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Abstract 

The purpose of this paper is to show the practical application of computational methods 

to price options. Emphasis is especially given to the use of the Longstaff-Schwartz method for 

pricing American and exotic options. An implementation of these pricing methods in a computer 

program are demonstrated. The advantages of using object-oriented programming and design 

patterns to make pricing programs more flexible and useful is also discussed. 

Introduction 

In academics, we tend to focus our work on European options because we have closed 

form solutions, such as the formula developed by Black and Scholes, which make calculating 

prices easy. In reality, unfortunately, the vast majority of options are American, which have the 

ability to be exercised before expiration. This makes it important to have tools that we can use for 

real world applications so that we can move beyond the theoretical environment or enhance our 

capabilities in the theoretical environment. In doing this we want to strive for algorithms that first 

accurate and second fast. The speed helps it to be more useful for real world applications 

especially for those like high speed traders that need fast computation to be profitable. The first 

step in this, is the binomial tree method to calculate options prices. This method, although 

relatively simple, still requires large amounts of repeated calculations. So even the simplest 

method for solving American options requires computational methods. The binomial tree method 

is only capable of pricing simple vanilla options though. To price more complicated American 

options or exotic ones like Asian options or look-back options, whose calculations depend on the 

specific price path the asset follows, we need a more powerful algorithm like that created by 

Longstaff and Schwartz. I have created a computer program to demonstrate the practical use of 

computational methods in pricing these types of options. 
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Algorithms 

Here I will explain the algorithms used in my program to price options. I will begin with 

the simpler binomial method and move onto the more complex Longstaff-Schwartz method. 

Binomial Method 

The binomial pricing method is a simple and computationally fast method for pricing 

vanilla options.  With this method, you create a tree of possible price outcomes of the underlying 

asset (Cox). To do this you start with the current spot price of the underlying asset. From this, you 

create two branches, one with the expected price in the next period in an upstate and the other for 

the expected price in a downstate. These states are calculated by multiplying the current state by u 

or d where u is the up-state factor and d is the down-state factor (McDonald): 

𝑢 = 𝑒[(𝑟𝑎𝑡𝑒−𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑)∗𝑑𝑡+𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦∗√𝑑𝑡] 

𝑑 = 𝑒[(𝑟𝑎𝑡𝑒−𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑)∗𝑑𝑡−𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦∗√𝑑𝑡] 

 From each of these branches you will create two more branches by the same process. 

This process is repeated until the options expiry is reached, creating a price tree (as can be seen in 

diagram examples below). 

To price a European option, a payoff function needs to be applied to each leaf node. For 

example, with most simple options the payoff function would be: 

𝑃𝑎𝑦𝑜𝑓𝑓𝑝𝑢𝑡 = max⁡(𝑆𝑡𝑟𝑖𝑘𝑒 − 𝑃𝑟𝑖𝑐𝑒𝑓⁡, 0) 

𝑃𝑎𝑦𝑜𝑓𝑓𝐶𝑎𝑙𝑙 = max⁡(𝑃𝑟𝑖𝑐𝑒𝑓 − 𝑆𝑡𝑟𝑖𝑘𝑒⁡, 0) 

but other payoffs could be used for different types of options.  These payoffs must then weighted 

by the probability of that branch occurring. We can calculate these weights this by determining 
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the probability of an up-state(𝑝𝑢) using the equations below combined with the probability mass 

function of a binomial distribution (McDonald). 

𝑝𝑢 =
𝑒(𝑟𝑎𝑡𝑒−𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑⁡𝑦𝑖𝑒𝑙𝑑)∗𝑑𝑡 − 𝑑

𝑢 − 𝑑
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝𝑑 = 1 − 𝑝𝑢 

Then the weighted payoffs are summed and discounted back to the starting period for the final 

option price. A graphical demostraction of this process can be seen below. 

