
The College at Brockport: State University of New York The College at Brockport: State University of New York 

Digital Commons @Brockport Digital Commons @Brockport 

Environmental Science and Ecology Theses Environmental Science and Ecology 

Spring 5-15-2020 

Evaluation of Methods and Results in the Braddock Bay Wetland Evaluation of Methods and Results in the Braddock Bay Wetland 

Restoration Project Restoration Project 

Alexander Silva 
a.silv1994@gmail.com 

Follow this and additional works at: https://digitalcommons.brockport.edu/env_theses 

 Part of the Environmental Monitoring Commons 

Repository Citation Repository Citation 
Silva, Alexander, "Evaluation of Methods and Results in the Braddock Bay Wetland Restoration Project" 
(2020). Environmental Science and Ecology Theses. 124. 
https://digitalcommons.brockport.edu/env_theses/124 

This Thesis is brought to you for free and open access by the Environmental Science and Ecology at Digital 
Commons @Brockport. It has been accepted for inclusion in Environmental Science and Ecology Theses by an 
authorized administrator of Digital Commons @Brockport. For more information, please contact 
digitalcommons@brockport.edu. 

https://digitalcommons.brockport.edu/
https://digitalcommons.brockport.edu/env_theses
https://digitalcommons.brockport.edu/envsci
https://digitalcommons.brockport.edu/env_theses?utm_source=digitalcommons.brockport.edu%2Fenv_theses%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/931?utm_source=digitalcommons.brockport.edu%2Fenv_theses%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.brockport.edu/env_theses/124?utm_source=digitalcommons.brockport.edu%2Fenv_theses%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@brockport.edu


 
 

 

  

 

 

 

Evaluation of Methods and Results in the Braddock Bay Wetland Restoration Project 

 

 

 

by 

 

Alexander Otto Silva 

 

 

 

 

 

 

 

 

 

 

A Thesis 

Submitted to the Department of Environmental Science and Ecology 

of The College at Brockport, State University of New York 

in fulfillment of the requirements for the  

degree of Master of Science 

2019 

 

 



 
 

 

 

 

 

 

 

 

 

Copyright 

 

by 

 

Alexander Silva 

 

2020 

  



 
 

 

 



i 
 

 

 

 

 

Dedication: 

 

 

I dedicate this paper to my parents, Dieter and Charlene Silva, for all of their guidance 

and support in life and for always encouraging me to further my education.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

ACKNOWLEDGMENTS 

 Funding for this research came through the Environmental Protection  

Agency Great Lakes Restoration Initiative (EPA-GLRI) to the United States Army 

Corps of Engineers, with further monitoring funded through 2020 with the New York 

State Department of Environmental Conservation – District 9.  

 Thank you to Eli Polzer, Brad Mudryzinski, and the whole Doug Wilcox 

wetland lab for exposing me as an undergraduate to the wonders of wetlands and for 

giving me the opportunity to continue as a graduate student. Special thanks to Doug 

for believing in me as you’ve all inspired me in many ways throughout my time at 

Brockport, and I can’t thank you enough for everything. I would also like to thank my 

committee members Kathryn Amatangelo and Clay Williams for providing guidance 

as both an undergraduate and graduate student, as well as both inside the classroom 

and out in the field.  

 Thanks to Cassie Wolfanger and Rob Sickler for keeping things interesting 

each summer during our field season and to Greg Lawrence for the endless time we’ve 

spent together at Brockport and the endless advice you’ve given me. 

 Thanks to Jesse, Max, and Sadie for their love and stress relief over the years. 

Lastly, my greatest thanks goes to my family and my fiancé for always supporting me 

and for keeping me sane throughout the turbulence of grad school.  

 

 

 



iii 
 

Table of Contents 

DEDICATION ............................................................................................................ i 

ACKNOWLEDGMENTS .......................................................................................... ii 

TABLE OF CONTENTS ........................................................................................... iii 

ABSTRACT .............................................................................................................. vi 

LIST OF TABLES .................................................................................................. viii 

LIST OF FIGURES ................................................................................................... xi 

LIST OF APPENDICES .......................................................................................... xiv 

1. INTRODUCTION .................................................................................................. 1 

 1.1 Water Levels and Regulation ..................................................................... 2 

 1.2Vegetation and Invasion Dynamics ............................................................ 3 

 1.3 Restoration and Monitoring ....................................................................... 6 

2. THE BRADDOCK BAY RESTORATION PROJECT ........................................... 7 

 2.1 USACE Project Goals ............................................................................... 8  

2.2 Goal of thesis Project .............................................................................. 10 

2.3 Restoration Methods and Standards ......................................................... 11 

  2.3.1 Construction and Excavation Timing ........................................ 12 

3. METHODS .......................................................................................................... 13 

3.1 Study Site  ............................................................................................... 13 

3.2 Sampling ................................................................................................. 14 

4. STATISTICAL ANALYSES ................................................................................ 15 

5. RESULTS ............................................................................................................ 21 



iv 
 

5.1 Water Levels ........................................................................................... 21 

 5.2 Walking Surveys for Invasives ................................................................ 21  

5.3 Plant Taxa Observed ............................................................................... 21  

5.4 Planted and Seeded.................................................................................. 24  

5.5 Non-native Species Observed .................................................................. 24  

 5.6 Transect Sampling ................................................................................... 25  

  5.6.1 Overall Mean C, Weighted Mean C, and FQAI ......................... 25  

5.6.2 Cattail mat – Control vs Treatment ........................................... 26  

5.6.2.1 Mean C, Weighted Mean C, and FQAI ....................... 27 

5.6.3 Cattail Treatment Pre- and Post-Restoration .............................. 27 

5.6.3.1 Mean C, Weighted Mean C, and FQAI ....................... 27 

5.6.4 Channels ................................................................................... 28 

5.6.4.1 Mean C, Weighted Mean C, and FQAI ....................... 29 

5.6.5 Potholes .................................................................................... 29 

5.6.5.1 Mean C, Weighted Mean C, and FQAI ....................... 30 

5.6.6 Mounds ..................................................................................... 30 

5.6.6.1 Mean C, Weighted Mean C, and FQAI ....................... 30 

6. DISCUSSION ...................................................................................................... 31 

6.1 Ability of Restoration Methods to Meet Objectives ................................. 31 

6.1.1 Walking Surveys for Invasives .................................................. 31 

6.1.2 Floristic Improvement ............................................................... 32 

6.1.3 Cattail Treatment Areas ............................................................ 33 



v 
 

6.1.4 Mounds ..................................................................................... 35 

6.1.5 Channels ................................................................................... 36 

6.1.6 Potholes .................................................................................... 37 

6.2 Planted and Seeded.................................................................................. 38 

6.3 Influence of Lake-level on Results .......................................................... 39 

6.4 Recommendations ................................................................................... 40 

6.4.1 Mean C, Weighted Mean C, and FQAI ...................................... 41 

6.4.2 Project Recommendations ......................................................... 43 

TABLES .................................................................................................................. 45 

FIGURES ................................................................................................................. 59 

APPENDICES .......................................................................................................... 73 

LITERATURE CITED ............................................................................................. 92 

 

 

 

 

 

 

 

 

 

 



vi 
 

ABSTRACT 

Prior to restoration, Braddock Bay was an open embayment wetland on the southern 

coast of Lake Ontario, and it is part of the Rochester Embayment Great Lakes Area of 

Concern (AoC). Braddock Bay was partially protected by two spits that are remnants 

of the protective barrier beach that has slowly been eroded over time. Without the 

barrier to protect the shoreline within the bay, the coastal wetland was severely 

impacted by wave action from Lake Ontario, leading to loss of 43 hectares of wetland. 

The erosion of the barrier was facilitated by water-level regulations implemented in 

the late 1950s. A further consequence of water-level regulation was the loss of 

diversity, as the lack of periodic low water levels resulted in a cattail monoculture and 

the loss of sedge/grass meadow habitat. Braddock Bay is being restored by the United 

States Army Corps of Engineers. The plan called for the following: restoration of a 

portion of existing cattail-dominated wetland by cutting cattails in August (when 

storage carbohydrates in rhizomes are minimized) and herbicide treatment of new 

stems; channeling and potholing to improve wildlife access to the wetland; the re-

creation of the historical barrier beach using rubble-mound and sand; and the creation 

of spoil mounds along the channels and potholes to increase the elevation in these 

areas and discourage the growth of cattail while supporting the growth of sedge/grass 

meadow species. Two years of data collection were performed following construction 

activities in 2016. Preliminary surveys showed an increase in an invasive species of 

concern (purple loosestrife) from year 1 to year 2 across the restoration site. A 

decrease in cattail across the years was observed in the cattail treatment areas, along 
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with a slight decrease of Typha found in the sedge/grass meadow and spoil mound 

habitats. Based on this monitoring, construction standards set for the restoration must 

be met, and adaptive management must occur throughout the project timeline for 

restorations to succeed. Site-level weighted mean C metrics are recommended for 

future floristic analyses based on an observed species richness influence on FQAI. 
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1. INTRODUCTION 

Wetlands have historically been altered to fit human needs. These alterations 

have brought about changes in biodiversity and species composition of plants and 

animals, along with impacts on bird migration and reproduction. More attention is 

being brought to this issue as the public and government officials become increasingly 

aware of wetland benefits, like recreational activity, flood mitigation, and water-

quality improvement. The alteration or loss of key wetland habitats can be detrimental 

and can ultimately bring about death and disease to humans and plant and animal 

communities. Some wetland restoration efforts aim to restore an area to its full 

historical state, but many aim to transform the impacted area into a sustainable, stable 

ecosystem that benefits both recreation and wildlife. Techniques to bring about a 

diverse ecosystem are different for each individual site, making every restoration 

unique, depending on what needs to be restored. Restoring and aiding in the creation 

of new wetlands helps maintain benefits, with the intention of sustaining a more 

diverse ecosystem.  

Over 80 species of fish use Laurentian Great Lakes coastal wetlands for a 

portion of their life cycle, and more than 50 species of fish are dependent on coastal 

wetlands for the entirety of their lifecycle (Jude and Pappas 1992). In addition to 

providing important habitat for a large variety of animal and plant species, including 

some that are rare, threatened, or even endangered, wetlands possess key recreational 

and economic benefits. Billion-dollar recreational and commercial industries within 

the Great Lakes region supply jobs, while these industries continue to be supported by 
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the many species that use coastal wetlands (Austin 2007, ASA 2013). Coastal 

wetlands are also important because of their ability to act as a protective buffer for 

shorelines throughout the Great Lakes, reducing property and coastal damage from 

wave action and high water levels. Great Lakes coastal wetlands experience many 

stressors, including human development, fragmentation, drainage, pollution, and 

invasive species. Less than 50% of the historical Great Lakes coastal wetlands remain 

intact today (Krieger 1992). This major loss of wetlands calls for the need to restore 

degraded areas to their natural functions or to protect existing wetlands from further or 

possible degradation.   

1.1 Water Levels and Regulation   

The Laurentian Great Lakes have water-level fluctuations ranging from wind-

driven seiches that occur daily to seasonal, annual, and decadal fluctuations that reflect 

the annual water budget and climatic influences through these cycles (Baedke and 

Thompson 2000, Johnston et al. 2004, Wilcox et al. 2007). Water levels in Lake 

Ontario follows a climate-driven pattern similar to that of lakes Michigan and Huron 

that follow about a quasi-periodic 33-year cycle on top of a larger 160-year cycle 

(Figure 1a; Thompson and Baedke 1997, Baedke and Thompson 2000). However, the 

Moses-Saunders hydroelectric dam, which until recently was managed under 

regulation Plan 1958DD, disrupted these natural patterns in water level fluctuations 

(Wilcox and Xie 2007). Implemented in about 1960 by the International Joint 

Commission (IJC), Plan 1958DD reduced lake levels during periods of high water 

supply and retained higher lake levels during periods of low water supply (Wilcox et 
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al. 2008), with higher summer levels and lower fall, winter, and early spring water 

levels. Environmental, coastal development, and recreational boating interests, along 

with traditional navigation, hydropower, and municipal uses were all involved in the 

adoption of this plan (NRC 2006). The loss of hydrologic variability from Plan 

1958DD played a large role in the alteration of wetland plant communities in Lake 

Ontario. Recently, the IJC approved Plan 2014 for regulating the water levels and 

flows in Lake Ontario and the St. Lawrence River (IJC 2017A). Plan 2014 was 

designed to provide more natural variations in water levels to aid in restoring the 

health of Lake Ontario ecosystems while continuing to mitigate the most extreme 

highs and lows. Plan 2014 began operation in January 2017, and although it may help 

restore Lake Ontario wetlands, the previous plan resulted in large areas of cattail-

invaded wetlands along the coast that will likely not be reduced by the new regulation 

plan alone. The previous plan with stable water levels reduced the biodiversity within 

the bay, especially within the shallow emergent marsh which was invaded by Typha 

and subsequently leading to a decrease in overall area of sedge-grass meadow (Wilcox 

et al. 2018).  

1.2 Vegetation and Invasion Dynamics 

Coastal wetland vegetation dynamics have not received as much attention as 

other, more common, non-tidal marsh systems (Dawe et al. 2000). Great Lakes plant-

community dynamics are driven primarily by a periodic lake-level cycle linked to 

climate cycles (Wilcox 2004). In the Great Lakes, water-level fluctuations function as 

natural disturbances that promote plant community diversity (Grubb 1977, Huston 
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1979, Keddy and Reznicek 1986). Without disturbance, monocultures of taxa like 

Typha (cattail), Phragmites (common reed), or Lythrum (purple loosestrife) can form 

that degrade the quality of wetlands for fish and other wildlife. For example, wetlands 

dominated by a cattail monoculture provide few distinct habitats and relatively few 

available niches, decreasing the amount of potential diversity for the wetland 

(Frieswyk and Zedler 2007, Wilcox et al. 2008, Bansal et al. 2019). Periodic high 

water levels in the lake kill dense emergent vegetation and invading shrubs and trees, 

with lower lake levels allowing for understory species to grow from the seed bank 

(Keddy and Reznicek 1986, Wilcox et al. 2007). Replenishment of the seed bank 

relies on individual plant species and their ability to emerge and reproduce based on 

their environmental resilience to water-level changes. Plant physiology and the unique 

hydrologic cycle are both driving forces of plant diversity within Great Lakes coastal 

wetlands (Kozlowski 1984, Wooten 1986). Alongside understory plant regeneration 

benefits, wetland birds and amphibians prefer particular marsh conditions with varying 

amounts of interspersion between emergent vegetation and open water (LaPan 2015). 

High densities of invasive cattail (mostly the hybrid, Typha × glauca) have 

dominated Lake Ontario coastal wetlands following lake-level regulation and continue 

to spread at the expense of native wetland vegetation. Research has shown that the 

widespread invasion and dominance of cattail across the Great Lakes is attributable to 

hydrologic modifications - in this case, management of Lake Ontario’s lake levels 

related to operation of the Moses-Saunders hydroelectric dam (Wilcox et al. 2008). 

Without cyclical low water periods, increased growth of Typha in marsh habitats, such 
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as the sedge/grass meadow marsh, is common and can lead to a decrease in plant 

diversity (Wilcox et al. 2008, Vaccaro et al. 2009). Dense stands of Typha impact 

many aspects of coastal wetland functioning, including alteration of the rate of nutrient 

cycling (Farrer and Goldberg 2009), inhibition of germination or growth of native 

species via increased dead cattail buildup (Vaccaro et al. 2009), and a reduction in 

habitat quality for various fish and wildlife species (Craigie et al. 2003, Crane et al. 

