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Abstract

Efficiency of Liquidity Resiliency

by

Nathan Burton, Master of Science

Utah State University, 2017

Major Professor: Tyler Brough

Department: Economics and Finance

Using a VECM to estimate the dynamics of liquidity, in this case bid-ask spread, I run

simulations for stocks of varying market capitalizations and find that lower market

cap stocks require more orders to return to equilibrium spread following a shock,

suggesting less efficiency of price discovery in lower cap stocks. Despite the greater

number of order necessary for lower cap stocks, the return to equilibrium spread is

still very fast, suggesting a relatively efficient market for NYSE and NASDAQ stocks

in the upper three market cap quartiles.
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Introduction

Liquidity is an essential component of asset pricing and market behavior (Amihud

& Mendelson 1986). Some asset pricing methods require an appropriate estimation

of liquidity resilience, i.e. the return to equilibrium of liquidity in the case of a

perturbations from ‘normal’. This measure of liquidity resilience is indeed difficult to

define because of the multi-variable dynamics involved.

Lo & Hall (2015) provides one of the more complex treatments of short-term liquidity

resilience by using a VECM on Australian Securities Exchange (ASX) data. I analyze

US data from the NYSE and NASDAQ using a VECM (cointegrated VAR) similar to

L&H to compare liquidity resiliency for differing market cap levels. Using event-driven

analysis (as opposed to time-driven) I find that lower cap stocks require more order

events before returning to liquidity equilibrium than higher cap stocks. This suggests

less efficiency in the price discovery process for low cap stocks, not only in terms of

time required but trades/order required.

Liquidity Resiliency: What, How, Why. . .

Liquidity, as a measure of the ease of selling an asset, is an important component of

an investor’s view of the worth of an asset. Periods of higher than normal illiquidity

can have a drastic effect on the transaction cost, uncertainty, etc. and thus influential

on the price investors are willing to buy (or sell) at. These periods of high illiquidity

are the topic of interest in this study. It is highly observable that illiquidity bubbles

return to a more typical equilibrium type state after a period of time, but the speed

(or even the change in speed) of this resilience is an important consideration in the

pricing of the asset.

L&H introduce a method where an impulse response VECM is estimated, then the
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estimated values are used to simulate the response to a ‘shock’ to equilibrium. L&H

investigate a number of scenarios for the theoretical cause of the shock using data

from the ASX,

VAR, VECM, and Beyond

VAR

In brief review, the autoregressive (AR) model is a typical tool in time-series analysis in

which any given value in the series is dependent on one or more of the preceding values.

A generalized example, given a variable y, the AR(1) process could be represented in

the form yt = βyt−1 + εt where yt−1 is the observed value of y at the time t− 1, β is

the coefficient, and εt is an iid error term at time t.

A similar VAR of two variables may take the form

y1

y2

 =

β1 β2

δ1 δ2


y1,t−1

y2,t−1

 +

ε1,t

ε2,t



or more concisely

yt = βyt−1 + εt

where yt is the vector of all y variables at time t, β is the matrix of coefficients for

the vector yt−1 containing the singe-period lagged variables, and εt is the vector of

concurrent error terms.

More generally, we may specify a VAR of p number of lags

yt =
p∑

n=1
βpyt−p + εt
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or

yt = B ·YL + εt

where B is a vector of coefficient matrices β and YL is a vector of corresponding lag

vectors y.

VECM

The simple AR process y = βyt−1 + εt may not be stationary, but if the process is

integrated of order 1 i.e. I(1), then we would find that ∆yt = β∆yt−1 +εt is stationary.

In the case that multiple processes are cointegrated we can account for this relationship

by using an Error Correction Model (ECM). An ECM (in terms of the Engel-Granger

two-step method) uses the residuals of the variable values differenced on one another

which residuals are included in a differenced model to account for the cointegration.

Defining our referenced residuals as ut−1 = yt−1 − ζxt−1 − α, our simple example

becomes

∆yt = δ∆xt−1 + γu+ εt

or

∆yt = δ∆xt−1 + γ(yt−1 − ζxt−1 − α) + εt

We can then finally fulfill the next step of defining a cointegrated VAR, i.e. Vector

Error Correction Model (VECM) in the same process with which went from an AR

model to a VAR:

∆yt = µ+αβyt−1 +
p−1∑
i=1

Γi∆yt−i + εt



4

Machine Learning for Feature Selection

In every study there is the troubling question of what should be in a model and

how the variables should interact with each other. Traditionally, one simply chooses

variables by theory and building upon previous studies. With increased computing

power industry has often resorted to machine learning for selection of variables. Many

academics are apprehensive of the machine learning approach which often conjures

the (antiquated) buzzword data mining. Methodically regressing every combination of

variables to simply find the combination that gives the lowest RSS on a single dataset

is theoretically unsound, likely unhelpful (even in industry), and computationally

costly to the point of impractical. Modern machine learning techniques are much more

refined and can be far more useful in both academia and industry when employed

properly.