 

American options are a bit more complicated. For American options, when the price tree 

has been created, payoffs need to be calculated at all nodes, and an option price determined for 

each node starting from the end branches then working back the present . The option price at any 

parent node can be found by the following equation: 

𝑝𝑎𝑟𝑒𝑛𝑡⁡𝑛𝑜𝑑𝑒 = max(𝑃𝑎𝑦𝑜𝑓𝑓𝑡, [(𝑏𝑢 ⁡ ∗ 𝑝𝑢) + (𝑏𝑢 ∗ 𝑝𝑢)] ∗ 𝑒
−𝑟𝑎𝑡𝑒)⁡ 
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This equation show us that we take the greater of either the payoff of exercising at that point or 

the weighted sum of its branches discounted back one period. This is repeated until you return to 

the final node at the present time. This final node is the price of your options contract.  

Attempting to build a tree with more than three periods by hand becomes a tedious and 

cluttered process, helping us realize the importance of computerizing the algorithm. Even with 

thousands of steps this process can be done almost instantly with use of a couple of “for” loops by 

a computer. This can be seen in the pseudo code below that was used in making the program: 

int steps = 4; 
double expiry = 1; 
double spot = 1.0; 
double rate = .05; 
double volatility = .3; 
double dividend = .0; 
double strike = 1.05; 
int nodes = steps + 1; 

  
double dt = expiry / steps; 

 double u = exp(((rate - dividend) * dt) + volatility * sqrt(dt)); 
 double d = exp(((rate - dividend) * dt) - volatility * sqrt(dt)); 
 double pu = (exp((rate - dividend) * dt) - d) / (u -d); 
 double disc = exp(-rate * expiry); 
 double spotT = 0.0; 
 double payoffT =0.0; 
 BinomialDistribution pmf = new BinomialDistribution(steps,pu); 
   
 for(int i = 0; i < nodes; i++) { 
  spotT = spot * u^(steps-i)*d^i; 
  payoffT += max(strike-spotT,0) * pmf.probability(steps - i);  
 } 

double price = disc * payoffT; 
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You will notice that in the code the process is simplified by skipping the tree building 

steps and skipping to solving for payoffs at the end of each brand and summing them together as 

it goes. This simplification is what makes this process so fast. The American Binomial method 

uses a similar code: 

int steps = 4; 
double expiry = 1; 
double spot = 1.0; 
double rate = .05; 
double volatility = .3; 
double dividend = .0; 
double strike = 1.05; 
int nodes = steps + 1; 
 
int nodes = steps + 1; 
double dt = expiry / steps; 

 double u = exp(((rate - dividend) * dt) + volatility * sqrt(dt)); 
 double d = exp(((rate - dividend) * dt) - volatility * sqrt(dt)); 
 double pu = (exp((rate - dividend) * dt) - d) / (u -d); 
 double pd = 1 - pu; 
 double disc = exp(-rate * dt); 
 double dpu = disc * pu; 
 double dpd = disc * pd; 
   
 double[] ct = new double[nodes]; 
 double[] st = new double[nodes]; 
  
 for (int i=0; i < nodes; i++) { 
  st[i] = spot * u^(steps-i)*d^i; 
  ct[i] = max(strike- st[i],0); 
 } 
  
 for (int i=steps-1; i >= 0; i--) { 
  for (int j=0; j <= i; j++ ) { 
   ct[j]  = dpu * ct[j] + dpd * ct[j+1]; 
   st[j] = st[j] / u; 
   ct[j] = max(ct[j], max(strike-st[j],0)); 
  } 
 } 
  
 return ct[0]; 
 

You can see that another for loop is needed so for the American option to compare the 

immediate payoff to the discounted option price of its weighted branches. Although this is slower 

that the European option code it still solves in nearly an instant. 
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When using binomial trees, errors may occur if only a few periods are used. This is 

because a binomial tree will only produce one more leaf node (or potential outcome) than the 

number of periods used, when infinite outcomes are actually possible. By increasing the number 

of periods, we create more possible outcomes that are distributed more continuously. For 

situations where options can only be exercised at certain intervals, this method is not practical. 