2015). Studies have shown an upslope migration of cattail into meadow marsh in Lake 

Ontario (Wilcox et al. 2008), suggesting that these changes are due to system-wide, 

water-level regulation (Wilcox and Xie 2008). Larger Typha outcompetes other plant 

species along the wetland elevation gradient. The upslope migration of invasive 

cattails has narrowed the area where meadow marsh can occur, drastically reducing 

meadow marsh habitat throughout Lake Ontario (Wilcox et al. 2008).  

Dense Typha stands also have the potential to change the response of wetland 

vegetation to restored water-level fluctuations that historically maintained diverse 

wetland plant communities (Frieswyk and Zedler 2007). However, Typha is not the 

only invasive species that is transforming wetland composition and function. Other 

invasive species that have expanded into these coastal wetlands include emergent 

common reed (Phragmites australis) and purple loosestrife (Lythrum salicaria), along 

with aquatic invaders like European frogbit (Hydrocharis morsus-ranae) and water 

chestnut (Trapa natans). These various invasive species present in the bay are also 

impacted from natural water level fluctuations. Common reed forms extensive stands 

that shade out the species trying to survive below (Hara et al. 1993). Purple loosestrife 



6 
 

forms clonal colonies, some of which may result in native food and cover plant species 

being crowded out (Hovik et al. 2011). Both European frogbit and water chestnut are 

fast-growing, floating leaved invasives that form a thick mat that prevents sunlight 

from reaching submersed plants (Methe et al. 1993, Strayer et al. 2003, Zhu et al. 

2018).  

1.3 Restoration and Monitoring 

 Ecological restoration is important for returning some function to benefit the 

future use of an area. The practice of restoring or renewing degraded or damaged 

habitats through human intervention is key to the future of these ecosystems and every 

interconnected plant, animal, or microbe (Gann et al. 2006). Restorations can vary 

widely for purpose and style. In some cases, the aim is to restore a physical barrier to 

protect the area, where others aim to restore and change the actual wetland to bring 

back functions or benefits for wildlife. Wetlands provide many beneficial uses for 

humans, which is why it is imperative to protect the wetlands that are left and restore 

those that have been damaged (USEPA 2018). These restorations are held together 

after the work has been done by adaptive management, acknowledging that 

environmental conditions will always change and that uncertainty is a characteristic of 

any ecosystem being studied (Stankey et al. 2005). Management of these areas must 

allow adaptation to the ever-changing environment.  

 After performing restorations, an essential following step is the continued,  

long-term monitoring of the sites. These sites will evolve over the years following a 

restoration; therefore, monitoring should be performed in the 5 to 10 years, or longer, 
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after restoration completion to document the ecosystem response to natural variation 

adequately (Zedler 1988, Larsen et al. 2003, NOAA 2004, Roegner et al. 2009). Short-

term monitoring is beneficial when considering adaptive management, as the initial 

few years of the restoration can show if any immediate actions need to be taken at the 

restoration site. 

2. STUDY AREA--THE BRADDOCK BAY RESTORATION PROJECT 

Braddock Bay is an 860-ha coastal, open embayment wetland (Albert et al. 

2005) on the southern shore of Lake Ontario (Figure 2) in the town of Greece, NY and 

is part of the Rochester Embayment Great Lakes Area of Concern (AoC) (USEPA 

2016, NYSDEC 2016A). Braddock Bay has been managed by NYS DEC Region 8 

since 1982 and has an ecological and recreational importance to the surrounding 

Rochester area (NYSDEC 2016B). It has been partially protected from wave attack by 

two spits that are remnants of the protective barrier beach that was slowly eroded due 

to wave action from Lake Ontario and loss of sand from littoral drift resulting from 

shoreline armoring (Figure 3) (USACE 2016A). Without the barrier to protect the 

shoreline within the bay, there was a loss from erosion of approximately 43 hectares 

(ha) of emergent wetlands over the past 100 years, decreasing the remaining coastal 

wetland to about 138 ha (USACE 2016A). Erosion of the barrier was facilitated by 

Lake Ontario water-level regulation under Plan 1958DD because wave attack on the 

shoreline occurred within only a narrow elevation range (Wilcox 1993). Two 

tributaries, Salmon Creek and Buttonwood Creek, connect to Braddock Bay, which in 

turn, is hydrologically connected to Lake Ontario  
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The Braddock Bay marsh consists primarily of dense, buoyant Typha mats 

with scattered emergent species that provide limited functional habitat and few 

benefits for wetland-dependent wildlife and plant life. Remnant sedge/grass meadow 

marsh only occurs in depauperate patches along the shoreline, where lower soil 

moisture reduces the rate of Typha encroachment (Wilcox et al. 2018). Invasive 

species of concern in the bay include purple loosestrife, common reed, and water 

chestnut. Black Tern populations have diminished significantly across the Great Lakes 

since the 1960s (Wyman and Cuthbert 2017), with historical habitat in Braddock Bay 

no longer present. Typha expansion and the loss of Lake Ontario water-level 

variability also have reduced the potential spawning and nursery grounds for northern 

pike (Mingelbier et al. 2008).  

Without taking action in Braddock Bay, the diversity and quality of the bay 

would remain low, and further erosion and loss of wetland area would occur. 

Restoration activities were conducted at Braddock Bay by the United States Army 

Corps of Engineers beginning in 2016, with data collection taking place in 2016 and 

2017, funded by the Great Lakes Restoration Initiative (USACE 2016A). 

2.1 USACE Project Goals 

The goal of USACE when conducting the restoration was to improve habitat 

diversity of the existing emergent marsh currently dominated by cattail and to reduce 

erosion of the existing emergent marsh, with the overarching objective to delist the 

Rochester Embayment Area of Concern by addressing the “Loss of Fish and Wildlife 

Habitat Beneficial Use Impairment (USACE 2016A). As stated by the U.S. Army 
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Corps of Engineers, the planning objectives were to restore wetland and habitat 

diversity in Braddock Bay to improve its suitability for fish and wildlife including 

northern pike, American mink, and the endangered state-listed Black Tern during the 

planning period of 2015-2065 and protect Braddock Bay wetlands from further 

erosion during the planning period of 2015 – 2065 (USACE 2017). 

Four project constraints to be avoided included negative impact to navigability 

and operation of marinas within the bay, impacts to nutrient dynamics of Braddock 

Bay that would worsen eutrophication, negative impacts to the Lake Ontario littoral 

drift system, and any project activities that would increase the extent of invasive 

species at the project site (USACE 2017). 

 To achieve the objectives, the USACE, with the planning assistance of The 

College at Brockport Wetlands Lab and NYSDEC Region 8, decided to perform a 

multi-measure restoration that would include: 1) re-creation of the barrier beach to 

protect the remaining wetland from erosion, 2) excavation of nearshore channels and 

shallow potholes through the extensive cattail mat on both sides of the bay to facilitate 

shoreline access to sedge/grass meadow by northern pike, 3) placement of excavated 

spoil material to create elevated mounds adjacent to the channels and potholes at a 

certain elevation to hinder cattail growth, and 4) chemical and cutting treatment of 

Typha, with timing and methodology following the research of Wilcox et al. (2017). 

These were just the primary steps of the restoration, with the key focus of bringing 

native diversity back to the area with hopes to delist the Rochester Embayment AoC 

by improving fish and wildlife habitat, which is one of the Beneficial Use Impairments 
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listed for the Rochester AoC (USACE 2016A). Additional steps taken by the Army 

Corps of Engineers were the creation of the historic barrier beach and a new area of 

emergent marsh.  

2.2 Goal of Thesis Project 

My goal was to perform vegetative data collection for use in adaptive 

management and to identify where success was achieved within the restoration. I 

evaluated the establishment of different created habitat zones that aim to support 

different communities across the restoration site, with areas of restoration activities 

expected to result in an increase in species richness and nativeness. I hypothesize that 

these different created habitat zones would support separate communities. Restoration 

activities including mound construction and the treatment areas parallel to the sedge-

grass meadow will result in an increase in the amount of native emergent marsh plant 

species and decrease Typha cover. Areas of restoration will have a higher floristic 

quality, demonstrated by greater assessment scores than untouched cattail-dominated 

control areas. Lastly, post-restoration, all habitat zones will continue to floristically 

improve via species richness as the wetland rebounds back to its natural state.  

The objective of this study was to evaluate the different aspects of the 

Braddock Bay restoration project through vegetation surveys and the use of floristic 

quality assessment index (FQAI) to determine potential success, per contract 

requirement from the U.S. Army Corps of Engineers. To compare floristic quality 

between habitats across the years, assessments were based on an FQAI statistic, the 

standard mean Coefficient of Conservatism (CoC or “C") score, and the cover-
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weighted mean Coefficient of Conservatism scores. Comparisons of FQAI, mean C, 

species abundance, and weighted mean C were made across the different grouped 

zones and from overall year to year.  

2.3 Restoration Methods and Standards 

I describe this restoration and the specific standards used for the project based 

on the project goals and reasoning within the U.S. Army Corps of Engineers mission 

statement and scope of work (USACE 2016A; 2016B). The main concern for 

Braddock Bay has been erosion of the historical barrier beach, leading to the further 

erosion of wetland habitat within the bay. As noted above, to combat this, in 2016, the 

U.S. Army Corps of Engineers re-created the historical barrier beach, which included 

a 0.52-km-long, continuous rubblemound breakwater spine, a one-hectare headland 

beach, two 45.7-m-long headland rubblemound breakwaters, and two 24-m-long 

rubblemound terminal groins (USEPA 2018). New wetland habitat was also created to 

further improve vegetative diversity and wildlife habitat, but this portion of the project 

was not created in time to be included in sampling.  

Further efforts to restore the bay included digging access channels and habitat 

potholes, creating habitat mounds, Typha control, and sedge/grass meadow restoration 

(Figure 4). Digging of potholes (Figures 5a and 6) and channels (Figures 5b and 7) 

aimed to increase the topographic heterogeneity of the wetland, increase the vegetative 

diversity, and improve habitat suitability for key fish and wildlife species (USACE 

2016A). These newly dug channels and potholes, Typha treatment areas, and a change 

in water-level regulation can provide essential habitat and greater access to the 
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wetland for fish and amphibian species in the bay. Cattail-control measures were 

performed within the sedge/grass meadow treatment areas parallel to the shoreline. 

This process included cutting cattails when storage carbohydrates in rhizomes were 

minimized (early August, Wilcox et al. 2017), followed by an herbicide treatment of 

new stems by hand-wicking with Glyphosate (Rodeo) (Wilcox et al. 2017). 

Alternating conditions of flooding and dewatering are important for generating 

diversity in the plant community, along with benefitting certain target species, such as 

northern pike (Esox 12ucius L.), which use the shallowly flooded sedge/grass meadow 

in early spring to spawn (Crane et al. 2015, Wilcox et al. 2017). After the restoration, 

the Braddock Bay vegetative community should be more ecologically diverse than the 

previous Typha-dominated emergent wetland and should provide higher quality 

habitat for many species of fish and wildlife, including American mink (Neovison 

vison Schreb.) and, hopefully, the state-listed endangered Black Tern (Chlidonias 

niger L.), which are target species under the AoC listing (USACE 2016A). 

2.3.1 Construction and Excavation Timing 

The project began with the channel and pothole excavation and spoil mound 

placement, concluding in March 2016. In June, the spoil mounds, pothole benches, 

and channel benches were seeded and planted with vegetative plugs and regionally-

sourced seed (Table 1). About 25,000 plugs were planted in the emergent marsh, 

38,000 were planted within the sedge-grass meadow, and 8.97kg/hectare of seed were 

applied within both of these habitats as well. Typha was mechanically cut in July, with 

corresponding chemical treatment with Glyphosate (Rodeo) in September. In August 
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2016, the barrier beach stone placement was completed, with no further work done in 

2016. At this point, the main wetland restoration was basically finished, with the 

completion of the channel and pothole excavations, the completed seeding and 

planting, and the base of the barrier beach in place to begin halting wave action. No 

construction work was completed in 2017 due to high-water conditions. The project 

resumed in May 2018, with barrier beach sand placement followed by the newly 

created marsh habitat in June. The second season of Typha cutting occurred in August, 

with the official completion of the Braddock Bay Ecosystem Restoration Project in 

November 2018. In May through August of 2016 and 2017, I studied the vegetative 

composition of these channel, pothole, and treatment areas, but the newly created 

marsh habitat was not yet built at the end of my two-year study. 

3. METHODS 

3.1 Sampling Design 

Fourteen transects were used to sample the overall network of newly created 

channels (Figures 9 and 10) and habitats, each of which spanned six vegetation zones, 

with two-to-four quadrats per habitat zone per transect (Figures 5b and 7). The 

sampled channel zones were separated into sedge/grass meadow (SGM), treated (TR), 

shallow bench (SB), intermediate bench (IB), mound habitat (M), and channel (C) 

zones (Figure 7). The 12 newly created potholes and associated spoil piles were 

sampled with 16 transects (Figures 8 and 9), spanning three identified zones, with one 

to two quadrats per zone per transect (Figures 5a and 6). Transects ran from the 

deepest portion of the potholes to the base of the back slope of the spoil pile. The 
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sampled pothole zones were separated into the deep water zone (D), bench (B), and 

mound habitat (M) (Figure 6). Control quadrats were haphazardly placed within the 

cattail mat.  

3.2 Sampling Methods 

The field sampling methods used were developed during the feasibility study 

and pre-defined in the scope of work for the project in the contract with the U.S. Army 

Corps of Engineers (USACE 2016B). Multiple steps were taken to ensure that the 

vegetation surveys covered the entire Bay and each aspect of the restoration. 

Vegetation surveys in Braddock Bay began in 2016 and were conducted again in 2017 

using Chadde’s A Great Lakes Wetland Flora and Newcomb’s Wildflower Guide 

guidebooks as tools to identify individuals to species level. I conducted early season 

walking surveys in late May and early June 2016 to obtain presence and abundance 

data for invasive species that are growing in restored areas (Figure 9). While 

surveying, I specifically looked for three key invasive species that were considered to 

be the most problematic – L. salicaria (purple loosestrife), T. natans (water chestnut), 

and P. australis (common reed). All three target species are on the NYSDEC’s 2014 

New York State Prohibited and Regulated Invasive Plants list (NYSDEC 2014). 

Locations of all stands encountered were identified with a GPS, and the radii of the 

invasive stands were estimated (Figure 10). Stem density was estimated within a 3-m 

control radius extending from the center of the stand. These stands were classified into 

the following categories: category 1 ranged from 1 to 10 stems, category 2 ranged 

from 11 to 20 stems, category 3 ranged from 21 to 30 stems, category 4 ranged from 
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31 to 50 stems, and category 5 included patches with more than 50 stems. Radius was 

estimated and both sediment, and water depths were taken for each patch of invasive 

vegetation with a 3-meter depth pole marked at every tenth of the meter.  

Sampling of the channels and potholes took place from late June to late August 

in both years. Each channel transect aimed to have approximately sixteen 1-m2 

quadrats, with two in the channel, two on the intermediate bench, two on the shallow 

bench, three on the spoil piles, four in the Typha treatment areas, and up to three in the 

remnant sedge/grass meadow. Some areas could only fit fewer quadrats without 

overlap. Quadrats were placed haphazardly within each of the different habitat zones 

by blindly throwing the quadrat (over the shoulder) along all 30 transect lines 

throughout the newly created habitats.   

