    end; 
    % now YYavg is the average of YYgrid(k) over subgrid k, k=1,...,K 
    % BC means this is for the Bias Corrected estimator 
    YYavgBC(iMC) = mean(YYgrid); 
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    % finally: 
    XXhat(iMC) = YYavgBC(iMC) - 2*nbarstar(iMC)*a2hat(iMC); 
    % now adjusted estimator for small sample 
    if nbarstar(iMC) < n; 
        XXhatadj(iMC) = XXhat(iMC) / (1 - nbarstar(iMC)/n); 
    else 
        XXhatadj(iMC) = XXhat(iMC) / (1 - (n-1)/n); 
    end; 

     

     

     
    %disp([' ']); % add a blank line 
    %disp(['true value = ',num2str(XX(iMC))]); 
    %disp(['5th best   = ',num2str(YYall(iMC))]); 
    %disp(['4th best   = ',num2str(YYsparse(iMC))]); 
    %disp(['3rd best   = ',num2str(YYsparseopt(iMC))]); 
    %disp(['2nd best   = ',num2str(YYavg(iMC))]); 
    %disp(['1st best   = ',num2str(XXhat(iMC))]); 
    %disp(['1st best (small sample bias-corrected) = 

',num2str(XXhatadj(iMC))]); 
    %disp([' ']); % add a blank line 

     

     
end; %on iMC loop 

  
%Mean Value for Estimators 
trueValue = mean(XX(iMC)) 
fifthBest = YYall(iMC) 
fourthBest = YYsparse(iMC) 
thirdBest = YYsparseopt(iMC) 
secondBest = YYavg(iMC) 
firstBest = XXhat(iMC) 
firstBestcorr = mean(XXhatadj(iMC)) 

  
%Sample Bias 
sb5 = mean(YYall - XX) 
sb4 = mean(YYsparse - XX) 
sb3 = mean(YYsparseopt - XX) 
sb2 = mean(YYavg - XX) 
sb1 = mean(XXhat - XX) 
sb1corr = mean(XXhatadj - XX) 

  
%Sample Variance 
d5 = (YYall- XX); 
sv5 = mean(var(d5)) 
d4 = (YYsparse- XX); 
sv4 = mean(var(d4)) 
d3 = (YYsparseopt- XX); 
sv3 = mean(var(d3)) 
d2 = (YYavg- XX); 
sv2 = mean(var(d2)) 
d1 = (XXhat- XX); 
sv1 = mean(var(d1)) 
d1c = (XXhatadj- XX); 
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sv1 = mean(var(d1c)) 

  
%RMSE 
r5 = mean(sqrt(sum(XX - YYall).^2/numel(XX))) 
r4 = mean(sqrt(sum(XX - YYsparse).^2/numel(XX))) 
r3 = mean(sqrt(sum(XX - YYsparseopt).^2/numel(XX))) 
r2 = mean(sqrt(sum(XX - YYavg).^2/numel(XX))) 
r1 = mean(sqrt(sum(XX - XXhat).^2/numel(XX))) 
r1corr = mean(sqrt(sum(XX - XXhatadj).^2/numel(XX))) 

  
%Sample Relative Bias 
rb5 = mean((YYall - XX))/mean(XX) 
rb4 = mean((YYsparse - XX))/mean(XX) 
rb3 = mean((YYsparseopt - XX))/mean(XX) 
rb2 = mean((YYavg - XX))/mean(XX) 
rb1 = mean((XXhat - XX))/mean(XX) 
rb1corr = mean((XXhatadj - XX))/mean(XX) 

  
%Sample Relative Variance 
rv5 = (var(YYall) - var(XX))/var(XX) 
rv4 = (var(YYsparse) - var(XX))/var(XX) 
rv3 = (var(YYsparseopt) - var(XX))/var(XX) 
rv2 = (var(YYavg) - var(XX))/var(XX) 
rv1 = (var(XXhat) - var(XX))/var(XX) 
rvcorr = (var(XXhatadj) - var(XX))/var(XX) 

  
%Relative RSME 
rr5 = (r5 - mean(XX))/mean(XX) 
rr4 = (r4 - mean(XX))/mean(XX) 
rr3 = (r3 - mean(XX))/mean(XX) 
rr2 = (r2 - mean(XX))/mean(XX) 
rr1 = (r1 - mean(XX))/mean(XX) 
rr1corr = (r1corr - mean(XX))/mean(XX) 

  

  
%     disp(['mean true value = ',num2str(mean(XX))]); 
%     disp(['mean 5th best   = ',num2str(mean(YYall))]); 
%     disp(['mean 4th best   = ',num2str(mean(YYsparse))]); 
%     disp(['mean 3rd best   = ',num2str(mean(YYsparseopt))]); 
%     disp(['mean 2nd best   = ',num2str(mean(YYavg))]); 
%     disp(['mean 1st best   = ',num2str(mean(XXhat))]); 
%     disp(['mean 1st best (small sample bias-corrected) = 

',num2str(mean(XXhatadj))]); 
%      

  
%%%%%%%%%%%%%%%%% END OF MAIN ROUTINE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX B 

 

/* 

STATA CODE FOR DETERMINING BID-ASK SPREAD AND GROUPING 

 */ 

 

*Transform Data 

 

*Load Data 

use "/Users/aristides/Downloads/810c1a36d0d61346.dta", clear 

 

*Browse data 

browse 

*Create ID compatible with STATA 

encode ticker, gen (tic) 