Another downfall to the binomial method is that does not handle path dependent options 

well. Exotic options like Asian, barrier, and lookback options may need the asset’s entire price 

path to calculate the proper payoff. The binomial method focuses only on individual points in 

time. For these type of options that look at the whole path, for a price certain types of Monte 

Carlo pricing methods are preferred. 

Monte Carlo Method 

Monte Carlo simulation is a process of generating many randomized outcomes and taking 

an average to find an answer. For options pricing, this means we are generating random paths that 

the underlying asset’s price may follow. The in my program I make use of Geometric Brownian 

Motion to arrive at a price. Geometric Brownian Motion creates a path where the direction of 

each step is random but normally distributed. I use this to create a possible path that the stock 

price might follow. This is done by applying the equation (hull) 

𝑆𝑡+1 = 𝑆𝑡 ∗ 𝑒
[(𝑟𝑎𝑡𝑒−𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑−0.5∗𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦2)∗𝑑𝑡+𝑒𝑝𝑠𝑖𝑙𝑜𝑛∗𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦∗√𝑑𝑡] 

to the current spot price of the option’s underlying asset where epsilon is a random normal sample 

generated by the computer.  

This gives us a hypothetical price for the following period. We then apply the same 

equation again to the price in the next period until we reach the option’s expiry. This generated 

path looks similar to what is normally seen on a typical stock chart. A single path does not 

provide much information, so this process needs to be repeated many times. When this is done the 
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payoff function is taken on the ending price of each period. The average of these payoffs are 

discounted back to the present time to arrive at a final options price for European options. As can 

be seen from the pseudo code below, generating these random paths is quite simple. 

int steps = 4; 
int paths = 10; 
double expiry = 1; 
double spot = 1.0; 
double rate = .05; 
double volatility = .3; 
double dividend = .0; 
double strike = 1.05; 
double dt = expiry/steps; 
double drift = (rate - dividend - 0.5 * volatility * volatility) * dt; 
double diffusion = volatility * sqrt(dt); 
 
double sum_CT = 0; 
double[][] spot_T = new double[paths][steps+1];   
   
for (int i=0; i<paths; i++) { 
 spot_T[i][0]= spot; 
 for (int j=1; j<=steps; j++) { 
  double epsilon = randNorm.sample(); 
  spot_T[i][j] = spot_T[i][j-1] * exp(drift + diffusion * epsilon); 
 } 
} 
 
for (int i = 0; i < paths; i++) { 

spot_T[i][steps] = max(0,strike - spot_T[i][steps])); 
 sum_CT += spot_T[i][steps]; 
} 

 
double price = sum_CT/paths * exp(-rate * expiry); 
double stderr = stdev(spot_T)/sqrt(paths); 
return price; 
 

Normality in the sampling distribution is critical for arriving at accurate answers. The end 

prices should appear normally distributed if the sampling distribution is normal and many paths 

are used. This normality is dependent on the quality of the random number generation. Computers 

cannot generate truly random numbers but can produce numbers that seem random that usually 

will suffice. Key to this randomness is the periodicity of the generator, or how many numbers it 

can produce before it repeats the sequence. Our answers are dependent on the quality of the 

generator used. So it is important to use a generator with high periodicity.  
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To get the price to converge, many thousands of paths are needed. Because of the large 

number of paths needed, using this naïve type of Monte Carlo can be inefficient and slow, even 

for a computer. To compensate for this, we can adjust the way we take and use our random 

samples to converge on a price more quickly. The following are ways we can reduce the number 

of samples needed to converge on a price. 

Antithetic 

Antithetic sampling is a very simple way to improve the computing speed of the Monte 

Carlo method. It is done by creating two paths from a single sample. Just like a naïve Monte 

Carlo, we build a random walk from the equation above. The difference is that we will 

simultaneously build another path with a negative epsilon. This can be done be done because an 

epsilon mirrored across zero is equally likely to happen. This method will double the paths 

created from the same amount of random samples. This only gives a small boost in computational 

speeds. In the snippet of code below you can see that there is only a small change required in the 

for loop as compared the naïve Monte Carlo previously presented. 