 In the potholes, I surveyed vegetation using eight 1-m2 quadrats per transect, 

with three in the non-bench deep zone within the center of the pothole, two in the 

bench, and three on the mound. Quadrats were placed haphazardly within each of the 

different habitat zones by throwing the quadrat over my shoulder along the transect 

line. Thirty control quadrats were also sampled throughout the Typha mat in the bay 

(Figures 8 and 9). All quadrats were sampled in the same manner and included 

identification to species level, percent cover of detritus and total living vegetation, 

GPS coordinates (Figures 8 and 9), water depth, and depth to hard sediment. Water 

depth was measured atop the floating Typha mat in these locations. 

4. STATISTICAL ANALYSES 
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As directed by USACE, data analyses focused on the Floristic Quality 

Assessment Index (FQAI) to evaluate the nativeness of the plant community based on 

plant species present and their Coefficient of Conservatism scores (Reznicek et al. 

2014, Faber-Langendoen 2018). This FQAI statistic is currently a favored assessment 

of wetland plant community health, with many different ways to calculate the statistic 

(Faber-Langendoen 2018). I made FQAI comparisons across transects and habitat 

zones both within first year sampling and across the two-year period. I also made 

similar comparisons between the pre-restoration sampling year 2013 and post-

restoration sampling year 2017. This can provide important wetland vegetation 

dynamics data within single year comparisons, showing plant communities of an 

eroding coastal wetland that can then be compared across years to determine the 

relative first-year impact of barrier beach reconstruction along a Lake Ontario coastal 

wetland.  

For plant data obtained from the channel and pothole quadrats, FQAI was 

calculated by using the New York State preliminary C-score list with reference to the 

NEWIPCC Northeast Ecoregional C-score list, developed and agreed upon by a 

number of regional botanists, funded by the U.S. Environmental Protection Agency 

(EPA) (NEIWPCC 2011, Reznicek et al. 2014, Faber-Langendoen 2018). Each plant 

species was assigned a corresponding C-score, and all were averaged to determine the 

mean C-scores for each quadrat, which were then averaged for each zone and were 

used to calculate the FQAI and weighted mean C. All data representative of each 

habitat zone were averaged to account for pseudo-replication due to quadrat proximity 
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within each transect. All non-native species received a value of zero, although any 

quadrat with zero species observed resulted in habitat zones having no C-score, 

leading me to delete these missing value cases. The FQAI was calculated as followed: 

Equation 1:  

 

Where Ct represents the total mean C and Nt is the total species richness (Freyman et 

al. 2016, Faber-Langendoen 2018).  

This FQAI statistic is used to evaluate the nativeness of an area based on the 

plant species present. A problem with many diversity measures is the equal weight 

that each species receives regardless of fidelity to a specific habitat or tolerance to 

disturbance. The key component of the FQAI statistic is that the quality of a natural 

community can be evaluated objectively by examining the degree of fidelity or 

ecological conservatism of each plant within that community (Andreas et al. 2004, 

Matthews et al. 2015). A C-score of 0 indicates an exotic or non-native species with a 

widened range of tolerance in terms of environmental limits, with a score of 10 being 

a very specialized, narrow range of limits that the specific plant species can handle 

(Swink and Wilhelm 1994, Taft et al. 1997, Rooney and Rogers 2002, Andreas et al. 

2004). Even though using non-native species within FQAI calculations has been 

criticized, it has consistently proven to be reliable (Miller and Wardrop 2006, Kutcher 

and Forrester 2018). These FQAI metrics may be useful in determining the type and 

quality of habitat needed for certain species to thrive (Taft et al. 1997).  I then 

averaged these scores to yield a mean FQAI and mean C-score for each transect, 

FQAI 
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which were then grouped into zones. All of these data were averaged to determine 

mean FQAI and C-scores for all of the channel transects and all of the pothole 

transects, respectively. Within each transect, the means for total species and other 

variables observed in each quadrat and zone were calculated similarly. Quadrat-level 

cover weighted mean C was calculated as followed: 

Equation 2:   

 

Where ∑Ciɿi is the sum of C-scores for each species (Ci) multiplied by the percent 

cover of each corresponding species (ɿi). This is divided by the sum of the percent 

cover of each species (ɿi) (Freyman et al. 2016, Faber-Langendoen 2018).  

 By using all three metrics, I examined the differences between the weighted 

mean C calculation as a comparison to the FQAI and mean C statistics to determine if 

one calculation is more susceptible to influence by outside factors for use over the 

other options. Species richness and sample size have been shown to influence on 

FQAI but do not greatly impact mean C (Matthews 2003, Bourdaghs et al. 2006). In 

many cases, excluding non-native species has not been shown to influence the FQAI 

metric (Bourdaghs et al. 2006, Miller and Wardrop 2006). Comparisons of FQAI, 

mean C, species abundance, and weighted mean C were made across the different 

grouped zones and from overall year to year. My aim is to use these indices as a 

representation of the floristic quality within specified habitats and perform 

comparisons within the first two years of the restoration.  

Quadrat-level cover 

Weighted Mean C 
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I used the Kolmogorov-Smirnov normality test to determine whether the 

sample data had been drawn from a normally distributed population, stating whether 

the data are normal or not, with a significant p-value cut-off ɑ=0.05. After running the 

test, I found that even after transformation, not all of the data met the assumption for a 

normally distributed population; therefore, not all parametric test assumptions were 

met and non-parametric statistics were needed for the analyses. The only data shown 

to follow a normal distribution between both years of sampling were the species count 

(SPPcount) of 2016 and all of the 2017 variable data other than water-depth 

(Appendix 2). The rest of 2016 and the 2017 water-depth data did not follow a normal 

distribution (Appendix 2). Most of the data were shown to be non-normal even after 

transformation; therefore, I used non-parametric statistics for all analyses for 

consistency. 

Using SPSS statistics software, after averaging together each habitat zone 

within each transect, I used a multivariate Generalized Linear Model (GLM) 

comparing the different habitats within each individual sampling year using FQAI, 

mean C, and weighted mean C as the response variables, with habitat types as factors, 

and the random variable of transect. All GLMs used normal distribution and the 

identity link function. Control quadrats were not included in the individual year-by-

year analyses. All habitat types, other than the control, were included in the GLM. I 

used the same GLM model for other analyses including comparing channel overall 

channel and pothole habitats across the two sampling years.  Further statistics included 

performing non-parametric independent-sample Kruskal-Wallis one-way ANOVAs to 
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compare variables within the different habitats across the two sampling years. With 

this, I was able to determine the short-term improvements within the vegetative 

community based on the variables surveyed, with the ability to run a year-to-year 

comparison for any variables within any habitat type. I was also able to perform 

multivariate GLMs comparing dependent variables with the different habitat zones as 

a fixed factor and a transect block. Additionally, using the Primer 7 statistics program, 

I performed a non-metric multi-dimensional scaling (NMDS) ordination using the 

factors FQAI, mean C, weighted mean C, species count, and transect number to 

compare habitat types within each individual year and identify any grouping (1000 

runs for each year, 2016 2D stress =0.11, 2017 2D stress=0.1) .  

Using pre-restoration data collected by a previous graduate student, Eli Polzer, 

I extrapolated an FQAI, mean C, weighted mean C, and species richness statistic for 

the pre-restoration vegetation data collected in 2013. I used the shallow emergent 

marsh (SEM) zone data, which are from the surveyed portion of pre-restored 

Braddock Bay where the cattail treatment first occurred in 2016, primarily testing the 

effect of cattail removal.  Half of these data compared between 2013 and 2017 did not 

follow the normal distribution (Appendix 3); therefore, I used a non-parametric 

independent-samples Kruskal-Wallis one-way ANOVA for this analysis. This helped 

to characterize pre-restoration and post-restoration communities to determine if any 

changes occurred since pre-restoration. 

These KW, GLM, and NMDS analyses can provide the answers to the 

hypotheses being questioned. The analyses included various habitat comparisons 
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across years to determine if the created habitats were floristically distinct, comparing 

specific restored areas to provide evidence of change in richness and floristic quality, 

and to determine if these habitat zones are still floristically improving. Percent cover 

averages and invasive plant abundance were used to determine if the restored areas 

were still floristically improving and to give further background into what plant 

species are most abundant and increasing or decreasing in specified areas.  

5. RESULTS 

5.1 Water Levels  

Water depth along the transects ranged in 2016 (a drought year, NOAA 2016) 

from 0 to 120 cm and ranged in 2017 (a wet year, NOAA 2017) from 0 to 230 cm. 

Mean water depth in 2017 (60 cm) was significantly greater than in 2016 (23 cm; 

p<0.001,Appendix 4, Figures 12 and 13).  

5.2 Walking Surveys for Invasives 

 Preliminary walking surveys designed to search for three key invasive species 

(L. salicaria, P. australis, and T. natans) only found L. salicaria in the restored areas. 

All three key invasive species chosen were present within Braddock Bay before the 

restoration occurred. I performed these surveys In 2016, about 24.7% of the points 

collected for L. salicaria had greater than the maximum cut-off of 50+ stems, which 

increased to around 52% of the points collected in 2017. All three invasive plant target 

species were also observed within 2013 sampling data. 

5.3 Plant Taxa Observed 
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 A masterlist of all species observed at Braddock Bay during the two-year 

sampling period is available as Appendix 1. Species described in the text as dominant 

were designated by a cut-off of 10 percent within each habitat based on the average 

percent cover that the species had throughout the year. The only species dominant 

within the 2013 pre-restoration sampling of the shallow emergent marsh were non-

native Typha × glauca (65.9%) and H. morsus-ranae (10.6%). 

In 2016, 16 species were dominant; five other species were observed with an 

average above 8%. In the potholes, comprised of the deep zone (D) and the pothole 

bench (PHB), native Utricularia vulgaris (17.7% in D) and non-native H. morsus-

ranae (25.1% in PHB) were the only dominant species (Table 2). On the pothole 

mounds (PHM), two non-native species L. salicaria (38.8%) and T. × glauca (16.7%) 

were dominant, with a lesser abundance of natives Galium trifidum (9.6%) and 

Impatiens capensis (9.4%) (Table 2).  

 In the channel during 2016, comprised of the channel (C), intermediate bench 

(IB), and shallow bench (SB), three native species Elodea canadensis (10.5% in IB), 

Lemna minor (13.8% in IB), and U. vulgaris (10.2% in IB and 22.0% in C), with non-

native H. morsus-ranae (37.1% in IB and 11.0% in C) were dominant (Table 2). On 

the channel mounds (M), dominant species included non-native species L. salicaria 

(12.5%) andT. × glauca (11.6%), with similar abundance of two native, ruderal 

species Persicaria hydropiper (19.8%) andPersicaria lapathifolia (11.4%,Table 2).  

The 2016 treatment area located within the shallow emergent marsh (SEM/TR) 

was dominated by only non-native T. × glauca (22.3%). In the sedge/grass meadow 
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habitat (SGM), overhead cover of Acer saccharinum (10.0%) and Salix fragilis 

(10.0%), with non-native T. x glauca (10.0%) were all dominant, along with native 

emergent Carex lacustris with an average percent cover of 22.1% (Table 2). The only 

dominant species within the cattail mat control was non-native T. × glauca at 51.7%, 

with native I. capensis prominent at 9.7% cover.  

In 2017, 15 species were dominant; three other species were observed above 

8.0 percent cover. In the potholes, comprised of the deep zone (D) and the pothole 

bench (PHB), native U. vulgaris (22.8% in D and 25.5% in PHB) and three non-native 

species, H. morsus-ranae (28.4% in PHB), L. salicaria (10.2% in PHB), and T. × 

glauca (26.4% in PHB) were the dominant species (Table 3). On the pothole mounds 

(PHM), three native species Decodon verticillatus (12.2%) and I. capensis (11.9%), P. 

hydropiper (19.0%), and the two non-native species L. salicaria (24.8%), and T. × 

glauca (14.2%) were dominant (Table 3).  

 In the channels during 2017, comprised of the channel (C), intermediate bench 

(IB), and shallow bench (SB), three native species Ceratophyllum demersum (11.7% 

in C), U. vulgaris (25.9% in IB and 19.5% in C), and Stuckenia pectinata (11.3% in 

IB), along with two invasive species H. morsus-ranae (20.5% in IB and 23.3% in SB)  

and T. × glauca (37.7% in SB) were dominant (Table 3). On the channel mounds (M), 

dominant species included two non-native species H. morsus-ranae (14.1%)and T. × 

glauca (13.4%) and the native species P. hydropiper (17.9%), (Table 3).  

In 2017, the treatment area located within the shallow emergent marsh 

(SEM/TR) was dominated by non-native H. morsus-ranae (18.3%) and native U. 
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vulgaris (12.1%) (Table 3). In the sedge/grass meadow habitat (SGM), the two native 

species Calamagrostis canadensis (10.7%) and C. lacustris (13.4%), with the two 

non-native species of H. morsus-ranae (15.8%), and S. fragilis (14.2%) were all 

dominant (Table 3). The only dominant species within the cattail mat control was non-

native T. × glauca at 51.7%, with native I. capensis prominent at 9.7% cover.  

5.4 Planted and Seeded Species 

In total, 30 species were chosen to be seeded and planted using plugs for the 

restoration (Table 1). Thirteen out of 30 seeded/planted species were observed in pre-

construction 2013 surveys. In 2016, a total of 100 different plants were found, 86 of 

which were identified to species level, with 14 too immature or too herbivorized to 

identify. Only 13 of the 30 species on the seeded/planted list appeared in the first year 

of sampling after restoration (Table 1). The following year in 2017, 94 different plants 

were observed, with 86 identified to species. In this second year of sampling after the 

restoration took place, 15 seeded/planted species were found (Table 1). Fourteen 

unique species were found for the two sampling years combined. If all taxa other than 

known exotics are considered native, then both years had 75 native taxa and 11 non-

native taxa observed. The presence of the seeded and plugged plant species in 2016 

and 2017 were mostly the same species observed in 2013 (Table 1).  

5.5 Non-native Species Observed 

Using the NYS C-score list, described earlier, I selected the species listed as 

“non-native” and analyzed frequency between the two years, where non-native species 

were given a “0” C-score (Tables 4 and 5). Both years had an equal number of non-
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native species (n=11), but there was a numerical decrease in cover for some species. 

For example, L. salicaria had an average cover decrease from 38.8% in 2016 to 24.8% 

in 2017 on the pothole mound habitats (PHM) and from 12.5% to 3.8% on the channel 

mound habitats (M). Similar patterns occurred with other non-native species, 

including T. × glauca, with a mean percent cover decrease from 65.9% in 2013 to 

22.3% in 2016 and finally to 3.3% in 2017 within the Typha treatment zone (TR) but 

also observed with an increase from 7.4% to 26.4% on the pothole bench habitats 

(PHB) (Tables 4, 5, and 6). H. morsus-ranae showed a percent cover increase within 

the SGM (0.0% in 2016, 15.8% in 2017), TR (0.9% in 2016, 18.3% in 2017), M (0.1% 

in 2016, 14.1% in 2017), and SB (6.6% in 2016, 23.3% in 2017) habitats (Tables 3 

and 4). This is primarily due to the extended flooding of these areas caused by the 

record high rainfall and water-levels that allowed H. morsus-ranae to create a mat and 

block out emergent plant species.  