*Create Spread variable 

gen spread = ask - bid 

*Sort data 

sort tic spread 

*Clean data - additional stock, not in DJIA 

drop in 70/92  

*Take mean of each stock 

egen aapl = mean(spread) if tic==1 

egen axp = mean(spread) if tic==2 

egen ba = mean(spread) if tic==3 

egen cat = mean(spread) if tic==4 

egen csco = mean(spread) if tic==5 

egen cvx = mean(spread) if tic==6 

egen dd = mean(spread) if tic==7 

egen xom = mean(spread) if tic==8 

egen ge = mean(spread) if tic==9 

egen gs = mean(spread) if tic==10 

egen hd = mean(spread) if tic==11 

egen ibm = mean(spread) if tic==12 

egen intc = mean(spread) if tic==13 

egen jnj = mean(spread) if tic==14 

egen ko = mean(spread) if tic==15 

egen jpm = mean(spread) if tic==16 

egen mcd = mean(spread) if tic==17 

egen mmm = mean(spread) if tic==18 
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egen mrk = mean(spread) if tic==19 

egen msft = mean(spread) if tic==20 

egen nke = mean(spread) if tic==21 

egen pfe = mean(spread) if tic==22 

egen pg = mean(spread) if tic==23 

egen trv = mean(spread) if tic==24 

egen unh = mean(spread) if tic==25 

egen utx = mean(spread) if tic==26 

egen vz = mean(spread) if tic==27 

egen v = mean(spread) if tic==28 

egen wmt = mean(spread) if tic==29 

egen dis = mean(spread) if tic==30 

 

*Check the 50% percentile of the spread 

sum spread, detail 

*Make groups based on percentile 

gen group = 2 

#delimit; 

replace group = 1 if aapl<= .0158116 | axp<=.0158116 | ba<=.0158116 | cat<=.0158116 | 

csco<=.0158116 |  

cvx<=.0158116 | dd<=.0158116 | xom<=.0158116 | ge<=.0158116 |gs<=.0158116 | hd<=.0158116|  

ibm<=.0158116 | intc<=.0158116 | jnj<=.0158116 | ko<=.0158116 | 

jpm <=.0158116 | mcd<=.0158116 | mmm<=.0158116 | mrk<=.0158116 | msft<=.0158116 |  

nke<=.0158116 | pfe<=.0158116 | pg<=.0158116 | 

trv<=.0158116 | unh<=.0158116 | utx<=.0158116 | vz<=.0158116 | v<=.0158116 |  

wmt<=.0158116 | dis<=.0158116; 

#delimit cr 

*Sort based on percentile 

sort tic group 

browse group tic 

*See group's info 

tab group 

sum group, detail 

browse group tic if group==1 

 

/* 

Variables with lowest bid-ask spread 

Group 1a: AXP, BA, CAT, CSCO, CVX,  

Group 1b: DD, DIS, GE, HD, INTC,  

Group 1c: JNJ, JPM, KO, MCD, MMM,  

Group 1d: MRK, MSFT, NKE, PFE, PG,  

Group 1e: TRV, UNH, UTX, VZ, WMT 

*/ 

 

/* 

Variables with above average bid-ask spread 

Group 2: AAPL, IBM, GS, V, XOM 

*/ 

 

*Summary Statistics of groups 1 and 2 

sum spread, detail 
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sum spread if group==1, detail 

sum spread if group==2, detail 

 

 

 

 

 

 

 

 

 

APPENDIX C 

 

#PYTHON CODE FOR MICROSTRUCTURE  NOISE AND VOLATILITY ESTIMATION 

#WITH 30 COMPONENTS OF THE DOW JONES INDUSTRIAL AVERAGE 

 

Created on Wed Dec 23 21:19:45 2015 

 

@author: aristides 

""" 

 

import csv 

import numpy as np 

 

#Read 

 

def Returns(): 

    stock = np.genfromtxt ('group1a.csv', delimiter=",", skip_header=1, usecols=3) 

    price = stock 

     

 

    logprc = np.log(price[:-1]) 

    logprc_1 = np.log(price[1:]) 

    nret = logprc[:-1] - logprc_1[1:] 

     

    return (nret) 

 

 

## Fifth Best Estimator 

def FifthBestEstimator(nret): 

    rv = np.dot(nret, nret) 

 

    return rv 

     

 

def FourthBestEstimator(nret, incr): 

    nobs = nret.size 

    zt = nret[incr-1:nobs:incr] 

    rv = FifthBestEstimator(zt) 

    return rv 
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def SecondBestEstimator(nret, kvalue): 

     

    nobs = int(nret.size) 

    yyslow = np.zeros((kvalue,)) 

    n = np.zeros((kvalue,)) 

     

    for i in range(0, kvalue): 

        ind = np.arange(start=i, stop=nobs, step=kvalue) 

        yyslow[i] = FifthBestEstimator(nret[ind]) 

        n[i] = len(ind) 

         

    yyavg = yyslow.mean() 

    #nbar = n.mean() #Not sure what this does 

 

    return yyavg 

 

## Main  

nret = Returns() 

nobs = int(nret.size) 

    

kvalue = 300 # in R code K 

incr = 1 #In R code J 

 

nbarK = (nobs - kvalue + 1)/(kvalue)  

nbarJ = (nobs - incr + 1)/(incr) 

 

 

yall = FifthBestEstimator(nret) 

yyavg = SecondBestEstimator(nret, kvalue) 

xxt = yyavg - (nbarK/nbarJ) * yall 

xxtadj = (1.0 / (1.0 - nbarK/nbarJ)) * xxt; 

 

firstBest = xxtadj 

#RV 

yall 

#TSRV 

firstBest 

#Noise 

Noise = yall / (2*nobs) 

Noise 
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