for (int i=0; i<paths; i++) { 
 spot_T[i][0]= spot; 
 spot_T[i+paths][0] = spot; 
 for (int j=1; j<=steps; j++) { 
  double epsilon = randNorm.sample(); 
  spot_T[i][j] = spot_T[i][j-1] * exp(drift + diffusion * epsilon); 
  spot_T[i+paths][j] = spot_T[i+paths][j-1] * exp(drift - diffusion * epsilon); 
 } 
} 
 

Stratified 

Stratified sampling method is another way to reduce the number of samples needed to 

converge on a price, thus reducing calculation time. This method forces our sample to be taken 

from different percentile buckets. For example, if we were to take samples using five different 

percentile buckets, we would take a uniform random sample between 0.0 and 0.2 and between 0.2 

and 0.4 and so on until 1. We then take these stratified uniform samples and convert them to a 
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normally distributed samples using the cumulative distribution function. Sampling in this way 

will help our sampling appear normally distributed much faster. We can also increase the number 

of buckets to converge more quickly. This method can give a large increase in computational 

speed. 

This method is simple to implement for European Options because only the end point is 

needed for calculations. American and some exotic options on the other hand need an extra step 

because they are path dependent. For these options we need to build a Brownian bridge. A 

Brownian bridge is a random path as we used before except we have known beginning and end 

points and the randomness is generated in-between. We find our stratified end points first using 

the same method as in European Options. Then with one of these end prices and our initial spot 

price we find another point halfway between the two using linear interpolation. This is the point 

that would be on our path if our path moved in a straight line from the time 0 to expiry. We need 

to add randomness to this point by using the following equation (Brandimarte): 

𝑆𝑡𝑚𝑖𝑑
= .5 ∗ (𝑆𝑡0 + 𝑆𝑡𝑓𝑖𝑛𝑎𝑙) + .5 ∗ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∗ √𝑡𝑓𝑖𝑛𝑎𝑙 − 𝑡0 

 

We now have a line moving from time 0 to the midpoint and the midpoint to expiry. We then 

bisect each of these lines the same as before and repeat the process until the desired amount of 

periods are created. The repeated bisection requires that the number of periods be a base 2 

integer. A sample of this methods code can be seen in the file labeled 

“StratifiedMonteCarlo.java”. It can be found with the entire program at the link given later in the 

paper. 
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Control Variate 

There are other methods that can be used such as the control variate. The control variate 

makes use of known formulas such as Black Scholes to nudge the results in the correct direction. 

This will significantly reduce the number of samples needed but in my experience takes more 

computational time per path. So the efficiency of the code does determine the effectiveness of this 

method. I will not be using control Variate in my program because the use of a control variate on 

an American Option is beyond the scope of this paper. 

Parallelization 

Another very simple way to increase the program speed is through parallelization. 

Parallelization is the method of splitting up the computing task into different threads that can be 

run simultaneously (in parallel) on different CPUs. Monte Carlo simulations do very well in 

parallelization because the number of desired paths can easily be divided by the number of 

available processors and run separately on different threads. When all threads have calculated a 

price, the average can be taken to get the final price. The speed is obviously heavily dependent on 

the hardware used. The more processors available the faster it will run. 

Longstaff-Schwartz 

As previously mentioned, American options that are not plain vanilla can be difficult to 

price because there is not a closed form equation to solve them like the Black-Scholes formula for 

European options. American and many exotic options are often are too complex for a binomial 

tree. Also, a naïve Monte Carlo will not work because of these options ability to exercise before 

their expiry date, which means the asset’s whole price path, not just the final price, is needed to 

determine the option price. This problem of pricing options that are path dependent, is what also 

makes pricing Asian or many other exotic options difficult. To price more complicated options 

we need a more robust method.  
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Francis Longstaff and Eduardo Schwartz provide a method that accommodates path 

dependencies of these option types in their 2001 paper “Valuing American Options by 

Simulation: A Simple Least-Squares Approach”. This method is a combination of Monte Carlo 

simulation and regression analysis. It builds random price paths, as with other methods discussed 

earlier, but also performs a simple ordinary-least squares regression at each time step to 

determine when would be the statistically optimal time to exercise the option on each path. Their 

method although efficient requires many processes that must be repeated thousands of times, 

showing the need for computing power to be worth-while. 