5.6 Transect Sampling 

5.6.1 Overall Mean C, Weighted Mean C, and FQAI 

The mean C, weighted mean C, and FQAI scores calculated for each quadrat 

were averaged within each habitat zone and used to compare vegetative differences 

along the transects and across years. The overall mean C statistics calculated for year 

2016 and 2017 were not significantly different (Kruskall-Wallis p=0.639, Appendix 

4). The overall weighted mean C statistic from year 2016 to 2017 was significantly 

different across years and showed a slight increase (2016=2.25, 2017=2.68, Kruskall-

Wallis p=0.002) (Table 7, Appendix 4). The overall FQAI statistic showed an increase 
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in floristic quality from year 2016 to 2017 (2016=6.31, 2017=6.89, Kruskall-Wallis 

p=0.019) (Table 7, Appendix 4).  

I then looked at the individual years and the potential for the habitat zones to 

be different within each year. The generalized linear model showed no significant 

interaction between habitat zones blocked by transects for any metric in both years, 

separately (Appendix 6 and 7). In both 2016 and 2017, weighted mean C was found to 

be significantly different across the habitat types (p<0.000) (Appendix 6 and 7) but 

not significant when looking at FQAI across habitat types (2016 p=0.068, 2017 

p=0.044) (Appendix 6 and 7). The ordination analyses show a distinct separation 

between the habitats included within the pothole areas and all other habitat types 

(Figure 14). The deep zone (D), pothole bench (PHB), and pothole mound (PHM) 

habitats appear to separate out from the other habitat zones based on both 2016 and 

2017 NMDS ordinations (Figure 14). 

Few habitat zones show a statistically significant increase (Appendices 4, 8, 

10, and 13).  This includes the treatment areas (TR) (Kruskall-Wallis p<0.001) 

(Appendix 8), the 2013 SEM and 2017 treatment (TR) zones (Kruskall-Wallis 

p<0.001) (Appendix 8), overall channel habitat which includes the channel and bench 

habitats (Kruskall-Wallis p<0.001) (Appendix 10), and the mound habitat (Kruskall-

Wallis p=0.003) (Appendix 13). The overall sampling years also showed a significant 

increase in species richness (GLM p=0.050) (Appendix 4). 

5.6.2 Cattail mat – Control vs Treatment 
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In the first year of sampling, the cattail mat control had a dominance of only T. 

× glauca, with the second year dominated by both T. × glauca and I. capensis. With 

the overbearing dominance of Typha in the control areas, no change was recorded. 

5.6.2.1 Mean C, Weighted Mean C, and FQAI  

Mean C was not significantly different within the cattail mat across the two 

years, which was expected as the control (Kruskall-Wallis p=0.789) (Appendix 5). I 

found that weighted C was not significantly different within the cattail mat across the 

two years (Kruskall-Wallis p=0.572) (Appendix 5). FQAI was not significantly 

different within the cattail mat across the two years, which was expected for the 

control (Kruskall-Wallis p=0.500) (Appendix 5).  

5.6.3 Cattail Treatment Pre- and Post-Restoration 

To determine the success of the treatment accurately, data from post-

restoration 2017, were compared to data collected in 2013 within the pre-restoration 

shallow emergent marsh. The shallow emergent marsh area in 2013 was dominated 

heavily by T. × glauca and H. morsus-ranae. Post-restoration was very similar to the 

pre-restoration dominance, with dominance of T. × glauca in 2016 and H. morsus-

ranae and U. vulgaris in the same areas in 2017. A large numeric decrease in Typha 

occurred within the treatment areas (TR) due to the restoration efforts. However, pre-

restoration shallow emergent marsh data for 2013 FQAI, mean C, and weighted mean 

C were significantly different from the 2017 cattail treatment zone data, found in the 

same areas (Appendix 8).  

5.6.3.1 Mean C, Weighted Mean C, and FQAI 
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  Some of these 2013 and 2017 data do not follow a normal distribution even 

through transformation (Appendix 3). I found a significant decrease in mean C when 

comparing 2013 pre- to 2017 post-restoration (2013=3.12, 2017=2.01, Kruskall-Wallis 

p<0.001) (Table 7, Appendix 8). Comparing mean C within the treatment area (TR) 

from year 1 to year 2 of sampling resulted in no significant difference (Kruskall-

Wallis p=0.262) (Appendix 9). 

Weighted mean C significantly increased from 2013 pre- to 2017 post-

restoration (2013=0.42, 2017=2.95, Kruskall-Wallis p<0.001) (Table 7, Appendix 8). 

Weighted mean C within the treatment area (TR) from year 1 to year 2 of sampling 

resulted in a significant difference (2013=1.61, 2017=2.95, Kruskall-Wallis p<0.001) 

(Table 7, Appendix 9). 

FQAI scores significantly increased from 2013 pre- to 2017 post-restoration 

(2013=4.13, 2017=6.97, Kruskall-Wallis p<0.001) (Table 7, Appendix 8). Comparing 

FQAI within the treatment area (TR) from year 1 to year 2 of sampling showed no 

significant difference (Kruskall-Wallis p=0.429) (Appendix 9).  

5.6.4 Channels 

 The three habitat types that make up the overall channel, the channel zone (C), 

intermediate bench (IB), and shallow bench (SB). In the first year of sampling, the C 

habitat was dominated by Elodea canadensis, H. morsus-ranae,  and U. vulgaris, the 

IB habitat was dominated by E. canadensis, H. morsus-ranae, L. minor, and U. 

vulgaris, and the SB habitat was dominated by T. x glauca (Table 2). The second year 

C habitat was dominated by C. demersum,  S. pectinata, and U. vulgaris, IB was 
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dominated by H. morsus-ranae, S. pectinate, and U. vulgaris, and in the SB, H. 

morsus-ranae and T x glauca were dominant (Table 3). Overall channel habitats had 

low mean C and weighted mean C scores across the two years (Table 7) but had an 

FQAI score of 5.7 in 2016 with a significant increase to 7.3 in 2017 (Table 7, 

Appendix 10). This can be linked to an increase in species count from an average of 

4.5 to 5.2, influencing the FQAI equation (Table 8).  

5.6.4.1 Mean C, Weighted Mean C, and FQAI 

Mean C within the channels was significantly different across the two years of 

sampling when combining the three habitat zones to create the full channel habitat 

(2016=2.56, 2017=2.90, Kruskall-Wallis p=0.040), (Table 7, Appendix 10). Weighted 

mean C within the channels also differed substantially and significantly across the two 

years of sampling (2016=2.15, 2017=2.89, Kruskall-Wallis p=0.019) (Table 7, 

Appendix 10). FQAI within the channels differed significantly across the two years of 

sampling (2016=5.65, 2017=7.30, Kruskall-Wallis p<0.001) (Table 7, Appendix 10). 

5.6.5 Potholes 

 The two habitat types that make up the overall pothole, the deep zone (D) and 

the pothole bench (PHB). Within the overall pothole habitat, the PHB was dominated 

by H. morsus-ranae and L. salicaria and the D habitat was dominated only by U. 

vulgaris within the first year. In the second year of sampling, L. salicaria, U. vulgaris, 

H. morsus-ranae, and T. × glauca were dominant in the PHB habitat, with only U. 

vulgaris dominant in the D zone in the second year. Since dominance remained similar 

across the sampling years, no changes were seen across the three metrics. 
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5.6.5.1 Mean C, Weighted Mean C, and FQAI 

In the potholes, I found no significant difference for mean C, weighted mean 

C, or FQAI (Kruskall-Wallis; mean C p=0.114, weighted mean C p=0.578, FQAI 

p=0.962) (Appendix 11) across the two sampling years.  

5.6.6 Mounds 

 Two mound habitat types were used for these analyses, the pothole mounds 

(PHM) and the channel mounds (M). The pothole mounds were initially dominated by 

L. salicaria and T. × glauca, with an abundance of G. trifidum (9.6%) and I. capensis. 

In the second sampling year, the pothole mounds were dominated by D. verticillatus, 

I. capensis, L. salicaria, P. hydropiper, and T. × glauca. The channel mounds had L. 

salicaria, P. hydropiper, P. lapathifolia, and T. × glauca as dominant species in the 

first year of sampling. The second year showed a dominance of H. morsus-ranae, P. 

hydropiper, and T. × glauca. Composition significantly changed atop the pothole 

mounds (PHM) but not nativeness or floristic quality, with the opposite occurrence 

atop the channel mounds (M). 

5.6.6.1 Mean C, Weighted Mean C, and FQAI 

There were no significant differences across the two years for both mound 

habitats for mean C (Kruskall-Wallis; PHM p=0.631, M p=0.087) (Appendix 12, 

Appendix 13). There was a significant increase across the years for the pothole 

mounds (PHM) for weighted mean C (2016=2.00, 2017=2.59, Kruskall-Wallis 

p=0.008) (Table 7, Appendix 12) but no difference across years for FQAI (Kruskall-

Wallis p=0.778) (Appendix 12). The channel mounds (M) had no significant 
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differences across the two sampling years for weighted mean C (Kruskall-Wallis 

p=0.560) (Appendix 13) but were significantly different across the two sampling years 

for FQAI (2016=6.87, 2017=8.30, Kruskall-Wallis p=0.002) (Table 7, Appendix 13). 

6. DISCUSSION 

I evaluated each different created habitat zone and hypothesize that these 

created habitat zones will be floristically different. I also evaluated the restored areas 

individually and expect to see an increase in richness and floristic quality along with 

an increase in native emergent plant cover and decrease in Typha cover. Lastly, post-

restoration, all habitat zones will continue to floristically improve via species richness 

as the wetland rebounds back to its natural state.  

6.1 Ability of Restoration Methods to Meet Objectives 

Every aspect of the restoration and monitoring efforts must be reviewed in 

terms of effectiveness for use in future restoration projects. Some issues also occur 

during the sampling season that call for continued monitoring and adaptive 

management at any restoration site. 

6.1.1 Walking Surveys for Target Invasives 

All three target invasive species were found within Braddock Bay prior to the 

restoration. Purple loosestrife (L. salicaria) abundance increased from 2016 to 2017. 

Several factors might provide insight into why this increase occurred. The initial 

disturbance of the restoration site allowed for colonization of disturbed areas by 

different plant species, specifically invasive species that spread by seed (Hovik et al. 

2011). The year following the initial disturbance was a drought year, allowing for the 
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potential establishment of invasive species, such as L. salicaria and T. x glauca, which 

can tolerate drier conditions that would be unfavorable for native wetland species. The 

second year of sampling showed establishment success of L. salicaria as a 25% 

increase in data points where the maximum purple loosestrife abundance was 

observed. Given that these are the first two years of monitoring after the initial 

disturbance occurred, the area is susceptible to a short-term invasibility of the 

community (Hobbs and Huenneke 1992).  

Within the restoration, L. salicaria percent cover decreased from year 1 to year 

2 in both pothole mound (PHM) and channel mound (M) habitats. Galerucella beetles 

were released by NYS DEC after the Lythrum increase was reported in 2017. I expect 

the ensuing third year of data under a DEC grant to show a further decrease in 

abundance of L. salicaria due to a combination of the release of Galerucella beetles 

and the dramatic water-level difference between the two years sampled (GLAM 

2018).  

6.1.2 Floristic Improvement 

Based on the analyses of species richness, measured by SPPcount (species 

count), a limited number of the sampled habitat zones throughout the restoration site 

are still accumulating more species, adding to the overall biodiversity of the site. This 

is evidence that the created habitat zones are not floristically diversifying, opposing 

my hypothesis that the habitats will be floristically distinct. Many habitat zones show 

a numeric increase in species count (Table 8).Some areas of the restoration seem to be 

floristically improving through an increase in species richness, but many other habitat 
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zones show no increase in richness, which is a concern when this means these areas 

are not accumulating more species. 

6.1.3 Cattail Treatment Areas 

I hypothesized that these restored areas will have an increased richness and 

floristic quality along with an increase in native emergent plant cover in these 

areas.Weather also impacted these treatment areas, resulting in an average water depth 

of 0 cm in 2016 versus about 60 cm in 2017 (Figures 11 and 13). Changes from pre-

restoration 2013 and post-restoration 2017 data that occurred within the treatment 

areas may have been aided by the cattail-cutting treatment performed, which opened 

up the overhead cover for other plants. This seems to be the case in the invasion of 

these newly flooded treatment areas by H. morsus-ranae, forming their own dense 

mats, combined with interspersed U. vulgaris (Tables 4 and 5). H. morsus-ranae is an 

unwanted invasive species on the New York State DEC’s 2014 Prohibited and 

Regulated Invasive Plants list (NYSDEC 2014) and, at Braddock Bay, has spread 

rapidly within the disturbed restoration areas (Tables 2, 3, 4, and 5). Best management 

practices going forward would include continued targeting of high impact invaders 

(e.g., P. australis, L. salicaria, T. natans) and further additions to the list of species 

that threaten the bay further (e.g., H. morsus-ranae, Myriophyllum spicatum).  

The increase in the non-native species observed within the SGM and TR areas 

was accompanied by a decrease of the most abundant native plant species observed in 

the same areas. This shows that there is no clear increase in native emergent plant 

cover in these restored areas. Many dominant plant species observed in 2016 
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decreased within the SGM treatment areas in 2017 while H. morsus-ranae abundance 

increased (Ex. C. lacustris, U. vulgaris, I. capensis, Tables 2 and 3). The overall cover 

of H. morsus-ranae, potentially combined with the accompanying water levels, seems 

to have also impacted other non-native species, showing decreases in abundance for L. 

salicaria and T. x glauca (Tables 2, 3, 4, and 5).  

Further monitoring in this shallow emergent marsh treatment area is needed to 

assess the long-term results of the cattail treatment plan, which at this point show the 

shift to inundation and potential to block out further cattail growth through observed 

flooding combined with the cover of the new H. morsus-ranae mat present. The 

resulting invasion, if continued, has the potential to further block out and decrease 

native emergent plant species in the SGM treatment areas due to the inability to gain 

sufficient light underneath the H. morsus-ranae mat combined with stable, high water 

levels, not allowing germination of the native seed bank (Keddy and Reznicek, 1986). 

It can be nearly impossible to predict water-level changes that dramatically change 

conditions at a restoration site as what is shown here at Braddock Bay. The removal of 

cattail, combined with treatment and flooding, is a combination that seems to have led 

to an overall decrease in average percent cover of Typha in the treatment areas from 

65.9% in 2013 to 22.3% in 2016 to 3.3% in 2017 (Tables 2, 3, and 6) This is a major 

statistic as it shows that the treatment is working and with an increased affect by the 

record high water levels. When the cut and treated Typha stems are flooded, they no 

longer are able to transport oxygen to the rhizomes, ultimately killing the plant 

(Wilcox et al. 2017). 
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6.1.4 Mounds 

No significant change in plant community composition or statistical metrics 

occurred atop the pothole mound (PHM) habitats from 2016 to 2017, whereas the 

mound (M) habitat showed a similar trend to the adjacent overall channel habitat. 