Regression Coefficient Penalties

Both when employing regressions of a polynomial type (y = β0+β1x+β2x
2+· · ·+βkx

k)

or simply an unclear set of variables (y = β0 +β1x1 +β2xx + · · ·+βkxk) the problem of

overspecification (especially spurious correlation) is of constant concern in the attempt

to determine causality and real-world associations. Overspecification has a tendency

to increase the absolute value of regression coefficients and so an early attempt to

bridle overspecification was to run a version of the regression for which the problem

changed from minRSS to min RSS + λ`2 where `2 is the L2 distance/`2norm, and

λ is an arbitrary coefficient chosen by the statistician (or, by proxy, the computer)

which reduces the coefficients in the optimization problem. A problem in research with

this approach is that the absolute value of regression coefficients are simply reduced

for predictive purposes, not rendering any help in exactly which variables should or

should not be included.
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Lasso

Tibshirani (1996) presented a method referred to as lasso in which `1 is used instead,

providing the optimization problem min RSS + λ`1. A subtle and not immediately

apparent advantage to the lasso method is that as λ is increased, the coefficients

decrease linearly resulting in some being driven to exactly βk = 0 while the other, more

influential variables remain at |βk| > 0. Lasso provides a method to actually decide

which variables meet some demand of specification, given a certain λ. Important to

note, is that in order to give each variable an equal penalty weight, the data should

be normalized before utilizing lasso.

Initially the concern of spurious correlation is still apparent using lasso and there is the

problem of selecting an appropriate λ. This is where the ‘learning’ of machine learning

comes in. Given a dataset, the data is randomly split into training, validation, and

test sets. A variety of λ values can be selected to provide a series of model estimations

on the training data (presumably with some coefficients optimizing to 0 using lasso).

Each model is then run on the validation set, and the model with the lowest sum of

residuals on the validation set is presumed most appropriate. In the case of smaller

datasets, training and validation sets can be recombined and new test and validation

sets formed to run the same process of λ selection. After making a final decision on

the value of λ the model can be run on the test set to assess the finalized model.

Still problematic is that in lasso the non-zero coefficients have still been reduced

and possibly resulting in bias, in addition to ‘standard errors’ having essentially no

meaning in the context of a lasso penalty regression. To circumvent this, academic

researchers can simply treat the lasso method as a tool for variable selection, after

which selection the appropriate non-zero variables can then be used in a traditional

style (no λ) regression. This method of specification is that which I use for this study.
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Simulating the Impulse Response

Once the VECM has been estimated, simulation of the data is very straightforward

where ∆yt for each variable is calculated for each iteration using the VECM estimates.

Using yt+1 = yt + ∆yt gives a final yT = y1 + ∑T −1
t=0 ∆yt. L&H employ this method

as described in Hautsch and Huang (2012). Once initialized with equilibrium state

values, a shock observation is added to the system, and then the simulation run

from this equilibrium-plus-shock initialization. The simulation can then provide how

many iterations (i.e. order events) are necessary to return to a predetermined level of

recovery. L&H use a 90% recovery, but the simulations I employ result in such a fast

recovery that I am able to use 99%.

Data

The main data used in my study is TAQ tick-frequency data for 79 NYSE and

NASDAQ securities. Note that some of the securities are funds, ect., but owing to

their being traded on the NYSE or NASDAQ I refer to all securities in this study as

‘stocks’. I order all NYSE and NASDAQ stocks by market cap, and categorized them

into quartiles. I then randomly selected 20 stocks from each quartile (one stock in

quartile 2 was unusable due to lack of data, leaving only 19 for the 2nd quartile). The

data is for the one month period from July 1, 2013 to July 31, 2013. Observations

are limited to the trading day. See Appendix A for the full list of individual stocks

and statistical summaries for each. The original data includes date, time, bid, offer,

bid size, and offer size, from which I calculate bid-ask spread as my liquidity measure.