To conceptualize this method I will use the simplified example given by Longstaff and 

Schwartz (Longstaff). It values a put option on a non-dividend paying stock with a strike price of 

$1.10 and the possibility to exercise at times 1, 2, and 3. We are also assuming a risk-free rate of 

6%. 

Spot Price Paths 

Path 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 

1 1.00 1.09 1.08 1.34 

2 1.00 1.16 1.26 1.54 

3 1.00 1.22 1.07 1.03 

4 1.00 .93 .97 .92 

5 1.00 1.11 1.56 1.52 

6 1.00 .76 .77 .90 

7 1.00 .92 .84 1.01 

8 1.00 .88 1.22 1.34 

 

Their method begins the same as valuing a European option by Monte Carlo. You 

simulate the spot price through many price paths by using Geometric Brownian Motion. This 

creates a price matrix as seen above. We then create a cash-flow matrix by filling an array with 

null or zero values and then determine cash-flows at the expiry based on the options payoff 

formula. Being a put option, the payoff is the asset’s price at expiry less the strike price or, if  this 

is negative, the pay-off is 0. The sample payoff matrix is seen below on the left. 
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Cash-Flow matrix at time 3  Regression at time 2 

Path 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3  Path Y X 

1 - - - .00  1 . 00×.94176 1.08 

2 - - - .00  2 - - 

3 - - - .07  3 . 07×.94176 1.07 

4 - - - .18  4 . 18×.94176 .97 

5 - - - .00  5 - - 

6 - - - .20  6 . 20×.94176 .77 

7 - - - .09  7 . 09×.94176 .84 

8 - - - .00  8 - - 
.94176 is the discount rate for a single period  

 

We must then move backwards and find the payoff at each previous period. In periods 

before expiry, the individual must determine if it is optimal to exercise the option early or hold 

onto it. To do this, we can use OLS to regress Y on X and X2 where Y is the payoff in the 

following period discounted back one period using the risk-free rate and X is the spot price at that 

time. So, in our example we regress the payoff at t = 3 discounted by one period against the assets 

spot price at t = 2. Paths where the payoff is zero in the period in question should be removed 

from the regression because we know they will not be exercised. This also has the benefit of 

speeding up the program because there are fewer items to regress. 

Cash-Flow matrix at time 2  Final cash-flow matrix 

Path 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3  Path 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 

1 - - .00 .00  1 0.00 0.00 .00 .00 

2 - - .00 .00  2 0.00 0.00 .00 .00 

3 - - .00 .07  3 0.00 0.00 .00 .07 

4 - - .13 .00  4 .17 0.00 .00 .00 

5 - - .00 .00  5 0.00 0.00 .00 .00 

6 - - .33 .00  6 .34 0.00 .00 .00 

7 - - .26 .00  7 .18 0.00 .00 .00 

8 - - .00 .00  8 .22 0.00 .00 .00 

 

This regression gives us a conditional expectation function that can be used to determine 

the expected value of continuing to hold the option. In our example case, the equation is E[Y / X] 

= -1.070 + 2.983X - 1 .813x2. We then compare the value of immediate exercise to the expected 
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value of continuation. If the payoff value of immediate exercise is greater, this value is placed 

into the cash-flow matrix otherwise the cash-flow matrix entry is set to 0. If a path does exercise 

early all entries after it must be set to zero because the options cannot be exercised again so there 

will be no following cash-flows. This continued building of the cash-flow matrix is seen in the 

chart above on the left. 

These steps are then repeated for each previous period until you reach time 0 (chart above 

on the right). You then discount the values in the cash-flow matrix back to time zero and take the 

average of the cash-flows over every path. This average is the final resulting price of the option. 

This algorithm can take advantage of the Monte Carlo methods like antithetic, stratified, 

and control variate mentioned earlier. The stratified method is a bit more complicated but still 

possible and effective. 