These data from the mound (M) habitat show the FQAI statistic once again being 

influenced by the species count across the sampling year. In the mound (M) habitat, a 

low mean C and weighted mean C score across the sampling years was accompanied 

by a significant increase in FQAI from year 1 to year 2, showing another instance of 

the FQAI statistic being influenced directly by the species count. This is clearly visible 

in these data, where a 2.5-point increase to FQAI (Table 7) can be linked to about a 2-

point increase in average species count within the overall channel (Table 8). If FQAI 

continues to show influence by outside factors, specifically species richness, then 

using one of the other metrics would be more beneficial.  

Much variation was shown in spoil pile height of the mounds, which needs to 

meet a height of 75.35 to 75.60 m (IGLD 85) to discourage Typha growth (Wilcox and 

Xie 2007, Wilcox et al. 2017). During the second year of sampling, with the 

occurrence of record rainfall and water levels (NOAA 2017, GLAM 2018), both 

pothole and channel mounds were affected. There were examples of mounds that were 

built too low that resulted in inundation, many at the prescribed height, or some built 

above the maximum height with quite a lot of dry spoil above the already high lake-

levels. The record high water level reached around 75.80 m (IGLD 85; Figure 1b) 

during the 2017 sampling season. Although these mound areas were created to 
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discourage the growth of invasive Typha, this weather anomaly led to flooding of the 

mounds and could result in cattail invasion in these areas. This pattern can be seen 

through the two years of sampling, where, on average, Typha was found to have 

decreased on the PHM habitat by 2.5% average cover but increased on the M habitat 

by about 2% average cover. These small percent changes did not influence any 

statistics or calculations. Overall, very little change was observed with Typha stands 

atop of spoil pile mounds.  

When building future spoil mounds, another consideration would be to look 

further into the soils. If the substrate being excavated to create these spoil piles 

consists of more organic matter, the mounds are expected to settle to a lower 

elevation, with less settling if the substrate contains a better aggregate, such as clay. In 

further monitoring and continued cattail treatment work, I expect a decrease in Typha 

cover atop the spoil mounds, especially those built to the prescribed elevation 

specifications.  

6.1.5 Channels 

Monitoring showed channels where width was less than needed to prevent 

filling with sediment or floating pieces of Typha mat (Figure 15). In some locations 

within the restoration site, construction couldn’t get every channel, pothole, and 

mound to the exact planned depth or height, leading to some constructed features not 

functioning as needed. This is a concern when one of the objectives was creating 

access to the sedge-grass meadow to allow for fish spawning, specifically the Northern 

Pike. This does not mean that all channels were blocked or completely impassable by 
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fish, but the overall connectivity of the wetland and the purpose behind the dug 

channels must be maintained for prolonged success. Channel depths, widths, and 

mound heights all have specific design standards, and the variability shown at the site 

can be seen through the variability also found within these data. Some locations within 

the restoration had channels blocked off by and potholes filled in by Typha regrowth. 

In the channel habitat, a low mean C and weighted mean C score across the 

sampling years was accompanied by a significant increase in FQAI, showing another 

instance of the FQAI statistic being influenced directly by the species count. The 

FQAI score increased based on the number of species present, despite average mean C 

and weighted mean C scores in the range of 2.0 to 3.0 (Tables 7 and 8). This is clearly 

visible in these data, where a two-point increase in FQAI (Table 7) can be linked to a 

1.5-point increase in average species count within the overall channel (Table 8). An 

increase in species count increased the overall FQAI for these channel habitats, but the 

mean C score was still low, so despite an apparent increase of the floristic quality 

index, there was no increase in nativeness. Despite the increase in species count, not 

many of the changes were significant, therefore, the habitats are not still floristically 

improving by means of species accumulation. There is a numerical increase in Typha 

cover within both the pothole bench (2016=7.4, 2017=26.4) (Tables 2 and 3) and 

intermediate channel bench (2016=1.2, 2017=4.2) (Tables 2 and 3), but due to the 

randomness of transect placement, there is no evidence within my data of this 

occurring within the actual channel or the deep zone of the potholes.  

6.1.6 Potholes 
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Between 2016 and 2017, no significant changes in dominant vegetation, mean 

C, weighted mean C, or FQAI occurred within the potholes other than access issues 

caused by the filling of the pothole and the closing of the channels (Figure 15). This is 

one example of a habitat zone that showed no improvement from 2016 to 2017 

through means of species accumulation or floristic quality. Using aerial photography 

accompanied by ground-truthing at the site from a different entrance point, I was able 

to determine that the largest excavated pothole has mostly filled in with sediment and 

regrowth of Typha mat toward the center of the pothole (Figure 15). This pothole-

filling can be attributed to the timing of the excavation, as this was the last part of the 

restoration to occur, nearing the end of the winter season and making the sediment 

softer during excavation. This allowed sediment rebound within the pothole, caused by 

soil consolidation during construction intensified by construction timing, leaving it 

shallower than called for in the original plan. This can be of concern with regard to 

connectivity throughout the wetland, much like in that of the channels, which is 

important for the different wildlife using these pothole habitats. Post-restoration 

management should work to clear these blocked channels and filled potholes to restore 

the intended connectivity.  

6.2 Planted and Seeded Species 

More information on percentage of planted plugs surviving would be needed to 

perform meaningful statistics comparing survivorship across the two years of 

sampling. This would require very intensive surveying and would require a larger 

crew, as about 65,000 individual plugs were planted. Issues observed with plugs range 
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from wildlife pulling plugs to the planting crew leaving various trays full of plugs 

unplanted. In situ herbivory was observed in both the 2016 and 2017 seasons but is not 

expected to have lasting effects. Many of the plants observed from the list of seeded 

and planted species were also present in the preliminary surveying of Braddock Bay in 

2013 and may not be a product of restoration efforts. Only half of the planted/seeded 

species were observed within the second-year post-construction and many of these 

species were also observed in 2013 before the planting and seeding. There is little 

evidence to suggest that these species observed within 2016 and 2017 established 

themselves through the process of planting and seeding, and may point to recruitment 

from the pre-existing plant community in 2013. There is a visible improvement in 

floristic quality, but it appears that having a remnant species or seed pool is just as 

important as planting and seeding efforts.  

6.3 Influence of Lake-level on Results 

An unpredictable issue while sampling Braddock Bay was the variation of the 

water levels from year to year. A drought year in 2016 followed by record rainfall and 

inputs from Lake Erie in 2017 created very different hydrologic conditions (GLAM 

2018). The abnormality shows in the data when comparing across years, where the 

range of water depths measured in the emergent marsh in 2016 was 0 to 120 cm and 0 

to 230 cm in 2017 (Figures 11 and 13). This dramatic change in water levels left areas 

of sedge/grass meadow and treatment areas dry in 2016 versus in greater than 100 cm 

of standing water in those same areas in 2017, with many spoil piles being submerged, 

potentially affecting community development. In the second year, with record water 
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levels, a shift to submerged aquatic vegetation showed dominance within treatment 

areas and even an increase atop the submerged mounds (Table 4 and 5). 

 Under typical lake-level conditions, the mound habitats should remain dry, 

with a reduction in Typha and establishment of more native wetland vegetation that 

can withstand dry spells that come with lake-level fluctuation. More native vegetation 

should establish within the treatment areas due to the reduction in overhead Typha 

cover in these areas (Tables 4 and 5).  

 The difference of water-levels within the sedge/grass meadow areas between 

2013 and 2017 has an impact on the results as well. This comparison takes the shallow 

emergent marsh area in 2013 and compares it to the high water-levels within the same 

area in 2017, shifting the community from a Typha-dominated monoculture to a 

submerged aquatic vegetative (SAV) community. The restoration may have attributed 

to the community change by opening the over story, but there is no indication that the 

restoration caused the shift to SAVs, which is more likely linked to the dramatic 

change in water-level, allowing the establishment of SAVs in the area. 

6.4 Recommendations 

Overall mean C (2016=2.75, 2017=2.77), weighted mean C (2016=2.25±1.35, 

2017=2.68), and FQAI (2016=6.31, 2017=6.89) scores for Braddock Bay are still low 

(Table 7); therefore, more long-term data are needed to determine the long-term 

success of the restoration. These floristic quality indices can vary widely, with 

examples along the Northern shore of Lake Ontario ranging from 12.5 in a highly 

disturbed wetland to 31.8 at a low-disturbance, natural wetland area (n=12, Grabas et 
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al. 2003). In Lake Michigan drowned rivermouth wetlands showed a range of 25.5 to 

31.0 (n=6, Wilcox et al. 2002). Lake Superior barrier beach wetlands showed a range 

of 18.5 to 61.4 (n=6, Wilcox et al. 2002). Higher C-scoring plant species (7 to 10) will 

generally correspond with higher quality habitat, denoted by high FQAI values (Taft et 

al. 1997, Andreas et al. 2004). FQAI indicates vegetative quality of the site, with a 

score from 1-19 considered low quality, 20-35 high quality, and anything above 35 

exceptional quality habitat (USFWS 2019). With further monitoring and further cattail 

treatment, I would expect to see an increase in overall diversity coinciding with the 

decrease in Typha cover atop the spoil piles as well as where the treatment is taking 

place in the shallow emergent marsh (Wilcox et al. 2017). Adaptive management 

within the subsequent years would determine if further treatment actions are needed in 

the shallow emergent marsh. Early research supports management actions involving 

water-level manipulation and herbicide treatments (Steenis et al. 1959), with further 

in-depth studies of cattail-control methods that narrowed the potential for successful 

management (Beule 1979, Wilcox and Ray 1989, Ball 1990, Lawrence et al. 2016).     

6.4.1 Mean C, Weighted Mean C, and FQAI  

Various combinations of significance in metric results occurred across the 

three metrics. Some tests showed one of the three metrics proving to be significant, 

with the other two showing the opposite result, but no discernable pattern is present. 

Using just the mean C metric is not adequate. The fidelity of the species to the 

environment in question, that being its role within the environment or necessity for 

niche habitat, must be considered. Both the weighted mean C and FQAI statistics 
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showed a significant difference between the two sampling years, whereas the mean C 

statistic used within these calculations showed no significance. The ability of these 

metrics to use the gradient of nativeness proves beneficial in ranking of each species at 

each location. The FQAI statistic has proven to be influenced heavily by the species 

richness of the area, which may be its biggest flaw (Matthews 2003, Bourdaghs et al. 

2006). Areas with great diversity may fall victim to a skewed FQAI score if most of 

the plant species that create that diversity have low C-scores.  

My data show that Braddock Bay is low on the overall nativeness C-score 

scale, but some areas, such as the overall channels and channel mounds, are showing 

greater floristic quality due to an increase in richness, not an increase in native plants. 

Weighted mean C may be a better metric to use because it changes a predetermined 

state-wide or ecoregion-wide conservancy score into a local, site-level C-score. 

Consideration of the preliminary site vegetative composition may be appropriate when 

choosing a proper metric to use for future studies. If the location is a monoculture of 

an invasive species, the site may have a low overall mean C or weighted C score, 

influenced by the dominant cover of the non-native species (non-native species C-

score rating = 0) (Andreas et al. 2004, NEIWPCC 2011, Reznicek et al. 2014, Faber-

Langendoen 2018). But, depending on species richness rather than dominance, results 

using the Floristic Quality Assessment Index may be skewed towards a higher quality 

rating (Matthews 2003, Bourdaghs et al. 2006). Weighted mean C gave the most 

reliable result, as it considers the actual abundance of the species at the location 

surveyed, with hardly any observed influence from species richness like what was 
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seen with the FQAI metric. The weighted mean C metric gives an abundance-based 

score that is unaffected by species richness, which was observed throughout these 

results. Short-term studies do not provide as robust comparisons as longer-term, five- 

or ten-year studies can, since vegetative community composition takes about five to 

ten years to recover fully after restoration (Haapalehto et al., 2017). Further 

monitoring is funded and scheduled for the upcoming years.  

6.4.2 Project Recommendations 

When performing restoration activities, the key factor is following suggested 

measurements and restoration standards. If weather or other variables impact the 

ability of the restoration to be performed according to design, then adaptive 

management to change the plan must occur. Changes to the plan may need to occur 

throughout the restoration activities being performed, as long as the proper 

information or guidance to make such changes is available. For restoration work 

similar to what was done at Braddock Bay, the concern is the ability of the 

construction crew to maintain an accurate channel and pothole depth/width and spoil 

mound height, not straying far from the target depth, width, or height. Possibly adding 

a margin of error or safety to the construction specifications so that the habitats meet a 

minimum requirement with the uncertainty associated with construction planning and 

timing. If all of the excavation had been done in a timely manner, some pothole and 

channel filling may not have occurred. Furthermore, future spoil-mound construction 

must require a proper soil survey to determine exactly where adjustments need to be 

made based on substrate composition and settling. A true survivorship study is 
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suggested in future restorations to determine the effect of planted and seeded species 

in the different created wetland habitats. This study shows that determining the effect 

can be difficult when the site is so large and not many planted or seeded taxa are 

observed in the random sampling of the site. Many invasive species can be controlled 

at restoration sites through mechanical and biological treatment, but the restoration 

practitioner should be aware of the ability of invasive species to overtake newly 

disturbed areas. Thankfully, through adaptive management at Braddock Bay, where 

the influx of invasive L. salicaria within the restoration became an immediate 

concern, Galerucella beetles were used as a biological control. It will be necessary to 

ensure the connectivity of the restoration work to allow the wetland to serve its 

restored purpose fully, which might include continuously clearing dug channels or 

continued cattail control. Cattail control efforts reduced the average percent cover of 

Typha observed within the treatment areas, giving reason to continue control efforts 

on-site and to recommend the methodology used for future restoration activities 

(Wilcox et al. 2018).  

Overall, Braddock Bay currently sits very low on the mean C, weighted mean 

C, and FQAI scales (Taft et al. 1997, Andreas et al. 2004, USFWS 2019). Further 

monitoring is needed to give a better representation of how successful the restoration 

truly will be in the long term. Continued monitoring of Braddock Bay has been funded 

and scheduled through 2020 thanks to Region 8 of NYS DEC. 
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Table 1. Listed species seeded and planted at the Braddock Bay Restoration project. If 

species were observed during the sampling year or during the preliminary 2013 

surveys, it is demarcated by a Y for Yes along with blank spaces meaning the species 

was not observed.  

 

 

Observe

d in 

2013 

Seed (S) or Plug 

(P) pre-2016 

sampling 

Observe

d in 

2016 

Observe

d in 

2017 

Acorus americana  S     

Alisma subcordatum  S + P    

Asclepias incarnata Y S Y Y 

Bidens cernua Y S Y Y 

Calamagrostis canadensis Y S Y Y 

Carex lacustris Y P Y Y 

Carex lurida  S + P  Y 

Carex scoparia  S + P    

Carex stipata  P    

Carex stricta Y S + P Y   

Carex vulpinoidea  S    

Elymus virginicus  S Y Y 

Eutrochium maculatum  S    

Glyceria canadensis  S    

Iris versicolor Y S    

Juncus effusus Y S Y Y 

Leersia oryzoides  S  Y 

Mimulus ringens  S    

Persicaria amphibia Y P Y Y 

Poa palustris  S    

Pontederia cordata  P Y Y 

Sagittaria latifolia Y S + P Y Y 

Schoenoplectus 

tabernaemontani 

Y 

S + P Y Y 

Scirpus atrovirens  S    

Scirpus cyperinus Y S    

Scirpus polyphyllus  S    

Sparganium americanum  S    

Sparganium eurycarpum Y S Y Y 
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Verbena hastata Y S + P Y Y 

Vernonia noveboracensis  P   Y 

         

Species present =    13 - 13 15 
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Table 2. Habitat-level dominant vegetation with corresponding mean cover percentages for 2016. Bolded values are over the 

dominance value of >10 percent cover (non-native species marked with an asterisk*; All values include ± the standard deviation;  

C=channel, CT=cattail-control, D=deep zone, IB=intermediate bench, M=mound, PHB=pothole bench, PHM=pothole mounds, 

SB=shallow bench, SGM=sedge/grass meadow, TR =treatment area). 