Figures *** provide summary statistics for each quartile of stocks.
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Initial Characteristic Conclusions

Running Lasso technique for feature selection with a varying λ strongly suggests

that spread is affected heavily by the other four variables available for this analysis.

Analysis on NASDAQ-only ITCH data, for which numerous other variables of interest

are available on a high-frequency level, could more fully use Lasso to select important

variables.

A method of my own design which I will refer to as regression series analysis (RSA)

suggests that the stocks do not exhibit what might be termed structural multi-breaks,

i.e. there are not extended periods of time (say a couple hours) which can consistently

be reasonably distinguished from one another via the behavior during that period.

RSA splits the data into numerous subsets of a few thousand tick observations (which

generally equates to a few minutes for high cap stocks), runs a VECM for each subset,

then groups the data subsets according to the statistics estimated by the VECM.

Running RSA on the stocks at hand essentially produces a single cluster with over

99% of the subsets while all other clusters (up to 39) contain a very small assortment

of extreme outlier subsets.

L&H run a VECM for each week of their period of interest. I conclude via RSA that

it is unnecessary to treat the data as having weekly structural breaks. Additionally,

the assumption that statistics and parameters from one week do not apply to another

week really makes the entire analysis rather pointless. I analyze the data for each

stock over the entirety of the period of interest.
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Model

The VECM model I use is

∆yt = αtβtyt−1 +
p−1∑
i=1

Γi,t∆yt−i + εt

where y is the vector of both endogenous and exogenous variables chosen in the Lasso

step (it does not matter whether exogenous variables are simply included in the y

vector) and ε is the vector of associated errors for each variable in y.

Impulse Response Results

Figure 1: Impulse Response for Decreased Bid

I run a VECM for each stock individually over the period described. In order to

compare the resiliency characteristics for each quartile I average each coefficient in

the VECM for each quartile. Using a randomly selected interval as an initial set of

observations, I then simulate forward observations to an equilibrium via the averaged

coefficients for the corresponding quartile. Using the equilibrium values as a new set of

initial observations, I add a ‘shock’ in which the spread is doubled, and then simulate
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forward observations in a return to equilibrium. I perform this post-shock simulation

for three circumstances of shock creation: a decrease in bid, and increase in offer, and

an equal decrease in bid and an increase in offer. All circumstances are characterized

by a shock of doubled spread.

Figure 2: Impulse Response for Decreased Bid and Increased Offer

The dynamics of the individual first quartile stocks are so diverse and inconsistent that

the method described above using the averaged first quartile coefficients results in the

simulated spread blowing up, although the method results in a converging equilibrium

if using the coefficients for an individual first quartile stock. I will not attempt to

draw conclusion on these lowest cap stocks.

The three upper quartiles are much more consistent in nature and produce respective

averaged coefficients which provide us with useful information on the dynamics of stocks

at various market cap levels. In order to visualize the resiliency, I have standardized

by dividing the log spread by its equilibrium value after completing the simulation,

i.e. each log spread begins at 1.0, is shocked to 2.0, and eventually returns to 1.0.

Graphs of the impulse response are shown in Figures 1, 2, and 3. Table 1 lists the

number of events before the log spread has made a 99% recovery. The results of the
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Figure 3: Impulse Response for Increased Offer

simulations are that for the number of order events needed for a return to equilibrium

Quartile 2 > Quartile 3 > Quartile 4. Although in the case of increased offer the

Quartile 2 simulation reaches the equilibrium value more quickly, it should be noted

that it has not actually returned to equilibrium as can ben seen in its crossing the

equilibrium value before converging, the intuition of which still places Quartile 2 at a

slower return to equilibrium than Quartile 3.

Table 1: Number of Events to 99% Recovery

Shock Type Quartile 4 Quartile 3 Quartile 2

Decr Bid 18 28 65

Incr Offer 20 39 481

Both 19 33 36

The implications of these results is that NASDAQ and NYSE stocks return to equilib-

rium with relatively few events - especially at the event frequency of high cap stocks,

the recovery time is likely less than a second. Also of great importance is that lower

cap stocks are less efficient in reaching equilibrium i.e. a component of price discovery

in terms of number of orders, not just in terms of time.