To view the algorithms code see the file named “LongstaffSchwarts.java” in the link in 

the next section. 

An important part of using these different algorithms is using the right tool for the right 

job. If your option is plain vanilla and continuously exercisable, the binomial method will be the 

fastest by far. Moving to Monte Carlo methods will slow things down but provide accuracy to 

European options that have more complexity to them. The Longstaff-Schwartz method will be the 

slowest (still reasonably fast though) but can handle everything others can and much more. 

Anything with complexity and American or exotic style payoffs will want it’s power. 

Application 

To be useful these algorithms need computer power because of the huge amount of 

repetitions needed to solve them. I chose to implement these algorithms using the Java language. 

I chose Java because I was in the process of learning it for other projects I was working on. 

Luckily this language comes with some useful benefits. The main benefit of using java is that it is 
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fast. Java is a compiled language, meaning the computer translates my code into binary code 

(computer language) before running so it runs much faster than an interpreted language that 

executes code step by step (like the Python or Matlab). Since this program requires many 

thousands of iterations speed is an important benefit. Also, once compiled, Java applications will 

run on most operating systems, so it can easily be transferred between computers. Lastly, Java is 

an object-oriented programming language. While most modern languages are object-oriented, in 

Java everything is an object and its syntax forces you to use OOP concepts. The use of OOP will 

be discussed more later. To view and use the application I created in Java, visit 

https://github.com/roblpetty/Plan-B-Java. Another simpler version is available in the python 

language at https://github.com/roblpetty/Plan-B-Python but will not be discussed in this paper. 

I have created this code so it can be used in two ways. One is through a GUI (Graphical 

User Interface). The other requires the creation of a simple file, called a client file, to direct the 

program. The GUI implementation is useful because it doesn’t require the user to have any 

programming knowledge. It appears as a simple calculator with text fields for inputs. The user 

enters the option parameters (option type, payoff, calculation method) and market data into the 

input field and just presses a button and the program does all the work to return an answer. While 

this makes the program user-friendly it greatly restricts some of the potential uses for the 

program.  

The program can also be run from a simple client file. The client file is a short file with 

very little code that will direct the rest of the program. It holds the same options and entries as the 

GUI but in code form. It does require the users to have some basic programing knowledge but not 

much. Those willing to make their own client file and edit a few lines of code will find much 

more flexibility in the program and its uses.  For example, the client file could easily be altered to 

run two or more options at once for comparison or can be altered so the options pricer can be 

integrated into a completely different program. 

https://github.com/roblpetty/Plan-B-Java
https://github.com/roblpetty/Plan-B-Python
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Object Oriented Programming (OOP) 

In designing this program, I used object oriented programming which gives it more 

flexibility and makes it easier to upgrade or alter. In programming an “object” is an element that 

can contain attributes and methods which are analogous to variables and functions. They are 

created using “classes” which act as blue prints for the object. What makes objects and classes so 

special is that by building a class you can create multiple objects of the same type. They may be 

given different attributes but they are still the same type. For example I could create multiple 

objects of “dog” type (or class) and each has a “bark” method. One dog may have a color 

attribute “brown” but the other “black”. So each object is the same type but can have separate 

attributes and work independently of another. 

Another important aspect of classes and objects is the concept of inheritance. Some 

classes depend on parent classes. Subclasses are able to inherit specified methods and attributes. 

For example, I could create an “animal” class with “eat” method. I could then create the “dog” 

class again with the “bark” method and have the dog class inherit from the animal class so that 

the dog can both eat and bark. Since all dogs are animals they can do everything the animal does. 

Not all animals are dogs, though, so not all animals can bark. Although these animal examples are 

silly they show well how object-oriented programming is used. 