 

 Pothole Transects Channel Transect Control 

 D PHB PHM SGM TR M SB IB C CT 

Acer 

saccharinum 
- - - 

10.0 

±0.0 
1.8 ±0.5 - - - - - 

Calamagrostis 

canadensis 
- - - 8.9 ±9.6 0.7 ±8.4 1.5 ±8.6 - - - - 

Carex lacustris - 0.2 ±0.0 0.1 ±0.0 
22.1 

±19.4 
1.9 ±1.7 3.3 ±6.1 1.8 ±0.0 0.2 ±2.5 0.3 ±1.3 - 

Ceratophyllum 

demersum 

0.3 

±2.0 
0.2 ±1.3 - - - - - 1.4 ±2.6 8.0 ±8.5 - 

Elodea 

canadensis 
1.0 

±0.6 
- - - - - - 

10.5 

±5.5 
9.4 ±6.6 - 

Gallium 

trifidum 
- 3.4 ±1.4 9.6 ±7.7 1.3 ±9.1 4.2 ±5.1 9.3 ±9.6 8.7 ±9.4 0.3 ±3.8 0.1 ±0.0 1.1 ±1.3 

Hydrocharis 

morsus-ranae* 
1.8 

±1.3 
25.1 

±11.1 
0.1 ±0.0 - 0.9 ±9.3 

0.1 

±0.00 
6.6 ±6.7 

37.1 

±17.8 

11.0 

±1.8 
0.2 ±1.3 

Impatiens 

capensis 
- 0.2 ±1.3 9.4 ±8.9 1.3 ±4.0 1.3 ±6.2 0.2 ±1.3 1.9 ±9.2 - - 9.7 ±6.8 
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Lemna minor 
1.2 

±0.7 
4.3 ±1.0 0.1 ±0.0 - 0.1 ±0.0 - 0.2 ±0.0 

13.8 

±5.8 
5.6 ±7.0 1.3 ±0.8 

Lythrum 

salicaria* 

0.1 

±0.0 
9.0 ±5.4 

38.8 

±23.1 
1.6 ±1.6 4.1 ±6.1 

12.5 

±8.4 
4.1 ±8.1 0.2 ±2.5 - 

2.3 

±11.5 

Persicaria 

hydropiper - 0.8 ±1.9 8.1 ±7.4 1.7 ±0.0 1.7 ±6.2 
19.8 

±15.1 

1.6 

±11.5 
- - 0.8 ±1.5 

Persicaria 

lapathifolia - - 
1.8 

±10.6 
0.9 ±1.6 0.5 ±4.8 

11.4 

±9.6 
- - - - 

Salix fragilis* 
- - - 

10.0 

±0.0 
- - - - - - 

Stuckenia 

pectinata 

2.5 

±1.7 
- - - - - - 8.7 ±8.1 2.8 ±7.3 - 

Typha × 

glauca* 
0.5 

±1.1 
7.4 ±7.8 

16.7 

±10.3 

10.0 

±10.5 

22.3 

±7.0 

11.6 

±8.0 

48.9 

±17.3 
1.2 ±3.3 0.3 ±1.3 

51.7 

±13.7 

Utricularia 

vulgaris 
17.7 

±9.9 
4.2 ±4.9 - - - - - 

10.2 

±8.8 

22.0 

±16.3 
- 
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Table 3. Habitat-level dominant vegetation with corresponding mean cover percentages for 2017. Bolded values are over the 

dominance value of >10 percent cover (non-native species marked with an asterisk*; All values include ± the standard deviation; 

C=channel, CT=cattail-control, D=deep zone, IB=intermediate bench, M=mound, PHB=pothole bench, PHM=pothole mounds, 

SB=shallow bench, SGM=sedge/grass meadow, TR =treatment area) 

 

 Pothole Transects Channel Transect Control 

 D PHB PHM SGM TR M SB IB C CT 

Boehmeria 

cylindrica 

- 1.3 ±0.2 8.8 

±10.5 

- - 0.4 ±1.2 - - - 2.9 ±0.9 

Calamagrostis 

canadensis 

- - - 10.7 

±7.3 

0.6 ±5.2 0.2 ±1.3 - - - - 

Carex lacustris - 2.5 ±1.7 2.8 ±8.1 13.4 

±10.3 

0.2 ±0.0 1.8 ±7.7 1.0 ±6.3 - - - 

Ceratophyllum 

demersum 

3.0 

±9.1 

0.2 ±0.0 - 0.3 ±0.0 0.5 ±1.4 2.1 ±1.5 1.4 

±10.5 

7.9 ±4.1 11.7 

±3.6 

- 

Decodon 

verticillatus 

- 3.5 ±9.2 12.2 

±12.9 

- 0.2 ±0.0 0.6 ±1.5 0.9 ±0.0 0.2 ±2.5 - 0.5 ±0.0 

Hydrocharis 

morsus-ranae* 

1.3 

±1.3 

28.4 

±19.6 

1.3 ±8.7 15.8 

±19.4 

18.3 

±23.8 

14.1 

±15.4 

23.3 

±8.9 

20.5 

±7.0 

2.5 ±3.8 2.8 ±7.4 

Impatiens 

capensis 

- 0.5 ±0.7 11.9 

±25.4 

- - 0.4 ±0.7 0.2 ±0.0 - - 1.1 ±1.3 

Lythrum 

salicaria* 

4.1 

±1.4 

10.2 

±9.5 

24.8 

±13.2 

0.8 ±1.3 2.0 ±1.3 3.8 ±6.4 1.7 ±1.2 0.3 ±3.8 0.4 ±0.0 2.8 ±8.2 

Persicaria 

hydropiper 

- 0.2 ±0.0 19.0 
±10.5 

- - 17.9 
±23.5 

0.2 ±0.0 - - - 
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Stuckenia 

pectinata 

- - - - 0.2 ±0.0 - 1.3 

±11.0 
11.3 
±8.4 

8.2 ±9.6 - 

Salix fragilis* - - - 14.2 

±9.6 

- - - - - - 

Thelyptris 

palustris 

- 4.7 ±8.9 9.4 ±5.9 - - - - - - 7.1 ±7.5 

Typha × 

glauca* 

1.5 

±1.1 

26.4 

±7.8 

14.2 

±10.3 

8.8 ±6.6 3.3 ±3.2 13.4 

±8.3 

37.7 

±19.6 

4.2 ±3.0 - 48.0 

±27.2 

Utricularia 

vulgaris 

22.8 

±9.9 

25.5 

±4.9 

- 5.5 ±6.2 12.1 

±14.1 

0.3 ±0.0 4.6 ±5.7 25.9 

±9.5 

19.5 

±16.9 

- 

Verbena 

hastata 

- 0.2 ±0.6 8.6 ±7.1 - - 4.1 ±8.9 - - - - 
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Table 4. Mean Cover percentages for each non-native species found in each transect type in 2016, sorted by habitat type along 

the transect (total non-native species in 2016 = 11; All values include ± the standard deviation; C=channel, CT=cattail-control, 

D=deep zone, IB=intermediate bench, M=mound, PHB=pothole bench, PHM=pothole mounds, SB=shallow bench, 

SGM=sedge/grass meadow, TR=treatment area). 

 

 Pothole Transect Channel Transect Control 

 D PHB PHM SGM TR M SB IB C CT 

Cirsium arvense - - 0.8 ±1.7 
0.2 ±0.0 

0.2 

±1.2 

0.9 

±0.8 0.9 ±7.0 - - - 

Hydrocharis 

morsus-ranae 
1.8 ±1.3 

25.1 

±11.1 
0.1 ±0.0 

- 0.9 

±9.3 

0.1 

±0.00 

6.6 ±6.7 37.1 

±17.8 

11.0 

±1.8 0.2 ±1.3 

Lythrum salicaria 
0.1 ±0.0 9.0 ±5.4 38.8 

±23.1 

1.6 ±1.6 4.1 

±6.1 

12.5 

±8.4 

4.1 ±8.1 0.2 ±2.5 - 2.3 

±11.5 

Myosotis 

scorpioides 
- - - 

- 

0.1 

±0.0 

0.5 

±1.2 0.2 ±0.0 - - - 

Myriophyllum 

spicatum 
1.8 ±5.2 0.5 ±0.0 - 

- - - - 5.2 ±4.2 

5.6 

±8.7 - 

Najas minor 
0.2 

±1.25 
0.1 ±0.0 - 

- - - - 2.1 ±5.1 

4.2 

±1.7 - 

Persicaria 

lapathifolia 
- - 

1.8 

±10.6 0.9 ±1.6 

0.5 

±4.8 

11.4 

±9.6 - - - - 

Persicaria 

maculosa 
- - 0.5 ±0.2 

0.3 ±0.0 - 

0.2 

±0.0 - - - - 
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Phragmites 

australis - - - - - - - - - 2.5 ±0.0 

Salix fragilis - - - 

10.0 

±0.0 - - - - - - 

Typha x glauca 
0.5 ±1.1 7.4 ±7.8 16.7 

±10.3 

10.0 

±10.5 

22.3 

±7.0 

11.6 

±8.0 

48.9 

±17.3 

1.2 ±3.3 0.3 

±1.3 

51.7 

±13.7 
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Table 5. Mean Cover percentages for each non-native species found in each transect type in 2017, sorted by habitat type along 

the transect (total non-native species in 2017 = 11; All values include ± the standard deviation;  C=channel, CT=cattail-control, 

D=deep zone, IB=intermediate bench, M=mound, PHB=pothole bench, PHM=pothole mounds, SB=shallow bench, 

SGM=sedge/grass meadow, TR=treatment area). 

 Pothole Transects Channel Transect  Control 

 D PHB PHM SGM TR M SB IB C CT 

Butomus 

umbellatus - - - - - - 0.9 ±0.0 - - 0.3 

Cirsium 

arvense - 0.8 ±0.0 2.5 ±1.7 - - 3.25 ±0.4 - - - - 

Hydrocharis 

morsus-ranae 

1.3 

±1.3 

28.4 

±19.6 

1.3 ±8.7 15.8 

±19.4 

18.3 

±23.8 

14.1 

±15.4 

23.3 ±8.9 20.5 

±7.0 

2.5 

±3.8 

2.8 ±7.4 

Lythrum 

salicaria 

4.1 

±1.4 

10.2 

±9.5 

24.8 

±13.2 

0.8 ±1.3 2.0 ±1.3 3.8 ±6.4 1.7 ±1.2 0.3 ±3.8 0.4 

±0.0 

2.8 ±8.2 

Myosotis 

scorpiodes - - - - - 0.4 ±0.7 - - - - 

Myriophyllum 

spicatum 

2.4 

±1.3 0.5 ±2.0 - - - - 0.2 ±0.0 1.2 ±2.4 

2.4 

±1.5 - 

Persicaria 

lapathifolium - - - - - 0.1 ±0.0 - - - - 

Persicaria 

maculosa - - 0.9 ±6.4 - - 0.3 ±1.2 0.2 ±0.0 - - - 

Salix fragilis - - - 14.2 ±9.6 - - - - - - 
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Taraxacum 

officinale - - - - - 0.1 ±0.0 - - - - 

Typha x glauca  
1.5 

±1.1 

26.4 

±7.8 

14.2 

±10.3 

8.8 ±6.6 3.3 ±3.2 13.4 ±8.3 37.7 

±19.6 

4.2 ±3.0 - 48.0 

±27.2 
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Table 6. Pre-restoration 2013 Shallow Emergent Marsh (SEM) dominant species. 

 SEM 

Typha x glauca  65.9 

Hydrocharis morsus-ranae 10.6 

Impatiens capensis 2.5 

Lemna minor 2.2 

Salix fragilis 2.0 

Typha angustifolia 1.3 

Solanum dulcamara 1.2 
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Table 7. Calculated average FQAI, Mean C, and Weighted Mean C statistics sorted by habitat type and year along with overall 

year averages (D=deep zone, PHB=pothole bench, PH=OVERALL pothole habitat, PHM=pothole mounds, SGM=sedge/grass 

meadow, TR/SEM=treatment area in the shallow emergent marsh, M=mound, SB=shallow bench, IB=intermediate bench, 

C=channel, CH=OVERALL channel habitat, CT=cattail-control; All values include ± the standard deviation). 

 2013 2016 2017 

 
FQAI Mean C 

Weighted 

Mean C 
FQAI Mean C 

Weighted 

Mean C 
FQAI Mean C 

Weighted 

Mean C 

D 
   4.94 

±1.62 

3.40 

±1.27 

3.79 

±1.66 
4.63 ±1.55 

2.51 

±0.88 
3.56 ±1.51 

PHB 
   6.97 

±2.32 

2.68 

±0.76 

1.93 

±0.73 
7.26 ±2.21 

2.71 

±0.62 
2.40 ±0.88 

PH 

(D/PHB) 

   5.96 

±2.25 

3.04 

±1.10 

2.86 

±1.58 
5.99 ±2.33 

2.61 

±0.76 
2.96 ±1.36 

PHM 
   7.89 

±2.77 

2.80 

±0.76 

2.00 

±0.86 
7.74 ±2.94 

2.84 

±0.87 
2.59 ±1.07 

SGM 
   8.33 

±2.04 

3.60 

±0.65 

3.80 

±0.98 
8.09 ±1.87 

3.21 

±0.80 
3.54 ±1.23 

TR/SEM 
4.31 

±2.37 

2.01 

±1.01 

0.42 

±0.55 

6.73 

±2.50 

2.76 

±0.65 

1.61 

±1.09 
6.97 ±2.39 

2.91 

±0.84 
2.95 ±1.56 

M 
   6.87 

±2.04 

2.51 

±0.52 

2.05 

±0.66 
8.30 ±2.41 

2.68 

±0.64 
2.28 ±1.18 

SB 
   4.99 

±2.16 

2.08 

±0.70 

1.13 

±0.78 
6.51 ±1.73 

2.41 

±0.42 
1.35 ±0.74 

IB 
   5.99 

±1.29 

2.52 

±0.54 

1.90 

±1.17 
7.72 ±1.49 

2.81 

±0.36 
3.35 ±0.84 
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C 
   5.97 

±1.60 

3.08 

±0.83 

3.40 

±1.10 
7.69 ±1.55 

3.54 

±0.59 
4.06 ±1.18 

CH 

(SB/IB/C) 

   5.65 

±1.78 

2.56 

±0.81 

2.15 

±1.39 
7.30 ±1.70 

2.90 

±0.63 
2.89 ±1.41 

CT 
   5.37 

±3.21 

2.40 

±1.30 

1.55 

±1.09 
4.85 ±2.46 

2.34 

±1.05 
1.36 ±1.36 

OVERALL    6.31 

±2.45  

2.75 

±0.96 

2.25 

±1.35 

6.89 ±2.25 2.77 

±0.75 

2.68 ±1.38 
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Table 8. Calculated average SPPcount (species richness) statistics sorted by habitat type and year along with overall year 

averages (D=deep zone, PHB=pothole bench, PH=OVERALL pothole habitat, PHM=pothole mounds, SGM=sedge/grass 

meadow, TR/SEM=treatment area in the shallow emergent marsh, M=mound, SB=shallow bench, IB=intermediate bench, 

C=channel, CH=OVERALL channel habitat, CT=cattail-control; All values include ± the standard deviation). 