Continued Research

An important factor that should be explored is that of regime switching. L&H reject

regime changing via the Augmented Dickey-Fuller Test, but the ADF Test can prove

very ineffective at detecting regime switching. Other test can be used, including

simulated regime switching data compared to actual data. As noted earlier, RSA did
1Quartile 4 reached the 99% recovery mark by event 17, but crossed the equilibrium point and

changed direction to approach equilibrium at event 48 with approx. 99.2% recovery
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not provide evidence for structural breaks via clustering intervals. In comparison,

clustering the observations individually produces a reasonable separation, for example

MSFT very consistently separates into five clusters of 39%, 16%, 35%, .001%, and

9%. The RSA and individual clustering outcomes, in tandem, suggest that switching,

if it occurs, happens on a frequency less than every few minutes. This leads me to

conclude that a probabilistic Markov switching model is far more appropriate than a

simple multiplicity of structural breaks.

A problem in the analysis of high frequency data is the computationally heavy load.

Both this and the L&H publication analyze a regrettably small number of stocks for

the sake of plausibility. GPU computing has been gaining momentum, and could

provide an important way to perform the many calculations necessary for a large

number of stocks much more quickly by distributing the load among hundreds or

thousands of cores.

Conclusion

A major conclusion of this study include that on average higher cap stocks exhibit a

more efficient liquidity resiliency than lower cap stocks. We can see that the efficiency

of price discovery is thus dependent on the market cap of the specific stock, with

microeconomic implications that the absolute size of a market affects the overall

efficiency of that market. Additionally, notable is that though lower cap Quartile 2

stocks have a less efficient price discovery, it is not exceptionally less efficient, requiring

two to four times the number of order events as higher cap Quartile 4 stocks. This

still suggests a relatively efficient price discovery for Quartile 2 stocks.
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Appendix A: Summary of Stocks

Tables 2, 3, and 4 contain summaries of the securities used in this study, including

the security name, market cap, and the following averages for the period of the study

(July 1 to July 31, 2013): average bid size, average offer size, average log(bid), average

log(offer), and average log spread defined as log(offer)− log(bid).
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Table 2: Quartile 2 Securities
Stock Symbol Stock Name Market Cap Avg. Bid Size Avg. log(bid) Avg. log(offer) Avg. log Spread [log(offer)-log(bid)] Avg. Offer Size

JRO Nuveen FRIO 451M 7 2.53044594499 2.55825757273 0.0278116277376 4
SLMAP SLM Corp 165M 3 3.05657424991 4.71490657485 1.65833232494 2
HTF Horizon Technology 298M 2 3.12411970932 3.32388752606 0.199767816732 2
HPS John Hancock Preferred Income III 602M 3 2.8777865324 2.90024892405 0.0224623916512 3
MCRI Monarch Casino and Resort 518M 2 2.88156521865 2.91840229557 0.0368370769276 3
EXA Exa Corp. 201M 1 2.01414559995 2.78674351886 0.772597918913 1
IBCP Independent Bank Corp. 448M 2 1.99623069131 2.06790943199 0.071678740682 2
PEIX Pacific Ethanol 260M 6 1.39798030905 1.42841831581 0.0304380067551 5
UIHC United Insurance Holdings 677M 3 1.94744070365 2.02519190967 0.0777512060206 2
GAIN Gladstone Investment 310M 4 1.98825182398 2.01463431062 0.0263824866345 7
SMM Salient Midstream and MLP Fund 211M 2 3.12771452168 3.21319125374 0.0854767320544 2
BGY Blackrock Enhanced International 711M 5 2.01890424428 2.03087160344 0.0119673591636 10
XBKS Xenith Bank Shares 635M 4 1.5832191861 1.86153829743 0.278319111338 2
NSSC Napco Security 194M 4 1.49923714968 1.69393867707 0.1947015274 5
HDSN Hudson Technologies 333M 10 0.881300484963 0.923168068865 0.0418675839027 5
NNA Navios Maritime Acquisition 218M 4 1.28502550822 1.31373312589 0.0287076176765 4
I Intelsat 358M 1 3.05734759762 3.07677853763 0.0194309400042 2

NTZ Natuzzi 152M 6 0.702067703614 0.822032359882 0.119964656268 2
USLV Credit Suisse Velocity 3x Long Silver 302M 41 1.7318764731 1.73802635908 0.00614988598636 42
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Table 3: Quartile 3 Securities
Stock Symbol Stock Name Market Cap Avg. Bid Size Avg. log(bid) Avg. log(offer) Avg. log Spread [log(offer)-log(bid)] Avg. Offer Size