This concept of classes and objects is important to this program. I have created a simple 

“Option” class that has an expiry time, strike price, and a payoff function. I also have classes that 

inherit from this class such as vanilla and exotic Options. I also have an “Engine” class that holds 

functions and attributes common to all pricing engines but then created subclasses like 

“BinomialPricingEngine” class and “MonteCarloPricingEngine” class which hold functions and 

attributes specific to that type of engine but also inherit the attributes of its parent “Engine” class. 
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The use and importance of OOP is confusing at first but is very powerful. The use of 

objects make the program flexible and prevents the need for repetitious code. The program will 

require general type objects like an “Engine” object but can be given any object that inherit from 

“Engine” like “BinomialPricingEngine”. Objects can also work independently of other objects. 

This means that if we want to change the type of engine we don’t need to re-write our whole 

code. We just make a new engine object and swap it in. This makes upgrades to a program much 

easier because it can be edited object by object without fear of breaking the program as a whole.   

Design Patterns 

Design patterns are patterns in programming that make the code more functional. They are 

blueprints that can be used in many different programs and across many programming languages. 

I’ll explain a couple that I used and why they are useful. 

Facade Pattern 

The facade pattern is a way of hiding complex code behind a simple interface. I do this 

through the use of client files which I have previously mentioned. This way someone that wants 

to run my program doesn’t need to sift through the many files I created to make changes. This file 

for the most part is just a list of user defined variables that are needed to solve the pricing 

problem and then calls the needed methods to run the rest program. It is just a single short file 

that is easier for the user to digest and understand but gives full access to the power of the entire 

program. This makes the program much more accessible to those who are not very familiar with 

the program or coding in general.  

Strategy Pattern 

The strategy pattern is a way of passing functions to objects. This allows objects of the 

same type to do different things. This is known as polymorphism.  By making these objects 

polymorphic, it is easy to replace the pricing method. So for a Monte Carlo pricing method, we 



17 
 

can easily switch between naïve, antithetic, or stratified. Also, it allows us to pass different payoff 

methods to our “option” object. Thus keeping the same “option” object but makes it act 

differently by passing it different functions to perform. 

Program Results 

 For this program to be useful to people in real world application accuracy and speed are 

essential factors. I have recorded the price, standard error, and running time while pricing an 

option at differing number of paths used in a Monte Carlo. I chose to price an American put 

option with a strike price of $40 and 1 year to maturity. I am assuming the underlying asset has a 

spot price of $41, 8% risk-free rate, 30% volatility, and no dividend. I ran pricing scenarios from 

500 paths up to 99500 paths at 500 path intervals.  

figure 1 

 

In figure 1, it is easy to see that time increases at a fairly linear rate as the number of 

paths increase. Also in figure 2, standard error decreases at a decreasing rate as paths increase. 

This means increasing running time is returning less and less improvements in standard error. 
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figure 2

 

In figure 3, we again see that accuracy can rapidly improve by adding paths when paths 

are low and the standard error quickly converges. Unfortunately, even with near 100,000 paths 

there is about a 5 cent variation in prices.  This is likely due to a low quality random number 

generator in the program. Meaning the numbers generated have short periodicity making them 

less useful in appearing truly random. This randomness is key to accurate results when using 

Monte Carlo simulations. In the future, it would be beneficial to find a new random number 

generator with longer periodicity. 
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figure 3 

 

I also tested the effectiveness of using parallelization. I ran the program on a computer 

with four processing cores. I ran the same option as before but with 100,000 paths starting with 1 

thread and moving up to 20 threads (figure 4). Steep reductions in running time can be seen when 

moving from 1 thread to 4. This is expected with four cores. We don’t see large increases above 

four threads because each core can only process one task at a time. So if there are more threads 

than processing cores the threads have to take turns passing through it. There does seem to be a 

slight decrease in time by adding more threads than there are cores but it is not much and I would 

make a guess that it is because the program is able to process the regressions a little faster when 

there are fewer samples on each thread. 
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figure 4 

 

Conclusion 

Here I have demonstrated an effective tool for pricing options that allows the user access 

to more options scenarios. This tool lets people move beyond the simple European option 

environment that is usually taught in school. They can now price more complex European, 

American, and many exotic options that require path dependencies because of the Longstaff-

Schwartz method. Also using proper computational methods allows faster pricing times which 

allows it to be more practical for real world applications. 
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