 2013 2016 2017 

D  2.73 ±1.65 3.31 ±0.92 

PHB  7.16 ±3.02 7.06 ±1.82 

PH (D/PHB)  4.94 ±3.29 5.25 ±2.37 

PHM  7.81 ±2.21 7.29 ±2.44 

SGM  5.76 ±2.47 6.73 ±2.01 

TR/SEM 4.27 ±1.87 6.05 ±2.58 6.04 ±2.45 

M  7.55 ±2.43 9.38 ±2.55 

SB  5.46 ±1.63 7.18 ±1.79 

IB  5.75 ±1.05 7.61 ±1.86 

C  4.50 ±1.63 5.19 ±2.47 

CH (SB/IB/C)  5.24 ±1.55 6.70 ±2.26 

CT  4.37 ±2.12 4.25 ±1.51 

OVERALL YEAR  5.59 ±2.45 6.33 ±2.42 
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Figure 1. (a) Lake Ontario water level fluctuation from 1860 through 2016 

demonstrating the lack of variation after the implementation of lake-level regulation in 

the 1960s (Wilcox and Bateman 2018). (b) NOAA reported water levels for 

Rochester, NY from 1 Jan 2010 to 1 Jan 2019 showing the record high water level. 

Peak in June 2017 at 75.809m (IGLD 1985).

a. 

b. 
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Figure 2. Location in New York State of the Braddock Bay Wildlife Management Area within the Rochester Embayment Area of Concern. 
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Figure 3. The gradual loss of wetland habitat from wave action-driven erosion within Braddock Bay WMA, illustrating the 

loss from 1902 to 2009 (USACE 2016A). 
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Figure 4. U.S. Army Corps of Engineers plan for the Braddock Bay Restoration 

Project that shows proposed restoration tactics.
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Figure 5(a). A diagram showing the channel formation proposed by the U.S. Army 

Corps of Engineers (USACE 2016A). (b). A diagram showing the pothole formation 

proposed by the U.S. Army Corps of Engineers (USACE 2016A).

a. 

b. 
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Figure 6. A photo with the representation of each habitat zone for pothole surveys including the Deep water (D), Bench (B), and 

the Mound (M) zones. 
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Figure 7. Illustrated example representing each habitat zone sampled for channel surveys including the Sedge/Grass Meadow 

(SGM), Treated area for cattail (TR), Mound (M), Intermediate Bench (IB), Shallow Bench (SB), and Channel (C) zones. 

Illustration credit: Kalmaru Arkitektur – wetland section. 
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Figure 8. Braddock Bay WMA summer 2016 vegetation sampling pothole transect, channel transect, and control quadrat GPS 

points. 
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Figure 9. Braddock Bay WMA summer 2017 vegetation sampling pothole transect, channel transect, and control quadrat GPS 

points. 
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    Figure 10. Braddock Bay WMA summer 2016 early season invasive species walking survey GPS points 
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Figure 11. Mean WaterDepth located on the y-axis showing the comparison between 

the two sampling years (2016 and 2017) within each sampled habitat type represented 

on the x-axis (C=channel, CT=cattail-control, D=deep zone, IB=intermediate bench, 

M=mound, PHB=pothole bench, PHM=pothole mounds, SB=shallow bench, 

SGM=sedge/grass meadow, TR =treatment area). 
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Figure 12. Comparison of Water Depth across the two sampling years of 2016 and 

2017. 

 

 

 

 

 

 

 

 

 

(c
m

) 



71 
 

Figure 13. Google Earth aerial photo (4/19/2016) of a portion of the initial excavation of channels and potholes at Braddock Bay. 

Displayed on the image is a side-by-side comparison of the initial excavation and the most recent Google Earth aerial photo 

(6/27/2018). Noticeable pothole and channel filling has occurred, creating access issues. 
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Figure 14. Non-metric multidimensional scaling ordinations for both sampling years, 

(a) 2016 and (b) 2017, respectively (D=deep zone, PHB=pothole bench, 

PHM=pothole mounds, SGM=sedge/grass meadow, TR=treatment area in the shallow 

emergent marsh, M=mound, SB=shallow bench, IB=intermediate bench, C=channel, 

CT=cattail-control).  

b. 

a. 
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Appendix 1. Masterlist of species observed within both sampling years of 2016 and 

2017.  

 

 

 

 

 

 

Acer saccharinum L. Eupatorium perfoliatum L. Rumex orbiculatus A. Gray 

Agrostis stolonifera L. 
Fragaria virginiana Mill. ssp. 
virginiana 

Sagittaria latifolia Willd. 

Alisma triviale Pursh Fraxinus pennsylvanica Marshall Salix fragilis L. 

Apios Americana Medikus Galium trifidum L. 
Schoenoplectus tabernaemontanii 
(C.C.Gmel.) Palla 

Asclepias incarnata L. Hibiscus moscheutos L. Scutellaria galericulata L. 

Azolla caroliniana Kaulf. Hydrocharis morsus-ranae L. Sium suave Walter 

Bidens cernua L. Impatiens capensis Meerb. Solanum dulcamara L. 

Bidens frondosa L. Iris pseudacorus L. Sparganium eurycarpum Engelm. 

Boehmeria cylindrica (L.) Swartz Juncus canadensis J.Gay ex Laharpe 
Spiraea alba Du Roi var. latifolia (Aiton) 
Dippel 

Bolboschoenus fluviatilis (Torr.) A. 
Gray 

Juncus effuses L. Spirodela polyrrhiza (L.) Schleid 

Butomus umbellatus L. Lathyrus palustris L. Stachys tenuifollia Willd. 

Calamagrostis Canadensis (Michx.) 
P.Beauv. 

Leersia oryzoides (L.) Sw. Stuckenia filiformis (Pers.) Börner 

Calystegia sepium (L.) R.Br. Lemna minor L. Stuckenia pectinatus (L.) Börner 

Carex comosa Boott Lemna trisulca L. Taraxacum officinale F.H. Wigg. 

Carex hystericina Muhl. ex Willd. 
Lycopus americanus Muhl. ex 
W.Bartram 

Thelyptris palustris Schott 

Carex lacustris Willd. Lycopus virginicus L. Triadenum fraseri (Spach) Gleason 

Carex lurida Wahlenb. L. salicaria L. Typha x glauca Godr. (pro sp.) 

Carex stricta Lam. Mentha arvensis L. Utricularia vulgaris L. 

Cephalanthus occidentalis L. Myosotis scorpioides L. Vallisneria americana Michx. 

Ceratophyllum demersum L. Myriophyllum spicatum L. Verbena hastata L. 

Chamerion angustifolium Ség. 
Najas flexilis (Willd.) Rostk. & 
Schmidt 

Vernonia noveboracensis (L.) Michx. 

Chara vulgaris L. Najas minor All. Vitis riparia Michx. 

Chenopodium glauca L. Nuphar lutea (L.) Sm.  

Cicuta bulbifera (L.) Spreng. Nymphaea odorata Aiton  

Cirsium arvense (L.) Scop. Onoclea sensibilis L.  

Comarum palustre L. Persicaria amphibia (L.) Gray  

Cornus amomum Mill. Persicaria hydropiper (L.) Opiz  

Cornus sericea L. 
Persicaria hydropiperoides (Michx.) 
Small 

 

Cuscuta gronovii Willd. ex Schult. 

var. latiflora Engelm 
Persicaria lapathifolia (L.) Gray  

Cyperus esculentus L. Persicaria maculosa Gray  

Cyperus fuscus L. Persicaria sagittata (L.) Gross  

Cyperus odoratus L. Phragmites australis Adans.  

Decodon verticillatus (L.) Elliott Pontederia cordata L.  
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Appendix 2. Kolmogorov-Smirnov normality tests for sample variables SPPcount, 

Mean C, Weighted Mean C, FQAI, Total Cover, Detritus Cover, Water Depth, and 

Sediment Depth in 2016 and 2017. 

Tests of Normality 

 

Year 

Kolmogorov-Smirnova Shapiro-Wilk 

 Statistic df Sig. Statistic df Sig. 

SPPcount 2016 0.054 162 0.200* 0.985 162 0.088 

2017 0.070 150 0.070 0.985 150 0.113 

MeanC 2016 0.079 162 0.016 0.961 162 0.000 

2017 0.066 150 0.200* 0.974 150 0.006 

Weighted Mean 

C 

2016 0.075 162 0.027 0.967 162 0.001 

2017 0.053 150 0.200* 0.986 150 0.126 

FQAI 2016 0.086 162 0.005 0.973 162 0.003 

2017 0.053 150 0.200* 0.987 150 0.170 

Total Cover 2016 0.093 162 0.002 0.968 162 0.001 

2017 0.125 150 0.000 0.952 150 0.000 

DetritusCover 2016 0.186 162 0.000 0.860 162 0.000 

2017 0.166 150 0.000 0.863 150 0.000 

WaterDepth 2016 0.331 162 0.000 0.694 162 0.000 

2017 0.156 150 0.000 0.879 150 0.000 

SedimentDepth 2016 0.286 162 0.000 0.636 162 0.000 

2017 0.085 150 0.010 0.950 150 0.000 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 
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Appendix 3. Kolmogorov-Smirnov normality tests for sample variables SPPcount, 

Mean C, Weighted Mean C, and FQAI in 2013 and 2017. 

Tests of Normality 

 

Year 

Kolmogorov-Smirnova Shapiro-Wilk 

 Statistic df Sig. Statistic df Sig. 

SPPcount 2013 0.179 41 0.002 0.920 41 0.007 

2017 0.143 55 0.007 0.951 55 0.025 

MeanC 2013 0.089 41 0.200* 0.973 41 0.423 

2017 0.095 55 0.200* 0.961 55 0.073 

Weighted 

Mean C 

2013 0.227 41 0.000 0.751 41 0.000 

2017 0.120 55 0.046 0.956 55 0.044 

FQAI 2013 0.096 41 0.200* 0.974 41 0.459 

2017 0.079 55 0.200* 0.979 55 0.436 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 
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Appendix 4. A Multivariate Generalized Linear Model (GLM) used to compare the 

averaged SPPcount, Mean C, Weighted Mean C, FQAI, Total Cover, Detritus Cover, 

Water Depth, and Sediment Depth across year 2016 to 2017.  

Tests of Between-Subjects Effects 

Source 

Dependent 

Variable 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected 

Model 

SPPcount 590.855a 61 9.686 1.851 0.001 

MeanC 44.594b 61 0.731 0.961 0.562 

Weighted 

Mean C 

139.521c 61 2.287 1.260 0.113 

FQAI 475.030d 61 7.787 1.511 0.015 

Total Cover 42020.895e 61 688.867 1.232 0.137 

DetritusCover 149477.665f 61 2450.454 3.696 0.000 

WaterDepth 237256.331g 61 3889.448 1.643 0.004 

SedimentDepth 1494347.176h 61 24497.495 7.385 0.000 

Intercept SPPcount 9197.390 1 9197.390 1757.653 0.000 

MeanC 1952.183 1 1952.183 2565.295 0.000 

Weighted 

Mean C 

1686.463 1 1686.463 929.280 0.000 

FQAI 11177.251 1 11177.251 2169.057 0.000 

Total Cover 892673.079 1 892673.079 1596.488 0.000 

DetritusCover 164381.673 1 164381.673 247.905 0.000 

WaterDepth 519418.058 1 519418.058 219.420 0.000 

SedimentDepth 1193133.731 1 1193133.731 359.684 0.000 

Year SPPcount 20.251 1 20.251 3.870 0.050 

MeanC .291 1 0.291 0.382 0.537 

Weighted 

Mean C 

9.253 1 9.253 5.099 0.025 

FQAI 13.140 1 13.140 2.550 0.112 

Total Cover 5649.973 1 5649.973 10.105 0.002 

DetritusCover 3420.831 1 3420.831 5.159 0.024 

WaterDepth 79011.034 1 79011.034 33.377 0.000 

SedimentDepth 492742.729 1 492742.729 148.543 0.000 

Transect# SPPcount 298.540 30 9.951 1.902 0.004 
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MeanC 25.980 30 0.866 1.138 0.291 

Weighted 

Mean C 

97.313 30 3.244 1.787 0.009 

FQAI 231.071 30 7.702 1.495 0.053 

Total Cover 21376.446 30 712.548 1.274 0.162 

DetritusCover 104293.516 30 3476.451 5.243 0.000 

WaterDepth 97547.198 30 3251.573 1.374 0.100 

SedimentDepth 701109.569 30 23370.319 7.045 0.000 

Year * 

Transect# 

SPPcount 259.880 30 8.663 1.655 0.021 

MeanC 18.517 30 0.617 0.811 0.749 

Weighted 

Mean C 

31.459 30 1.049 0.578 0.963 

FQAI 228.740 30 7.625 1.480 0.057 

Total Cover 18321.615 30 610.720 1.092 0.346 

DetritusCover 18458.225 30 615.274 0.928 0.579 

WaterDepth 38835.842 30 1294.528 0.547 0.975 

SedimentDepth 138636.522 30 4621.217 1.393 0.091 

Error SPPcount 1308.192 250 5.233   

MeanC 190.249 250 0.761   

Weighted 

Mean C 

453.702 250 1.815 
  

FQAI 1288.261 250 5.153   

Total Cover 139787.017 250 559.148   

DetritusCover 165770.765 250 663.083   

WaterDepth 591807.153 250 2367.229   

SedimentDepth 829293.726 250 3317.175   

Total SPPcount 12917.076 312    

MeanC 2611.944 312    

Weighted 

Mean C 

2475.072 312 
   

FQAI 15301.515 312    

Total Cover 1389282.031 312    

DetritusCover 674202.648 312    

WaterDepth 1345713.368 312    

SedimentDepth 4249233.965 312    

SPPcount 1899.048 311    
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Corrected 

Total 

MeanC 234.843 311    

Weighted 

Mean C 

593.222 311 
   

FQAI 1763.291 311    

Total Cover 181807.912 311    

DetritusCover 315248.431 311    

WaterDepth 829063.483 311    

SedimentDepth 2323640.902 311    

a. R Squared = .311 (Adjusted R Squared = .143) 

b. R Squared = .190 (Adjusted R Squared = -.008) 

c. R Squared = .235 (Adjusted R Squared = .049) 

d. R Squared = .269 (Adjusted R Squared = .091) 

e. R Squared = .231 (Adjusted R Squared = .044) 

f. R Squared = .474 (Adjusted R Squared = .346) 

g. R Squared = .286 (Adjusted R Squared = .112) 

h. R Squared = .643 (Adjusted R Squared = .556) 
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Appendix 5. Non-parametric Independent-samples Kruskal-Wallis one-way ANOVA 

comparing the averaged SPPcount, Mean C, Weighted Mean C, FQAI, Total Cover, 

Detritus Cover, Water Depth, and Sediment Depth for the cattail mat - control habitat 

(CT) in 2016 vs 2017.  