TYG Tortoise Energy 1.5B 2 3.80015616339 3.86112969012 0.0609735267326 2
IMKTA Ingles Markets 906M 2 3.23042202405 3.38244240831 0.152020384255 2
GAM General American Investors 1.15B 2 3.45532590509 3.50972831167 0.0544024065824 2
ASTE Astec 1.27B 2 3.50485837277 3.66815382841 0.163295455638 2
TPH TRI Pointe 2.23B 2 2.77028109403 2.79520394468 0.0249228506596 2
SHLM A Schulman 779M 1 3.3197251587 3.39116761151 0.0714424528023 1
NHI National Health 3.09B 1 4.13573896175 4.14607438688 0.010335425131 1
TAC TransAlta 1.89B 4 2.63690558614 2.64079729985 0.00389171372337 4
HLX Helix Energy 830M 2 3.21238720779 3.21770897085 0.00532176306261 2
SANM Sanmina 3.20B 3 2.73651211443 2.74391052604 0.00739841161014 4
FOLD Amicus Therapeutics 2.20B 5 0.8258995565 0.85880811999 0.0329085634899 6
WWE World Wrestling Entertainment 1.66B 2 2.37093768598 2.38450456088 0.0135668748935 2
MDRX Allscripts Heathcare Solutions 2.23B 9 2.71217754246 2.71455746925 0.0023799267932 10
UHT Universal Health Realty Income Trust 1.13B 1 3.7902426762 3.81529533151 0.0250526553065 1
MATX Matson 1.28B 2 3.2977025955 3.32159006031 0.0238874648106 2
HTH Hilltop Holdings 2.52B 2 2.83643090926 2.84473526219 0.00830435292933 3
CEM ClearBridge Energy MLP 1.09B 3 3.31952001666 3.3404634733 0.0209434566323 3
MTDR Matador Resources 2.32B 2 2.49626647693 2.50980545535 0.0135389784214 2
CDE Coeur Mining 1.57B 4 2.55300629512 2.55588563309 0.00287933796785 4
RP RealPage 3.21B 2 2.97117842385 2.99833939311 0.0271609692612 2
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Table 4: Quartile 4 Securities
Stock Symbol Stock Name Market Cap Avg. Bid Size Avg. log(bid) Avg. log(offer) Avg. log Spread [log(offer)-log(bid)] Avg. Offer Size

LVS Las Vegas Sands 49.84B 4 3.99139619572 3.99232697985 0.000930784133815 4
MCHP Microchip Technology 18.26B 4 3.66103430149 3.66279787305 0.00176357155732 4
TLLP Tesoro Logistics LP 5.62B 1 4.03186100229 4.04911106948 0.0172500671921 2
CTXS Citrix Systems 12.22B 2 4.19136339175 4.19402326761 0.00265987586076 2
OAK Oaktree Capital 7.36B 2 3.96638031993 3.97973397643 0.0133536564988 2
JPM JpMorgan Chase and Co. 323.20B 11 4.00835378145 4.00876138972 0.000407608270764 11
CFX Colfax 5.16B 2 3.95157121822 3.95980721332 0.0082359950969 2
BAK Braskem SA 9.06B 5 2.69932520902 2.70561301226 0.00628780324573 5
AMZN Amazon.com 495.13B 2 5.69519071705 5.69734836666 0.00215764960684 2
TCBI Texas Capital Bancshares 3.96B 2 3.85189380558 3.86216403571 0.0102702301347 2
O Realty Income 15.61B 3 3.78254345317 3.78524341267 0.00269995950595 3

PFE Pfizer 198.07B 56 3.35808598219 3.35865709334 0.000571111155052 60
ENB Enbridge USA 68.22B 4 3.77942557357 3.78083272555 0.0014071519793 4
ESRX Express Scripts Holding Co 37.10B 3 4.17358786716 4.17485795099 0.0012700838287 4
SCHW Charles Schwab 56.12B 29 3.07951552946 3.08032655442 0.00081102496062 27
LPL LG Display Co Ltd. (ADR) 10.80B 10 2.49891049158 2.50334278576 0.00443229418073 10
WLK Westlake Chemical Corp. 9.06B 2 4.60046350651 4.61426860991 0.0138051033909 2
AVT Avnet 4.83B 2 3.58305673223 3.58681044279 0.00375371055452 2
WRB W. R. Berkley Corp 8.69B 2 3.7534337467 3.7595938775 0.00616013079633 2
VTR Ventas 24.24B 2 4.23975873951 4.24202427471 0.00226553520717 2
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