 Test statistic P-value df 

SPP Count 0.085 0.771 1 

    

Mean C 

 

0.072 0.789 1 

Weighted Mean C 

 

0.319 0.572 

 

1 

FQAI 0.454 0.500 1 

    

TotalCover 1.541 0.214 1 

    

DetritusCover 12.454 <0.001 1 

    

WaterDepth 6.817 0.009 1 

    

SedimentDepth 24.876 <0.001 1 
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Appendix 6. A Multivariate Generalized Linear Model (GLM) used to compare 

individual year 2016 data across habitats using FQAI, mean C, and weighted C as 

factors blocked by transect. Control quadrats were not included in this analysis. 

Tests of Between-Subjects Effects 

Source 

Dependent 

Variable 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Model MeanC 1326.453a 133 9.973 5.678 0.000 

Weighted C 1078.588b 133 8.110 6.549 0.000 

FQAI 7116.841c 133 53.510 5.006 0.000 

Habitat MeanC 24.107 7 3.444 1.961 0.096 

Weighted C 112.608 7 16.087 12.990 0.000 

FQAI 162.066 7 23.152 2.166 0.068 

Transect# MeanC 18.754 28 0.670 0.381 0.994 

Weighted C 25.561 28 0.913 0.737 0.789 

FQAI 130.828 28 4.672 0.437 0.984 

Transect# * 

Habitat 

MeanC 51.854 95 0.546 0.311 1.000 

Weighted C 100.528 95 1.058 0.855 0.720 

FQAI 338.917 95 3.568 0.334 1.000 

Error MeanC 50.934 29 1.756   

Weighted C 35.912 29 1.238   

FQAI 309.967 29 10.689   

Total MeanC 1377.387 162    

Weighted C 1114.500 162    

FQAI 7426.808 162    

a. R Squared = 0.963 (Adjusted R Squared = 0.793) 

b. R Squared = 0.968 (Adjusted R Squared = 0.820) 

c. R Squared = 0.958 (Adjusted R Squared = 0.767) 
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Appendix 7. A Multivariate Generalized Linear Model (GLM) used to compare 

individual year 2017 data across habitats using FQAI, mean C, and weighted C as 

factors blocked by transect. Control quadrats were not included in this analysis. 

 

Tests of Between-Subjects Effects 

Source 

Dependent 

Variable 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Model MeanC 1212.432a 131 9.255 7.948 0.000 

Weighted C 1323.382b 131 10.102 5.161 0.000 

FQAI 7753.519c 131 59.187 9.279 0.000 

Habitat MeanC 11.197 7 1.600 1.374 0.272 

Weighted C 74.741 7 10.677 5.455 0.001 

FQAI 117.828 7 16.833 2.639 0.044 

Transect# MeanC 13.746 28 0.491 0.422 0.981 

Weighted C 36.903 28 1.318 0.673 0.833 

FQAI 162.101 28 5.789 0.908 0.601 

Transect# * 

Habitat 

MeanC 30.034 93 0.323 0.277 1.000 

Weighted C 92.723 93 0.997 0.509 0.982 

FQAI 238.295 93 2.562 0.402 0.998 

Error MeanC 22.124 19 1.164   

Weighted C 37.190 19 1.957   

FQAI 121.188 19 6.378   

Total MeanC 1234.557 150    

Weighted C 1360.572 150    

FQAI 7874.707 150    

a. R Squared = 0.982 (Adjusted R Squared = 0.859) 

b. R Squared = 0.973 (Adjusted R Squared = 0.784) 

c. R Squared = 0.985 (Adjusted R Squared = 0.879) 
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Appendix 8. Non-parametric Independent-samples Kruskal-Wallis one-way ANOVA 

for pre-restoration 2013 vegetation data for the Shallow Emergent Marsh zone (SEM) 

and 2017 treatment area (TR) data from the comparing SPPcount, Mean C, Weighted 

Mean C, and FQAI. This comparison presents a 2013 pre-restoration shallow 

emergent marsh compared to post-construction treatment, found within the same 

locations. 

 Test statistic P-value df 

SPP Count  14.145 < 0.001 1 

    

Mean C 18.377 < 0.001 1 

    

Weighted Mean C 53.178 < 0.001 1 

    

FQAI 23.508 < 0.001 1 
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Appendix 9. Non-parametric Independent-samples Kruskal-Wallis one-way ANOVA 

comparing the averaged SPPcount, Mean C, Weighted Mean C, FQAI, Total Cover, 

Detritus Cover, Water Depth, and Sediment Depth for the treatment habitat (TR) in 

2016 vs 2017. 

 Test statistic P-value df 

SPP Count 0.000 0.988 1 

    

Mean C 1.257 0.262 1 

    

Weighted Mean C 19.936 < 0.001 1 

    

FQAI 0.625 0.429 1 

    

TotalCover 0.687 0.407 1 

    

DetritusCover 22.000 < 0.001 1 

    

WaterDepth 89.680 < 0.001 1 

    

SedimentDepth 48.771 < 0.001 1 
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Appendix 10. A Multivariate Generalized Linear Model (GLM) used to compare the 

averaged SPPcount, Mean C, Weighted Mean C, FQAI, Total Cover, Detritus Cover, 

Water Depth, and Sediment Depth across 2016 and 2017 for the overall channel 

habitat which includes the channel (C), shallow bench (SB), and intermediate bench 

(IB) habitats. 

Tests of Between-Subjects Effects 

Source 

Dependent 

Variable 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Corrected 

Model 

MeanC 11.607a 27 0.430 0.677 0.865 

Weighted C 40.813b 27 1.512 0.616 0.914 

SPPcount 201.602c 27 7.467 2.667 0.001 

FQAI 146.896d 27 5.441 1.846 0.027 

Total Cover 12778.727e 27 473.286 0.898 0.611 

DetritusCover 6550.515f 27 242.612 0.292 1.000 

WaterDepth 76412.851g 27 2830.106 0.817 0.712 

SedimentDepth 458150.791h 27 16968.548 36.920 0.000 

Intercept MeanC 613.492 1 613.492 965.936 0.000 

Weighted C 518.632 1 518.632 211.277 0.000 

SPPcount 2965.056 1 2965.056 1058.948 0.000 

FQAI 3462.099 1 3462.099 1174.684 0.000 

Total Cover 339318.001 1 339318.001 644.020 0.000 

DetritusCover 36280.720 1 36280.720 43.740 0.000 

WaterDepth 480187.792 1 480187.792 138.679 0.000 

SedimentDepth 466608.352 1 466608.352 1015.244 0.000 

Year MeanC 2.246 1 2.246 3.536 0.065 

Weighted C 10.807 1 10.807 4.403 0.040 

SPPcount 47.161 1 47.161 16.843 0.000 

FQAI 56.653 1 56.653 19.222 0.000 

Total Cover 30.720 1 30.720 0.058 0.810 

DetritusCover 1906.597 1 1906.597 2.299 0.135 

WaterDepth 63087.792 1 63087.792 18.220 0.000 

SedimentDepth 421228.089 1 421228.089 916.506 0.000 
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Transect# MeanC 5.638 13 0.434 0.683 0.771 

Weighted C 20.379 13 1.568 0.639 0.811 

SPPcount 81.825 13 6.294 2.248 0.019 

FQAI 54.172 13 4.167 1.414 0.183 

Total Cover 9228.434 13 709.880 1.347 0.215 

DetritusCover 2531.446 13 194.727 0.235 0.997 

WaterDepth 6945.169 13 534.244 0.154 1.000 

SedimentDepth 22285.885 13 1714.299 3.730 0.000 

Year * 

Transect# 

MeanC 3.571 13 0.275 0.432 0.951 

Weighted C 9.208 13 0.708 0.289 0.991 

SPPcount 77.622 13 5.971 2.132 0.026 

FQAI 35.800 13 2.754 0.934 0.525 

Total Cover 3586.677 13 275.898 0.524 0.900 

DetritusCover 2062.289 13 158.638 0.191 0.999 

WaterDepth 4745.531 13 365.041 0.105 1.000 

SedimentDepth 12579.363 13 967.643 2.105 0.028 

Error MeanC 34.932 55 0.635   

Weighted C 135.011 55 2.455   

SPPcount 154.000 55 2.800   

FQAI 162.099 55 2.947   

Total Cover 28978.125 55 526.875   

DetritusCover 45620.833 55 829.470   

WaterDepth 190441.667 55 3462.576   

SedimentDepth 25278.125 55 459.602   

Total MeanC 665.184 83    

Weighted C 700.557 83    

SPPcount 3301.750 83    

FQAI 3776.531 83    

Total Cover 384835.938 83    

DetritusCover 87970.312 83    

WaterDepth 749993.750 83    

SedimentDepth 941718.750 83    

Corrected 

Total 

MeanC 46.539 82    

Weighted C 175.825 82    

SPPcount 355.602 82    

FQAI 308.996 82    
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Total Cover 41756.852 82    

DetritusCover 52171.348 82    

WaterDepth 266854.518 82    

SedimentDepth 483428.916 82    

a. R Squared = .249 (Adjusted R Squared = -.119) 

b. R Squared = .232 (Adjusted R Squared = -.145) 

c. R Squared = .567 (Adjusted R Squared = .354) 

d. R Squared = .475 (Adjusted R Squared = .218) 

e. R Squared = .306 (Adjusted R Squared = -.035) 

f. R Squared = .126 (Adjusted R Squared = -.304) 

g. R Squared = .286 (Adjusted R Squared = -.064) 

h. R Squared = .948 (Adjusted R Squared = .922) 
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Appendix 11. A Multivariate Generalized Linear Model (GLM) used to compare the 

averaged SPPcount, Mean C, Weighted Mean C, FQAI, Total Cover, Detritus Cover, 

Water Depth, and Sediment Depth across 2016 and 2017 for the overall pothole 

habitat which includes the deep (D) and pothole bench (PHB) habitats. 

Tests of Between-Subjects Effects 

Source 

Dependent 

Variable 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Corrected 

Model 

MeanC 30.279a 31 0.977 1.024 0.474 

Weighted C 49.195b 31 1.587 0.557 0.946 

SPPcount 183.029c 31 5.904 0.539 0.955 

FQAI 133.683d 31 4.312 0.683 0.853 

Total Cover 19624.063e 31 633.034 0.723 0.814 

DetritusCover 4729.377f 31 152.561 0.447 0.986 

WaterDepth 93172.509g 31 3005.565 1.067 0.429 

SedimentDepth 312910.937h 31 10093.901 3.473 0.000 

Intercept MeanC 493.631 1 493.631 517.260 0.000 

Weighted C 520.957 1 520.957 182.933 0.000 

SPPcount 1618.485 1 1618.485 147.755 0.000 

FQAI 2207.884 1 2207.884 349.867 0.000 

Total Cover 144356.229 1 144356.229 164.865 0.000 

DetritusCover 14219.342 1 14219.342 41.646 0.000 

WaterDepth 311838.552 1 311838.552 110.705 0.000 

SedimentDepth 580953.455 1 580953.455 199.894 0.000 

Year MeanC 2.959 1 2.959 3.101 0.088 

Weighted C .098 1 0.098 0.034 0.854 

SPPcount 1.670 1 1.670 0.152 0.699 

FQAI .003 1 0.003 0.000 0.983 

Total Cover 6238.426 1 6238.426 7.125 0.012 

DetritusCover 719.510 1 719.510 2.107 0.157 

WaterDepth 29414.815 1 29414.815 10.442 0.003 

SedimentDepth 225693.034 1 225693.034 77.656 0.000 

Transect# MeanC 19.253 15 1.284 1.345 0.235 

Weighted C 26.386 15 1.759 0.618 0.838 
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SPPcount 73.358 15 4.891 0.446 0.950 

FQAI 77.062 15 5.137 0.814 0.655 

Total Cover 7031.841 15 468.789 0.535 0.900 

DetritusCover 1167.943 15 77.863 0.228 0.998 

WaterDepth 35039.406 15 2335.960 0.829 0.640 

SedimentDepth 22975.840 15 1531.723 0.527 0.905 

Year * 

Transect# 

MeanC 8.144 15 0.543 0.569 0.876 

Weighted C 22.512 15 1.501 0.527 0.905 

SPPcount 108.395 15 7.226 0.660 0.802 

FQAI 56.679 15 3.779 0.599 0.853 

Total Cover 6533.850 15 435.590 0.497 0.923 

DetritusCover 2780.509 15 185.367 0.543 0.895 

WaterDepth 27267.923 15 1817.862 0.645 0.814 

SedimentDepth 64550.370 15 4303.358 1.481 0.173 

Error MeanC 29.584 31 0.954   

Weighted C 88.282 31 2.848   

SPPcount 339.569 31 10.954   

FQAI 195.630 31 6.311   

Total Cover 27143.750 31 875.605   

DetritusCover 10584.462 31 341.434   

WaterDepth 87322.222 31 2816.846   

SedimentDepth 90095.403 31 2906.303   

Total MeanC 564.216 63    

Weighted C 670.561 63    

SPPcount 2156.472 63    

FQAI 2576.342 63    

Total Cover 191216.667 63    

DetritusCover 29904.340 63    

WaterDepth 495409.028 63    

SedimentDepth 975800.806 63    

Corrected 

Total 

MeanC 59.863 62    

Weighted C 137.476 62    

SPPcount 522.599 62    

FQAI 329.313 62    

Total Cover 46767.813 62    

DetritusCover 15313.839 62    
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WaterDepth 180494.731 62    

SedimentDepth 403006.340 62    

a. R Squared = .506 (Adjusted R Squared = .012) 

b. R Squared = .358 (Adjusted R Squared = -.284) 

c. R Squared = .350 (Adjusted R Squared = -.300) 

d. R Squared = .406 (Adjusted R Squared = -.188) 

e. R Squared = .420 (Adjusted R Squared = -.161) 

f. R Squared = .309 (Adjusted R Squared = -.382) 

g. R Squared = .516 (Adjusted R Squared = .032) 

h. R Squared = .776 (Adjusted R Squared = .553) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



90 
 

Appendix 12. Non-parametric Independent-samples Kruskal-Wallis one-way ANOVA 

comparing the averaged SPPcount, Mean C, Weighted Mean C, FQAI, Total Cover, 

Detritus Cover, Water Depth, and Sediment Depth for the pothole mound habitat 

(PHM) in 2016 vs 2017.  

 Test statistic P-value df 

SPP Count 1.737 0.188 1 

    

Mean C 

 

0.231 0.631 1 

Weighted Mean C 

 

7.095 0.008 1 

FQAI 0.080 0.778 1 

    

TotalCover 19.904 < 0.001 1 

    

DetritusCover 0.244 0.621 1 

    

WaterDepth 5.215 0.022 1 

    

SedimentDepth 14.908 < 0.001 1 
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Appendix 13. Non-parametric Independent-samples Kruskal-Wallis one-way ANOVA 

comparing the averaged SPPcount, Mean C, Weighted Mean C, FQAI, Total Cover, 

Detritus Cover, Water Depth, and Sediment Depth for the mound habitat (M) in 2016 

vs 2017.  

 Test statistic P-value df 

SPP Count 8.626 0.003 1 

    

Mean C 

 

2.937 0.087 1 

Weighted Mean C 

 

0.340 0.560 1 

FQAI 9.659 0.002 1 

    

TotalCover 5.252 0.022 1 

    

DetritusCover 6.270 0.012 1 

    

WaterDepth 17.691 < 0.001 1 

    

SedimentDepth 43.682 < 0.001 1 
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